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We demonstrate that networks of locally connected processing units with a primitive learning
capability exhibit behavior that is usually only attributed to quantum systems. We describe
networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer exper-
iments on a causal, event-by-event basis and demonstrate that the simulation results are in
excellent agreement with quantum theory. We also show that this approach can be generalized
to simulate universal quantum computers.
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1. Introduction

Computer simulation is a powerful methodology to
model physical phenomena.1) However, some of the
most fundamental experiments in quantum physics2, 3)

have not been simulated in the event-by-event man-
ner in which the experimental observations are actually
recorded.4) In experiments the detection of events ap-
pears to be random,2, 3) in a sense which, as far as we
know, has not been studied systematically. Quantum the-
ory gives us a recipe to compute the frequency of the
observation of events but it does not describe individual
events, such as the arrival of a single electron at a par-
ticular position on the detection screen.3, 5–7) Reconcil-
ing the mathematical formalism (that does not describe
single events) with the experimental fact that each ob-
servation yields a definite outcome is often referred to
as the quantum measurement paradox. This is a central,
fundamental problem in the foundation of quantum the-
ory.5, 6, 8) Therefore, it is not a such a surprise that within
the framework of quantum theory, no algorithm has been
found to perform an event-based simulation of quantum
phenomena.

From a computational viewpoint, quantum theory pro-
vides us with a set of rules (algorithms) to compute
probability distributions.5, 9, 10) Therefore we may won-
der what kind of algorithm(s) we need to perform an
event-based simulation of the experiments2, 3) mentioned
above without using the machinery of quantum the-
ory. Evidently, the present formulation rules out any
method based on the solution of the (time-dependent)
Schrödinger equation and we have to step outside the
framework that quantum theory provides.

In this paper we demonstrate that locally-connected
networks of processing units with a primitive learn-
ing capability are sufficient to simulate deterministically
and event-by-event, the single-photon beam splitter and
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Mach-Zehnder interferometer experiments of Grangier et
al.2) We also show that this approach can be generalized
to simulate universal quantum computation by a deter-
ministic event-by-event process. Thus, the method we
propose can simulate wave interference phenomena and
many-body quantum systems using classical, particle-like
processes only.

Our results suggest that we may have discovered a
procedure to simulate quantum phenomena using causal,
local, deterministic and event-based processes. Our ap-
proach is not an extension of quantum theory in any
sense and is not a proposal for another interpretation
of quantum mechanics. The probability distributions of
quantum theory are generated by a deterministic, causal
learning process, and not vice versa.8)

2. Deterministic Learning Machine (DLM)11)

In quantum physics, an event corresponds to the detec-
tion of a photon, electron, and the like. In our simulation
approach an event is the arrival of a message at the input
channel of a processing unit. This processing unit typi-
cally contains two DLMs (described below). We use the
diagram of a DLM-based processor that performs the
event-by-event simulation of single-photon beam split-
ter, as shown in Fig. 1, to describe the operation of the
different components of the processor. The applications
to quantum computations presented later demonstrate
that the structure of the DLM-based processor is in fact
generic.

In Fig. 1, the presence of a message is indicated by an
arrow on the corresponding line. The first component,
DLM 1, “learns” about the occurrence of an event on
one of its two input channels that we label with 0 and
1. For brevity, we refer to an event on channel 0 (1) as a
0 (1) event. The second component transforms the data
stored in DLM 1 and feeds the result into DLM 2. DLM
2 “learns” this data. Finally the learning process itself is
used to determine whether DLM 2 responds to the input
event by sending out either a 0 or a 1 event. None of
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Fig. 1. Diagram of the network of two DLMs that performs a deterministic simulation of a single-photon beam splitter (BS) on an
event-by-event basis.11) The solid lines represent the input and output channels of the BS. Dashed lines indicate the flow of data within
the BS. Input channel 0 receives (y0, y1) = (cosψ0, sinψ0) with probability p0. Input channel 1 receives (y2, y3) = (cosψ1, sinψ1) with
probability p1 = 1 − p0. R(45◦) denotes a rotation of a two-dimensional vector by 45◦ (see Eq. (3)).

these components makes use of random numbers, hence
the name deterministic learning machine.

Usually, DLM-based simulation algorithms contain
several DLM-based processors that form a network. In
this paper we only consider networks of processing units
in which only one message is traveling through the net-
work at any time. Thus, the network receives an event
at one of its inputs, processes the event and delivers the
processed message through one of its output channels.
After delivering this message the network can accept a
new input event.

2.1 Description of a DLM
A DLM is a very simple, classical dynamical system

with a primitive learning capability. This dynamical sys-
tem consists of a unit vector (such as x = (x0, x1, x2, x3)
in DLM 1 of Fig. 1), a rule that specifies how this vector
changes when an input event is received, and a rule by
which the DLM determines the type of output event it
generates as a response to the input event. The initial
value of the internal vectors is irrelevant. In simulations,
we usually use random numbers to initialize the internal
vectors of all the DLMs in the network.

