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Formulation of
the problem

. Quantum statistical mechanics,
(lattice) QED, (lattice) QCD:
2 (ele M wXwX|e)

(X) = Tre ™ X _ o5in

Tre™ Y (ple™|p)
{v}

- H: Hamiltonian
« X : Observable
- {v}{p}: Complete sets of states
- pB=1/k;T :Inversetemperature

Quantum dynamics:

ih%xpa»:mxpa» & |[¥h)=e™" ()

Ground-state (T=0) properties:
H|CD1> - E1|CD1>

E, Is the smallest eigenvalue of H
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HDR

Formulation of
the problem

For numerical purposes, a state of
the quantum system, i.e. the wave
function, is represented by a vector
of length M (the dimension of the
Hilbert space) and the Hamiltonian
H is a hermitian matrix of dimension
MXxM.

We know what we have to do:
“*Just” solve the Schrddinger
equation H|®)=E|D)

- A standard problem of linear algebra

. Example: The Hubbard-Gutzwiller model
(1963)

. Describes fermions (electrons) that
Flectrons: hop f |atti int to another
® Spin up op from one lattice point to ano
@ Spin down and that feel each other via an on-
site repulsion (U>0).

t
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Formulation of
the problem

« Count the number of possible ways
to distribute N electrons with spin
up and Nj electrons with spin down
over L lattice sites:

v K

« FOrN=N;=L/2: M =
2L-25 27Z-L

Giga bytes
) ga by

22L—|—2

Memory =

_ Memory | Approx.
- NT B Ni M in Gb cost

16 38 2x108 2 $ 103
36 18 8x10%° | 6x10%| $10%4
64 32 3x10%6 | 3x10%8| $ 10%°

Very Large Matrices !
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Formulation of
the problem

In general, there is no way to solve
these monster eigenvalue problems
using perturbative or conventional
numerical (Eispack, Lanczos,
Davidson, ... ) methods.

Key issue

How to solve (eigenvalue)

problems involving extremely
large matrices ?

General strategy: Trade memory for

CPU time
. Quantum Monte Carlo (QMC) Methods
. Stochastic Diagonalization
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Quantum Monte
Carlo Methods

« Stochastic methods:

« Use much less than M storage elements
but use much more CPU time

- Example: A QMC method based on
lim(H — Eshift)m‘q)initial> = ‘CD1>

m-—oo

. Linear algebra: Power method
(H - Eshift)m|q)initial> = Z(Ei - Eshift)m|§0i ><¢i |CDinitia|>
&)miax(Ei - Eshiﬁ)m|§0i ><¢i |CDinitia|> oC |CD1>

. for a“good” choice of Eg;

- Physical quantities are related to matrix
elements:

(@ |(H-E)"|® )= > (®[H —E|d,}{®,|H —E|®,)--(D,, ,|H - E|D)

{0}

. Takes approximately mM operations

. Does not help much if we would like to
sum all terms
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Quantum Monte Carlo
Simulation:
General Strategy

- Importance sampling

« Basic assumption ( hope) : If the
problem can be solved at all, it must be
such that the states of the system
are . Using only a few
of them should be sufficient to compute
the physical properties with reasonable
accuracy.

. In practice a“few ” can still mean 104 - 108 states

. No a-priori justification in the case of quantum
systems
. OK for classical statistical problems

- How to find these states ?
. Random search gives bad results

a9,

. Metropolis Monte Carlo method,
molecular dynamics, Langevin
dynamics, ...
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portance sampling

Importance sampling:
- Search for states uses

p:p({(l)k}):<(DO‘F‘(I)1><(1)1‘F‘(I)2>---<(Dm_1‘|:‘(l)m>
as a “density” distribution for the states {CDk}
. F depends on the application

Classical statistical mechanics
Boltzmann(H) € - : HeR

Diffusion QMC (power method):
FDQMC(H) = (1_2H)m

Green Function QMC (inverse

iteration:

Forme (H) =[(Egie + H) 1™

Path Integral MC (Trotter-Suzuki
product formulae)

F.,(H = A+B) = (e me 2"
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Quantum Monte
Carlo Methods:
General Strategy

- All importance sampling methods
require a probability distribution

. Only positive functions qualify as
probability distributions

Is p> 0 for all possible states ?

