Stochastic Diagonalization

H. De Raedt

Institute for Theoretical Physics and Materials Science Centre University of Groningen, The Netherlands

Work done in collaboration with:

W.Fettes, (Regensburg, D) K. Michielsen, (Groningen, NL)

Outline

- Introduction
 - Formulation of the problem
- Minus-sign problem in Quantum Monte Carlo methods
 - General aspects only
- Stochastic diagonalization
 - Theory
 - Comparison with other (QMC) methods
 - 2D tt' Hubbard model
 - Quantum Chemistry Problems
- Application:
 - Off-diagonal long-range order, superconductivity
- Basis-set optimization
- Conclusions

 Quantum statistical mechanics, (lattice) QED, (lattice) QCD:

$$\left\langle X \right\rangle = \frac{\mathrm{Tr}e^{-\beta H}X}{\mathrm{Tr}e^{-\beta H}} = \frac{\sum_{\{\psi\},\{\varphi\}} \left\langle \varphi \right| e^{-\beta H} \left| \psi \right\rangle \left\langle \psi \right| X \left| \varphi \right\rangle}{\sum_{\{\psi\}} \left\langle \varphi \right| e^{-\beta H} \left| \varphi \right\rangle}$$

- H : Hamiltonian
- X: Observable
- $\{\psi\}, \{\varphi\}$: Complete sets of states
- $\beta = 1/k_B T$: Inverse temperature
- Quantum dynamics:

 $i\hbar \frac{\partial}{\partial t} |\Psi(t)\rangle = H |\Psi(t)\rangle \quad \Leftrightarrow \quad |\Psi(t)\rangle = e^{-itH/\hbar} |\Psi(0)\rangle$

Ground-state (T=0) properties:

$$H \big| \Phi_1 \big\rangle = E_1 \big| \Phi_1 \big\rangle$$

• E_1 is the smallest eigenvalue of H

- For numerical purposes, a state of the quantum system, i.e. the wave function, is represented by a vector of length *M* (the dimension of the Hilbert space) and the Hamiltonian *H* is a hermitian matrix of dimension *M* x *M*.
- We know what we have to do: "Just" solve the Schrödinger equation $H|\Phi\rangle = E|\Phi\rangle$
 - A standard problem of linear algebra
 - Example: The Hubbard-Gutzwiller model (1963)

Describes fermions (electrons) that hop from one lattice point to another and that feel each other via an onsite repulsion (U>0).

 Count the number of possible ways to distribute Nelectrons with spin up and N_↓ electrons with spin down over L lattice sites:

$$M = \begin{pmatrix} L \\ N_{\uparrow} \end{pmatrix} \mathbf{x} \begin{pmatrix} L \\ N_{\downarrow} \end{pmatrix}$$

• For $N = N_{\downarrow} = L/2$: $M \approx \frac{2^{2L+2}}{2\pi L}$

Memory
$$\approx \frac{2^{2L-25}}{2\pi L}$$
 Giga bytes

L	$N_{\uparrow} = N_{\downarrow}$	М	Memory in Gb	Approx. cost
16	8	2x10 ⁸	2	\$ 10 ³
36	18	8x10 ¹⁹	6x10 ¹¹	\$ 10 ¹⁴
64	32	3x10 ³⁶	3x10 ²⁸	\$ 10 ²⁰

Very Large Matrices !

- In general, there is no way to solve these monster eigenvalue problems using perturbative or conventional numerical (Eispack, Lanczos, Davidson, ...) methods.
- Key issue

How to solve (eigenvalue) problems involving extremely large matrices ?

