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Formulation of  
the problem 

• Quantum statistical mechanics, 
(lattice) QED, (lattice) QCD: 

• H : Hamiltonian 
• X : Observable 
•            : Complete sets of states 
•                 : Inverse temperature 

• Quantum dynamics: 

• Ground-state (T=0) properties: 

•  E1  is the smallest eigenvalue of H 
111 Φ=Φ EH
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Formulation of  
the problem 

• For numerical purposes, a state of 
the quantum system, i.e. the wave 
function, is represented by a vector 
of length M (the dimension of the 
Hilbert space) and the Hamiltonian 
H is a hermitian matrix of dimension    
M x M . 

• We know what we have to do: 
“Just” solve the Schrödinger 
equation  

• A standard problem of linear algebra  
• Example:  The Hubbard-Gutzwiller model 

(1963) 
• Describes fermions (electrons) that 

hop from one lattice point to another 
and that feel each other  via an on-
site  repulsion (U>0). 

 

H EΦ Φ=

Spin up 
Spin down 

Electrons: 

U 

t 
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Formulation of 
the problem 

• Count the number of possible ways 
to distribute N electrons with spin 
up and N↓ electrons with spin down 
over L lattice sites: 

• For N= N↓= L/2 :  

16           8         2x108           2              $ 103    
36         18         8x1019         6x1011       $ 1014 

64         32         3x1036         3x1028       $ 1020 

Very Large Matrices !  
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Formulation of  
the problem 

• In general, there is no way to solve 
these monster eigenvalue problems 
using perturbative or conventional 
numerical (Eispack, Lanczos, 
Davidson, ... )  methods. 

• Key issue 

• General strategy: Trade memory for 
CPU time 

• Quantum Monte Carlo (QMC) Methods 
• Stochastic Diagonalization 

How to solve (eigenvalue)  
problems involving extremely 

large matrices ? 



26-Dec-16 7 HDR 

• Stochastic methods:  
• Use much less than M storage elements 

but  use much more CPU time 
• Example: A QMC method based on 

• Linear algebra: Power method 
 
 
 

• for a “good” choice of Eshift 
• Physical quantities are related to matrix 

elements: 
 
 

• Takes approximately  mM  operations 
• Does not help much if we would like to 

sum all terms  
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Quantum Monte Carlo 
Simulation:  

General Strategy 

• Importance sampling 
• Basic assumption ( hope ) : If the 

problem can be solved at all, it must be 
such that not all the states of the system 
are equally important.  Using only a few 
of them should be sufficient to compute 
the physical properties with reasonable 
accuracy. 

• In practice a “few ” can still mean 104 - 108  states 
• No a-priori justification in the case of quantum 

systems 
• OK for classical statistical problems 

• How to find these important states ?  
• Random search gives bad results 

• Metropolis Monte Carlo method, 
molecular dynamics, Langevin 
dynamics, ... 
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Importance sampling 

• Importance sampling: 
• Search for important states uses 

 
    as a “density” distribution for the states 

• F depends on the application 

• Classical statistical mechanics 
 

• Diffusion QMC (power method): 
 

• Green Function QMC (inverse 
iteration: 
 

• Path Integral MC (Trotter-Suzuki 
product formulae) 
 

m
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• All importance sampling methods 
require a probability distribution 

• Only positive functions qualify as 
probability distributions  

• Is            for all possible states ? 
• In classical mechanics (Boltzmann 

factor): ALWAYS  
• In quantum mechanics: Almost NEVER 

• “Theorems”: If all the off-diagonal 
elements of the matrix representing the 
Hamiltonian are negative then 

• H. De Raedt and M . Frick, Phys. Rep. 231, 
107-149 (1993) 

• The reverse is NOT true but it is save to 
expect it is. 

Minus Sign Problem 

ρ > 0

0>ρ

Quantum Monte 
Carlo Methods: 

General Strategy 
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Theorems on the 
positivity of F(H) 

• Classical statistical mechanics 
 

• DQMC: 
 
 

• GQMC: 
 
 

• Trotter-Suzuki: 
 
 

• Auxilary-field QMC: 
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Quantum Monte Carlo 
Minus Sign Problem  

• Why should negative contributions bother 
us at all ? 

• Importance sampling without (mathematical) 
justification 

• Trick: Transfer sign to measurement 
• H. De Raedt and A. Lagendijk, Phys. Rev. Lett. 