- In classical mechanics (Boltzmann
factor): ALWAYS

« In quantum mechanics: Almost

. “Theorems”: If all the off-diagonal
elements of the matrix representing the
Hamiltonian are negative then p >0

- H. De Raedt and M . Frick, Phys. Rep. 231,
107-149 (1993)

. Thereverse is NOT true but it is save to
expect it is.

Minus Sign Problem
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Theorems on the
positivity of F(H)

» Classical statistical mechanics
|:Boltzmann (H ) — e_ﬁH > O : H < ER
¢ DQMC: FDQMC(H):(]-_TH)m
If (pH|y)<0 forall |p)|y)
then (p|@1-7H)|y)=0
¢ GQMC: FGFMC(H) — [(Eshift +H )_1]m
If w+H is positive definite and (¢|H|y) <0
for all‘go>¢‘w> then <g0‘(a)+ H)‘l‘w>>0
. Trotter-Suzuki: F., (H = A+B) = (e /M ®/m)"
If <¢|X|w> <O for all |gp> + |w>
then (o w)=0forallz>0
- Auxilary-field QMC:
F oc det(l+e™...e)="?

e—TX
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Quantum Monte Carlo
Minus Sign Problem

-« Why should negative contributions bother
us at all ?
« Importance sampling without (mathematical)
justification
. Trick: Transfer sign to measurement
. H. De Raedt and A. Lagendijk, Phys. Rev. Lett.

46, 77 (1981)
(sign(p) A)
(sign(p))

- Simulation methods suffer from statistical
errors
. This trick fails if <Sign(p)>|p| — 0 which is
usually the case if

. the number of factors in the product formula
increases, or
. the system size increases, or

. thetemperature decreases, or

|l

(A)=TrpA=Tr| p|sign(p)A=

|l
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Minus Sign Problem:
Simple Example

- The minus sign problem can also
appear when there are no !

- Example: A spin-1/2 model

M —ac* —bo = 0 a+ib
a—ib 0

Generic QMC approach: Rewrite the partition
function using the Trotter-Suzuki formula:

Z=1mz, ; Z,=Tr(e= mee"/m)"

m-— oo

1) Z, = coshacoshb Tr(1+ic” tanh a tanh b)

@ ‘None of the contributions is REAL ! ‘

2) Change of representation: — fH =ac” —bo*

m-1
s, A
Z,= > | |[5S_,S,ﬂ+(1—5S_,S_+1)tanha]e 1M cosh—
{521 j=0 - o m
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Quantum Monte
Carlo Methods:
Summary

« Quantum Monte Carlo methods
work well if there is no

problem
- The minus sign problem is due to
the use of a In

combination with an

« Use of importance sampling seems
unavoidable (just too many
possibilities)

- Without using some product
formula it seems very difficult to
compute physical quantities without
making (uncontrolled) ™
approximations
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Stochastic
Diagonalization

Method to compute the smallest
eigenvalue and corresponding
eigenvector of very (very) large
matrices.

- Basic idea: Assume that of all possible
states of the quantum system only a
relatively small fraction is °

. The same assumption is at the heart of
all Quantum Monte Carlo techniques

. How to find these important states ?
- HDR & W. von der Linden (1992):

M M
|®>:Zaj‘¢j>:§am‘¢m> ) ‘apj‘ Z‘ap(jm

@) ~|D)= _ ap| #e;) i My, = # Important states
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Stochastic

