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1 Introduction 

Finite-difference time-domain (FDTD) algorithms solve the time-dependent Maxwell equations [1] by 

replacing continuum space by a spatial grid [2]. In general, the discretized curl equations can be written 

in the compact form [3, 4] 

 ( ) ( ) ( )t L t t

t

∂
= - ,

∂
Y Y F  (1) 

where the vector ( )tY  is a shorthand for all the field variables on the grid, including the auxiliary field 

variables used to incorporate linear dispersive media characterized by e.g. Debye, Drude or Lorentz 

models [1, 2]. The matrix L is the discrete analogue of the operator that governs the time evolution of the 

fields and the vector ( )tF  describes the current source ( )tJ . For instance, if the electromagnetic fields 

( )tE  and ( )tH  interact with a material that is described by a Drude model with polarization vector ( )tP , 

the discretized Maxwell equations can be written in the form [4] 
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The matrices W  and G  in Eq. (2) are real and diagonal, with non-negative values that may depend on the 

position in the lattice and, if nonzero, define the frequency and inverse relaxation time of the Drude-pole 

model, respectively [4]. The symbol 
�—¥ denotes the discretized form of the curl operator. Assuming that 

the discretization procedure does not change the basic symmetries of the Maxwell equations, the precise 

form of 
�—¥, although very important for applications, is not essential for what follows. Hence, we will 

not discuss the important technicalities of the spatial discretization any further but refer the reader to 

Ref. [2]. 

 The formal solution of Eq. (1) is given by 

 

0

( ) ( ) (0) ( ) ( ) d

t

t U t U t u u u= - - ,ÚY Y F  (3) 

where the matrix exponential 

 ( ) e
tL

U t =  (4) 

denotes the time-evolution matrix. 

 As can be seen from the example in Eq. (2), the matrix L is the sum of a skew-symmetric and a nega-

tive semi-definite matrix. For any skew-symmetric and negative semi-definite matrix L, we have [4] 

 ||e || 1
tL

£ ,  (5) 

where ||.||  denotes the 2-norm of a vector or matrix. Eq. (5) is the mathematical equivalent of the state-

ment that the physical system is stable (does not explode) in time. In the absence of dissipation, L is 

skew symmetric, hence e
tL

 is an orthogonal matrix, and ||e || 1
tL

=  expresses the fact that the total energy 

of the system, 
T

( ) ( )t t◊Y Y , is a conserved quantity [4]. 

 There are two, closely related, strategies to construct an algorithm for performing the time integration 

of equations such as Eq. (1) [5]. The traditional approach is to discretize (with increasing level of sophis-

tication) the derivative with respect to time [5]. The other is to replace the matrix exponential ( ) e
tL

U t =  

that appears in the formal solution Eq. (3) which, for real-life applications cannot be computed directly 

because of prohibitive memory requirements, by an approximate time evolution matrix ( )U t
�

 that can be 

handled numerically [5]. In this paper, we adopt the latter approach because it is well-suited to construct 

algorithms that, by construction, preserve specific symmetries. 

2 Product formula approach 

A systematic approach to construct approximations to matrix exponentials is to make use of the Lie–

Trotter–Suzuki product formula [6–8], 

 
1

( )

1

e e lim e
p i

m
p

t L … L tL mtL
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+ + Á ˜/
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and generalizations thereof [9–11]. Expression Eq. (6) suggests that 

 
1

1
( ) e e

p
LL

U

τ
τ

τ …=  (7) 

might be a good approximation to ( )U τ  if τ  is sufficiently small. The Taylor series expansion of ( )U τ  

and 
1
( )U τ  shows that ( )U τ  and 

1
( )U τ  are identical up to first order in ,τ  hence we call 

1
( )U τ  a first-order 

approximation to ( )U τ . 

 The product-formula framework provides simple, systematic procedures to improve the accuracy of 

the approximation to ( )U τ  without changing its fundamental symmetries. For example, the matrix 
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is a second-order approximation to ( )U τ  that, by construction, is unconditionally stable whenever 
1
( )U τ  

is unconditionally stable. For arbitrary matrices 
i

L , it can be shown that [4] 

 
1

( ( ) ( ))2

2 2
|| ( ) [ ( )] || e ,

p
t L … Lm

U t m U c t

ρ ρ

τ τ τ

+ +

= - £  (9) 

where 
2
c  is a positive number and ( )Xρ  denotes the largest eigenvalue of ( ) 2

T

X X+ / . 