- General strategy: Trade memory for CPU time
 - Quantum Monte Carlo (QMC) Methods
 - Stochastic Diagonalization

Quantum Monte Carlo Methods

- Stochastic methods:
 - Use much less than *M* storage elements but use much more CPU time
 - Example: A QMC method based on

 $\lim_{m\to\infty} (H - E_{shift})^m |\Phi_{initial}\rangle = |\Phi_1\rangle$

Linear algebra: Power method

$$(H - E_{shift})^{m} |\Phi_{initial}\rangle = \sum_{i=1}^{M} (E_{i} - E_{shift})^{m} |\varphi_{i}\rangle \langle \varphi_{i} |\Phi_{initial}\rangle$$

$$\xrightarrow{m \to \infty} \max_{i} (E_{i} - E_{shift})^{m} |\varphi_{i}\rangle \langle \varphi_{i} |\Phi_{initial}\rangle \propto |\Phi_{1}\rangle$$

• for a "good" choice of E_{shift}

• Physical quantities are related to matrix elements:

$$\left\langle \Phi_{i} \left| (H-E)^{m} \right| \Phi_{f} \right\rangle = \sum_{\{\Phi_{k}\}} \left\langle \Phi_{i} \left| H-E \right| \Phi_{1} \right\rangle \left\langle \Phi_{1} \left| H-E \right| \Phi_{2} \right\rangle \cdots \left\langle \Phi_{m-1} \left| H-E \right| \Phi_{f} \right\rangle$$

- Takes approximately *mM* operations
- Does not help much if we would like to sum all terms

Quantum Monte Carlo Simulation: General Strategy

Importance sampling

- Basic assumption (hope): If the problem can be solved at all, it must be such that not all the states of the system are <u>equally important</u>. Using only a few of them should be sufficient to compute the physical properties with reasonable accuracy.
 - In practice a "few " can still mean 10⁴ 10⁸ states
 - No a-priori justification in the case of quantum systems
 - OK for classical statistical problems
- How to find these <u>important</u> states ?
 - Random search gives bad results

 Metropolis Monte Carlo method, molecular dynamics, Langevin dynamics, ... Importance sampling

Importance sampling:

Search for *important* states uses

 $\rho = \rho(\{\Phi_k\}) = \langle \Phi_0 | F | \Phi_1 \rangle \langle \Phi_1 | F | \Phi_2 \rangle \cdots \langle \Phi_{m-1} | F | \Phi_m \rangle$

- as a "density" distribution for the states $\{\Phi_k\}$
 - F depends on the application
- Classical statistical mechanics

$$F_{Boltzmann}(H) = e^{-\beta H} \quad ; \quad H \in \mathfrak{R}$$

• Diffusion QMC (power method):

 $F_{DQMC}(H) = (1 - \tau H)^m$

Green Function QMC (inverse iteration:

$$F_{GFMC}(H) = [(E_{shift} + H)^{-1}]^{m}$$

 Path Integral MC (Trotter-Suzuki product formulae)

$$F_{PI}(H = A + B) = \left(e^{-\beta A/m}e^{-\beta B/m}\right)^m$$

Quantum Monte Carlo Methods: General Strategy

- All importance sampling methods require a probability distribution
 - Only positive functions qualify as probability distributions
- Is $\rho > 0$ for all possible states ?
 - In classical mechanics (Boltzmann factor): ALWAYS
 - In quantum mechanics: Almost NEVER
 - "Theorems": If all the off-diagonal elements of the matrix representing the Hamiltonian are negative then $\rho > 0$
 - H. De Raedt and M. Frick, Phys. Rep. 231, 107-149 (1993)
 - The reverse is NOT true but it is save to expect it is.

Minus Sign Problem

Theorems on the positivity of *F*(*H*)

- Classical statistical mechanics F_{Boltzmann}(H) = e^{-βH} > 0 ; H ∈ ℜ

 DQMC: F_{DQMC}(H) = (1 - τH)^m If ⟨φ|H|ψ⟩ ≤ 0 for all |φ⟩,|ψ⟩ then ⟨φ|(1 - τH)|ψ⟩ ≥ 0

 GQMC: F_{GFMC}(H) = [(E_{shift} + H)⁻¹]^m If ω + H is positive definite and ⟨φ|H|ψ⟩ ≤ 0 for all |φ⟩ ≠ |ψ⟩ then ⟨φ|(ω + H)⁻¹|ψ⟩ > 0

