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Abstract

We review research on time-resolved optical imaging of objects hidden in strongly scattering media, with emphasis on
the application to breast cancer detection. A method is presented to simulate the propagation of light in turbid media.
Based on a numerical algorithm to solve the time-dependent diffusion equation, the method takes into account spatial
variations of the reduced scattering and absorption factors of the medium due to the presence of objects as well as
random fluctuations of these factors. It is shown that the simulation method reproduces, without fitting, experimental
results on tissue-like phantoms. Using experimental and simulation results, an assessment is made of the reliability for
extracting the reduced scattering and absorption coefficients of the medium from time-resolved reflection and transil-
lumination data. The simulation technique is employed to study the conditions for locating mm-sized objects immersed
in a turbid medium, by direct, time-resolved imaging. We discuss a simple method to enhance the imaging power of the
time-resolved technique. The mathematical justification of the method, as well as some applications to simple problems,
is given. The simulation technique is employed to demonstrate the effectiveness of the data processing technique. Results
of time-resolved reflection experiments and simulations are presented, showing that the use of the latter allow us to locate
I mm diameter objects under conditions which would prevent detection otherwise. Our results demonstrate that the
combination of simulation and the appropriate processing of the diffusive part of the time-resolved reflected or
transmitted light intensity may substantially increase the potential of the time-resolved near-infrared diffusive light
imaging technique as a diagnostic tool for breast cancer detection. © 1998 Elsevier Science B.V. All rights reserved.

PACS: 87.59. —e; 42.30. —d

Keywords: Time-resolved imaging; Diffusion equation; Breast cancer
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1. Introduction

Imaging through scattering media is a challenging problem and has motivated extensive
scientific research. The fields of application vary widely, ranging from atmospheric science and
oceanics to medicine. One potential application, breast-tissue imaging, has been drawing special
attention. Breast cancer is the most common cancer in women and one of the leading causes of
death in women. In many cases the cancer can be cured when it is small and localized in the breast.
Hence, non-invasive diagnostic methods for detection of breast cancer at an early stage are of great
importance. A successful screening method should be able to distinguish small tumors from
surrounding healthy tissue before metastasis occurs [1]. The ultimate goal is to image and
characterize millimeter-sized objects in 40—100 mm-thick human tissue [2]. The female breast is
also prone to benign diseases. Therefore it is also very important to discriminate between benign
and malignant lesions.

Recent developments in breast imaging and their present clinical importance is reviewed in
Ref. [3]. The most common imaging method at this moment, X-ray mammography, is not very
sensitive to differences between normal fibrotic tissue and cancer, making it less suitable for
imaging young dense breasts which usually are fibrotic [4,5]. Moreover both X-ray and radioiso-
tope imaging techniques expose the body to potentially harmful, ionizing radiation and increase
the risk of contracting cancer. Therefore, one would like to avoid using these techniques for
extensive routine screening. Ultrasound lacks the resolution to detect objects with linear dimension
smaller than a few millimeters and, like X-ray mammography, cannot distinguish between benign
and malignant tumors [2,6]. Magnetic resonance imaging of the breast [7] is a very powerful
technique with submillimeter resolution and the ability to detect specific chemicals but its high
operating costs [6,8] make it less suited as a routine screening modality [2,5,8]. Several clinical
experiments have been performed to study the (dis)advantages of each of the above-mentioned
methods [9-13].

The need for diagnostic imaging equipment that is non-invasive, safe, compact and capable of
monitoring tissue chemistry in vivo, together with the advent of picosecond pulse lasers in the
near-infrared wavelength regime and fast optical detectors able to resolve such pulses, has
increased the interest in optical techniques as a tool for early breast cancer detection [3,14-28].

Already in the Victorian age doctors conducted the first experiments in mammography using
candle light [2]. In the mid-1800s, British physicians used tissue transillumination to detect scrotal
cancer by holding a lamp behind the testes and observing the shadows resulting from the presence
of tumors. Ewen [29] first investigated light transmission through the breast in the late 1920s by
exploring various light sources and by visual observation of the transmitted light. Cutler improved
this technique by using a special tungsten lamp as a light source [29]. The instrumentation used
had problems in providing enough light intensity for the human eye to discern variations in the
tissue. Although various attempts [4,30-32] were made to improve the instrumentation, the
sensitivity of the human eye or photographic material appears to be insufficient to differentiate the
minute variations in light intensities corresponding to healthy and cancerous tissue. Initial
attempts to image the breast using continuous-wave near-infrared light intensity measurements
demonstrated very poor spatial resolution and indicated that this breast transillumination
methods had no utility as a screening method [33]. According to a more recent study [34]
conventional light-scanning equipment does not add any value to physical examination and
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mammography in breast cancer diagnosis. Diagnostic equipment [35,36] based on continuous
wave illumination and modified X-ray backprojection tomographic algorithms [35-37] has been
developed. Time-resolved transillumination with short laser pulses has also been studied for the
extraction of tissue parameters and tumor detection [21,38]. An alternative is to modulate the
intensity of the light source at frequencies between some ten to several hundred megahertz and to
measure the demodulation and phase shift of the transmitted light [39]. Recently, by the use of
frequency-domain techniques, optical mammography was evaluated in a clinical study [40].
Within approximately 3 min transillumination images of a compressed mamma were obtained
by scanning. Current time-resolved techniques require much longer times to record images
[1,38,41].

At present, none of the techniques described above are in a clinically usable stage because most
of them do not (yet) provide a reliable distinction factor between normal and cancerous tissue.

1.1. Breast tissue imaging: Physical basis

For diagnostic optical imaging the wavelengths of interest are in the range 6501300 nm, i.e. the
so-called therapeutic window: Near-infrared light is not as strongly absorbed by human tissue than
visible light [4,42] and so will have higher transmission and less likelihood of causing burns.
Near-infrared transillumination can be used to look at the structure and function of biological
systems [43,44] and is now used for various applications including the monitoring of blood
oxygenation in tissue [45], muscle oxygenation [46,47] and physiology [48], brain oxygenation in
new-born infants [2,49-52] and adults [53,54], and the flow of blood and specific chemicals, such
as oxyhaemoglobin or glucose, in arteries close to the surface of the skin. The latter provides
a noninvasive way for diabetics to monitor their blood glucose levels [2,55-57]. In contrast to
optical mammography these applications may have less stringent technical requirements because
either the tissue does not scatter very much, such as the brains of newborn babies [2], or the tissue
is only a few millimeters thick.

Breast imaging with red and near-infrared light relies on the differences in the optical properties
of breast tissue and cancerous tissue. Tumors can be regarded as optical inhomogeneities in the
sense that they have other absorption and scattering factors than the surrounding healthy tissue. In
cancerous tissue the incident light is strongly absorbed due to the higher blood content in the
neovascular zone surrounding most malignant tumors [ 58,59]. The absorption of light in tissues is
due to chromophores such as the heme pigment of hemoglobin, myoglobin, and bilirubin, the
cytochrome pigments of the respiratory chain in the mitochondria, and melanin pigment [60,61].
The light scattering in tissues is due to discontinuities in refractive index on the microscopic level,
such as the aqueous-lipid membrane interfaces surrounding and within each cell or the collagen
fibrils within the extracellular matrix [60,61].

Light propagation in breast tissue, which is a strong scattering medium, may be described by the
time-dependent diffusion equation (see below) involving two optical properties: The absorption
factor u, and the reduced scattering factor u. For breast tissue there appears to be a large variation
in the values for the reduced scattering and absorption factor. For various in vitro breast tissue
samples the reduced scattering factor u,=0.7-14mm~' and the absorption factor u, =
0.02-0.07mm !, for wavelengths near 800 nm [62,63]. In vitro measurements on breast tissue for
wavelengths of 653 nm suggest that u, ~ 0.4mm ™! and p, < 0.02mm™! [64]. In vivo measurements
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at 800 nm on six volunteers suggested for p, = 0.72-1.22mm ! and for yu, = 0.0017-0.0032 mm !
[38]. A smaller study on two volunteers of 30 and 58 years old, yielded values of u; = 1.13 and
0.76mm ! and p, = 0.0068 and 0.0028 mm ~ !, respectively at a wavelength of 753 nm [65]. In vivo
experiments on one volunteer having a rather large abdomen and back tumor show that tumor
and normal tissue optical properties and physiological parameters differ substantially within
the studied individual [66]. The absorption factors of tumor tissue are 2-3 times larger than the
absorption factor of normal tissue and this at all studied wavelengths [66]. The scattering changes
are less significant (the reduced scattering factors of tumor tissue are somewhat smaller than the
reduced scattering factors of normal tissue), but exhibit consistent wavelength-dependent behavior.
In time-resolved optical imaging experiments on breast phantoms one generally assumes that
the reduced scattering factor of the breast tissue is of the order of 1 mm ™!, whereas the absorption
factor of the breast tissue is of the order of 0.01 mm ™!, at a wavelength of 800 nm [24,67,68].

1.2. Light propagation in turbid media

The dilemma encountered with optical imaging of human breasts is that although the
wavelength of the light can be chosen such as to minimize the absorption it is impossible to avoid
the blurring of the images due to strong scattering by the tissue. In contrast to X-ray mammogra-
phy in which the incident X-rays are usually scattered only once, most near-infrared light travelling
through a few centimeters of tissue has been scattered several thousand times before it reaches the
detector [62,64].

Light entering a strongly scattering medium (e.g. the woman breast) that contains one or more
small objects (with reduced scattering and/or absorption coefficients different from that of the
surrounding medium, e.g. malignant tumors) can arrive at a detector by two different routes:

(1) By ballistic transport, in which the light travels without scattering through the sample to yield
a projection of the object(s). This light arrives first at the detector, within a time interval [0, 7]
where 7, & I/v, | is the distance between the source and the detector and v is the velocity of light in
the medium. For [ = 6cm and v = 220kmy/s, 7; & 300 ps. The unscattered light (ballistic compon-
ent) can be selected by means of a very fast (ps) time gate. A large variety of time-gating techniques
are developed based on the degree of polarization [69—72] coherent detection [73-75] and
selection of the length of the photon paths [1,15,18,38,76-80]. A systematic study of the time-gating
technique has shown that it is highly sensitive with respect to spatial variations in the absorption or
reduced scattering factors [38], in particular under conditions that are similar to those of biological
systems of interest [38]. Recent experiments have shown that the spatial resolution of the
time-gating technique can also be obtained with the absorption method [81]. However, any
technique based on the detection of unscattered light only for image formation is subject to
intrinsic physical limitations. As the signal at the detector contains only an exponentially small
fraction of the number of photons in the light pulse emitted by the source, the signal-to-noise ratio
is low. In addition, the intensity of these photons decreases exponentially with [, effectively limiting
the tissue sample size. For applications to optical breast imaging, the intensity of these photons
seems to be too low to be of practical use (there obviously is a limitation on the amount of power of
the incident light pulse) [38].

(2) By diffusion, in which the light is scattered many times before it reaches the detector. In this
regime the strong scattering by the medium blurs the variations in the transmitted or reflected light
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that result from the local (small) variations of the absorption and diffusion factor induced by the
objects immersed in the medium. Only if the diffusion factors of the object and the medium differ
considerably, direct detection (i.e. without image processing) is possible [82]. Diffusive light
imaging can be performed in the frequency domain [39,83-86] or in the time domain
[23-25,38,87]. In the former case a continuous intensity-modulated light source is used to generate
diffusive monochromatic light-intensity waves in the medium. In many respects these waves behave
like damped propagating waves [83-97]. Inverse scattering techniques in combination with
perturbation schemes have been employed to compute spatial variations in the absorption factor
and the diffusion coefficient (and hence the location of the objects) from the measured phase and
amplitude of these waves at various source and detector positions [83,98]. In the time domain,
short light pulses are used to excite a spectrum of light-intensity waves, the frequency-range being
determined by the scattering and absorption factors of the medium. This approach requires the use
of a detection system with a time resolution that is sufficiently high to cover the relevant range of
frequencies. In theory the time and frequency-domain data are intimately related through Fourier
transformation. However, usually the former contains more information because frequency-
domain measurements are carried out for at most a few selected modulation frequencies and this
information is not sufficient to determine the time-dependent response of the medium to a light
pulse. For this reason the emphasis of this paper is on simulations and experiments performed in
the time-domain. In practice, the differences between frequency and time-domain methods are
mainly technical, and the choice is a trade off between sensitivity, time resolution, complexity and
cost.

1.3. Outline

The organization of the paper is as follows. Section 2 introduces the model, ie. the time-
dependent diffusion equation (TDDE), and describes the algorithm that we employ to solve the
TDDE. In Section 3 the simulation results for tissue-like phantoms are compared to experimental
data, establishing the validity of the TDDE model and the simulation approach. A discussion of the
limitations of the direct imaging approach is given in Section 4. In Section 5 we assess the quality
of the estimates of optical properties of the tissue, as obtained from the analysis of the time-resolved
transillumination and reflection data. In Section 6 we give the theoretical justification of the
time-resolved image processing method that facilitates the detection of mm-sized objects. Sec-
tions 7 and 8 are devoted to the assessment of the effectiveness of the image processing method.
Section 9 summarizes our results.