 By definition, a numerical scheme that uses a matrix ( )V τ  to advance the vector ( )tY  in time  

according to ( ) ( ) ( )t V tτ τ+ =Y Y  is unconditionally stable if || ( )|| 1V τ £  [5]. As 
1

1
|| ( )|| ||e || ||e ||

p
LL

U

τ
τ

τ £ …  

1
( ( ) ( ))

e 1,
p

L … Lτ ρ ρ+ +

£ £  the algorithm defined by Eq. (7) will be unconditionally stable by construction if 

( ) 0
i

Lρ £  for 1i p= , ,… . Note that for a numerical algorithm to be unconditionally stable, it is necessary 

but not sufficient to satisfy the von Neumann stability condition [5, 12]. If each 
i

L  can be written as the 

sum of a skew-symmetric and a negative semi-definite matrix, then ( ) 0
i

Lρ =  for 1i p= , ,…  and the last 

factor in Eq. (9) is equal to one. 

 Suzuki’s fractal decomposition approach [10, 11] gives a general method to construct higher-order 

approximations based on 
1
( )U τ . A particularly useful fourth-order approximation is given by [10, 11] 

 
4 2 2 2 2 2
( ) ( ) ( ) ((1 4 ) ) ( ) ( )U U a U a U a U a U aτ τ τ τ τ τ= - , (10) 

where 
1 3

1 (4 4 )a

/
= / - . The approximations Eqs. (7), (8) and (10) have proven to be very useful in many 

applications, see the references in Ref. [13]. 

 In FDTD applications, the approximation 
2
( )U τ  is used to advance the vector ( )tY  in time that is, we 

use 
2

( ) ( ) ( )t U tτ τ+ =Y Y  to update the fields. Note that up to this point, we have not made any specific 

choice for the number p and for the matrices that appear in the decomposition 

 
1 p

L L L= + + .…  (11) 

 Equation (9) sets a limit on how the error due to the time-integration scheme (that is, disregarding the 

error due to the spatial discretization) increases with τ and t. As usual with this kind of theoretical 

bounds, in practice they are often very pessimistic because 
2
c  has to be large enough to include the worst 

case. However, our experience shows that the functional dependence on τ and t is often useful to detect 

programming mistakes. 

 In practice, an efficient implementation of the first-order scheme 
1
( )U τ  is all that is needed to con-

struct efficient higher-order algorithms based on Eqs. (8) and (10). For these time-stepping algorithms to 

be computationally efficient, all the matrix exponentials that appear in Eq. (7) should be sparse and it 

should be easy to calculate (analytically) the expressions for the matrix elements of the matrix exponen-

tials 
1

e , , e

p
LL τ

τ

… . Elsewhere, [4, 13] we have shown that the workhorse of FDTD algorithms, the Yee 

algorithm [2], the alternating-direction-implicit (ADI) time-stepping FDTD methods [2], the Chebyshev 

polynomial based integrators [14], and a family of unconditionally stable algorithms [3] can all be de-

rived from specific approximations to the matrix exponential e
tL

. An extension to linear dispersive media 

was given in Ref. [2]. A first attempt to include in this approach, uniaxial perfectly media layers for 2D 

systems was reported in Ref. [2]. In the remainder of this paper, we show that in general, uniaxial per-

fectly media layers can be incorporated in the unified product-formula framework, allowing us to derive 

algorithms that are unconditionally stable by construction. 

3 Uniaxial perfectly matched layers 

In practice, any FDTD application faces the problem that the simulation volume is finite. Moreover, for 

reasons of economy, one would like to use a simulation volume that is as small as possible. Ideally, the 

computation domain should be large enough to contain the material objects but should not be much lar-

ger. This can, in principle, be realized if one can define boundary conditions on the faces of the simula-
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tion box such that waves that impinge on these faces are not reflected into the simulation volume. In 

view of its importance to essentially all real-life applications, there exists a large body of work on this 

particular aspect of the FDTD method [2]. 