Diagonalization
b "0 .
« Lemma: Iful(a* ju —>(a jand If
b* c 0 c
a<c and |b #0 then|a’'<a
- Step 1. Modified Jacobi method
a b, - b - Db, a’ b/ -~ 0 --- bl
by e e e e e b o e e e e
T P T I | =T 0L
b e e e e o e e e e .
E, O 0 0
O e e e e o
. Repeatuntil =4 . . . . .
O e e e
« Step 2: Use the difference |a-a’'>0j|to
set up an importance sampling
scheme



Stochastic
Diagonalization

- Use plane rotations (2x2 matrices)
to inflate the matrix and to
simultaneously isolate the lowest
eigenvalue

&
(e0) [ 1)~
EO

© 0
—> * e o >.--—> :
sk [ J [ J O
- How to pick “candidates” ?
. Use (¢ |H|@pia) =0
- Why does the (1,1) element
converges to the ground state

energy ?

o 0 0 O
o o o

® 0o 0 O
-
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Stochastic
Diagonalization

- Cauchy theorem:

H® XT
H = , k=1...M-1
X Y

EW: j-th eigenvalue of HY

- Poincaré separation theorem:
Relates eigenvalues of a (k-1) x (k-1)
matrix to the eigenvalues of a k x k
matrix

E(k) < E(k—l) < E(k) < < E(k—l) < E(k)

1 1 — 2 © e k-1 — Kk
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SD: Algorithm

- Initialize data structures
- Do
« If (Maximum of absolute value of off-
diagonal elements of the first row < than
threshold for rejecting plane rotations)
then

Generate a new trial state

. if (No important state has been found) then
Reduce the threshold(s)
else
Inflate the matrix
end if

else

Annihilate the pair of off-diagonal
elements with the largest absolute value
by performing a plane rotation

end if
end do
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. Practical aspects

- Necessary condition to be useful in
practice: The calculation of matrix
elements of H should be (very) fast.

- Each attempt to find a new important
state requires the calculation of the
matrix element

H2 = (UY.. . UP)Y HU® . .U®)

“S UYL UDY H L

j=1

. Calculation of the product of plane
rotation matrices U@ is fast

- Calculating H; ,,, takes most of the CPU
time
. Can be done in parallel
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Computation of
Physical Properties

- At T=0the expectation value of a
physical observable IS given by

(A)=(0|A/D) Za,aj i‘A‘¢j>

1,j=1
Mimp

> A (de |Al g )

=l
Iv'imp
2
2.3
=1

- Takes _of the order of M;,,, X M,
operations
. For M, ~10° - 10° computing a
physical quantity may take a substantial
amount of CPU time
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Example: Repulsive
Hubbard Model

2D Hubbard model with nearest and
next-nearest neighbor hopping

H = —tz Z( Ci o Jo‘+Cj 0C|J)+UZC:TCﬁCi¢CiT

<i,j>o=T

—t' Z Z(CI+GCJ ot CJ +Ci a)

<<i, j>> o=T

U
. + + +
o Z ngckﬂckﬂ +t ch+q,TCp—q,¢Cp,¢Ck,T

k O-:T,J/ k,p1q

Ground state energy per site of 10 electrons on a 4x4
lattice filled as obtained by exact diagonalization (ED),
stochastic diagonalization (SD), and projector
guantum Monte Carlo (PQMC).

t'/[t| U/|t|] ED SD PQMC
0 -6 —2458782 —2.4568 -2.460+0.004
0 -4 —2.045849 —2.0453 —2.045+0.002
0 -2 1731689 -1.7316 -1.731+0.001

-0.22 2 -1.230034 -1.2300 -1.231+0.001
-0.22 4 -1.126160 -1.1261 -1.125+0.003
-0.22 6 -1.058717 -1.0581 -1.061+0.005
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Example: Quantum
Chemistry

- Energy and correlation energy (both in hartree)
of the Mg atom as obtained by SD and various
standard quantum chemistry methods. M,
denotes the number of the basis states (Slater
determinants with D,, symmetry) that has been
used