2. Model

Most of the light entering a turbid medium (possibly containing one or more small objects with
reduced scattering and/or absorption factors different from those of the medium) is scattered many
times before it reaches the detector. For weakly absorbing media the propagation of the light is, to
a good approximation, described by the time-dependent diffusion equation [39,99,100] (TDDE)

ol(r,t)/0t = V- D(r)VI(r,t) — vu (r)I(r,t) + S(r, 1), (1)
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where I(r,t) is the intensity of light at a point » and at time ¢,

D(r) = v/3[udr) + pa(r)] (2)

is the diffusion coefficient, ug(r) is the reduced scattering factor, u,(r) denotes the absorption factor,
and v is the velocity of light in the medium in the absence of objects. The light source is represented
by S(r,t). The presence of objects in the medium is reflected by spatial variations in the absorption
factor and/or the reduced scattering factor (and hence also in the diffusion coefficient). In general,
both the absorption and the reduced scattering factor of the medium will fluctuate randomly
around their spatial averages, denoted fi, and [, respectively. For weakly absorbing media,
fla < [T

For purposes of notation it is convenient to write the intensity distribution as a “vector” |I(t)),
r.e. I(r,t) = <r|I(t)> where <{.|.> denotes the inner product of two vectors. The intensity at a point
r and time ¢ is given by {rle ""#|s), where |s) is the intensity distribution at time t = 0. Obviously,
since we are dealing with intensities, {rle”"#|s) > 0 for any r and any intensity distribution s.

The formal solution of Eq. (1) reads

t
1)) = e_tH[II(OD + J dr’ et'HlS(t’)ﬂ , 3)
0
with the time evolution of the light intensity governed by the “Hamiltonian”
H= —V-Dn\V+ V), (4a)
and where, for later convenience, we have introduced the “potential’
V(r) = vpy(r) - (4b)

According to Eq. (3) the time evolution of the light intensity at time ¢t + 7 is related to the light
intensity at time ¢t through

It + 1)) = efH[|1(t)> + J dr' e |S(r + r’))} : (5)
0

where T denotes the time step. From Eq. (5) it follows that all we need to solve the TDDE (1) is an
algorithm to compute exp( — tH)A(r) for arbitrary A(r).

Denoting the one-sided Fourier transform of |A(t)) by |A,) = j?f dre 1 A(r)>, Eq. (1) can be
written as

110)) +iwll,) = — Hll,) +1S0) (6a)
or
o) = (H +iw)” (IS,) — [1(0)) , (6b)

showing that |I,) is the solution of a time-independent diffusion equation, with a complex,
frequency-dependent “absorption” coeflicient vu,(r) + iw. Frequency-domain experiments provide
direct information about |1, for w corresponding to the frequency of the amplitude modulation of
the light source intensity [ 101-103]. The intensity |I(t))> can be retrieved from I, by solving Eq. (6)
for several w and performing the inverse Fourier transform. However, in numerical work it is more
efficient to solve Eq. (1) directly in the time domain. On the other hand, if only the solution of
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Eq. (6) for a few selected frequencies is desired, solving Eq. (6) for these frequencies may be the
numerical method of choice.

For practical applications the TDDE (1) and the formal solutions (3) and (5) have to be
supplemented by boundary conditions that mimic those of the actual experimental set-up. For the
applications we have in mind these boundary conditions take a non-trivial form: Usually, the
surface of the medium (e.g. a breast) has an irregular shape and is partially absorbing and partially
reflecting. Furthermore, the source and detectors are not in direct contact with the medium as the
light enters and leaves the sample through the skin (surface). Except for the shape of the sample,
incorporating all these elements into the boundary conditions is rather difficult and it is therefore
expedient to assume that the surface is reflecting and/or absorbing. Comparison of simulation and
experimental data should tell us if this is a reasonable assumption or not.

2.1. Algorithm

We have developed an algorithm to compute exp( — tH)A(r) [104], based on the fractal
decomposition of matrix exponentials proposed by Suzuki [105]. It is accurate to second order in
the spatial mesh size ¢ and to fourth order in the temporal mesh size 7. Conceptually the algorithm
is closely related to the one that we developed for the time-dependent Schrodinger equation [106].
The first step in setting up a numerical method to solve the TDDE (1) is to discretize the derivatives
with respect to the spatial coordinates. The simplest approximation scheme having satisfactory
properties is [107]

a a D'+1 ‘k+D"k
K.Irt)= ——| D I(r,t X"
(1) ax< (s 0')>raiﬁkm 207 Tt
Disiju+2Diju + Dioy Di-vju+ Dy,
4 Dix 1,j.k 25; k 1,j in,j,k . %Ih Lk s (7)

where I, ;, = I(r = (i0,j0, ko)) and D, ;, = D(r = (id,jo, kd)). For the derivatives with respect to
y and z we use expressions similar to Eq. (7).

Proceeding as in the case of the time-dependent Schrodinger equation, the time-step operator
e~ is approximated by a product of matrix exponentials. An approximation correct to second
order in the time step 7 is given by [108,109]

—tH _TKZ/ZG_TK"/ZC_tK"/ze_rV

e ~e e~ tK/2p—TK,/26 —TK./2 (8)

Instead of using fast-fourier-transform techniques [110] to compute the quantities such as
e 42 A(r), we replace e~ %+/? by a first-order product-formula approximation and obtain [111]

11 e ™ ] — e ) GitD)
e R x X)) = ] [H §<1 ) J

jie Lies e T L e

1/1 4 e~ ™ 1 — e~ ™ (it 1)
N H—( ] ] } ©)
H\1 e 1o
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where the triples (i, j, k) appearing in Eq. (9) represent a point on the lattice, & and @ are the sets of
even and odd numbers, respectively, and a; j;, = 6~ *(D; jx + Di+1.j4)/2- The superscripts (i,i + 1)
labeling the two-by-two matrices indicate that this matrix operates on the vector (I; i Ii+1,j.x)
only. In Eq. (8) we replace e /2 and e /% by similar approximations, Y(t/2) and Z(t/2),
respectively. The resulting product formula remains correct to order 2. It is also of interest to note
that all the matrix elements of both e ~**+/? and X(t/2) are positive so that approximation (9) has the
desirable feature that it will never lead to negative light intensities.
For V(r) > 0 (the case of interest) the explicit, second-order algorithm defined by

e ™ x S,(1) = Z(1/2)Y(r/2) X (¢/2)e " X(t/2) Y(t/2) Z(t/2) (10)

is unconditionally stable. Indeed, if | M || denotes the eigenvalue of the matrix M of largest absolute
value, we have

1Z(/2)Y (1/2)X(x/2)e” " X(/2)Y (/) Z(x/2)| <1, (11)

which is the condition expressing numerical stability of the scheme [107].

The accuracy of the second-order algorithm may be insufficient if we want to solve the TDDE for
long times. In practice, this is only a minor complication because the second-order algorithm can
be reused to build an algorithm that is correct to fourth-order in the time step. According to
Suzuki’s fractal decomposition [105],

S4(1) = S3(p7)S2(p)S2((1 — 4p)7)S2(P7)S2(P7) (12)

will be an approximation to the time-step operator that is correct to fourth-order in 7 provided
p = (4 —4'3)7! In our simulations we have used both (10) and (12) and obtained quantitatively
similar results.

The contribution from the source S(r, ) is computed using the standard Simpson rule [112]

e_THJT doe™™|S(t + 7)) ~ %(e_’HIS(t» +4e” PIS(t + 3)) + IS(t + 1)), (13)
0

which is correct to fourth-order in 7.

From the structure of Eq. (9) and S,(t) it is clear that the propagation of light over a time step
7 has been reduced to elementary operations: Repeated multiplications of two elements of a vector
by the corresponding two elements of another vector (in the case of ¢~ *"), or of matrix-vector
multiplications involving two-by-two matrices only. The resulting algorithm is fast, stable and
flexible. For practical applications to the tumor detection problem it is important that the software
can deal with irregularly shaped samples. As the Suzuki-product-formula-based algorithm present-
ed above operates on numbers labeled by real-space indices only, it is as easy to solve the TDDE
for a particular shape as it is to solve the TDDE for a rectangular box.

2.2. Simulation software

Our current version of the software solves Eq. (1) in two and three dimensions subject to
perfectly reflecting and/or perfectly absorbing boundary conditions. The intensity of light transmit-
ted by the sample is collected by detectors located at r = (L,,y, z), where L, denotes the size of the
simulation box in the direction of the incident light [113]. The reflected light intensity is recorded
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atr = (0,y, z). The light source is placed at x = 0 [i.e. S(r,t) = O unless r = (0, y, z)]. We have carried
out simulations using sources of variable size, including the cases of a point source
[S(r,t) = So(t)0(x)0(y — y0)o(z — z0)] and uniform illumination [S(r,t) = So(t)o(x)]. At t =0 the
source starts to illuminate the system, until ¢t = ¢, when it is turned off. Detection of the light
intensity starts at t4 (t4 > t,). Our simulation software allows the detectors to record the instan-
taneous or the time-integrated light intensity.

Our software generates real-time images when run on a PC or data files suitable for processing
by IBM’s Data Explorer. The pictures are then collected into digital video’s (Autodesk Animator
.FLC format, typically less than 1 Mb/video) suitable for playback on PC’s and X-window systems.
These video’s give a good impression of how the light intensity diffuses through the medium.
Included in these video’s are the (time-dependent) intensities recorded by the detectors. The digital
video’s also serve as an archive for the simulation results.

For a representative two-dimensional (2D) sample of 71 mm x 71 mm, using a mesh size of
0 =1mm (L, = L, = 71), it takes about 1 min on a Pentium Pro 200 MHz system to carry out
1000 time steps, including data analysis and visualization. On a Pentium II 266 MHz system it
takes about 2.8 s to carry out the same calculation but without data analysis and visualization.
Calculation of the time evolution of the light intensity for a three-dimensional (3D) grid of
63 x 63 x 63 = 250047 points and 1000 time steps takes 390 s on the same machine. The number of
(floating point) operations required to solve the TDDE by the algorithm based on the fractal
decomposition of matrix exponentials [ 104] scales linearly with the dimensionality of the system,
the number of time steps and the total number of grid points. Clearly the CPU times obtained for
the (representative) 2D and 3D simulations do not seem to reflect this scaling behavior: On the
basis of the CPU time for the 3D system we would expect the 2D simulation to take
2x390x 71 x71/(3x 63 x63x63)~5.2s, almost a factor two more than actually measured. This
extra speed-up of a factor two is due to the fact that the 2D problem fits in the cache memory of the
Pentium II processor.

Calculation of the time evolution of the light intensity for a 3D grid of 63 x 63 x 63 = 250047
points and 1480 time steps takes 6 minutes on a Cray C98 (single processor), 42 minutes on a SGI
Power Challenger (single processor), and 65 minutes on an IBM RS/6000 model 43P workstation,
including data analysis and visualization processing.

For exploratory purposes it is advantageous to simulate 2D systems: simulation and visualiz-
ation only takes a few minutes. Then, for selected cases, we simulate the corresponding 3D system.
On a qualitative level there seems to be little difference between the results obtained from 2D or 3D
simulations. In fact, we never encountered a 3D simulation that forced us to change a conclusion
drawn from 2D simulation data.

As the effect of particular implementations, compilers and computer systems on the performance
of specific simulation algorithms can be substantial, it is difficult to compare different approaches
on a quantitative basis but it may be of interest to compare, on a conceptual level, our approach
with others. Techniques which have been developed to calculate light propagation in turbid media
can be classified into stochastic methods, such as the Monte Carlo (MC) simulations [114—-123]
and random walk models [124,125], or deterministic methods which are based on the solutions of
the diffusion equation.

MC simulations trace a large number of individual paths of photons propagating through
a scattering medium. The scattering events are determined by a probability function that matches
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the scattering coefficient. At each scattering event part of the photons are absorbed. The amount of
absorption is determined by the absorption coefficient. The scattering angle is given by the
scattering phase function. A MC algorithm has the advantages of being conceptually simple and of
being flexible with respect to geometry, phase functions and boundary conditions. A disadvantage
of MC simulations is the large amount of computer time needed to obtain statistically good quality
data.

In general, the numerical methods based on the solution of the diffusion equation are much
faster than the MC methods to describe the light propagation in tissue, if the scattering and
absorption mechanisms allow the use of the diffusion approximation.

The diffusion equation, including its time-dependent form, can be solved analytically for
a homogeneous medium and rather simple geometries [88,126]. More flexible than analytical
methods are numerical methods, such as the finite element method (FEM) [127-132], the finite
difference method (FDM) [24], the method of exact enumeration [133] and our method [104],
described above. The basic idea of the FEM is that a model that satisfies the time-dependent
diffusion equation is divided into elements, and an approximate solution to the equation is
calculated over each element. The solution for the whole model can be derived from the algebraic
solutions for each element. The mean time of flight can be calculated directly from the first moment
of the time-dependent light intensity [129]. In the FDM the diffusion equation is converted into
a finite difference equation for finite steps of the spatial variables and the temporal variable. The
method of exact enumeration is an iterative method that accounts for the spatial and temporal
distribution of photons after a discrete pulse is applied to a scattering medium. The method is
equivalent to performing MC calculations for movement on a lattice, but by use of the method of
exact enumeration, all random-walk configurations are taken into account properly even when
only a few photons would reach a site as realizations of MC experiments. The algorithm we use is
identical to the FDM as far as the treatment of the spatial variables is concerned.

3. Comparison with experiment

We have tested our software and the validity of the TDDE model by comparing simulation data
[104,134] with the experimental results of Ref. [38], concerning a range of optical parameters
which from the point of view of breast imaging range from realistic to unrealistic. We have
simulated exactly the same systems as those studied in Ref. [38], ie. systems of size
40mm x 127 mm, with a spatial mesh size 6 = 1 mm, a time stept = 1ps, t, = 7ps, ts = 350 ps and
the speed of light in the medium v = 0.222 mm/ps [135]. We verified (by reducing the mesh size and
time step) that the numerical results are, for all practical purposes, exact. The simulation itself is
carried out in a manner identical to the procedure used in the time-gating technique [38].