 Of particular interest to us are the perfectly-matched-layer absorbing boundary conditions, imple-

mented by means of a uniaxial material [15]. That the latter has the potential to be incorporated into an 

unconditionally stable algorithm follows directly from our earlier discussion: If the medium is a physical, 

linear dissipative material, the time evolution matrix satisfies Eq. (5), suggesting that it should be possi-

ble to construct an unconditionally stable algorithm. For detailed mathematical analyses of the stability 

of other implementations of perfectly-matched-layer absorbing boundary conditions see Refs. [12, 16]. 

 In the remainder of this paper, we consider the case of an empty simulation box surrounded by uniax-

ial perfectly matched layer (UPML) material only. Due to the modular structure of the product-formula 

approach, Debye, Drude or Lorentz models for the material object can easily be incorporated into the 

algorithm. For simplicity of notation, we adopt units such that the permittivity and permeability of empty 

space are both equal to one. 

 Following Ref. [15], in this particular case, the Maxwell curl equation in the frequency domain can be 

written as [15] 

 jω = —¥ ,SE H  

 jω = -—¥ ,SH E  (12) 

where 1j ∫ -  and S is the material tensor defined by 

 

1

1

1

0 0

0 0

0 0

x y z

x y z

x y z

s s s

s s s

s s s

-Ê ˆ
Á ˜
Á ˜-Á ˜
Á ˜
Á ˜-Á ˜Á ˜Ë ¯

= ,S  (13) 

where, again for simplicity of presentation, we take 1
x x

s jσ ω= + / , 1
y y
s jσ ω= + / , and 1

z z

s jσ ω= + /  [15]. 

To treat the UPML problem in full generality, we consider the case of a trihedral corner region for which 

0
x

σ > , 0
y

σ >  and 0
z

σ >  [15]. The other, simpler cases can be obtained by setting one, two, or all three 

sσ ′  equal to zero [15]. 

 We start by noting that 

 

2

1

( )
x y z x y x z

x y z y z x

x x

j s s s j

j j

σ σ σ σ σ σ σ

ω ω σ σ σ

ω σ ω σ

-

+ +

= + + - + - .

+ +

 (14) 

 Using Eq. (14) and the standard trick to introduce auxiliary variables [2], we find from Eq. (12) that 

the equation for 
x

E  in the time-domain can be written as 

 

2

2

( )
y

x z

x y z x x y z x x y x z x

x

x x x y z x

x

x x x y x z x

HE H

E U V

t y z

U

U E

t

V

V E

t

σ σ σ σ σ σ σ σ σ σ

σ σ σ σ

σ σ σ σ σ

∂∂ ∂
= - + - - - + + + ,

∂ ∂ ∂

∂
= - + + ,

∂

∂
= - + + ,

∂

 

where it is understood that the fields { }E H U V, , ,  and { }
x y z

σ σ σ, ,  are functions of ( )x y z t, , ,  and 

( )x y z, , , respectively. The equations for the other E-components and the H-fields have the same struc-

ture and can be obtained by interchanges of the x-, y-, z-labels, and/or the E- and H-components. Of 

(15) 
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course, for each E- or H-component, we have to introduce two auxiliary U and V fields. From Eq. (15), 

we see that (after proper discretization of the curl) the matrix L that describes the time evolution is a sum 

of the usual skew-symmetric matrix representing the matrix for the wave propagation in vacuum, another 

skew-symmetric matrix that couples E
x

 and U
x

, a symmetric matrix that couples E
x

 and V
x

, and a diagonal 

matrix, one element of which can take both negative and positive values. 

 Let us now naively apply the product-formula philosophy and decompose L, as defined by Eq. (15) 

and similar equations for the other two E-fields and three H-fields. We split L into the skew-symmetric 

matrix 
0

L  that describes the wave propagation in vacuum and a matrix 
1
L  that describes the coupling 

between the {E, H}-fields and the auxiliary variables that represent the UPML. 
1
L  is a block diagonal 

matrix, consisting of 3 × 3 matrices that act on field components that are located on the same vertex of 

the (Yee) grid. For instance, for the fields in Eq. (15), the 3 × 3 matrix for the grid point (x, y, z) is given 

by 

 

2

2

1
( ) 0

0

x y z x y z x y x z

x y z x

x y x z x

L x y z

σ σ σ σ σ σ σ σ σ σ

σ σ σ σ

σ σ σ σ σ

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜Á ˜Ë ¯

- - - + + +

, , = + + - .