 Trotter-Suzuki: F_{PI}(H = A + B) = (e^{-βA/m}e^{-βB/m})^m If ⟨φ|X|ψ⟩ ≤ 0 for all |φ⟩ ≠ |ψ⟩
 - then $\langle \varphi | e^{-\tau X} | \psi \rangle \ge 0$ for all $\tau > 0$
 - Auxilary-field QMC:

 $F \propto \det(1 + e^{A_1} \dots e^{A_m}) = ?$

Quantum Monte Carlo Minus Sign Problem

- Why should negative contributions bother us at all ?
 - Importance sampling without (mathematical) justification
 - Trick: Transfer sign to measurement
 - H. De Raedt and A. Lagendijk, Phys. Rev. Lett. 46, 77 (1981)

$$\langle A \rangle = \operatorname{Tr} \rho A = \operatorname{Tr} | \rho | \operatorname{sign}(\rho) A = \frac{\langle \operatorname{sign}(\rho) A \rangle_{|\rho|}}{\langle \operatorname{sign}(\rho) \rangle_{|\rho|}}$$

- Simulation methods suffer from statistical errors
 - This trick fails if $\left< sign(\rho) \right>_{|\rho|} \to 0$ which is usually the case if
 - the number of factors in the product formula increases, or
 - the system size increases, or
 - the temperature decreases, or

••••

Minus Sign Problem: Simple Example

- The minus sign problem can also appear when there are no fermions !
- Example: A spin-1/2 model

$$-\beta H = a\sigma^{x} - b\sigma^{y} = \begin{pmatrix} 0 & a + ib \\ a - ib & 0 \end{pmatrix}$$

Generic QMC approach: Rewrite the partition function using the Trotter-Suzuki formula:

$$Z = \lim_{m \to \infty} Z_m$$
 ; $Z_m = \operatorname{Tr} \left(e^{a\sigma^x / m} e^{-b\sigma^y / m} \right)^m$

1) $Z_1 = \cosh a \cosh b \operatorname{Tr}(1 + i\sigma^z \tanh a \tanh b)$

None of the contributions is REAL !

2) Change of representation : $-\beta H = a\sigma^x - b\sigma^z$

$$Z_m = \sum_{\{s_j = \pm 1\}} \prod_{j=0}^{m-1} \left[\delta_{s_j, s_{j+1}} + (1 - \delta_{s_j, s_{j+1}}) \tanh a \right] e^{-bs_j/m} \cosh \frac{a}{m}$$

- Quantum Monte Carlo methods work well if there is no minus sign problem
- The minus sign problem is due to the use of a *product formula* in combination with an *importance sampling algorithm*
- Use of importance sampling seems unavoidable (just too many possibilities)
- Without using some product formula it seems very difficult to compute physical quantities without making (uncontrolled) approximations

Stochastic Diagonalization

- Method to compute the smallest eigenvalue and corresponding eigenvector of very (very) large matrices.
 - Basic idea: Assume that of all possible states of the quantum system, only a relatively small fraction is "important"
 - The same assumption is at the heart of all Quantum Monte Carlo techniques
 - How to find these important states ?
 - HDR & W. von der Linden (1992):

$$\begin{split} \left| \Phi \right\rangle &= \sum_{j=1}^{M} a_{j} \left| \phi_{j} \right\rangle = \sum_{j=1}^{M} a_{Pj} \left| \phi_{Pj} \right\rangle \quad ; \quad \left| a_{Pj} \right| \geq \left| a_{P(j+1)} \right| \\ \left| \Phi \right\rangle &\approx \left| \widetilde{\Phi} \right\rangle = \sum_{j=1}^{M_{imp}} a_{Pj} \left| \phi_{Pj} \right\rangle \quad ; \quad M_{imp} = \text{ \# Important states} \\ E &\leq \widetilde{E} = \frac{\left\langle \widetilde{\Phi} \left| H \right| \widetilde{\Phi} \right\rangle}{\left\langle \widetilde{\Phi} \right| \widetilde{\Phi} \right\rangle} \end{split}$$