The sample is illuminated uniformly by the pulsed light source. This corresponds to the
experimental situation in which the phantom is located on an x—y stage and is moved in the
horizontal plane under computer control. The detector accumulates the light intensity over the
interval ty <t <t + At where At denotes the time gate. In Fig. 1 we depict our simulation results
(dashed curves) and the experimental data (solid curves) which are taken from Fig. 12a of Ref. [38].
The experimental light intensities are normalized to the continuous-wave case. For each of
Figs. 1-5 we have multiplied the simulation data of each figure by a factor, determined visually, so
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Fig. 1. Comparison of experimental [38] (solid curves) and computer simulation (dashed curves) results for the
time-resolved transilluminated diffusive light intensity. In experiment and simulation the turbid medium has a reduced
scattering factor p; = 0.9 mm ! and an absorption factor y, < 0.001 mm ~!; the absorption factor of the 8 mm diameter
tubeis p, = 0.014mm ! [38]. The reduced scattering factor inside the object is u; = 0. The tube is located in the center of
the sample. As in Ref. [38] we only show the centerpart of the detected light intensity. The experimental intensities are
normalized to the continuous-wave case. We have multiplied the simulation data by a factor, determined visually, so that
the scale of the experimental and the simulation data is roughly the same. No attempt to make a best fit was made. As in
Fig. 12a of Ref. [38]: 1, continuous-wave case (experimental data only); 2, At = 960 ps; 3, At = 480 ps; 4, At = 240ps; 5,
At = 30 ps. The inset shows the light distribution inside the sample for At = 960 ps; the arrow indicates the direction of
the incident light. See also Fig. 12a of Ref. [38].

Fig. 2. Same as Fig. 1 except that the absorption factor of the 8 mm diameter tube is py, = 0.13mm ! [38]. See also
Fig. 12b of Ref. [38].

that the scale of the experimental and the simulation data is roughly the same. No attempt to make
a best fit was made. The medium contains a plastic tube (8§ mm diameter) filled with diluted ink,
positioned in the centre of the sample. As in Ref. [38] we only show the centerpart of the detected
light intensity. In the simulation both the absorption and the reduced scattering factors are allowed
to fluctuate randomly within 10% of their values specified in Ref. [38]. Our numerical results are in
remarkably good agreement with the experimental data. The inset shows the distribution of light
inside the sample at At = 960 ps. The object is clearly visible.

Increasing the absorption factor of the diluted ink by a factor of 9 (Fig. 12b of Ref. [38]) yields
the results shown in Fig. 2. Again the overall agreement with the experimental [38] data is
excellent. Simulation and experimental [ 38] data for a medium containing bead pairs are shown in
Fig. 3. The agreement between experiment and theory is remarkable. As in the previous case no
attempt has been made to make a best fit. Fig. 4 displays the results for a system containing
a plastic tube filled with ink-tinted milk with the same reduced scattering factor as the medium but
with a different absorption factor. Clearly, the simulation data display all the features observed in
experiment. In particular, the full-width at half-maximum (FWHM) agrees well with the experi-
mental value.
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Fig. 3. Same as Fig. 1 except that instead of one there are two 10 mm diameter objects, separated by 20 mm, with an
absorption factor u, = 0.029mm ! [38]. See also Fig. 13a of Ref. [38].

Fig. 4. Same as Fig. 1 except that the turbid medium has a reduced scattering factor u, = 0.8mm~' and that the
absorption and reduced scattering factors of the 8 mm diameter tube are y, = 0.1 mm ™! and p, = 0.8 mm !, respectively
[38]. See also Fig. 15 of Ref. [38]: 1, continuous-wave (experimental data only); 2, At = 30 ps.
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Fig. 5. Same as Fig. 1 except that the turbid medium has a reduced scattering factor u, = 0.8 mm ~! and an absorption
factor p, = 0.0005mm ™! and that the absorption and the reduced scattering factors of the 8 mm diameter tube are
ta = 0.0005mm ™! and p = 2.6 mm ™, respectively [38]. See also Fig. 14 of Ref. [38].

Our simulation results indicate that the time-resolved transilluminated intensity is highly
sensitive to the choice of absorption and reduced scattering factors. This is illustrated in Fig. 5
where we show the experimental [38] and simulation results for the same sample as the one used
for Fig. 4 except that instead of a difference in the absorption factor of the medium and the object,
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only the reduced scattering factors differ. Clearly, qualitatively similar signals can be obtained for
different choices of absorption-reduced scattering factors of the object. Therefore, to determine the
properties of an object the effect of the scattering and the absorption factors have to be taken into
account simultaneously, in agreement with experiment [38]. The above simulation results and
others (not shown) demonstrate that our simulation software reproduces all the features observed
in the experiments on the tissue-like phantoms reported in Ref. [38].

4. Direct imaging

Our simulation software reproduces, without fitting, the data obtained from time-resolved
transillumination measurements on turbid media containing relatively large ( + 8 mm diameter)
objects. Hence, it can be used to determine the conditions under which it is possible to detect
a hidden object by direct (i.e. without further processing of the measured intensities) imaging. For
instance, it is of interest to know the effect of changing the size of the sample and/or the object(s).
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Fig. 6. Simulation of a time-resolved transillumination experiment on a turbid medium with a reduced scattering factor
W, = 1.1mm~ ! and an absorption factor yu, < 0.001 mm ™! containing a 4 mm radius object with absorption and reduced
scattering factors g, =0.11mm~! and u,=11mm™! respectively. The dimensions of the sample are
63 mm x 63 mm x 63 mm. The object is located in the middle of the sample. The transmitted intensity for At = 1.7 ns is
projected onto the rightmost plane of the sample.

Fig. 7. Simulation of a time-resolved reflection experiment on a turbid medium with a reduced scattering factor
W, = 1.1mm~ ! and an absorption factor y, = 0.011 mm ! containing a 1 mm-radius object with absorption and reduced
scattering factors y, = 0.11mm ™! and y, = 1.1 mm ™!, respectively. The dimensions of the sample are 63 mm x 127 mm.
The object is located at (10, 64) mm. Curves bottom to top: At = 30 ps, At = 240 ps, At = 480 ps, At = 960 ps. The inset
shows the light distribution inside the sample for At = 960 ps; the arrow indicates the direction of the incident light.
Random noise ( + 10%) has been added to the absorption and scattering factor of the medium.
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In Fig. 6 we show a result of a simulation for a sample of size 63mm x 63 mm X 63 mm,
containing a sphere of 4 mm radius, positioned right at the middle of the sample. Although not as
sharp as in the case of a 40 mm thick sample, the time-resolved transmitted intensity, projected
onto the right most plane of the sample, contains a clear image of the object.

In some source—detector arrangements transillumination of breasts would require compressing
the breast tissue. This in turn makes the interpretation of the images more difficult as compression
may have an effect on the scattering and absorption factors. Therefore, it may be advantageous to
measure the reflected instead of the transmitted light, raising the interesting question to which
extent a small object can be detected by performing a time-resolved reflection experiment. In
Fig. 7 we show the result of a simulation that gives an indication of the limits of this technique.
A 1 mm-radius object is placed 10 mm away from the plane where the light pulse enters the sample.
The sample is 63mm thick and 127mm wide. In the turbid medium g, = 1.1mm~! and
U, = 0.011mm 1. The object has p; = 1.1mm~ ! and p, = 0.11 mm ™ !. From our simulations (see
below) it follows that the blurring of the signal due to the random fluctuations can be reduced by
increasing the time ¢4 at which the detectors start to record the reflected photons. The results shown
in Fig. 7 were obtained for t; = 1000 ps; other parameters such as the time gate At are identical to
those in Figs. 1-5. As in Figs. 1-5 we only show the centerpart of the detected light intensity. We
conclude that although the object is small (it has a 1 mm radius), it leaves a clear trace in the
time-resolved reflected intensity. There seems to be no direct relation between the FWHM and the
size of the object. The fingerprint of this small object in the reflected signal disappears if the object is
more than 15 mm away from the entrance plane. In this case, where the object is located rather near
to the entrance plane of the light, the time-gating method does not give a significant advantage in
detecting the object. For both the transillumination and reflection method, using point sources
instead of uniform illumination is much less favorable for the direct imaging of the objects hidden
in the medium (see below).

5. Determination of tissue optical properties

The non-invasive determination of the optical absorption and scattering properties of tissues is
of great importance in both therapeutic and diagnostic applications of light in medicine, such as for
example in photodynamic therapy [136], in laser surgery [137] and in monitoring changes in
blood oxygenation and tissue metabolism [52]. Methods for measuring the optical properties of
tissues include the pulsed photothermal radiometry method [138-140], the acoustical method
[141], the time-resolved reflectance method [126], the frequency-domain reflectance method [89]
and the spatially resolved steady-state diffuse reflectance method [142-145]. For a review see
[146,147].

Time-resolved transillumination and reflection experiments have the possibility of measuring the
optical properties of biological tissue in vivo, noninvasively. Noninvasive measurements imply that
the optical properties of tissue must be deduced from measurements of the light emerging from the
tissue. This requires a theoretical model to describe the photon propagation through the tissue
and/or to provide an analytical expression of the transmittance and/or reflectance curve, depend-
ing on the optical parameters. Fitting the theoretical curve to the experimental data gives an
estimate of the optical parameters of the tissue. The accuracy of the results achieved with
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time-resolved transmittance and/or reflectance techniques depends on how appropriate the model
is for the description of the particular problem under study. Different ranges of optical parameters
and experimental conditions may require different theoretical approaches [148].

Interpretation of the experimental data is generally based on the radiative transport theory [99].
Various models and approximations of the radiative transport equation are used to relate the
measured light intensities to the optical parameters of the sample. Apart from the Kubelka—Munk
theory [149] and the diffusion theory [99,150,151], there are the inverse adding-doubling method
[152], which takes into account anisotropic scattering, and the Monte Carlo approach
[114,121,122,153,154] to model light propagation in tissue. Closed-form expressions for the
time-resolved reflectance and transmittance curves have been obtained by using a discrete lattice
random walk model [124,155] and diffusion theory [126,156,157].

The object of this section is to explore in detail how the measured intensity profiles obtained
from time-resolved transillumination and reflectance experiments can be related to the optical
coefficients of the tissue under investigation. The reflectance and transmittance curves are obtained
by simulating time-resolved experiments on tissue phantoms of known absorption and reduced
scattering factors and by performing time-resolved experiments on various solutions of intralipid.

5.1. Experimental setup

The experimental setup for time-resolved reflectance imaging is depicted in Fig. 8. The setup for
time-resolved transillumination imaging is very similar. The laser system consists of a mode-locked
Tsunami Ti:Sapphire laser (power: 1 W, wavelength: 800 nm, repetition frequency: 82 MHz and
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Fig. 8. Setup for the time-resolved reflectance experiment. Inset: Scetch of time-resolved reflectance curves as obtained
from the various detection fibers.
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pulse width: 0.06 ps) which is pumped with a BeamLok Ar ion-laser. The pulsed beam is splitted in
two beams: a probe beam to illuminate the tissue phantom and a beam which on its turn is splitted
in three beams, namely a beam for triggering a 2ps resolution synchroscan streak camera
(Hamamatsu C5680), a reference beam for setting an absolute time scale and a beam to visualize the
pulse shape through an autocorrelator. The probe beam is attenuated by a factor of 10° with
a neutral density filter, expanded and collimated to a diameter of 2 mm using two lenses (L., and L,)
in Keplerian configuration in combination with a small pinhole and is finally directed to the
phantom. The phantom consists of a methacrylate vessel filled with various solutions of commer-
cial intralipid-10%. For the time-resolved reflectance experiments the vessel has dimensions
70 mm x 70 mm x 70 mm. In the case of the time-resolved transillumination experiments the vessel
has dimensions 30 mm x 70 mm x 70 mm or 10 mm x 70 mm x 70 mm. In all cases the vessel is filled
with intralipid to a height of 55 mm.

Light from the probe beam is scattered many times in the phantom before it reaches the
detection side of the phantom. The detection side of the vessel is the front (back) surface of the
vessel for reflection (transillumination) experiments. An array of nine optical fibers (96 um core
diameter and 0.29 numerical aperture) is glued into the detection side (to avoid direct reflections
from the methacrylate) at a height of z = 25 mm as shown in Fig. 8. The distance between the fibers
in the y-direction is Smm (light propagates in the x-direction). The free end of the fibers, together
with the reference beam, are set right in the input slit of the streak camera (SC). The slit dimension
is adjusted to 125 um x 6 mm (the photocathode of the streaktube has dimensions 100 pum x 8§ mm)
and coincides with the focal plane of the input optics of the SC. The detected light is temporally
resolved in a single streak image. The SC working in synchroscan mode allows the integration of
the signal over a large number of consecutive pulses. The intensity profiles (see Fig. 8) for each
position (i.e. each fiber) are easily obtained from the individual streak image “traces”.

Background subtraction is applied to the images to reduce camera dark-current noise. The effect
of the non-uniform response of each channel in the SC, and the possible difference in sensitivity
between the fibers is corrected for by dividing the streak-image by a shading image obtained by
illumination through the fibers with uniform and constant light. The position of the beam, the
sample and the detectors are kept fixed during the measurements.