+ + -

 (16) 

 The matrix exponential of a block diagonal matrix of submatrices is itself a block diagonal matrix of 

the matrix exponentials of the submatrices. Hence it can be written as a product of (commuting) matrix 

exponentials of a direct product of a unit matrix of the full problem dimension and a 3 × 3 matrix (this is 

essential for the simulation algorithm to be computationally efficient). Therefore, to analyze the stability 

of the scheme, it suffices to concentrate on the matrix exponential of 
1
( )L x y z, , . A simple calculation 

shows that the largest eigenvalue of 
1 1

( ( ) ( )) 2
T

L x y z L x y z, , + , , /  is given by 

 

2

2

1
( ( )) 0 ,

2 2

y z y z

x
L x y z

σ σ σ σ

ρ σ

+ +Ê ˆ, , = - + + ≥Á ˜Ë ¯
 (17) 

indicating that this decomposition does not satisfy the condition for an unconditionally stable algorithm 

if 0
x

σ > . Of course, as this conclusion follows from a specific choice of the decomposition for L, we 

cannot rule out that there may exist other decompositions that yield unconditionally stable algorithms. 

We now argue that in a finite system, such decompositions do not exist. 

 To see this, we return to the original derivation of the conditions for a reflectionless interface between 

an empty half space (× < 0) and a UPML filling the other half space (x > 0) [15]. From the Maxwell 

equations Eq. (12), it follows immediately that the dispersion relation for the waves in the UPML region 

are given by 

 

2

2 2 2

1

x

y z

x

k

k k

j

ω

σ ω

= + + .
+ /

 (18) 

Restricting our attention to a wave that propagates in the x-direction, we set 0
y z

k k= = . We find that 

Eq. (18) admits two solutions: (1 )
x x x

k q jσ ω= + /  and (1 )
x x x

k q jσ ω= - + / . The former solution describes 

a wave (e
x

jk x-

, we adopt the convention of Ref. [2]) that decays as the wave moves away from the inter-

face at 0x = , further into the UPML. The latter solution describes a wave that grows exponentially as it 

moves towards the vacuum region. In the theoretical treatment, the latter solution is eliminated through 

the obviously correct physical argument that initially, there were no waves moving from the UPML 

region towards the vacuum region [15, 16]. However, the time evolution matrix L does not know about 

this boundary condition, and it allows for exponentially growing waves to propagate. Moreover, in a 

numerical simulation, the UPMLs are finite. Rounding errors and waves that reach the boundary of the 

simulation box, even though their amplitude may be very small, both act as tiny sources of noise. The 

numerical algorithm may and, as a rule of thumb it will, pick up this noise and will amplify it, simply be-
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cause the eigenvalue problem of the time evolution matrix admits exponentially growing solutions. Fortu-

nately, knowing the origin of the instability, it is a simple matter to eliminate the numerical instability. 

 Introducing ( )
x y z

x y zσ σ σ σ σ= , , = + +  and the new fields e

t

x x

E E

σ-

=
�

, e

t

x x

U U

σ-

=
�

 and e

t

x x

V V

σ-

=
�

 

(and similarly for all other { }E H U V, , ,  components), Eq. (15) transforms into 

 

2

2

2( )

,

(2 ) ,

(2 ) .

y
x z

z y y z x

x y z x x y x z x

x

x y z x x y z x

x

x y z x x y x z x

HE H

t H t H E

t y z y z

U V

U

U E

t

V

V E

t

σ σ

σ σ

σ σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ σ

∂∂ ∂ ∂ ∂
= - + - - +
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- + + +

∂
= - + + + +

∂

∂
= - + + + +

∂

�
� �
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� �

�

� �

�

� �

 (19) 

 The 3 × 3 matrices that appear in the decomposition that we introduced earlier read 

 

2

2

1

2( )

( ) (2 ) 0

0 (2 )

y z x y z x y x z

x y z x y z

x y x z x y z

L x y z

σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ σ

Ê ˆ- + - + + +
Á ˜
Á ˜, , = + + - + + .
Á ˜
+ + - + +Á ˜Ë ¯

�

 (20) 

The largest eigenvalue of 
1 1

( ( ) ( )) 2
T

L x y z L x y z
� �, , + , , /  is given by 

 

2

1

2 2

4( ) 6 ( )

( ( )) 0

2 3 3 4 ( )

y z x y z

x y z x y z

L x y z

σ σ σ σ σ

ρ

σ σ σ σ σ σ

+ + +
, , = - £ ,

+ + + + +

�

 (21) 

showing that the matrix exponential of these matrices cannot give rise to numerical instabilities. 