Stochastic Diagonalization

 Step 2: Use the difference <u>a-a' > 0</u> to set up an importance sampling scheme

 Use plane rotations (2x2 matrices) to inflate the matrix and to simultaneously isolate the lowest eigenvalue

$$\begin{pmatrix} E_0^{(0)} \end{pmatrix} \rightarrow \begin{pmatrix} E_0^{(1)} & * \\ * & \bullet \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} E_0^{(2)} & * & * \\ * & \bullet & \bullet \\ * & \bullet & \bullet \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} E_0 & 0 & \cdots & 0 \\ 0 & \bullet & \bullet \\ \vdots & \bullet & \bullet \\ 0 & \bullet & \bullet \end{pmatrix}$$

How to pick "candidates" ?

• Use $\left\langle \varphi_{Pi} \left| H \right| \varphi_{Trial} \right\rangle \neq 0$

 Why does the (1,1) element converges to the ground state energy ?

Stochastic Diagonalization

Cauchy theorem:

$$H = \begin{pmatrix} H^{(k)} & X^T \\ X & Y \end{pmatrix} \quad ; \quad k = 1, \dots, M - 1$$

 $E_j^{(k)}$: *j*-th eigenvalue of $H^{(k)}$

Then:

 $E_j \le E_j^{(k)} \le E_{M-k+j}$

 Poincaré separation theorem: Relates eigenvalues of a (k-1) x (k-1) matrix to the eigenvalues of a k x k matrix

$$E_1^{(k)} \le E_1^{(k-1)} \le E_2^{(k)} \le \dots \le E_{k-1}^{(k-1)} \le E_k^{(k)}$$

SD: Algorithm

- Initialize data structures
- **Do**
- If (Maximum of absolute value of offdiagonal elements of the first row < than threshold for rejecting plane rotations)

then

Generate a new trial state

if (No important state has been found) then Reduce the threshold(s)

else

Inflate the matrix

end if

else

Annihilate the pair of off-diagonal elements with the largest absolute value by performing a plane rotation end if

end do

SD : Practical aspects

- Necessary condition to be useful in practice: The calculation of matrix elements of H should be (very) fast.
 - Each attempt to find a new important state requires the calculation of the matrix element

$$H_{1,n+1}^{trial} = ((U^{(1)} \dots U^{(p)})^T H U^{(p)} \dots U^{(1)})_{1,n+1}$$

$$= \sum_{j=1}^{T} (U^{(1)} \dots U^{(p)})_{1,j}^{T} H_{j,n+1}$$

- Calculation of the product of plane rotation matrices U^(q) is fast
- Calculating H_{i,n+1} takes most of the CPU time
 - Can be done in parallel

Computation of Physical Properties

 At T=0 the expectation value of a physical observable is given by

$$\langle A \rangle = \langle \Phi | A | \Phi \rangle = \sum_{i,j=1}^{M} a_i a_j \langle \phi_i | A | \phi_j \rangle$$

$$\approx \frac{\sum_{i,j=1}^{M_{imp}} a_{Pi} a_{Pj} \langle \phi_{Pi} | A | \phi_{Pj} \rangle}{\sum_{i=1}^{M_{imp}} a_{Pi}^2}$$

- Takes of the order of $M_{imp} \ge M_{imp}$ operations
 - For M_{imp} ~ 10⁵ 10⁶ computing a physical quantity may take a substantial amount of CPU time