5.2. Estimation of the reduced scattering and absorption factor

In the light diffusion model the turbid medium is characterized by its reduced scattering and
absorption factor. The question then arises whether these factors can be determined from time-
resolved measurements. Pioneering work in this direction has shown that under certain conditions
the answer to this question is affirmative [126].

Assuming that at ¢t = 0 the light intensity in the medium |I(0))> = 0, the distribution of light at
t =t,, le. the time at which the source is turned off, is given by

IP
[(t,)) = L dre™|S> ~ 1,e " H2|S) | (14)

where we have assumed that the intensity of the source is constant (i.e. So(t) = So) during the pulse
time ¢, and that ¢, is small enough such that to a good approximation the integral in Eq. (14) can be
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evaluated by using the trapezium rule. From formal solution (3) it then follows that for t > ¢, the
light intensity is given by

(1)) ~t,e” CTHPHISH, =1, (15)

The next step is to assume that the medium is uniform, ie. it can be described by a constant
diffusion coefficient D, = v/3(fi; + fi,) and a constant absorption factor V' = vji,. Expression (15)
then simplifies to

(D)) ~ tye™ ¢ THDVoelt "t 2DVIGN - > g (16)

Further evaluation of e“~%/»P¥|S requires a choice of the boundary conditions on |I(t)>. The

desire to obtain for Eq. (16) an analytical expression suitable for fitting purposes severely limits this
choice: No boundaries (free-space), a semi-infinite medium with Dirichlet boundary conditions
per direction (e.g. I((0,y,z),t) =0), Dirichlet boundary conditions on both sides (e.g.
1((0, y, z),t) = I((Ly, y, 2), t) = 0), and any combination of any of these. We have systematically tested
the various possibilities and found that adopting Dirichlet boundary conditions consistently gave
superior fits, in concert with the results of Ref. [126]. In view of this we will in this paper not present
results for boundary conditions other than the latter.
In the case of Dirichlet boundary conditions (16) reads

I(r,t) ~ tpe“’vfmojdr' K(x, X, (t — t,/2)Dg, LYK(y, ¥, (t — t,/2)Do, L,)

x K(z,7,(t — t,/2)Do,L)S(r), =15, (17)
where
+ o0
K(u, u/, T, L) — (47”)71/2 Z (e*(u*u’+2mL)2/4r _ e*(u+u’+2mL)2/4r) , (18)

is the propagator for one-dimensional diffusion on a line segment of length L. In practice,
nZ_ ., can be replaced by Y .2, where m, is the integer nearest to 1+ (—tlneg)'/?/L,
¢ denoting the machine precision.
Following Ref. [126] we assume that the source is positioned not at the boundary but inside the
medium, at a distance x, = 1/u; from the boundary. In the case of a point source the remaining

integral in Eq. (17) becomes trivial and Eq. (17) reduces to
I(r,1) & Sot,e ™ 752V 0K(x, X0, (t — t,/2)Do, Ly)

X K(ys 05 (t - [p/z)ﬁOa Ly)K(Za 03 (t - tp/z)ﬁOa Lz)a t>t (19)

= Ilp>

where we have chosen for the light pulse to be incident along the x-axis. Clearly, Eq. (19) is
sufficiently simple for fitting purposes. For particular choices of my, Eq. (19) leads to the formulae
given in Ref. [126]. Improvement of the theoretical description of time-resolved optical experi-
ments, especially at early times, may be achieved by matching the temporal position of the
theoretical expression (19) and the experimental data by means of an extra parameter, the time-shift
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t,, introduced in Eq. (19) [148]. This yields
I(r,t) & Sot, e~ T 82VoK (x, xo, (t + ty — t,/2)Do, LOK(1,0,(t + to — t,/2)Do, L)
x K(z,0,(t + t, — t,/2)Do, L), t=>t,, (20)

where t,, Do and V, are fitting parameters.
5.3. Transillumination

We are now in the position to assess the reliability of the procedure of extracting Do and ¥, (and
therefore also fi; and fi,) from experimental or simulation data. Table 1 contains the values of
us and u, used as input for the simulation with those (fi; and fi,, respectively) obtained by fitting
Eq. (20) to the simulation data of the transmitted intensity. Because we are dealing with simulation
data we know that t, = 0. From Table 1 it is clear that in all cases the fitting procedure works very
well, independent of the source type and detector position.

Table 1

Comparison between the reduced scattering (1) and the absorption (u,) factor and the corresponding estimates fi; and
[i, obtained by fitting the simulated transmitted intensity to expression (20) with t, = 0. The dimensions of the sample are
71mm x 71 mm. The light velocity v = 0.22mm/ps. U(d, t,): Uniform illumination by a beam of diameter d (in mm),
centered around (0, 36 mm), during a time ¢, (in ps). G(d, t,): Gaussian light beam of width d, centered around (0, 36 mm),
during a time ¢, (in ps). R denotes the distance between the source and the detector

fta (mm™ ") # (mm™") Source R (mm) fl (mm ") fii (mm™1)
0.030 0.50 U(1,100) 71.0 0.030 0.49
0.030 0.50 U(1,100) 71.7 0.030 0.49
0.030 0.50 U(1,100) 72.6 0.030 0.49
0.030 0.50 U(1,100) 73.8 0.029 0.48
0.030 0.50 G(2,100) 71.0 0.030 0.49
0.030 0.50 G(2,100) 71.7 0.030 0.49
0.030 0.50 G(2,100) 72.6 0.030 0.49
0.030 0.50 G(2,100) 73.8 0.029 0.48
0.040 0.11 U(1,6) 71.0 0.039 0.12
0.040 0.11 U(L,6) 71.7 0.038 0.12
0.040 0.11 U(1,6) 72.6 0.038 0.12
0.040 0.11 U(1,6) 73.8 0.038 0.13
0.040 0.20 G(5,6) 71.0 0.040 0.20
0.040 0.20 G(5,6) 71.7 0.040 0.20
0.040 0.20 G(5,6) 72.6 0.039 0.20
0.040 0.20 G(5,6) 73.8 0.038 0.20
0.040 0.30 G(5,6) 71.0 0.040 0.29
0.040 0.30 G(5,6) 71.7 0.040 0.29
0.040 0.30 G(5,6) 72.6 0.039 0.29
0.040 0.30 G(5,6) 73.8 0.039 0.29
0.040 0.30 G(5,100) 71.0 0.040 0.30
0.040 0.30 G(5,100) 71.7 0.040 0.30
0.040 0.30 G(5,100) 72.6 0.040 0.30
0.040 0.30 G(5,100) 73.8 0.039 0.30
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In Tables 2 and 3 we show the results of fitting the simulation data for a particular set of model
parameters used in the experiments of Ref. [38]. Also in this case there is good agreement between
the values used as input to the simulations and the values obtained by fitting to Eq. (20), except for
the case of uniform illumination over one whole side of the sample. This might have been expected
because Eq. (20) has been obtained by assuming a point source.

A representative example of a fit is depicted in Fig. 9. The two sets of curves correspond to the
first and fourth entry of Table 3. It is clear that there is excellent agreement.

Tables 4 and 5 show the results of fitting experimental data of the transmitted intensity for
various intralipid solutions of 30 and 10 mm thick, respectively. The intralipid concentrations are
measured with respect to pure intralipid and not to the commercially available intralipid-10%
product, which is a 10% solution of pure intralipid. Our 1% solution corresponds to the
commercial product when diluted 10 times. The values for /i, and [i;, measured at a wavelength of
A =800nm, lie well within the range of values previously found in other studies: u;=
0.935mm ! x conc and g, =0.95x 10" 3*mm ! x conc at A = 630nm; [158] w, = 1.119mm ! x
conc and p, = 0.57x 10" ?mm ! x conc at A = 633nm; [159] u, = 1.104mm ! x conc and u, =
0.15x107?2mm ™! xconc at 4 =632.8nm; [160] u, = 0.681mm ! xconc and pu, =048 x
10" 'mm ™! x conc at 4 = 1064nm; [160] x, = 1.44mm ' x conc and p, = 0.027 x 10" 2mm "~ ! x
conc at A = 632.8nm; [161] p, = 1.224mm ! x conc and p, = 0.12mm ! x conc at A = 633 nm;

Table 2

Comparison between the scattering (us) and the absorption (u,) factor and the corresponding estimates fi; and fi, obtained
by fitting the simulated transmitted intensity to expression (20) with t; = 0. The dimensions of the sample are L, = 40 mm
and L, = 127mm. The light velocity v = 0.22mm/ps. U(d, t,): Uniform illumination by a beam of diameter d (in mm),
centered around (0, 63)mm, during a time ¢, (in ps). R denotes the distance between the source and the detector

fta (mm ™) e (mm~1) Source R (mm) fla (mm ™) fic (mm~")
0.010 0.90 U(1,10) 40.0 0.010 0.86

0.010 0.90 U(1,10) 41.2 0.010 0.86

0.010 0.90 U(1,10) 42.7 0.010 0.86

0.010 0.90 U(1,10) 44.7 0.010 0.86

0.010 0.90 U(1000,10) 40.0 0.010 0.94

0.010 0.90 U(1000,10) 41.2 0.010 0.90

0.010 0.90 U(1000,10) 42.7 0.010 0.84

0.010 0.90 U(1000,10) 44.7 0.010 0.77

Table 3

Same as Table 2, except that the dimensions of the sample are L, =40mm, L, = L, = 63mm. The centre of the
illuminating beam is at (0,31,31) mm

fta (mm™") # (mm™?) Source R (mm) fi (mm™ ") fil (mm™1)
0.010 0.90 U(1,10) 40.0 0.010 0.86
0.010 0.90 U(1,10) 41.2 0.010 0.86
0.010 0.90 U(1,10) 42.7 0.010 0.87
0.010 0.90 U(1,10) 44.7 0.010 0.89
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Fig. 9. Fit of transillumination intensity data to expression (20) with ¢, = 0. The dimensions of the sample are
40 mm x 63 mm x 63 mm. Solid curve: Simulation data for R = 40 mm, g, = 0.9 mm !, and u, = 0.0l mm . Diamonds:
Data obtained from Eq. (20) using R = 40 mm, /1, = 0.86mm ! and /i, = 0.01 mm ~!. Dashed curve: Simulation data for
R=447mm, g, =09mm™ !, and p, =0.01mm~'. Crosses: Data obtained from Eq.(20) using R = 44.7mm,

A, =0.89mm ! and i, = 0.01 mm~!. All curves are normalized to their maximum.

Table 4

Estimates for the reduced scattering (ji;), the absorption (f,) factor and the time-shift (z,) obtained by fitting the
transmitted intensity for various solutions of intralipid to expression (20). The dimensions of the sample are L, = 30 mm,
L, =70mm and L, = 55mm. The light velocity v = 0.22 mm/ps. The source emits a Gaussian light distribution of width
2 mm, centered around (0, 36,25) mm during a time of 0.06 ps. R denotes the distance between the source and the detector

Concentration (%) R (mm) A, (mm™1) A (mm~1) ts (ps)
0.5 30.0 0.0008 0.60 35
0.5 30.4 0.0008 0.60 35
0.5 31.6 0.0012 0.60 35
0.5 33.5 0.0016 0.60 30
1.0 30.0 0.0025 1.16 175
1.0 304 0.0025 1.16 175
1.0 31.6 0.0029 1.18 175
1.0 33.5 0.0035 1.19 175

[23] u, = 1.128 mm ™! x conc and p, = 0.12mm ™! x conc at 4 = 780nm; [23] u, = 1.4mm ™! x
conc and u, = 0.5mm “*xconc at 4= 633nm; [67] . = 0.888mm ™! x conc at 1 = 632.8nm
[162]. The abbreviation conc denotes the concentration of intralipid in percent.
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Differences in these results may at least in part be attributed to a difference in the composition of
intralipid-10% [159,160]. Moreover, the absorption factor of intralipid seems difficult to determine
accurately [163].

Fig. 10 depicts a typical example of a fit of experimental transillumination curves to theoretical
expression (20). The two sets of curves correspond to the second and fourth entry of Table 4.