 Note that 0σ >  in the UPML region only. Hence in the relevant simulation region, the fields are not 

affected by the transformation, that is 
x x

E E
�

=  for all points outside the UPML region. However, the 

transformation to the tilde-fields introduced two explicit time-dependent terms in the equation for E
x

 (see 

the first equation of Eq. (19)). Explicit time-dependencies such as the one appearing in Eq. (19) are eas-

ily dealt with in the product-formula approach [17]. However, in the present case, we may define a new 

system of equations by removing the terms that contain the derivative of σ with respect to the coordi-

nates. In fact, in the derivation of the conditions of a reflectionless UPML, it is assumed that σ is piece-

wise constant, hence except at the interface itself, the terms with the explicit time dependence vanish. 

Evidently, removing the terms in Eq. (19) that contain the derivative of σ with respect to the coordinates 

does not change the equations for the fields in the region of interest and the resulting system of equations 

will be free of instabilities. 

 In practice, the implementation of the UPML boundary condition as defined by Eq. (19) and similar 

equations for all the other { }E H U V, , ,  components requires repeated multiplications of a vector of three 

elements with the matrix exponential of 
1
L
�

. Obviously, we have 
�

1 1

e e e

L L
ττσ τ-

=  and the general, closed-

form expressions of the matrix elements of the latter are given by 

 1

11

e ( ) e ( )

,(e )

y
z

y x x z
L

y z

τσ
τσ

τ

σ σ σ σ

σ σ

�

- -

,

- + -

=

-

 

 1 1

2

2 1 1 2

e e

(e ) (e )

y
z

L L
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y z

τσ
τσ

τ τ

σ σ σ

σ σ
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, ,

-
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σ σ σ

σ σ

�

�
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2 2 2

2 2
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(e )

( ) ( ) ( )

y
x z

z y x y x x z x y z
L

x y x z y z

τσ
τσ τσ

τ

σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

�

-- -

,

- + - + - +
= ,

- - -
 

 1 1

3 2 3 2

(e ) (e )
L Lτ τ

� �

, ,

= -  

         
2

e ( ) e ( ) e ( )

( ) ( )

( ) ( ) ( )

y
xz

y x x z z y

x y z x y z

x y x z y z

τσ
τστσ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

-

--

- + - + -
= + + ,

- - -
 

 1

2

3 3
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.(e )

( ) ( ) ( ) ( ) ( ) ( )
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 (22) 

4 Simulation results 

The stabilized UPML equations derived in Section 3 have been implemented in the massively parallel 

FDTD Maxwell solver developed by EMBD. In this section, we use EMBD’s Maxwell solver to demon-

strate that the stabilized UPML performs as expected on theoretical grounds. 

 As with all implementations of perfectly matched layer absorbing boundaries, there are a number of 

important technicalities that have to be taken into account, the main reason being that the dispersion 

relation for the waves on the Yee grid are different from the one in the continuum [15]. One trick to 

mitigate the effects of the spatial grid is to let the loss parameters 
x

σ , 
y

σ , or 
z

σ  increase gradually as we 

move further into the UPML region [15]. For maximum performance of the UPML, the thickness of the 

UPML layer as well as the values of 
x

σ , 
y

σ , and 
z

σ  have to be chosen judiciously [15]. The results pre-

sented in this paper have been obtained by adopting the fourth-order polynomial grading [15]. The 

maximum value of 
x

σ , 
y

σ  and 
z

σ  was chosen to be five (in units of cλ). 