Example: Repulsive Hubbard Model

 2D Hubbard model with nearest and next-nearest neighbor hopping

$$\begin{split} H &= -t \sum_{\langle i,j \rangle \sigma = \uparrow,\downarrow} \sum_{\sigma = \uparrow,\downarrow} \left(c_{i,\sigma}^{+} c_{j,\sigma} + c_{j,\sigma}^{+} c_{i,\sigma} \right) + U \sum_{i} c_{i\uparrow}^{+} c_{i\downarrow}^{+} c_{i\downarrow} c_{i\uparrow} \\ &- t' \sum_{\langle \langle i,j \rangle \rangle} \sum_{\sigma = \uparrow,\downarrow} \left(c_{i,\sigma}^{+} c_{j,\sigma} + c_{j,\sigma}^{+} c_{i,\sigma} \right) \\ &= \sum_{k} \sum_{\sigma = \uparrow,\downarrow} \varepsilon_{k} c_{k,\sigma}^{+} c_{k,\sigma} + \frac{U}{L} \sum_{k,p,q} c_{k+q,\uparrow}^{+} c_{p-q,\downarrow}^{+} c_{p,\downarrow} c_{k,\uparrow} \end{split}$$

 Ground state energy per site of 10 electrons on a 4x4 lattice filled as obtained by exact diagonalization (ED), stochastic diagonalization (SD), and projector quantum Monte Carlo (PQMC).

t' / t	U / t	ED	SD	Р <i>Q</i> MC
0	-6	-2.458782	-2.4568	-2.460 ± 0.004
0	-4	-2.045849	-2.0453	-2.045 ± 0.002
0	-2	-1.731689	-1.7316	-1.731 ± 0.001
-0.22	2	-1.230034	-1.2300	-1.231 ± 0.001
-0.22	4	-1.126160	-1.1261	-1.125 ± 0.003
-0.22	6	-1.058717	-1.0581	-1.061 ± 0.005

Example: Quantum Chemistry

Energy and correlation energy (both in hartree) of the Mg atom as obtained by SD and various standard quantum chemistry methods. *M_l* denotes the number of the basis states (Slater determinants with D_{2h} symmetry) that has been used

Method	E	E_{corr}	M_{I}
SCF	-199.585212	0	1
RASSCF	-199.615701	-0.0305	4
CISD	-199.721386	-0.1362	2960
CISDT	-199.722039	-0.1368	102928
CISDTQ	-199.726256	-0.1410	1964232
SD	-199.724237	-0.1409	2000
SD	-199.726164	-0.1410	40000
CI*	-199.7263	-0.1411	2538603250

• J.Olsen et al., Chem. Phys. Lett. 169, 463 (1990)

Stochastic Diagonalization versus Fixed-Node Diffusion Monte Carlo

 Comparison between the ground state energy per site as obtained from a fixed-node approximation (FN), exact diagonalization (ED) and stochastic diagonalization (SD). The difference between the FN results of the second and third row stems from the choice of the trial state.

Lattice	U / t	FN^*	ED	SD	М
$2x2$ $N_{\uparrow} = N_{\downarrow} = 2$	1	-3.3172	-3.3408	-3.3408 ^(a)	36
$2x2x2$ $N_{\uparrow} = N_{\downarrow} = 4$	10	-2.6597	-2.8652	-2.8634 ^(b)	4900
$2x2x2$ $N_{\uparrow} = N_{\downarrow} = 4$	10	-2.6382	-2.8652	-2.8634 ^(b)	4900

- (A) : D.F.B. ten Haaf et al., Phys. Rev. B (1995)
 - (a) : Using < 100 s CPU-time on an IBM Thinkpad
 755CD collecting 10 states, without using symmetry
 - (b) : Using < 1000 s CPU-time on an IBM Thinkpad 755CD collecting 600 states, without using symmetry

Stochastic Diagonalization: Main features

- Exact results (but requires much more effort than standard methods) for small systems because then we can put M_{imp}= M from the start
- The "best" variational wave function that can be build from M_{imp} basis states
- NO minus sign problems
- "Quality" of the result depends on the choice of the representation (basis states)
 - Use real- and momentum space representation (very hard for QMC)
 - Checks: Compare with exact diagonalization (small systems) and Projector Quantum Monte Carlo

Application: Off-Diagonal Long-Range Order

- Can a model system of (strongly) interacting electrons exhibit superconductivity ?
 - No degrees of freedom other than those of the electrons
 - Dominant interaction between the electrons is repulsive
- How would theoreticians know the system is in the superconducting state ?
 - Criteria:
 - Infinite electrical conductivity
 AND
 - Off-Diagonal Long-Range order OR
 - Flux Quantization OR
 - Superfluid density