Table 5

Same as Table 4, except that the dimensions of the sample are L, = 10mm, L, = 70mm and L, = 55mm
Concentration (%) R (mm) A, (mm~1) [ (mm 1) ts (ps)
1.0 10.0 0.0005 1.34 0
1.0 11.2 0.0005 1.34 2
1.0 14.1 0.0006 1.30 5
1.0 18.0 0.0006 1.24 8
2.0 10.0 0.0010 2.20 0
2.0 11.2 0.0015 2.20 6
2.0 14.1 0.0026 2.14 10
2.0 18.0 0.0024 1.90 20

0.8
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Fig. 10. Fit of transillumination intensity data to expression (20). The dimensions of the sample are
30mm x 70 mm x 55 mm. Solid curve: Experimental data for a 0.5% intralipid solution and R = 30.4 mm. Long-dashed
curve: Data obtained from (20) using R = 30.4mm, & = 0.6mm™!, 4, = 0.0008 mm ! and t, = 35ps. Short-dashed
curve: Experimental data for a 0.5% intralipid solution and R = 33.5 mm. Dotted curve: Data obtained from (20) using
R =335mm, i, =0.6mm~" and fi, = 0.0016 mm~'. All curves are normalized to their maximum.
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Table 6

Comparison between the reduced scattering (1) and the absorption (u,) factor and the corresponding estimates fi; and
[i, obtained by fitting the simulated reflected intensity to expression (20) with ¢, = 0. The dimensions of the sample are
71 mm x 71 mm. The light velocity v = 0.22mm/ps. U(d, t,): Uniform illumination by a beam of diameter d (in mm),
centered around (0,36 mm), during a time ¢, (in ps). G(d, t,): Gaussian light beam of width d, centered around (0,36 mm),
during a time ¢, (in ps). R denotes the distance between the source and the detector. A “x” indicates that the fitting
procedure failed to produce reasonable (i.e. positive) estimates

fta (mm™ 1) e (mm~ 1Y) Source R (mm) fla (mm ™ 1) fi; (mm~1)
0.005 0.90 U(1,10) 10 0.005 0.88
0.005 0.90 U(1,10) 15 0.005 0.88
0.005 0.90 U(1,10) 20 0.005 0.88
0.005 0.90 G(5,100) 10 X X
0.005 0.90 G(5,100) 15 X X
0.005 0.90 G(5,100) 20 X X
0.010 0.60 U(1,6) 10 0.010 0.59
0.010 0.60 U(1,6) 15 0.010 0.59
0.010 0.60 U(L,6) 20 0.010 0.59
0.010 0.60 U(2,6) 10 0.010 0.56
0.010 0.60 U(2.6) 15 0.010 0.57
0.010 0.60 U(2.6) 20 0.010 0.58
0.010 0.60 U(1,100) 10 X X
0.010 0.60 U(1,100) 15 X X
0.010 0.60 U(1,100) 20 X X
0.010 0.60 G(0.5,6) 10 0.010 0.57
0.010 0.60 G(0.5,6) 15 0.010 0.58
0.010 0.60 G(0.5.6) 20 0.010 0.59
0.010 0.60 G(2,6) 10 0.010 0.52
0.010 0.60 G(2,6) 15 0.010 0.55
0.010 0.60 G(2,6) 20 0.010 0.57
0.010 0.60 G(5.6) 10 X X
0.010 0.60 G(5,6) 15 X X
0.010 0.60 G(5,6) 20 X X
0.040 0.11 U(1,6) 10 0.040 0.11
0.040 0.11 U(L,6) 15 0.040 0.11
0.040 0.11 U(1,6) 20 0.040 0.12
0.040 0.60 U(1,6) 10 0.040 0.57
0.040 0.60 U(L,6) 15 0.040 0.57
0.040 0.60 U(1,6) 20 0.040 0.58

5.4. Reflection

We have seen that the values of u; and p, can be estimated rather accurately from fitting Eq. (20)
to the transillumination data. This unfortunately is not always the case when fitting to reflection
data. In Table 6 we show a collection of fits to simulation data of the reflected intensity. The
crosses in the fifth and sixth column indicate that it was impossible to let Eq. (20) resemble the
simulation data. In general the fitting procedure fails if the light pulse is too long (¢, > 10 ps) or if
the illumination area is too large (d > 5mm). This could be expected on the basis of the
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Table 7

Comparison between the reduced scattering (1) and the absorption (u,) factor and the corresponding estimates fi; and
[i, obtained by fitting the simulated reflected intensity to expression (20) with ¢, = 0. The dimensions of the sample are
L, =40mm and L, = 127 mm. The light velocity v = 0.22mm/ps. U(d, t,): Uniform illumination by a beam of diameter
d (in mm), centered around (0, 63) mm, during a time ¢, (in ps). R denotes the distance between the source and the detector.
A “x” indicates that the fitting procedure failed to produce reasonable (i.e. positive) estimates

fta (mm ™) e (mm~1) Source R (mm) fla (mm™1) fi; (mm~")
0.010 0.90 U(1,10) 10 0.010 0.87

0.010 0.90 U(1,10) 15 0.010 0.87

0.010 0.90 U(1,10) 20 0.010 0.87

0.010 0.90 U(1000,10) 10 X X

0.010 0.90 U(1000,10) 15 X X

0.010 0.90 U(1000,10) 20 X X

Table 8

Same as Table 7, except that the dimensions of the sample are L, = 40mm, L, = L, = 63 mm and the beam centre is at
(0,31,31)mm

fta (mm™") # (mm™?) Source R (mm) fla (mm ") fii (mm™1)
0.010 0.90 U(1,10) 10 0.010 0.88
0.010 0.90 U(1,10) 15 0.010 0.88
0.010 0.90 U(1,10) 20 0.010 0.88

assumptions made in deriving Eq. (20), but it is of interest to note that, in contrast to the case
of transillumination, the pulse time ¢, affects the quality of the fit. In Tables 7 and 8 we show
the results of fitting the simulation data for a particular set of model parameters used in the
experiments of Ref. [38]. There is good agreement between the values used as input to the
simulations and the values obtained by fitting to Eq. (20) again except, for uniform illumination
over the whole sample. A typical example of a fit to reflection data is shown in Fig. 11. The two sets
of data used correspond to the first and third entries of Table 8. It is clear that Eq. (20) fits the data
very well.

Fig. 12 depicts a fit of an experimental reflection curve for a 1% intralipid solution to the curve
obtained from Eq. (20). The source—detector distance (or R) is 7mm. For higher R values the
experimental data becomes rather noisy and fitting becomes more difficult. For the particular case
shown in Fig. 5, i, = 0.01mm ! and 4, = 1.16 mm ™ ..

In summary, in the regime where the diffusion equation can be used to model light transport
through a turbid medium, the reduced scattering and absorption factor can be extracted from
measured data by fitting a simple expression, derived from diffusion theory, to the data. In contrast
to simulation data, for experimental data there is an additional ambiguity due to the uncertainty in
defining time zero, which has to be accounted for by introducing a third fitting parameter.
Evidently this has a negative impact on the reliability of the whole procedure of extracting the
reduced scattering and absorption factors. Reliable estimates of both factors can be obtained from
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Fig. 11. Fit of reflected intensity data to expression (20) with ¢, =0. The dimensions of the sample are
40 mm x 63 mm x 63 mm. Solid curve: Simulation data for R = 10mm, g, = 0.9 mm !, and u, = 0.0l mm ~!. Diamonds:
Data obtained from Eq. (20) using R = 10 mm, /i, = 0.8 mm ! and /i, = 0.01 mm ~!. Dashed curve: Simulation data for

R=20mm, gf=09mm™!, and g, =0.01mm~!. Crosses: Data obtained from Eq.(20) using R = 20mm,

A, =0.88mm ! and /i, = 0.01 mm 1. All curves are normalized to their maximum.

transillumination data, irrespective of the pulse time, the detector positions and the width of the
beam (excluding illumination over a whole side of the sample). In general, the estimates obtained
from reflection measurements are less reliable.

6. Data processing method: Theory

Usually, the quality of the images rendered by an imaging technique can be substantially
enhanced by the use of appropriate data processing. An obvious approach is to compare the data
with other data obtained from a reference, or model, system. In the case at hand we know that the
immense scattering of light is responsible for the blurring of the images of the objects. The
variations of both the reduced scattering and absorption factor due to the objects are relatively
small. Therefore, as a starting point, it is reasonable to take as a reference model a system with
a constant diffusion coefficient Dy, and a constant absorption factor V, We call this model
Hy= — DyV? + V,. We will prove some rigorous bounds on the ratio of the intensity distribu-
tions of models Hy and H, = Hy + V with V = V(r) — V. These bounds give the maximum
enhancement of the image quality one can obtain by using model H, and also provide a clue as to
the information that is contained in this ratio. In the next section we will use the simulation
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Fig. 12. Fit of reflected intensity data to expression (20). The dimensions of the sample are 70 mm x 70 mm x 55 mm.
Solid curve: Experimental data for a 1% intralipid solution and R = 7mm. Dashed curve: Data obtained from Eq. (20)
using R = 7mm, i, = 1.16mm ™!, i, = 0.0lmm ™! and t, = — 115ps. Both curves are normalized to their maximum.

technique to demonstrate that this image processing method can be very effective. In this section
we will, for the sake of simplicity, restrict ourselves to the case where D(r) = D,. The effect of
a non-uniform D(r) will be studied in the next section.

A first step in proving these bounds is to generalize the exact inequalities [164]

B 1 —txHo |/ o —t(1 =X)Ho |,
B , o {rle Ve ¥
Crle™ V) > (rfe ’H°Ir>exp__tL S ey =

and

(22)

B _ [~ 1 <r|eftxHoeftVeft(17x)H0|r/>
t(Ho+ V)| tHo| v

{rle r) < rle |r>exp_f0 dx1In ETSLTD } ,
and prove that |¥'> can be replaced by an arbitrary distribution of light intensity to be denoted
by |s). The inequalities (21) and (22) hold if {rle”™|¥> >0 for any r and » and
Viry = {r|VIr|ry = V(r)r), conditions that are satisfied in the case of the TDDE. Making use of
the fact that the light intensity is always positive, i.e. s(r) = {r|s) > 0, and repeating the steps of the
proof that led to Egs. (21) and (22) we find

1 <r|e—txH0Ve—t(l—x)H0|S>:| (23)

<r|e—z(Hu+V)|S> > <r|e—tH0|s> exp|: — tj dx <r|e_IHO|S>

0
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and

(24)

<l’| eftxH(J eftVeft(l 7x)H0|S>
rle™ ™))

1
(rle ™ et V)5 < (rle ™ Hols) exp|:j dxIn
0

The above inequalities suggest that if we generate a reference signal Io(r,s,t) = {rle”"H|s),
“measure” the intensity I(r, s, ) = {rle""#1|s)> and form the ratio I(r,s,1)/I(r,s,t) we will obtain
information on the potential V. We now proceed to set rigorous bounds on this ratio.

6.1. Instantaneous light-intensity detection

From Egs. (23) and (24) we obtain

1 —txH, —t(1—x)H, I 1 —txHy,—tV,—t(1 —x)H,
, dx<r|e Ve |s> > 1n o(r, s, 1) > | dxln {rle e e |s> ’ 25)
0 Io(}’,S,t) Il(rasat) 0 IO(raSat)
or using Inx < x — 1 for x > 0 to weaken the lower bound in Eq. (25)
1 —txH, —t(1—x)H, 1 —txH, _ a—tNa—t(1—x)H,
tf6 dx{rle Ve s> > In Io(r,s, 1) - f6dx{rle (1—e e s , 26)

Io(l’,S,t) - Il(rasut)_ IO(raSat)

indicating that In[Iy(r,s,?)/I,(r,s,t)] contains information on V. From Eq. (26) it follows that to
first order in V, inequalities (23) and (24) are equalities.

6.2. Integrated light-intensity detection

In practice, measuring the instantaneous light intensity is impossible: Due to the finite precision
of the instruments one measures the intensity integrated over a time interval of finite length. In this
section, we generalize the above inequalities to the case of time-integrated light-intensity detection.
We will denote the time-integrated intensities by

t
I_l(r>sa tO: tl) = \f dtIl(ra S, t) (273)
t

0

and

t

I_()(V,S, th tl) = JV 1dtIO(ra S, t) 5 (27b)

to

respectively. To obtain the time-integrated version of the bounds (26) we proceed as follows.
Integration of Eq. (23) with respect to t yields

I_l(ra S, tO: [1) > jl;(l; dt IO(ra S, t) eXpl: _ tj.(l) dx<r|e_tXH0Ve_t(1 _X)HO|S>/IO(”’ S, t)]
Io(rasatoatl)_ ::)dtIO(r5S’t)

: (28)



K. Michielsen et al. | Physics Reports 304 (1998) 89—144 117
Application of Jensen’s inequality [165] [xdx g(x)|f(x)| > exp[[xdxg(x)In|f(x)]] with
[xdxg(x) =1 to the r.hs. of Eq. (28) yields

fodxfirdrtrje™ oy e~ g Io(r,s,to, t1)

> In= 29
j dtlor S, t) 1 (r,S,t(), 1) ( )
Introducing the symbol
<r|eftxHOeftVeft(17x)H0|S>
K(x,t) = 30
(x.0) TS (30
and integrating Eq. (24) from ¢, to ty yields
Ii(r,s,to,t; LO dt Io(r, s, t)exp[jo dx1In K(x,1)] (1)

Io(r,s,to, 1y ) - b dt Io(r, s, 1)

The upper bound in (31) can be brought in a more convenient, albeit weaker, form by invoking
a generalization of Holders inequality [165]

L dyh(y) eXp[ L dx g(x)In|f(x, y)l} < eXp{ JX dxg(x) ln[ L dy h(y)lf(x, y)l}} , (32)

valid for h(y) > 0, g(x) > 0 and jX g(x)dx = 1. We obtain

IO(rasa ZO:II) 0 t:)dtlo(r: S, t)
or, again using Inx < x — 1 for x > 0,
Io(rys.to, 1) _ fdx Jirdi drie=1(1 — e~ Wje ™t~ s) 4
1_0(1’, S, th tl) - ji; dt Io(l’, S, t) '
Combining Egs. (29) and (34) gives
fodx([idt trle”Hope™ 1= 9Mos) 1o Io(r,s,to,t1)
jl dtlo(r S, t - I_l(r,s, to, tl)
j”o dxj“ dt <i’|€ txHo(l tV)e—t(l —x)H0|S> ‘ (35)

i dtIo(r,s,t)
The similarity between Eq. (35) and the bounds (26) on the ratio of the instantaneous intensities is
striking: Each quantity has simply been replaced by its time-integrated value.
6.3. Bounds on the difference
Weaker bounds, not on the ratio but on the difference of the intensities, can be obtained as
follows. Rewriting the upper bound in Eq. (35) as

Ii(r,s,to,t1) S jo dx | dt t<r|e_”CH°Ve 11 =0 o g%
1_0(7', S, tO’tl) to dt IO(ra S, t) ’

(36)
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and using Inx < x — 1 for x > 0 we find

1 1,
Ii(r,s,to, t1) — Io(r,s, 1, t1) > — J dxj dt tlrjle ™ Hope T IO 5% (37)

0 to

An upper bound can be derived by starting from Eq. (24) and invoking Jensen’s inequality once
more. We obtain

1
<r|eft(H0+V)|S> SJ‘ dx<r|e*txHOCftVeft(17x)H0|S> , (38)
(0]

or equivalently

1
I_l(r> S, tO: tl) - 1_0(", S, tO’ tl) < — f dx<r|e_1XHo(1 - e_tV)e_t(l_X)H0|S> . (39)
0

Combining Egs. (37) and (39) yields

1 t,
\[ dx\[ dt<r|e_txHO(1 - e_tV)e_t(l _X)H0|S> < I_O(ra S, th tl) - I_l(r, S, tO: tl)
0 t

0

1 4
SJ dxf dt t{rje oy et =0 Ho g% (40)
o Ji

0

Comparing Eqgs. (35) and (40) it is clear that the upper and lower bounds contain essentially the
same information.