Method E Eorr M,
SCF  —-199.585212 0 1
RASSCF -199.615701 —0.0305 4

CISD  -199.721386 —-0.1362 2960
CISDT  -199.722039 -0.1368 102928
CISDTQ -199.726256 -0.1410 1964232

SD —199.724237 —-0.1409 2000
SD —199.726164 -0.1410 40000
Cl” -199.7263 —-0.1411 2538603250

¢ J.Olsen et al., Chem. Phys. Lett. 169, 463 (1990)
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Stochastic Diagonalization
Versus
Fixed-Node Diffusion
Monte Carlo

Comparison between the ground state energy per site
as obtained from a fixed-node approximation (FN),
exact diagonalization (ED) and stochastic
diagonalization (SD). The difference between the FN
results of the second and third row stems from the
choice of the trial state.

Lattice U/|t| FN* ED SD M
2X2
1  —-3.3172 -3.3408 -3.3408® 36
N.=N, =2
2X2X2 "
10 —-2.6597 -2.8652 -2.8634" 4900
N.=N, =4
2X2X2 )
10 —-2.6382 -2.8652 -2.8634" 4900

¢ (A): D.F.B.ten Haaf et al., Phys. Rev. B (1995)

(@) : Using <100 s CPU-time on an IBM Thinkpad
755CD collecting 10 states, without using symmetry

(b) : Using <1000 s CPU-time on an IBM Thinkpad
755CD collecting 600 states, without using symmetry
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Stochastic
Diagonalization:
Main features

Exact results (but requires much
more effort than standard methods)
for small systems because then we
can put M;,,,= M from the start

The “best” variational wave function
that can be build from M;;, basis

states
NO minus sign problems

“Quality” of the result depends on
the choice of the representation
(basis states)

« Usereal- and momentum space
representation (very hard for QMC)

« Checks: Compare with exact
diagonalization (small systems) and
Projector Quantum Monte Carlo
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Application:
Off-Diagonal
Long-Range Order

- Can a model system of (strongly)
Interacting electrons exhibit
superconductivity ?

« No degrees of freedom other than those
of the electrons

- Dominant interaction between the
electrons is repulsive
. How would theoreticians know the
system is in the superconducting
state ?
. Criteria:
. Infinite electrical conductivity
AND
. Off-Diagonal Long-Range order OR

. Flux Quantization OR
. Superfluid density
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Off-Diagonal Long-
Range Order
(ODLRO)

» Penrose & Onsager (1951) :

« Properties of the reduced one-particle
density matrix can be used to “detect”
Bose-Einstein condensation

« Yang (1962) :

+ Reduced two-particle density matrix can
be used to “detect” superconductivity
. “Detect” : ODLRO in the two-particle

density matrix » superconductivity
(zero resistance & Meissner effect)

. Sewell (1990); Nieh, Su, Zhao (1995):
ODLRO (+...) =» Meissner effect
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ODLRO

- Ising Spin model « Fermions
- Phase transition -« Normal essuper-
. T>T, :Thereis conductor phase
little correlation transition: Pairs of
between spins on electrons

different sites _
- Yang: No long-range

o T < T, Strong correlation in one-
correlation particle density
between spins on matrices
different sites « Correlation functions

] ) or reduced two-
- Quantitative particle density
measure of matrix
correlation: !

H 1 + At
C(J) = IiZ:l:<Ci,TCi+k,¢Ci+k+j,¢Ci+m>

C(=+>(ss..;)
i=1 « k determines the

_f _‘ _L “kind” of electron
T! ) pairing
T>T.=C~e"" =>C)=a - k=0 syon-sites-

T<Tc:C(j)~1:iC(j):a+bL wave pairing

_H_HTM: - ODLRO: gc(j)=a+bL
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ODLRO:
Full two-particle
density matrix

- Yang: Compute all entries of the
reduced two-particle density matrix

A(n,m) = (¢ ¢/ ,C ¢, ) in=(iio), m=(j,j,0")