46, 77 (1981)  

• Simulation methods suffer from statistical 
errors 

• This trick fails if                                   which is  
usually the case if 

• the number of  factors in the product formula 
increases,  or 

• the system size increases, or 
• the temperature decreases, or  
• ... 
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Minus Sign Problem: 
Simple Example 

• The minus sign problem can also 
appear when there are no fermions ! 

• Example: A spin-1/2 model 
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Quantum Monte  
Carlo Methods: 

Summary 

• Quantum Monte Carlo methods 
work well if there is no minus sign 
problem 

• The minus sign problem is due to 
the use of a product formula in 
combination with an importance 
sampling algorithm 

• Use of importance sampling seems 
unavoidable (just too many 
possibilities) 

• Without using some product 
formula it seems very difficult to 
compute physical quantities without 
making (uncontrolled) 
approximations 
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Stochastic 
Diagonalization 

• Method to compute the smallest 
eigenvalue and corresponding 
eigenvector of very (very) large 
matrices. 

• Basic idea: Assume that of all possible 
states of the quantum system,  only a 
relatively small fraction is “important”  

• The same assumption is at the heart of 
all Quantum Monte Carlo techniques 

• How to find these important states ? 
• HDR & W. von der Linden (1992): 
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Stochastic 
Diagonalization  

• Lemma: If                                   and if 

                              and               then 
• Step 1: Modified Jacobi method 

• Repeat until  

• Step 2: Use the difference               to 
set up an importance sampling 
scheme 
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Stochastic 
Diagonalization  

• Use plane rotations (2x2 matrices) 
to inflate the matrix and to 
simultaneously isolate the lowest 
eigenvalue 

• How to pick “candidates” ? 
• Use 

• Why does the (1,1) element 
converges to the ground state 
energy ? 
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Stochastic 
Diagonalization 

• Cauchy theorem: 

• Poincaré separation theorem: 
Relates eigenvalues of a (k-1) x (k-1) 
matrix to the eigenvalues of a k x k 
matrix 

( )

( ) ( )

( )
jkM

k
jj

kk
j

Tk

EEE

HjE

Mk
YX
XH

H

+−≤≤

−=







=

:Then

  of  eigenvalueth  -:

1,,1; 

( ) ( ) ( ) ( ) ( )k
k

k
k

kkk EEEEE ≤≤≤≤≤ −
−

− 1
12

1
11 



26-Dec-16 19 HDR 

SD: Algorithm 

• Initialize data structures 
• Do 
•   If (Maximum of absolute value of off- 
            diagonal elements of the first row < than 
            threshold for rejecting plane rotations) 
       then 
       Generate a new trial state 
•       if (No important state has been found) then 
                 Reduce the threshold(s) 
             else 
                 Inflate the matrix 
             end if 
      else 
        Annihilate the pair of off-diagonal 
         elements with the largest absolute value 
         by performing a plane rotation 
      end if 
   end do 
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SD : Practical aspects 

• Necessary condition to be useful in 
practice: The calculation of matrix 
elements of H should be (very) fast. 

• Each attempt to find a new important 
state requires the calculation of the 
matrix element 
 
 
 
 
 

• Calculation of the product of plane 
rotation matrices U(q) is fast 

• Calculating Hi,n+1 takes most of the CPU 
time  

• Can be done in parallel 
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Computation of  
Physical Properties 

• At T=0 the expectation value of a 
physical observable is given by 

• Takes of the order of Mimp x Mimp  
operations 

• For Mimp ~ 105  - 106   computing a 
physical quantity may take a substantial 
amount of CPU time 
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Example: Repulsive 
Hubbard Model 

• 2D Hubbard model with nearest and 
next-nearest neighbor hopping 
 
 
 
 
 

• Ground state energy per site of 10 electrons on a 4x4 
lattice filled as obtained by exact diagonalization (ED), 
stochastic diagonalization (SD), and projector 
quantum Monte Carlo (PQMC). 
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Example: Quantum 
Chemistry 

• Energy and correlation energy (both in hartree) 
of the Mg atom as obtained by SD and various 
standard quantum chemistry methods. MI 
denotes the number of the basis states (Slater 
determinants with D2h symmetry) that has been 
used 
 
 
 
 
 
 
 
 
 
 
 
 J.Olsen et al., Chem. Phys. Lett. 169, 463 (1990) 

25386032501411.07263.199
400001410.0726164.199
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Stochastic Diagonalization 
versus 

Fixed-Node Diffusion  
Monte Carlo 

• Comparison between the ground state energy per site 
as obtained from a fixed-node approximation (FN), 
exact diagonalization (ED) and stochastic 
diagonalization (SD). The difference between the FN 
results of the second and third row stems from the 
choice of the trial state. 
 