6.4. Illustrative examples

In this subsection we consider some simple cases for which the upper and lower bounds derived
above can be worked out analytically. We only treat the case of instantaneous light detection and
a point source, i.e. |s) = |¥') where ' denotes the position of the source.

As a starter consider the case of uniform absorption by the medium. With H; = — D V? + V;
and Hy, = — D, V?, Eq. (22) reduces to
1 't
tvV, > ln‘)(r’ir,) >tV >1—e ", (41)
Il(r5 r, t)

as expected because Io(r, ¥, t)/I,(r,r,t) ="

Next consider the <case of a point absorber (i.e. V()= V,0(r—ry) and
e VO =1+ —1)d(r — ro), V, > 0) embedded in an homogeneous infinite medium. In this
case

(rle ™ oKy = Gy(r — ¥, Dot) , (42)
where

1\ .
Gd(ra X) = <—> e’ fax 5 (43)

dnx
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describes the light diffusion in the infinite medium without the absorber. Here and in the following
d denotes the dimension of the system. Straightforward algebra gives

<r|eftxH0Veft(1 7x)H0|r/>

e TS = V,Gyro — (1 — x)r — xr', x(1 — x)Dot) (44a)
and
e~ t¥Hog Ve~ (1 = x)Ho| )
r TR I =14+ " — D)Gyro — (1 — x)r — xr', x(1 — x)Dot) . (44b)
The inequalities (26) become
1 "t
V3 Fror ') > 00 S (1 e e 1) (45)
Il(r5 r, t)
where
1
F(ro,r, v, t) = J dx Gyro — (1 — x)r — xr', x(1 — x)Dot) . (406)
0

For P point objects, the inequalities corresponding to Eq. (45) read

P Io(r,r1)
t VOFED, v v, 1) > 1 o\"> %>
2, e =g

P
> (1 —e V")FEP,rr,t), (47)
r=1
suggesting that the reflected signal is a superposition of intensities “emitted” by the P “point
sources” located at r{.

The above example can be analysed in more detail by considering the case of backscattering.
Then r = and

1 1
tV, J dx Gyro — 1. x(1 — x)Dgt) = 10850 o (g etVz)J dx Gylro — 1, x(1 — X)Dot) , (48)
0 Iy(r,r,1) 0

showing that for a point object, In [Io(r,r, t)/I(r,r,t)]/(1 — e~ ") is larger than the light intensity
resulting from a superposition of light pulses emitted by the point object and received by the
detector. In this case there is a clear physical interpretation of the upper and lower bounds
themselves. Our simulation results presented below, show that this interpretation is qualitatively
correct, also for the more complicated case r # ¥ and/or |s) # |F').

From the t-dependence of bounds such as Egs. (45) and (48), we may expect that they contain
useful information about the absorber if ¢V, is sufficiently small (but 7; < t of course). In general,
In[Io(r, 7, 0)/1,(r,r,1)] or In[Io(r,r, to,t1)/I:(r,r, 1o, t1)] Will only show signatures of the object(s) if
Ty <1, <t<130r7; <71, <ty <ty <13 respectively, where 7, and 73 have to be determined by
(numerical) experiment. For the turbid media of interest, ¥, ~24ns™' and D, ~ 0.6 cm?/ns.
Putting for instance t = 1.5ns we find

IO(rarat)
Il(r5r5t)_ ’

36 > <f1 dx Gyro — r,x(1 — x)Dot)> . 1ln 49)

0
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demonstrating that the presence of a small object can have a substantial effect on the processed
signal.

7. Image processing technique: Simulation results

Application of the theory presented above is much more straightforward than the mathematics
used might suggest. In practice, the procedure is as follows: Measure the intensity
I(r,s,t0,t1) = {1 derle”""|s) and calculate or measure the reference signal Io(r, s, to, ;) correspond-
ing to a “test-model” H, for various detector-positions r. The resulting ratio InI(r,s, o, 1)/
Io(r,s,to,t;) (or difference I, (r,s,to,t1) — I(r,s,to,t;)) should reveal whether there are hidden
objects or not. The simulation results presented below demonstrate that this procedure works and
in the next section we show that it also works in real experiment. We will use the term “processed”
signal whenever we mean In I(r, s, to, t1)/Io(r, s, to, t;). In the remainder of this work we set ty, = t4
and t; =ty + At and we confine ourselves to presenting results obtained from intensities integrated
over a finite interval (i.e. At).

Guided by the experiments on breast tissue (see the discussion in the introduction) in our
simulations we will assume that the turbid medium is characterized by an absorption and reduced
scattering factor yu, = 0.01mm ™! and u, = 0.9 mm !, respectively. For tumor tissue we will take
U, = 0.1mm ™! and p, = 0.9mm !, unless explicitly mentioned otherwise.

Our simulations show that on a qualitative level, there is little difference between the results
obtained from 2D or 3D models. Printed images obtained from 2D model simulations are more
easy to interpret than their 3D counterpart. Therefore, in the discussion that follows we will mainly
present results of 2D model simulations. For some selected cases we also show images obtained
from 3D model simulations. Unless explicitly mentioned otherwise, the spatial mesh size 6 = 1 mm,
the time step t = 1 ps, the source pulse time t, = 10 ps, the time at which the detectors start to
record intensity tqy = to = 500 ps, and the 2D and 3D samples have dimensions 71 mm x 71 mm,
and 63mm x 63mm x 63 mm, respectively. The speed of light in the medium v = 0.222 mm/ps.

We will use the short-hand notation It and Iy for the transmitted and reflected intensity
respectively, integrated over the corresponding detection area. All intensities given below are
normalized with respect to the light intensity supplied by the source.

7.1. Effect of the source type and the time gate

In Fig. 13 we show results of a simulation for a sample containing an object of 2.5 mm radius,
positioned at (36,26) mm. The sample is illuminated by a source of diameter 1 mm centered around
(0,36) mm. In the sequel we will call such a small source a point source. Fig. 13a and ¢ show the
integrated intensity while Fig. 13b and d show the corresponding processed signal. For At = 612 ps
(Fig. 13a and b), it is clear that the object leaves no trace in the transmitted and reflected intensity
whereas the processed data clearly indicate that there is an object inside the sample. For
At = 1836 ps (Fig. 13c and d) the transmitted intensity shows an asymmetry. Since the light source
is positioned at (0, 36) mm this asymmetry indicates that there is an object immersed in the sample.
In the reflected intensity, however, the object leaves no trace. In the processed reflected intensity the
object is clearly visible. Note that the position of the maximum of the processed intensity changes
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Fig. 13. Simulation of a time-resolved optical imaging experiment on a turbid medium with a reduced scattering factor
. = 0.9mm~ ! and an absorption factor y, = 0.01 mm ™! containing a 2.5 mm radius object with absorption and reduced
scattering factors g, = 0.1mm~! and x; = 0.9 mm~?, respectively. The dimensions of the sample are 71 mm x 71 mm.
The object is located at (36,26) mm. The sample is illuminated by a source of diameter 1 mm centered around (0, 36) mm
during a time t, =10ps. (a) Time-integrated transmitted (right) and reflected (left) intensity for At = 612ps.
It ~ 0.6 x 1078 and Iy ~ 0.2 x 10~ %; (b) processed signal corresponding to (a); (c) same as (a) except that At = 1836 ps.
I+ = 0.5x 107 % and Iy &~ 0.3 x 10~ %; (d) processed signal corresponding to (c). The (processed) light intensities inside the
sample are also shown.

with At (Fig. 13b and d). This effect is the largest for the processed reflected intensity. Qualitatively
similar results are obtained by illuminating the sample with a light pulse of width ¢, = 100 ps or
t, = 300 ps (results not shown).

Starting the recording of light intensity at a different point of time or changing At mainly affects
the processed reflected intensity. An example is provided in Fig. 14 where we present simulation
results for the same setup as the one of Fig. 13 except for the time ¢, at which the detection of light
starts. Comparison of the results of Fig. 14a and b, corresponding to ¢, = 1000 ps and At = 612 ps
(t; =ty + At = 1612ps), with those of Fig. 13a and b where t, = 500ps and At = 612ps
(ty = 1112 ps), shows that, At being the same, there are only minor differences in the processed
reflected signal (the small changes in the background signal are due to the time integration and do
not carry relevant information). Comparing the results shown in Fig. 14a and b with those of
Fig. 14c and d where t, = 500ps and At = 1112ps (t; = 1612 ps) confirm that, the processed
reflected intensity depends on t, and At, t; being the same. This is mainly due to the fact that for
illumination by a point source, the maximum of the processed reflected intensity changes with At
(see Fig. 13b and d). However, changing t, or At does not affect the detectability of the object.

Fig. 15a and b show simulation results for the same setup as the one used for Fig. 13¢c and
d except that the light source is now positioned at (0,16)mm. The transmitted and reflected
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(b) (d)

Fig. 14. Same as Fig. 13 except for the time t, at which the detection of light starts: (a) to = 1000 ps and At = 612 ps.
I+ = 0.1x 10" %and Iy =~ 0.3 x 10~ 3; (b) processed signal corresponding to (a); (c) same as (a) except that t, = 500 ps and
At =1112ps. It ~01x107% and Iy ~02x10"2% (d) processed signal corresponding to (c). Medium:
(1ar 1£5) = (0.01,0.9)mm ~ !; object: (i, 1) = (0.1,0.9) mm 1.

intensities in Fig. 13c,d and Fig. 15a,b look completely different. As the image of the point source
itself resembles the image of an object it is as good as impossible to conclude from the transmitted
or reflected intensities whether or not there is an object inside the sample. The processed intensities
however, correctly signal the presence of an object. From Fig. 13 and Fig. 15a,b, it follows that
there is no obvious relationship between the position of the object and the maximum of the
processed intensity.

Illumination of the sample by a source emitting a Gaussian light distribution of width 5mm
yields the results shown in Fig. 15¢ and d. These results can hardly be distinguished from those
shown in Fig. 13c and d obtained by using a point source. Fig. 16 displays results for a system
containing an object of 2.5mm radius, positioned at (16,26)mm. Fig. 16a and b show the
time-integrated transmitted and reflected intensities for illumination by a point source while
Fig. 16c and d show the intensities for uniform illumination of the whole left side of the sample.
Using a point source yields no trace of the object in the reflected intensity and only a weak one in
the transmitted intensity (Fig. 13a,¢ and Fig. 16a). In the processed signals, however, there is
a clear signal of the object (Fig. 13b,d and Fig. 16b). Uniform illumination of the whole left side of
the sample (Fig. 16c and d) yields a very weak signal of the object in the transmitted and reflected
intensities and a clear signal in the processed intensities. The fingerprint of the object in the
reflected intensity disappears completely if the object is more than 20 mm away from the entrance
plane, while in the transmitted intensity the very weak signal is present, independent of the location
of the object within the sample (results not shown). In the case of uniform illumination the position
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Fig. 15. Same as Fig. 13 except for the source illuminating the system. At = 1836 ps (a) Point source centered around
(0,16)mm. It = 0.5x 10~ ¢ and Iy ~ 0.3 x 10~ 2; (b) processed signal corresponding to (a); (c) Source emitting a Gaussian
light distribution of width 5mm, centered around (0,36)mm. It ~ 0.5x 10~ % and Iy ~ 0.3 x 10~2; (d) processed signal
corresponding to (c). Medium: (u,, 1) = (0.01,0.09)mm ~*; object: (u,, 1Z) = (0.1,0.9)mm 1.

of the maximum of the processed intensity does no longer change as a function of time (not shown)
and corresponds to the y-coordinate of the position of the object. Uniform illumination of the other
sides of the sample should therefore allow the determination of the position of the object. Uniform
illumination during a time ¢, = 100 ps or ¢, = 300 ps (results not shown) yields qualitatively the
same results as for t, = 10ps, just as in the case of illumination by a point source.