We now describe the learning process of a DLM in de-
tail.12) The basic idea of the learning algorithm is that
the DLM minimizes the distance between the input vec-
tor (discussed later) and the internal vector and that this
minimization is sufficient to construct particle-like pro-
cesses that mimic quantum phenomena. However, the al-

gorithm that we describe below cannot be derived from
the axioms of quantum theory. After many trials and
failures, we simply discovered that learning algorithms
of this type can be used to simulate quantum phenom-
ena.

First we consider DLM 1 in Fig. 1. The internal state of
DLM 1 is represented by the vector x = (x0, x1, x2, x3).
DLM 1 can accept two different types of input events, but
only one at a time. Event 0 carries a message represented
by a two-dimensional unit vector (y0, y1). Event 1 carries
a message represented by a two-dimensional unit vector
(y2, y3). Upon receiving an input event, DLM 1 performs
the following steps:

• DLM 1 computes eight candidate internal states

w1 = (+
√

1 − α2 + α2x2
0, αx1, αx2, αx3),

w2 = (−
√

1 − α2 + α2x2
0, αx1, αx2, αx3),

w3 = (αx0,+
√

1 − α2 + α2x2
1, αx2, αx3),

w4 = (αx0,−
√

1 − α2 + α2x2
1, αx2, αx3),

w5 = (αx0, αx1,+
√

1 − α2 + α2x2
2, αx3),

w6 = (αx0, αx1,−
√

1 − α2 + α2x2
2, αx3),

w7 = (αx0, αx1, αx2,+
√

1 − α2 + α2x2
3),
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w8 = (αx0, αx1, αx2,−
√

1 − α2 + α2x2
3). (1)

The parameter 0 < α < 1 controls the learning pro-
cess and is discussed in more detail later. The plus
and minus sign in front of the square roots is in-
troduced to allow the vector wj to cover the whole
eight-dimensional unit sphere.

• If DLM 1 receives an input event of type 0
with message (y0, y1), it constructs a vector x̂ =
(y0, y1, x2, x3). If DLM 1 receives an input event of
type 1 with message (y2, y3), it constructs a vector
x̂ = (x0, x1, y2, y3). DLM 1 determines the update
rule m that minimizes the cost function

Cj = −wT
j x̂, (2)

that is, Cm ≤ Cj for j = 1, . . . , 8.

• DLM 1 updates its internal vector by replacing x by
wm.

• DLM 1 generates a new (internal) event by putting
the values of its internal vector on its four output
channels.

• DLM 1 waits for the arrival of the next input event.

The transformation stage applies an orthogonal trans-
formation T to x = (x0, x1, x2, x3). In general, the precise
form of the transformation T depends on the particular
function that the processor has to perform. In the ex-
ample shown in Fig. 1, the orthogonal transformation
T takes two pairs of elements from x and performs the
plane rotation

R(φ) =
(

cosφ − sinφ
sinφ cosφ

)
, (3)

with φ = π/4. As we show later, this transformation
implements the single-photon beam splitter. The result
x′ = (x′0, x

′
1, x

′
2, x

′
3) of this transformation is sent to the

input of DLM 2. Thus, DLM 2 accepts messages in the
form of a four-dimensional unit vector. DLM 2 updates
its internal vector z = (z0, z1, z2, z3) according to the
following procedure:

• DLM 2 performs computes eight candidate internal
states

w1 = (+
√

1 − α2 + α2z2
0 , αz1, αz2, αz3),

w2 = (−
√

1 − α2 + α2z2
0 , αz1, αz2, αz3),

w3 = (αz0,+
√

1 − α2 + α2z2
1 , αz2, αz3),

w4 = (αz0,−
√

1 − α2 + α2z2
1 , αz2, αz3),

w5 = (αz0, αz1,+
√

1 − α2 + α2z2
2 , αz3),

w6 = (αz0, αz1,−
√

1 − α2 + α2z2
2 , αz3),

w7 = (αz0, αz1, αz2,+
√

1 − α2 + α2z2
3),

w8 = (αz0, αz1, αz2,−
√

1 − α2 + α2z2
3). (4)

• DLM 2 determines the update rulem that minimizes
the cost function

Cj = −wT
j x′, (5)

that is, Cm ≤ Cj for j = 1, . . . , 8.

• DLM 2 updates its internal vector by replacing z by
wm.

• DLM 2 generates an output event of type 0 (1)
if m = 1, . . . , 4 (5, . . . , 8), carrying the message
(y′0, y

′
1) = (z0, z1) ((y′0, y

′
1) = (z2, z3)).

• DLM 2 waits for the arrival of the next input event.

Comparing the algorithms for DLM 1 and DLM 2, we see
that they are indentical except for part of the second step
and the fourth step in which the output is generated.

2.2 Dynamic behavior of a DLM
In general, the behavior of a DLM defined by rules

Eqs. (1) and (2) or Eqs. (4) and (5) is difficult to analyze
without the use of a computer. However, for a fixed input
x′ = u, it is clear what a DLM will do. It will minimize
the cost given by Eq. (5) by rotating its internal vector
z to bring it as close as possible to u. After a number of
events (depending on the initial value of z, the input u,
and α), z will be close to u. However, the vector z does
not converge to a limiting value because the DLM always
changes its internal vector state by a nonzero amount.
It is not difficult to see (and supported by simulations,
results not shown) that once z is close to u, it will keep
oscillating about u.12) Below we analyse this behavior in
more detail using DLM 2 as an example. The dynamics
of DLM 1 is the same as that of DLM 2.