Off-Diagonal Long-Range Order (ODLRO)

- Penrose & Onsager (1951) :
 - Properties of the reduced one-particle density matrix can be used to "detect" Bose-Einstein condensation
- Yang (1962) :
 - Reduced two-particle density matrix can be used to "detect" superconductivity
 - "Detect" : ODLRO in the two-particle density matrix superconductivity (zero resistance & Meissner effect)
 - Sewell (1990); Nieh, Su, Zhao (1995):
 ODLRO (+ ...)

 Meissner effect

ODLRO

- Normal
 superconductor phase transition: Pairs of electrons
 - Yang: No long-range correlation in oneparticle density matrices
 - Correlation functions or reduced twoparticle density matrix

$$C(j) = \frac{1}{L} \sum_{i=1}^{L} \left\langle c_{i,\uparrow}^{+} c_{i+k,\downarrow}^{+} c_{i+k+j,\downarrow} c_{i+j,\uparrow} \right\rangle$$

- *k* determines the "kind" of electron pairing
 - *k*=0 ⇒ on-site *s*-wave pairing

ODLRO: $\sum_{j=1}^{L} C(j) = a + bL$

ODLRO: Full two-particle density matrix

• Yang: Compute all entries of the reduced two-particle density matrix

 $A(n,m) = \left\langle c_{i,\sigma}^{+} c_{i',-\sigma}^{+} c_{j,\sigma'} c_{j,\sigma'} \right\rangle \quad ; n = (i,i',\sigma), m = (j,j',\sigma')$

- Compute *A*(*n*,*m*) : 2*L*² x 2*L*² matrix
- Find the largest eigenvalue λ_0 of A
- If $\lambda_0 = a + bL$ then there is ODLRO
- The eigenvector corresponding to λ_0 contains the information on the kind of pairing

• Analogy with magnetic moments:

- Diagonalize $A(n,m) = \langle S_n S_m \rangle$ by Fourier transformation
 - q=0 ⇒ ferromagnetic
 - q=π ⇒ antiferromagnet

BCS reduced Hamiltonian

$$H_{BCS} = -t \sum_{\langle i,j \rangle} \sum_{\sigma=\uparrow,\downarrow} \left(c_{i,\sigma}^{+} c_{j,\sigma} + c_{j,\sigma}^{+} c_{i,\sigma} \right) - \frac{|U|}{L} \sum_{i,j} c_{i\uparrow}^{+} c_{i\downarrow}^{+} c_{j\downarrow} c_{j\uparrow}$$
$$= \sum_{k} \sum_{\sigma=\uparrow,\downarrow} \varepsilon_{k} c_{k,\sigma}^{+} c_{k,\sigma} - \frac{|U|}{L} \sum_{k,p} c_{k,\uparrow}^{+} c_{-k,\downarrow}^{+} c_{-p,\downarrow} c_{p,\uparrow}$$

- For the BCS reduced Hamiltonian the BCS treatment yields the exact solution (in the thermodynamic limit)
 - R.J. Bursill and C.J. Thompson (1993)
- This system has to exhibit ODLRO
 - the BCS wave function has ODLRO build in

BCS reduced Hamiltonian

SD: $M_{imp} \le 100000$ BCS reduced Hamiltonian \leq RO t=1, U=-4, n=1 4 λ 3 2 0 1 0 -1 E/L -2 4 8 12 16 20 0 L

On-site pairing correlation function

$$P_{0} = \frac{1}{L} \sum_{i,k} \langle c_{i\uparrow}^{+} c_{i\downarrow}^{+} c_{k\downarrow} c_{k\uparrow} \rangle$$
$$P_{0} \leq \lambda_{0}$$