 In Fig. 1, we show simulation results for the total electromagnetic energy 

 
2 2

{ }

( ) ( ( ) ( ))

i j k x y z

W t E i j k t H i j k t
α α

α, , Œ = , ,

= , , , + , , , ,Â Â
E

 (23) 

 

-1
0
1
2
3
4
5
6
7
8
9

10

0 2 4 6 8 10 12 14 16 18 20

lo
g(

W
(t

)/
W

m
ax

)

t [λ/c] 
         

-10

-8

-6

-4

-2

0

0 100 200 300 400 500 600 700 800 9001000

lo
g(

W
(t

)/
W

m
ax

)

t [λ/c] 
 

Fig. 1 (online colour at: www.pss-b.com) Normalized total electromagnetic energy 
max

( )W t W/  in the vacuum re-

gion as a function of time for a point source, located in the center of the simulation box, that is turned off at 

4t T cλ= = / . The number of mesh points per wavelength λ  is 10, the size of the simulation box is 94 × 94 × 94 mesh 

points, the time step is 0 045 cλ. / , and the number of mesh points of the UPML (for each of the three directions) is 

13. Left: Algorithm that implements the UPML through the use of the matrices L
1
. The value of 

max

W  is the same as 

the one used in Fig. 1(right). Right: Stable algorithm that implements the UPML through the use of the matrices 
1
L
�

. 
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in the empty space E, surrounded by UPMLs. Initially, ( 0) 0W t = =  and the electromagnetic energy is 

injected into the system through a current (point) source 

 
0

2π
ˆ( ) δ( ) Θ( ) Θ( ) sin

tc

t t T t

λ

, = - - ,J r r r x  (24) 

where 
0
r  is the vector to the center of the simulation volume, ˆx  is the unit vector in the x-direction, Θ( )t  

is the Heaviside step function, and the wavelength λ  fixes the length scale. In our simulations, the cur-

rent source is switched on at t = 0 and is turned off at 4T cλ= /  and we monitor the energy ( )W t  as a 

function of time. If the UMPL works well, we expect that ( )W t  decreases monotonically for t T> . From  
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Fig. 3 (online colour at: www.pss-b.com) Normalized total electromagnetic energy 
max

( )W t W/  in the 

vacuum region as a function of time for a plane current source, located in the middle of the simulation 

box, that is turned off at 4t T cλ= = / . Solid line (red): The number of mesh points per wavelength λ  is 10, 

the size of the simulation box is 94 × 94 × 94 mesh points, the time step is 0 0058 ,cλ. /  and the number of 

mesh points of the UPML (for each of the three directions) is 13. Long dashes (green): The number of 

mesh points per wavelength λ is 20, the size of the simulation box is 187 × 187 × 187 mesh points, the 

time step is 0 0029 ,cλ. /  and the number of mesh points of the UPML (for each of the three directions) is 

25. Short dashes (blue): The number of mesh points per wavelength λ  is 10, the size of the simulation box 

is 94 × 94 × 94 mesh points, the time step is 0 045 ,cλ. /  and the number of mesh points of the UPML (for 

each of the three directions) is 13. Dots (magenta): The number of mesh points per wavelength λ  is 20, 

the size of the simulation box is 187 × 187 × 187 mesh points, the time step is 0 023 ,cλ. /  and the number 

of mesh points of the UPML (for each of the three directions) is 25. 

Fig. 2 (online colour at: www.pss-b.com) Nor-

malized total electromagnetic energy 
max

( )W t W/  in 

the vacuum region as a function of time for a point 

source, located in the center of the simulation box, 

that is turned off at 4t T cλ= = / . The number of 

mesh points per wavelength λ  is 10, the size of the 

simulation box is 94 × 94 × 94 mesh points, the 

time step is 0 045 cλ. / , and the number of mesh 

points of the UPML (for each of the three direc-

tions) is 13 (solid line) and 20 (dashed line), re-

spectively. 
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Fig. 1 (right), we conclude that the unconditionally stable UPML works as expected on theoretical 

grounds: There is no indication of an instability (compare to Fig. 1 (left)). 

 In all other respects, the stabilized UPML equations derived in Section 3 behave in the same manner 

as the other UPML implementations [15]. For instance, one can reduce the reflection at the UPML inter-

face by increasing the UPML layer thickness (see Fig. 2), or by reducing the mesh size (see Fig. 3). For 

the latter, we used a current source given by 

 
0

2π
ˆ( ) δ( ) Θ( ) Θ( ) sin

tc

t z z t T t

λ

, = - - ,J r x  (25) 

that is, there is a current on each point of the plane defined by 
0

z z= , 
0
z  denoting the middle of the simu-

lation box in the z-direction. Of course, improving the performance of the UPML absorbing boundary 

condition comes at the cost of increased memory and CPU time. In the test results that we have presented 

here, no effort has been made to achieve the best performance. 
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