If the distance between the object and the illuminated side of the sample is approximately 10 mm
or less, the time-integrated reflected intensity clearly shows a signature of the object provided the
source is sufficiently large. This is illustrated in Fig. 17, which displays results for a system
containing an object of 2.5mm radius, positioned at (10,26)mm. Fig. 17a—d show the time-
integrated transmitted and reflected intensities for illumination of the sample by a source emitting
circular light distributions of various size. Using a point source (Fig. 17a) yields no trace of the
object in the reflected intensity and only a weak one in the transmitted intensity. Increasing the
radius of the source improves the detectability of the object in the reflected and transmitted
intensities, as shown in Fig. 17b and d. For a source of radius 30 mm (Fig. 17c) the ratio between
the dip and maximum is approximately 0.6, which is nearly the same as for uniform illumination of
the whole left side of the sample (Fig. 17d). As mentioned above, even with uniform illumination of
the sample the fingerprint of the object in the reflected intensity disappears completely if the object
is more than 20 mm away from the entrance plane (results not shown). Note that unlike Fig. 13c
and d, Fig. 17 displays only the results of time-integrated intensities.
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Fig. 16. Same as Fig. 13 except for the source illuminating the system and the position of the object (16,26) mm.
At = 1836 ps. (a) Point source centered around (0.36)mm. I~ 0.6 x 10”° and Iz ~ 0.2 x 10~%; (b) processed signal
corresponding to (a); (c) Uniform illumination of the left side of the sample. It ~ 0.6 x 10~° and Iz ~ 0.2 x 10~ 2; (d)
processed signal corresponding to (c). Medium: (u,, ) = (0.01,0.9)mm ~!; object: (s, 1)) = (0.1,0.9)mm 1.

7.2. Small objects

In Fig. 18 we present simulation results for a system containing an object of 0.5 mm radius. For
comparison the setup is kept the same as the one used for Fig. 16. As seen from Fig. 18a,
using a point source, it is no longer possible to detect the object in the transmitted intensity.
Also for uniform illumination of the whole left side of the sample the fingerprint of the small
object in the transmitted and reflected intensities (Fig. 18c) is much weaker than for an object
of radius 2.5mm (Fig. 16¢). In the simulation the object always leaves a trace in the processed
signals, independent of its location in the sample. Evidently, due to the signal-to-noise
ratio, this will not necessarily be the case in experiment. From Figs. 16 and 18 it is clear that
it is very difficult, not to say impossible, to infer the size of the object from the measured
intensities.

7.3. System size and mesh size

Repeating the simulations for the same set-up as the one of Fig. 13 but reducing the mesh size by
a factor two and the time step by a factor four gives the same results as the ones shown in Fig. 13.
Reducing the diameter of the object, hidden in this sample, to 0.5 mm yields the results displayed in
Fig. 19. In the processed transmitted intensity the object is still clearly visible.
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(a)
X
(b)

Fig. 17. Same as Fig. 13 except for the source illuminating the system and the position of the object (10,26) mm. Only
time-integrated transmitted (right) and reflected (left) intensities are shown for At = 1836 ps: (a) point source centered
around (0,36)mm. It ~ 0.6 x 10~ ¢ and Iy & 0.2 x 10~ %; (b) source emitting a circular light distribution of radius 15 mm,
centered around (0, 36)mm. It ~ 0.5 x 10~ ¢ and Iy ~ 0.2 x 10~ %; (c) source emitting a circular light distribution of radius
30mm, centered around (0.36)mm. It ~ 0.5x 10~ ¢ and Iy ~ 0.2 x 10~ 2; (d) uniform illumination of the left side of the
sample. It = 0.6 x 1076 and Iy ~ 0.2 x 10~ 2. Medium: (u,, #;) = (0.01,0.9)mm ~!; object: (i, 1) = (0.1,0.9)mm 1.

—~
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Fig. 18. Same as Fig. 16 except that the object has a radius of 0.5mm. Medium: (u,, ) = (0.01,0.9)mm ~!; object:

(Has 1) = (0.1,0.9)mm ™.
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Fig. 19. Same as Fig. 13 except that the object has a radius of 0.25mm. (a) At =614ps. It ~0.7x 10”8 and
Ix ~ 0.3 x 1072 (b) processed signal corresponding to (a); (c) same as (a) except that At = 1843 ps. It ~ 0.8 x10~°
and Ix~03x1072 (d) processed signal corresponding to (c). Medium: (i, 1) = (0.01,0.9)mm™"'; object:
(#ar 1£5) = (0.1,0.9)mm ~ 1.

7.4. D(r) versus D

An interesting question for theoretical developments is to what extent the propagation of light is
affected by replacing, in the TDDE, the diffusion coefficient D(r) by its homogeneous counterpart
Dy = v/3(it; + 1) In Fig. 20 we present some results of a calculation in which we address that
question. Usually, we compute the light intensity in the full model H = — VD)V + V(r) and
compare it to the light intensity in the approximate model Hy = — Do V> + V(r). The results are
depicted in Fig. 20a and b for the same sample as in Fig. 13 except that the radius of the object is
0.5mm. Comparing the light intensity of the full model H with the light intensity in the approxim-
ate model Hy = — DoV? + V(r) yields the results shown in Fig. 20c¢ and d. The processed
intensities only show the effect of replacing D(r) by D,. We find that this approximation changes the
processed intensities by no more than 2%. For most practical purposes, it will be safe to replace
D(r) by D, unless the reduced scattering factors of the medium and objects differ significantly.

7.5. More than one object

In Fig. 21 we show a result of a simulation for a sample containing two objects of 0.5 mm radius
which are positioned 15mm from each other. The sample is illuminated by a point source. The
transmitted and reflected intensities (Fig. 21a and ¢) show no trace of the objects. For At = 612 ps
the processed data give a weak indication that there are two objects hidden in the sample and that
they are not positioned symmetrically with respect to the position of the light source. For
At = 1836 ps (Fig. 21c and d) the reflected processed data signals two objects immersed in
the system while the transmitted processed data suggests that there is only one object inside the
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(b) (d)

Fig. 20. Same as Fig. 13 except that the object has a radius of 0.5mm. (a) At = 1836ps. I+~ 0.6 x 10~ ¢ and
Iz ~ 0.3 x 1072 (b) processed signal using reference model H, and corresponding to (a); (c) same as (a); (d) processed
signal using reference model H|, and corresponding to (c). Medium: (y,, i) = (0.01,0.9)mm~"'; object:
(#tar 115) = (0.1,0.9)mm ~ 1,

sample. Additional simulations (see Fig. 22) indicate that in reflection it is possible to resolve the
two objects down to a separation distance of 2 mm by using the appropriate time gate. Note that,
unlike Fig. 21c, Fig. 22c displays the results of the processed intensities.

Fig. 23 displays the results for the same setup as the one of Fig. 21 but instead of a point source,
uniform illumination is been used. Although there is a weak signal in the transmitted intensity (see
Fig. 23a and c) the two objects cannot be distinguished. In the reflected intensity the objects leave
no trace. For At = 767 ps the two objects appear in both the processed transmitted and reflected
intensities (see Fig. 23b). For larger At (e.g. Fig. 23d) the images of the objects merge and cannot be
distinguished from an image of a single object. In general, we find that in order to resolve nearby
objects it is expedient to employ a point source.

In Fig. 24 we depict the simulation results for the same setup as before (Fig. 21) except that the
sample contains three objects of 0.5 mm radius. The transmitted and reflected intensities (Fig. 24a
and c) show no sign of an object but the processed intensities (Fig. 24b and d) do. As can be seen
from Fig. 24b and d it is very difficult to determine, from the maxima of the processed intensities,
the number and positions of the objects: The processed transmitted and reflected intensity suggest
the presence of two objects and one object respectively.

In Fig. 25 we show results of a simulation of a sample containing several 0.5 mm radius objects.
The sample is uniformly illuminated on its left side. In Fig. 25a and b the three objects are located
at exactly the same position as in Fig. 24c and d. In Fig. 25a there is a very weak trace of only two
objects in the transmitted signal and no trace of objects in the reflected intensity. Previously, we
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Fig. 21. Simulation of a time-resolved optical imaging experiment on a sample containing two 0.5 mm-radius objects
located at (36,43)mm and at (36,28) mm. The sample is illuminated by a point source centered around (0,36) mm. (a)
At =612ps, It~ 0.6x 1078 and Iy ~ 0.2x 10" % (b) processed signal corresponding to (a); (c) same as (a) but
At =1836ps, It ~05x107° and Iz ~03x1072; (d) processed signal corresponding to (c). Medium:
(1ta 1£2) = (0.01,0.9)mm ~ !; object: (i, 1) = (0.1,0.9) mm L.

Fig. 22. Same as Fig. 21 except that the two objects are located at (36,37)mm and at (36,35) mm. (a) At = 612 ps,
I+ ~ 0.6 x 1078 and Iy &~ 0.2 x 10~ 2; (b) processed signal corresponding to (a); (c) processed signal corresponding to (a)
but for At =1224ps, It ~0.1x107° and Iy ~ 0.2x 10”2 (d) same as (c) but At = 1836ps, It ~ 0.5x 10~ ¢ and

Iy = 0.3 x 107 2. The (processed) light intensities inside the sample are also shown. Medium: (u,, 1) = (0.01,0.9)mm ™ %;
1

object: (1, 1) = (0.1,0.9) mm ™~ *.
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Fig. 23. Same as Fig. 21 except that the sample is illuminated uniformly on its whole left side. (a) At = 693 ps,
It 2 0.1x 1077 and Iy &~ 0.2 x 10~ %; (b) processed signal corresponding to (a); (c) same as (a) except that At = 1881 ps.

It ~ 0.6 x 10~ %and Iy ~ 0.3 x 10~ %;(d) processed signal corresponding to (c). Medium: (u,, 1) = (0.01,0.9)mm ~ !; object:
(tar ) = (0.1,0.9) mm ™.

Fig. 24. Simulation of a sample containing three 0.5mm radius objects located at (46,50)mm, (36,40)mm and
(26,15)mm. The sample is illuminated by a point source. (a) At = 816ps, It 0.3 x10~7 and Iz ~ 0.2x 10~ 2; (b)
processed signal corresponding to (a); (c) same as (a) except that the objects are positioned at (26, 50) mm, (36,40) mm and
(46,15 mm, I;~03x1077 and Iy~02x10"2% (d) processed signal corresponding to (c). Medium:
(e 1£3) = (0.01,0.9)mm ~ !; object: (i, 1) = (0.1,0.9)mm 1.
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Fig. 25. Simulation of samples containing several 0.5 mm-radius objects. The sample is illuminated uniformly on its left
side. (a) Three objects located at (26,50)mm, (36,40)mm and (46,15)mm, At=816ps, I+ ~03x10"7 and
Iz ~ 0.2 x 10~ 2; (b) processed signal corresponding to (a); (c) Four objects located at (26, 50) mm, (36, 40) mm, (46, 15)mm
and (46,50)mm, At = 816ps, It ~ 0.3 x 1077 and Iy ~ 0.2 x 10~ 2; (d) processed signal corresponding to (c). Medium:
(1ar 115) = (0.01,0.9)mm ~ !; object: (i, 1) = (0.1,0.9)mm 1.

have seen that using uniform illumination it should be possible to determine the y-coordinate of
a single object. This is also the case here. From the processed transmitted and reflected intensities in
Fig. 25b we may conclude that there are at least three objects in the sample: The position of the
maximum in the processed reflected data corresponds to the y-coordinate of the position of the
centre of the uppermost object, the maxima of the smallest peak in the processed transmitted data
corresponds to the y-coordinates of the downmost objects and the maximum of the largest peak in
the processed transmitted data corresponds to the two upper objects. However, depending on the
positions of the objects, the method cannot resolve all objects. An example is shown in Fig. 25d:
four objects are hidden in the sample but the processed reflected and transmitted intensities suggest
the presence of three objects only.

7.6. Random fluctuations

For some categories of biological tissues, including human breasts, the hypothesis of an
homogeneous medium containing evenly distributed light scatterers does not seem correct, indicat-
ing that the tissue heterogeneities have to be taken into account in order to model accurately the
photon migration in biological media [61]. In this section we use our simulation technique to study
the effect of random fluctuations in the absorption and reduced scattering factor of the medium.
Unless mentioned otherwise the absorption and reduced scattering factor of the medium fluctuate
randomly around their spatial averages by 2%.
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Fig. 26. Simulation of the same sample as in Fig. 20. (a) At = 612ps, I+ ~ 0.6 x 10~ 8 and Iy ~ 0.2 x 10~ 2; (b) processed
signal corresponding to (a); (c) same as (a) except that the reduced scattering and absorption factor of the medium
fluctuate randomly by at most 2%. It ~ 0.6 x 10~ and Iy ~ 0.2 x 10 2; (d) processed signal corresponding to (c).
Medium: (g, 1f) = (0.01,0.9)mm ~*; object: (¢ 1) = (0.1,0.9)mm 1.

Fig. 26a and b show simulation results for the case that the medium is homogeneous, and
Fig. 26¢ and d depict the results for the same sample with random fluctuations in the absorption
and reduced scattering factor of the medium. The object of 0.5 mm radius leaves no trace in the
transmitted and reflected intensity (Fig. 26a and c). The processed transmitted intensity indicates
that there is an object inside the sample, in spite of the random fluctuations in the absorption and
reduced scattering factor of the medium (Fig. 26b and d). In the processed reflected intensity the
object is only visible if the medium is homogeneous. Increasing the gate time At does not help to
make the object appear in the processed reflected signal. An example is shown in Fig. 27a and b
for At = 2610 ps. The processed signals do not change with time if the medium itself is not homo-
geneous.