- Compute A(n,m) : 2L?x 2L? matrix
- Find the largest eigenvalue A, of A
- If A;=a+bL then thereis ODLRO

- The eigenvector corresponding to A,
contains the information on the kind of
pairing

Analogy with magnetic moments:
- Diagonalize A(n,m):<SnSm> by Fourier
transformation
. q=0 = ferromagnetic
. =t = antiferromagnet
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BCS reduced
Hamiltonian

. + | | + o
HBCS = -1 Z CI,GCJ o T Cj UCI a) L ZciTCii«CNCjT
<i,j> =T i

U
:Zk: D &G Gy | ‘ZCHCUCNCM

o=T4

« Forthe BCS reduced Hamiltonian
the BCS treatment yields the exact
solution (in the thermodynamic
limit)

« R.J.Bursilland C.J. Thompson (1993)

« This system has to exhibit ODLRO

. the BCS wave function has ODLRO
build in
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BCS reduced
Hamiltonian

SD: M,,, <100000

BCS reduced Hamiltonian

) (=1, U, e = ODLRO
}\0 L—’—\/\/\
o—*t
3F ‘/‘%
2 ‘/ I:)o
—¢
1l ¢
0
1r E/L
, i ™ E—a—E—~H
2 —
| | | | |
0 4 8 12 16 20

On -site pairing correlation function

1 + At
R = Iz< GGG Cr >
ik

P, <4,
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Repulsive Hubbard
Model

<i,j>o="
U
- Z ngC;UCk,U +‘ ‘ ch+q TCp qicpickT
k o=TJ k,p,q

« BCS treatment: No ODLRO
. SD: M,,,, < 198000

M < 1.2 x10°

Repulsive Hubbard Model
=1, U-4, n=1

@
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Repulsive Hubbard
Model with
Correlated Hopping

H = _tz Z ( o JG+CJGC a)+Uan”i¢

Jj>o=T1

+At > > (i, +n; ) (e.C, +C1.C L)

<i,j>o=T,1

= Z Z 8kCI:_,aCk,a

k o=T.

1 At N N
+t Z |:U o t (gk + gk+q):|Ck+q,TCp—q,~LCp,~LCk,T
k,p.q

- Interaction may be “attractive” for some
(U,t,4t,n)

« Hirsch (1989): Basic model for (high-T,)
superconductivity (based on BCS
treatment)

- Exact solution for (U,t=4t,n=1). ODLRO
for U<-4|t| but NO superconductivity

- Japaridze & Muller-Hartmann (1994).
Continuum limit + Bosonization: ODLRO
for U<<dt<<t,n,<n<n,
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Repulsive Hubbard
Model with
Correlated Hopping

. SDh: M. - <192000

imp

M < 87 x 10"

Huiobard model with carrelated hopping
4 t=1, At=0.4, U=05 n:1.5<vj\/\/\4

= ODLRO =
. A ——
A
2 a—
A/ e °
1 o ° P
O-
1 m m | u
- 10 E/L
2 IIIIIIIIIIIIIIIIIII

“0 4 8 12 16 0 24 B R B L
L



plication: Summary

- Off-Diagonal Long-Range Order
(implies superconductivity ?)in
models of interacting fermions.

« Therepulsive Hubbard model
supplemented with correlated hopping
may exhibit Off-Diagonal Long-Range
Order, depending on the choice of
(U,t,4t,n)

- Building the many-body states from
single-particle states in either the real-
space or k-space representation is far
from optimal for this kind of problem
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asis set optimization

- SD can use “any” representation
. if (p|H|y) can be calculated efficiently
« why not use basis sets that are “more
sophisticated” ?
- An attempt motivated by our study
of ODLRO

» real-space representation is adequate to
describe e.g. local pairs

« k-space is the representation of choice
to describe e.g. extended structure
- Can we let the algorithm find an
optimum that interpolates between
these two extremes ?