Repulsive Hubbard Model

$$H = -t \sum_{\langle i,j \rangle} \sum_{\sigma=\uparrow,\downarrow} \left(c_{i,\sigma}^{+} c_{j,\sigma} + c_{j,\sigma}^{+} c_{i,\sigma} \right) + |U| \sum_{i} c_{i\uparrow}^{+} c_{i\downarrow}^{+} c_{i\downarrow} c_{i\uparrow}$$
$$= \sum_{k} \sum_{\sigma=\uparrow,\downarrow} \varepsilon_{k} c_{k,\sigma}^{+} c_{k,\sigma} + \frac{|U|}{L} \sum_{k,p,q} c_{k+q,\uparrow}^{+} c_{p-q,\downarrow}^{+} c_{p,\downarrow} c_{k,\uparrow}$$

- BCS treatment: No ODLRO
- SD: $M_{imp} \le 198000$

 $M \le 1.2 \times 10^6$

Repulsive Hubbard Model with Correlated Hopping

$$\begin{split} H &= -t \sum_{\langle i,j \rangle \sigma = \uparrow,\downarrow} \left(c_{i,\sigma}^{+} c_{j,\sigma} + c_{j,\sigma}^{+} c_{i,\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} \\ &+ \Delta t \sum_{\langle i,j \rangle \sigma = \uparrow,\downarrow} \left(n_{i,-\sigma} + n_{j,-\sigma} \right) \left(c_{i,\sigma}^{+} c_{j,\sigma} + c_{j,\sigma}^{+} c_{i,\sigma} \right) \\ &= \sum_{k} \sum_{\sigma = \uparrow,\downarrow} \varepsilon_{k} c_{k,\sigma}^{+} c_{k,\sigma} \\ &+ \frac{1}{L} \sum_{k,p,q} \left[U - \frac{\Delta t}{t} \left(\varepsilon_{k} + \varepsilon_{k+q} \right) \right] c_{k+q,\uparrow}^{+} c_{p,\downarrow}^{+} c_{p,\downarrow} c_{k,\uparrow} \end{split}$$

- Interaction may be "attractive" for some (U,t,∆t,n)
- Hirsch (1989): Basic model for (high-T_c) superconductivity (based on BCS treatment)
- Exact solution for (*U*,*t*=∆*t*,*n*=1): ODLRO for *U*<-4/*t*/ but NO superconductivity
- Japaridze & Müller-Hartmann (1994): Continuum limit + Bosonization: ODLRO for U << ∆t << t, n₀ < n < n₁

• SD: $M_{imp} \le 192000$ $M \le 8.7 \times 10^{19}$

Application: Summary

- Off-Diagonal Long-Range Order (implies superconductivity ?) in models of interacting fermions.
 - The repulsive Hubbard model supplemented with correlated hopping may exhibit Off-Diagonal Long-Range Order, depending on the choice of (U,t,∆t,n)
 - Building the many-body states from single-particle states in either the realspace or k-space representation is far from optimal for this kind of problem

Basis set optimization

• SD can use "any" representation

- if $\langle \varphi | H | \psi \rangle$ can be calculated efficiently
- why not use basis sets that are "more sophisticated" ?
- An attempt motivated by our study
 of ODLRO
 - real-space representation is adequate to describe e.g. local pairs
 - k-space is the representation of choice to describe e.g. extended structure
- Can we let the algorithm find an optimum that interpolates between these two extremes ?
 - basis set optimization (cfr. Quantum chemistry)

Optimization of the single-particle states

- Example: Fermions on a lattice (atomic orbitals)
- Many-body basis states are build from single-particle states

• Real-space : $|\varphi_i\rangle = c_i^+|0\rangle$

- Fourier-space : $|\varphi_k\rangle = c_k^+|0\rangle$
- Many-body state (Slater determinant):

$$|\phi_n\rangle = \sum_{i_j=1}^{K} a^{(n)}(i_1,1)\dots a^{(n)}(i_N,1)c_{i_1}^+\dots c_{i_N}^+|0\rangle$$