Increasing t, can improve the signal-to-noise ratio intensity and can make it possible to find the
0.5mm object, as illustrated in Fig. 27d for ty = 2500 ps. The object cannot be detected in the
processed reflected intensity if light detection starts at an earlier time. The optimal choice of
to depends on the size of the object and on the position of the object inside the sample, an example
being provided in Fig. 28. Comparison of Fig. 28a and b and Fig. 16¢c and d demonstrates that
except for the noise on the processed signals the results are qualitatively the same. Illuminating the
same system with a point source (results not shown) yields qualitatively the same results as the ones
displayed in Fig. 16a and b. In Fig. 28c and d we depict simulation results for the case where there
is an object of 2.5mm radius hidden inside the sample and the detection of light starts at
to = 2000 ps. The object leaves a trace in the processed transmitted as well as in the processed
reflected intensity. This trace disappears when the light detection is started at an earlier time. For



132 K. Michielsen et al. | Physics Reports 304 (1998) 89—144

(b) (d)

Fig. 27. Same as Fig. 26 except for the choice of t,. (a) to = 500 ps and At = 2610ps. I+ ~ 0.9 x 10 %and Iy ~ 0.3 x 10~ 2;
(b) processed signal corresponding to (a); (c) same as (a) except that t, = 2500ps and At = 612ps. It ~ 0.3x10~°
and Ix~03x1075 (d) processed signal corresponding to (c). Medium: (i, ul) = (0.01,0.9)mm™"'; object:
(ftar 115) = (0.1,0.9)mm ~ !,

Fig. 28. Simulation of the same sample as in Fig. 16 (Fig. 28a and b) and Fig. 13 (Fig. 28c and d) except that the reduced
scattering and absorption factor of the medium fluctuate randomly by at most 2%. (a) Uniform illumination of the left
side of the sample, At = 1836 ps, It ~ 0.6 x 10~ % and Iy ~ 0.2 x 10~ 2; (b) processed signal corresponding to (a); (c) Point
source centered around (0,36)mm, At = 1836 ps, to = 2000 ps, It ~ 0.6 x 10~ ¢ and Iz ~ 0.2 x 10~ %; (d) processed signal
corresponding to (c). Medium: (u,, ) = (0.01,0.9)mm ~*'; object: (u,, 1) = (0.1,0.9)mm ~ .
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a fixed position of the object, the smaller the object, the larger ¢, has to be in order to detect the
object in the processed reflected signal (see Fig. 27d and Fig. 28d). This is also the case for objects
located deeper inside the medium, as shown in Fig. 28. The existence of an optimum delay time for
visualizing an object embedded in a turbid medium has previously been discussed in Ref. [133].

7.7. 3D examples

In Fig. 29 we present results of a simulation for a sample of size 63 mm x 63 mm x 63 mm,
containing a sphere of 2.5mm radius, positioned at (32,30,36)mm. The processed signals for
illumination of the sample by a point source centered around (0,32,32)mm and for uniform
illumination of the sample on its whole left plane are shown in Fig. 29a,b and Fig. 29c,d
respectively. Fig. 29a and c depict the results for At = 245 ps and Fig. 29b and d for At = 949 ps.
The object is clearly visible in both the processed transmitted data and in the processed reflected

(a) (©)

(b) (@

Fig. 29. Simulation of a time-resolved experiment on a turbid medium with a reduced scattering factor y, = 0.9 mm~*

and an absorption factor u, = 0.0l mm ! containing a 2.5mm radius object with absorption and reduced scattering
factors y, = 0.1 mm~ ' and u, = 0.9 mm ™!, respectively. The dimensions of the sample are 63 mm x 63 mm x 63 mm and
to = 500 ps. The object is located at (32,30, 36) mm. The sphere inside the sample denotes the position of the object. (a)
Processed transmitted (right) and reflected (left) signal for At = 245 ps. The sample is illuminated by a source of diameter
I'mm centered around (0,32,32)mm during a time t, = 10 ps. (b) Same as (a) except that At = 949 ps; (c) same as (a)
except that the sample is uniformly illuminated on its whole left plane; (d) same as (c) except that At = 949 ps. Medium:
(tar 1) = (0.01,0.9)mm ~ !; object: (u,, 12) = (0.1,0.9)mm 1.
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data. The position of the maximum of the processed intensity changes with At if a point source is
used, just as in the 2D case.

Fig. 30 depicts simulation results for the same setup as the one used for Fig. 29. The sample is
illuminated uniformly on its whole left plane. In Fig. 30a and b the sample contains a 2.5 mm
diameter sphere, while in Fig. 30c and d the sample contains a 0.5 mm diameter sphere. Fig. 30a
and b show the transmitted and reflected intensities and Fig. 30c and d show the corresponding
processed signals. Only in the case of the 2.5 mm radius object there is a weak signal of the object in
the transmitted intensity. In the processed signals, however, there is a clear signal of both the
2.5mm radius object and the 0.5 mm object.

Fig. 31a and c display processed signals for the case that the medium is homogeneous, and
Fig. 31b and d depict the processed signals for the same sample with random fluctuations in the
absorption and reduced scattering factor of the medium. Fig. 31a and b show results for illumina-
tion of the sample by a point source and Fig. 31c and d show the results for uniform illumination of
the sample on its whole left plane. In the processed reflected intensity the sphere of 0.5 mm is only
visible if the medium is homogeneous. In the case of illumination of the sample by a point source
the processed transmitted intensity indicates that there is an object hidden in the sample, in spite of
the random fluctuations in the absorption and reduced scattering factor of the medium (Fig. 31a

(b) (@

Fig. 30. Same as Fig. 29 except for the radius of the object. The sample is illuminated uniformly on its whole left plane.
(a) Time-integrated transmitted (right) and reflected (left) intensity for At = 857 ps. The sample contains a 2.5 mm radius
object. (b) processed signal corresponding to (a); (c) same as (a) except that the radius of the object is 0.5 mm; (d) processed

signal corresponding to (c). Medium: (u,, 1) = (0.01,0.9)mm ™ ; object: (i, 1) = (0.1,0.9)mm 1.
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Fig. 31. Same as Fig. 29 except that the sample contains a 0.5 mm radius object. (a) Processed signal for At = 444 ps. The
sample is illuminated by a source of diameter 1 mm centered around (0, 32, 32) mm during a time ¢, = 10 ps. (b) Same as
(a) except that the reduced scattering and absorption factor of the medium fluctuate randomly by at most 1%; (c) same as

(a) except that the sample is illuminated uniformly on its whole left plane; (d) same as (c) except that the reduced scattering

and absorption factor of the medium fluctuate randomly by at most 1%. Medium: (u,, 15) = (0.01,0.9)mm ™ *; object:

(o 1) = (0.1,0.9)mm ™ 1.

and b). In the case of uniform illumination of the sample the sphere is only visible if the medium is
homogeneous. Just as in 2D, increasing ¢, may improve the signal-to-noise ratio intensity (results
not shown).

8. Image processing technique: Experimental results

As shown in the previous section the data processing method can be very useful to detect objects
in turbid media. The fact that our simulation method reproduces experimental results suggests that
the data processing technique might be useful in real experiments too. Hence, it is used to explore
its usefulness in time-resolved reflection experiments on tissue-like phantoms [166]. The experi-
mental setup is, apart from some small changes which will be discussed below, described in
Section 5.2 and is depicted in Fig. 11. In this experiment the probe beam is expanded and
collimated to a diameter of 2cm using a set of two lenses in Keplerian configuration. Object
detection in turbid media using the time-resolved reflectance curves is done in the following way:
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First the measured reflectance curves are integrated numerically over a given time interval At,
which is usually taken to be around 50 ps, for which the noise-to-signal ratio is good. The
integrated intensities are then plotted as a function of the spatial coordinate y, resulting in
a one-dimensional image. This image contains information on the inner structure of the sample.

The starting time ¢, of the integration window is set by scanning t, over the whole time range till
the contrast in the processed signal is maximal. The optimal choice for ¢, is usually found to be in
the tail of the reflectance curve (t, > 200-300 ps). In order to have a higher signal-to-noise ratio, the
streak images are delayed in such a way that the maxima of the temporal intensity profiles fall out
of the streak image and that larger measuring times can be used without having the streak camera
saturated. Under these conditions the choice of At has little effect on the spatial profiles.

In the experiment we use a methacrylate vessel (70 mm x 70 mm x 70 mm) filled with a 10% of
commercial intralipid-10% solution. At (x = d, y = 25 mm) we place a 1 mm diameter tube filled
with blood. We vary d from 5 to 15 mm. To compare with the experimental results we performed
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Fig. 32. Comparison of experimental and computer simulation results [166] for the time-resolved reflected light
intensity. In the experiment and simulation the turbid medium has a reduced scattering factor g; = 1mm~! and an
absorption factor u, = 0.0l mm™!. The 1 mm diameter tube, located at (x = d, y = 35 mm), is filled with blood. In the
simulations the tube has y, = 0.1mm ™! and g = 1. The sample is illuminated uniformly on the x = 0 plane. Circle:
d = 5mm; up triangle: d = 6 mm; down triangle: d = 8 mm; diamond: d = 9mm, cross ( + ): d = 10mm; cross ( x):
d = 12mm; star: d = 15 mm; square: No object. (a) Experimental results for the reflected intensity (left) and the processed
signal (right) for t4 = 395 ps and At = 50 ps; (b) same as (a) but for the simulation results. See also Figs. 3 and 5 of Ref.
[166].
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simulations for exactly the same system. The simulation is carried out in a manner identical to the
procedure used in the time-resolved reflection technique, as described above. In Fig. 32 we show
the experimental and simulation data, taken from Figs. 3 and 5 of Ref. [166]. Fig. 32a depicts the
experimental data and Fig. 32b depicts the simulation data. The reflected intensities are shown on
the left while the processed reflected intensities are shown on the right. In the processed intensities
the tube is clearly distinguishable to depths of 15 mm from the illuminated surface. The simulation
results are in excellent agreement with the experimental data.

9. Summary

We have described an algorithm that solves the time-dependent diffusion equation, taking into
account spatial variations of the reduced scattering and absorption coefficient as well as random
fluctuations in these quantities. The algorithm is unconditionally stable, accurate, efficient and
unlike other stable algorithms, explicit. Futhermore, the algorithm can easily be modified to deal
with samples of arbitrary shape.

On the basis of this algorithm a software package has been developed to simulate time-resolved
optical imaging of objects immersed in strongly scattering media. Our simulation technique
reproduces the experimental results on tissue-like phantoms, without the need of adjusting
parameters, strongly suggesting that the time-dependent diffusion equation adequately describes
the light propagation in these systems and that our software is working properly.

In the regime where the diffusion equation can be used to model the light transport in a
turbid medium, the reduced scattering and the absorption factor can, in principle, be extracted
from measured data by fitting to the measured data, simple expressions, derived from diffusion
theory. We have used simulation data to assess the robustness of this approach and
found that reliable estimates for both factors can be obtained from transillumination data,
irrespective of the pulse time, the detector positions and the width of the beam (excluding
illumination of a large area of the sample). In general, the estimates obtained from reflection
measurements are less reliable.

Much of the current interest in time-resolved imaging with diffuse near-infrared light results
from its potential to develop into a non-invasive and safe tool for breast cancer diagnosis. An
important issue thereby is the size of the smallest object that can be detected. We have used our
simulation approach to determine the conditions under which 1 mm diameter breast-cancer-like
objects surrounded by a normal-tissue-like, strongly scattering, medium can be seen directly, i.e.
without further processing of the measured intensities. Our findings are corroborated by experi-
mental results on blood tubes immersed in intralipid solutions and suggest that without appropri-
ate data processing the technique is of limited use.

As with many other imaging methods, the imaging power can be increased substantially by
proper processing of the recorded data. For the case at hand this means that it is necessary to deal
with the immense scattering, responsible for the blurring of the images of the object(s). In this paper
we have described a simple procedure to enhance the image quality such that mm-sized objects can
be located, under seemingly unfavourable conditions. We have given a mathematical justification
of this procedure and have demonstrated that it works, not only in computer experiments but also
in genuine experiments.
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An essential feature of our data processing method is that it makes use of the diffusive part of the
time-resolved light intensity only. We have presented a systematic study of the virtues and
limitations of the data processing approach. An important finding is that for a particular source
position, the position of the maxima in the recorded transmitted or reflected intensity can change
with time, except for the rather ideal case of uniform illumination of one side of the sample. Several
measurements for different source—detector arrangements are required to determine the actual
position of an object. Furthermore, it seems very difficult to infer the size of the object from the
measured intensities. In general, we found that proper processing of the diffuse time-resolved light
intensity significantly enhances the signal-to-noise ratio, making it possible to detect the presence
of mm-sized tumor-like objects in breast-like tissue.

For some categories of biological tissue, notably human breasts, it is unrealistic to assume that
the sample can be modelled by a homogeneous strongly scattering medium. We have used our
simulation method to study the effect of randomness in the absorption and reduced scattering
factors of the medium on the detectability of the objects. We have found that the signal-to-noise
ratio can be improved by increasing the delay between the time at which the source is turned off
and the time at which the detectors start to record the light intensity.

A characteristic feature of the images obtained from time-resolved reflection or transillumination
measurements of the diffuse light is that the information contained in these images is scrambled and
therefore difficult to interpret correctly. As with other imaging techniques (such as e.g. high-
resolution electron microscopy) that suffer from similar problems, it is expedient and sometimes
also essential for the interpretation of the images to compare experimental results with model
simulations. In this paper we have introduced a few theoretical concepts and then used these
concepts to develop simulation and image processing algorithms specifically tuned to time-
resolved imaging with diffuse light. Application of these ideas to actual experimental data has
shown that this approach can be beneficial and suggests that further improvements to the imaging
technique can be made by a more sophisticated processing of the measured time-resolved diffuse
light intensity.
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