« basis set optimization (cfr. Quantum
chemistry)
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Optimization of the
single-particle states

- Example: Fermions on a lattice
(atomic orbitals)
- Many-body basis states are build
from single-particle states
. Real-space:|®)=c|0)
- Fourier-space: |¢,)=c¢/|0)
- Many-body state (Slater determinant):

|4.) = ia(”)(il,l)...a(“)(i,\, 1c; ...c; |0)

« Matrix of coefficients:

a”1y a"”@w2) --- a"@N) .- a"@QK)
A _ a”21) a"@2 - a™(,N) - a"(2,K)
a”(KQD) a"(K,2) --- a"”(K,N) --- a"(K,K)
. e.g.“real space” :
10 -0
e
00 - 1
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Optimization of the
single particle states

- Change the matrix A"K) using
“simple” moves

- keep single-particle states orthonormal

. Simplifies calculation of matrix elements
of H

. cosd -sind
. Use plane-rotations: U=

singd cos@

. Update two rows (columns) p,q at atime
« Mix columns: AM) « AP - 1<p<N<g<K
« Mix rows: A« yPOANK g g=1K

- Preserves unitary character of A"K) and
defines a “dynamics” for changing
Slater determinants
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Basis-set optimization:
Example

The energy E as a function of the number of rotations
as obtained by optimizing one Slater determinant for
the case of a 4x4 Hubbard model (N, =N, =5,t=0,U =-1).
The single-particle states used to construct the initial
many-body wave function are |, ) = ¢ |O). Various
symbols correspond to different optimization
strategies. The exact result is indicated by the dashed-
dotted line.

-1 — T T+ " T T T I

_5 ;5 L L L I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
1 10 100 1000 10000 100000 1let+06
Rotations
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Basis-set optimization:
Example

The energy E as a function of the number of rotations
as obtained by optimizing one Slater determinant for
the case of a 4x4 Hubbard model (N, =N, =5,t=1,U =0).
The single-particle states used to construct the initial
many-body wave function are |g; ) = ¢;"|O). Various
symbols correspond to different optimization
strategies. The exact result is indicated by the dashed-
dotted line.

0 B

5k i
10+ i
15 + i
20 b i
_'25 _-_-' 1 1 1 1 1 1 1 1 1 1 1 1 1 |$
1 10 100 1000 1 0000 100000
Rotations
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Basis-set optimization:
Example

- The ground state energy of the 4x4 Hubbard model
(N,=N,=5,t=1) as obtained by various methods:
. E™ : Exactdiagonalization

. E® :SD +basis-set optimization using |@, ) = ¢;|0)
- E” :SD+basis-set optimization using |, ) = ¢;"|O)
. E® :sD

. E™ :Hartree Fock
- In all SD calculations the limit to the number of important
states was set to 200: M, = 200 .

- A greedy algorithm was used to optimize the single-
particle states, using 10000 plane rotations for each
many-body state added.

U ElExact E l(k) E 1(i) ElSD ElHF
6 -18.35837 -18.09710 -17.93031 -17.41384 -14.625
4 -19.58094 -19.50157 -19.42179 -19.24434 -17.750
2
0
-2

—21.37695 -21.36576 —21.34991 -21.32807 -20.875
—27.12500 -27.12500 -27.68078 -27.64086 —27.125
—27.70702 -27.69305 -27.68078 -27.64086 —27.125
-4 -32.73360 -32.51795 -32.45901 -32.05033 -30.250
-6 —39.34051 -38.19426 -38.27180 -36.85642 -33.375
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Summary

General aspects of the sign problem
In Quantum Monte Carlo methods

Stochastic diagonalization method

Application: Off-Diagonal Long-
Range Order (<= superconductivity)
In models of interacting fermions.

« Therepulsive Hubbard model
supplemented with correlated hopping
may exhibit Off-Diagonal Long-Range
Order, depending on the choice of
(U,t,4t,n)

Basis-set optimization
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