Matrix of coefficients:

$$A^{(n,K)} = \begin{pmatrix} a^{(n)}(1,1) & a^{(n)}(1,2) & \cdots & a^{(n)}(1,N) & \cdots & a^{(n)}(1,K) \\ a^{(n)}(2,1) & a^{(n)}(2,2) & \cdots & a^{(n)}(2,N) & \cdots & a^{(n)}(2,K) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a^{(n)}(K,1) & a^{(n)}(K,2) & \cdots & a^{(n)}(K,N) & \cdots & a^{(n)}(K,K) \end{pmatrix}$$

• e.g. "real space" :

$$A^{(n,K)} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Optimization of the single particle states

- Change the matrix A^(n,K) using "simple" moves
 - keep single-particle states orthonormal
 - Simplifies calculation of matrix elements of *H*

• Use plane-rotations: U =

- $U = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$
- Update two rows (columns) p,q at a time
- Mix columns: $A^{(n,K)} \leftarrow A^{(n,K)}U^{(p,q)}$; $1 \le p \le N < q \le K$
- Mix rows: $A^{(n,K)} \leftarrow U^{(p,q)}A^{(n,K)}$; p,q=1,K
- Preserves unitary character of A^(n,K) and defines a "dynamics" for changing Slater determinants

Basis-set optimization: Example

• The energy *E* as a function of the number of rotations as obtained by optimizing one Slater determinant for the case of a 4x4 Hubbard model ($N_{\uparrow} = N_{\downarrow} = 5, t = 0, U = -1$). The single-particle states used to construct the initial many-body wave function are $|\varphi_k\rangle = c_k^+ |O\rangle$. Various symbols correspond to different optimization strategies. The exact result is indicated by the dasheddotted line.

HDR

Basis-set optimization: Example

• The energy *E* as a function of the number of rotations as obtained by optimizing one Slater determinant for the case of a 4x4 Hubbard model ($N_{\uparrow} = N_{\downarrow} = 5, t = 1, U = 0$). The single-particle states used to construct the initial many-body wave function are $|\varphi_i\rangle = c_i^+ |0\rangle$. Various symbols correspond to different optimization strategies. The exact result is indicated by the dasheddotted line.

Basis-set optimization: Example

- The ground state energy of the 4x4 Hubbard model ($N_{\uparrow} = N_{\downarrow} = 5, t = 1$) as obtained by various methods:
 - E_1^{Exact} : Exact diagonalization
 - $E_1^{(k)}$: SD + basis-set optimization using $|\varphi_k\rangle = c_k^+|0\rangle$
 - $E_1^{(i)}$: SD + basis-set optimization using $|\varphi_i\rangle = c_i^+|0\rangle$
 - E_1^{SD} : SD
 - E_1^{HF} : Hartree Fock
 - In all SD calculations the limit to the number of important states was set to 200: $M_1 = 200$.
 - A greedy algorithm was used to optimize the singleparticle states, using 10000 plane rotations for each many-body state added.

11	E Exact	$\mathbf{r}^{(k)}$	$\mathbf{r}^{(i)}$	r SD	$\mathbf{\Gamma}^{HF}$
U	E_1	E_1	E_1	E_1	E_1
6	-18.35837	-18.09710	-17.93031	-17.41384	-14.625
4	-19.58094	-19.50157	-19.42179	-19.24434	-17.750
2	-21.37695	-21.36576	-21.34991	-21.32807	-20.875
0	-27.12500	-27.12500	-27.68078	-27.64086	-27.125
-2	-27.70702	-27.69305	-27.68078	-27.64086	-27.125
-4	-32.73360	-32.51795	-32.45901	-32.05033	-30.250
-6	-39.34051	-38.19426	-38.27180	-36.85642	-33.375

Summary

- General aspects of the sign problem
 in Quantum Monte Carlo methods
- Stochastic diagonalization method
- - The repulsive Hubbard model supplemented with correlated hopping may exhibit Off-Diagonal Long-Range Order, depending on the choice of (U,t,∆t,n)
- Basis-set optimization