 

 
 
 
 
 
 (A) : D.F.B. ten Haaf et al., Phys. Rev. B (1995) 

• (a) : Using < 100 s CPU-time on an IBM Thinkpad 
755CD collecting 10 states, without using symmetry 

• (b) : Using < 1000 s CPU-time on an IBM Thinkpad 
755CD collecting 600 states, without using symmetry 
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Stochastic 
Diagonalization: 
Main features 

• Exact results (but requires much 
more effort than standard methods) 
for small systems because then we 
can put Mimp= M from the start 

• The “best” variational wave function 
that can be build from Mimp basis 
states 

• NO minus sign problems  
• “Quality” of the result depends on 

the choice of the representation 
(basis states) 

• Use real- and momentum space 
representation (very hard for QMC) 

• Checks: Compare with exact 
diagonalization (small systems) and 
Projector Quantum Monte Carlo 
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Application:  
Off-Diagonal  

Long-Range Order 

• Can a model system of (strongly) 
interacting electrons exhibit 
superconductivity ? 

• No degrees of freedom other than those 
of the electrons 

• Dominant interaction between the 
electrons is repulsive 

• How would theoreticians know the 
system is in the superconducting 
state ? 

• Criteria:  
• Infinite electrical conductivity   
AND 
• Off-Diagonal Long-Range order OR 
• Flux Quantization OR 
• Superfluid density  
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Off-Diagonal Long-
Range Order 

(ODLRO) 

• Penrose & Onsager (1951) : 
• Properties of the reduced one-particle 

density matrix can be used to “detect” 
Bose-Einstein condensation 

• Yang (1962) : 
• Reduced two-particle density matrix can 

be used to “detect” superconductivity 
• “Detect” : ODLRO in the two-particle 

density matrix              superconductivity 
(zero resistance & Meissner effect) 

• Sewell (1990); Nieh, Su, Zhao (1995): 
ODLRO (+ ...)             Meissner effect 
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ODLRO 

• Ising Spin model  
• Phase transition 

•            : There is 
little correlation 
between spins on 
different sites 

•            : Strong 
correlation 
between spins on 
different sites 

• Quantitative 
measure of 
correlation: 

 

• Fermions 
• Normal    super- 

conductor phase 
transition: Pairs of 
electrons 

• Yang: No long-range 
correlation in one-
particle density 
matrices 

• Correlation functions 
or reduced two-
particle density 
matrix 

• k  determines the 
“kind” of electron 
pairing 

• k=0      on-site s-
wave pairing 

• ODLRO : 
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ODLRO: 
Full two-particle 
density matrix 

• Yang: Compute all entries of the 
reduced two-particle density matrix 

• Compute A(n,m) : 2L2 x 2L2 matrix 
• Find the largest eigenvalue λ0 of A 
• If λ0=a+bL  then there is ODLRO 
• The eigenvector corresponding to λ0 

contains the information on the kind of 
pairing 

• Analogy with magnetic moments: 
• Diagonalize                            by Fourier 

transformation 
• q=0         ferromagnetic  
• q=π         antiferromagnet 

),,(,),,(;),( ,,,, σσσσσσ ′′=′== ′′−′
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BCS reduced 
Hamiltonian 

 

• For the BCS reduced Hamiltonian 
the BCS treatment yields the exact 
solution (in the thermodynamic 
limit) 

• R.J. Bursill and  C.J. Thompson  (1993)  
• This system has to exhibit ODLRO 

• the BCS wave function has ODLRO 
build in 
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BCS reduced 
Hamiltonian 
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Repulsive Hubbard 
Model 

 

• BCS treatment: No ODLRO 
•   
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Repulsive Hubbard 
Model with 

Correlated Hopping 

 

• Interaction may be “attractive” for some 
(U,t,∆t,n) 

• Hirsch (1989): Basic model for (high-Tc) 
superconductivity (based on BCS 
treatment) 

• Exact solution for (U,t=∆t,n=1): ODLRO 
for U<-4|t| but NO superconductivity 

• Japaridze & Müller-Hartmann (1994): 
Continuum limit + Bosonization: ODLRO 
for U << ∆t << t, n0  < n < n1 
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Repulsive Hubbard 
Model with 

Correlated Hopping 

•   SD:  M

M
imp ≤

≤ ×

192000
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Application: Summary 

• Off-Diagonal Long-Range Order 
(implies superconductivity ?) in 
models of interacting fermions. 

• The repulsive Hubbard model 
supplemented with correlated hopping 
may exhibit Off-Diagonal Long-Range 
Order, depending on the choice of 
(U,t,∆t,n) 

• Building the many-body states from 
single-particle states in either the real-
space or k-space representation is far 
from optimal for this kind of problem 
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Basis set optimization 

• SD can use “any” representation 
• if                 can be calculated efficiently 
• why not use basis sets that are “more 

sophisticated” ? 
• An attempt motivated by our study 

of ODLRO 
• real-space representation is adequate to 

describe e.g. local pairs 
• k-space is the representation of choice 

to describe e.g. extended structure 
• Can we let the algorithm find an 

optimum that interpolates between 
these two extremes ? 

• basis set optimization (cfr. Quantum 
chemistry) 

ψϕ H
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Optimization of the 
single-particle states 

• Example: Fermions on a lattice 
(atomic orbitals) 

• Many-body basis states are build 
from single-particle states 

• Real-space : 
• Fourier-space : 
• Many-body state (Slater determinant): 

 
 

• Matrix of coefficients: 
 
 
 
 

• e.g. “real space” : 
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Optimization of the 
single particle states 

• Change the matrix A(n,K) using 
“simple” moves 

• keep single-particle states orthonormal 
• Simplifies calculation of matrix elements 

of H 
• Use plane-rotations: 

 
• Update two rows (columns)  p,q at a time 

• Mix columns:  
• Mix rows: 
• Preserves unitary character of A(n,K)  and 

defines a “dynamics” for changing 
Slater determinants 
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Basis-set optimization: 
Example 

• The energy E as a function of the number of rotations 
as obtained by optimizing one Slater determinant for 
the case of a 4x4 Hubbard model (                                ). 
The single-particle states used to construct the initial 
many-body wave function are                          . Various 
symbols correspond to different optimization 
strategies. The exact result is indicated by the dashed-
dotted line. 

 

1,0,5 −==== ↓↑ UtNN

0+= kk cϕ
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Basis-set optimization: 
Example 

• The energy E as a function of the number of rotations 
as obtained by optimizing one Slater determinant for 
the case of a 4x4 Hubbard model (                                ). 
The single-particle states used to construct the initial 
many-body wave function are                          . Various 
symbols correspond to different optimization 
strategies. The exact result is indicated by the dashed-
dotted line. 

0,1,5 ==== ↓↑ UtNN

0+= ii cϕ
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Basis-set optimization: 
Example 

• The ground state energy of the 4x4 Hubbard model      
(                        ) as obtained by various methods: 

•            : Exact diagonalization 
•            : SD + basis-set optimization using 
•            : SD + basis-set optimization using 
•            : SD 
•            : Hartree Fock 
• In all SD calculations the limit to the number of important 

states was set to 200: MI = 200 . 
• A greedy algorithm was used to optimize the single-

particle states, using 10000 plane rotations for each 
many-body state added. 

375.3385642.3627180.3819426.3834051.396
250.3005033.3245901.3251795.3273360.324
125.2764086.2768078.2769305.2770702.272
125.2764086.2768078.2712500.2712500.270
875.2032807.2134991.2136576.2137695.212
750.1724434.1942179.1950157.1958094.194
625.1441384.1793031.1709710.1835837.186
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Summary 

• General aspects of the sign problem 
in Quantum Monte Carlo methods 

• Stochastic diagonalization method 
• Application: Off-Diagonal Long-

Range Order (     superconductivity) 
in models of interacting fermions. 

• The repulsive Hubbard model 
supplemented with correlated hopping 
may exhibit Off-Diagonal Long-Range 
Order, depending on the choice of 
(U,t,∆t,n) 

• Basis-set optimization 
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