Let us denote by n0 the number of times the DLM
selects update rule m = 1, 2 (see Eq.(4)). Writing

w2
0,m = 1 − α2 + α2z2

0 ≡ (z0 + δ)2, (6)

and assuming that 0 � α < 1, we find that the variable
z0 changes by an amount

δ ≈ (1 − α2)(1 − z2
0)/2z0, (7)

where we have neglected terms of order δ2. Similarily,
if N is the total number of events then N − n0 is the
number of times the DLM selects update rules m �= 1, 2.
For j �= 1, 2, Eq.(4) gives

w2
0,j = α2z2

0 ≡ (z0 + δ′)2, (8)

where we have neglected terms of order δ′2. Hence z0
changes by

δ′ ≈ −(1 − α2)z0/2. (9)

If z oscillates about u then z0 also oscillates about
u0. This implies that the number of times z0 increases
times the increment must approximately be equal to the
number of times z0 decreases times the decrement. In
other words, we must have n0δ + (N − n0)δ′ ≈ 0. As
z0 ≈ u0 we conclude that n0/N ≈ u2

0. Applying the same
reasoning for the cases where the DLM selects update
rule m = 3, 4 shows that the number of times the DLM
will apply update rules m = 3, 4 is proportional to u2

0 +
u2

1.
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At this point, there is not yet a relation between the
dynamics of the DLM and quantum theory. However,
let us now assume that p0 = z2

0 + z2
1 (p1 = z2

2 + z2
3)

is the probability that a quantum system is observed
to be in the state 0 (1). In quantum theory, we would
describe this state by a wave function with complex am-
plitudes ẑ0 + iẑ1 (ẑ2 + iẑ3). Let is now consider a DLM
that is learning the four values z = (z0, z1, z2, z3). From
the foregoing discussion, it follows that once the DLM
has reached the stationary state in which it oscillates
about z, the rate at which the DLM uses update rules
m = 1, 2, 3, 4 (m = 5, 6, 7, 8) corresponds to the proba-
bility p0 (p1) to observe a 0 (1) event in the quantum
mechanical system. Thus, the DLM generates 0 and 1
events in a deterministic manner and because it gener-
ates 0 (1) events if it selected update rule m = 1, 2, 3, 4
(5, 6, 7, 8), the rate at which these events are generated
agrees with the corresponding probabilities of quantum
theory. As the applications presented later demonstrate,
this correspondence is all that is needed to perform an
event-by-event simulation of quantum interference and
many-body quantum phenomena.

2.3 Stochastic variant
The sequence of events that is generated by a DLM

(network) is strictly deterministic but a simple modifi-
cation turns a DLM into a stochastic learning machine
(SLM). The term stochastic does not refer to the learn-
ing process but to the method that is used to select the
output channel that will carry the outgoing message.
As explained earlier, in the stationary regime x2

0 + x2
1

and x2
2 + x2

3 (or z2
0 + z2

1 and z2
2 + z2

3) correspond to the
probabilities of quantum theory. Thus, a comparision of
for instance, x2

0 + x2
1, with a uniform random number

0 < r < 1 gives the probability for sending the mes-
sage over the corresponding output channel. Although
the learning process of this processor is still determinis-
tic, in the stationary regime the output events are ran-
domly distributed over the two possibilities. Of course,
the frequencies of output events is the same as that of
the original DLM-network. Replacing DLMs by SLMs in
a DLM-network changes the order in which messages are
being processed by the network but leaves the content of
the messages intact.

2.4 Generalization
In the previous discussion, we considered a DLM-based

processor (see Fig. 1) that accepts two different types of
events whereby each event carries a message containing
two real numbers. This is sufficient to simulate quantum
phenomena such as single-photon interference but if we
would like to perform event-by-event simulations of more
complicated quantum systems such as quantum comput-
ers, a generalization is necessary. From the foregoing de-
scription of the learning rule of a DLM it is obvious how
this rule may be generalized to handle an arbitrary num-
ber Ne of different events of messages of arbitrary (but of
the same) length Nm: Use a vector of NeNm elements to
represent the internal state of the DLM and, instead of
eight candidate rules, compare the cost of 2NeNm candi-
date rules. Clearly, the construction of DLM-based net-

works is very systematic and straightforward.

2.5 Summary
A DLM responds to the input event by choosing from

all possible alternatives, the internal state that minimizes
the error between the input and the internal state it-
self. This deterministic decision process is used to deter-
mine which type of event will be generated by the DLM.
The message contains information about the decision the
DLM took while updating its internal state and, depend-
ing on the application, also contains other data that the
DLM can provide. By updating its internal state, the
DLM “learns” about the input events it receives and by
generating new events carrying messages, it tells its en-
vironment about what it has learned.

3. Single-Photon Beam Splitter

In quantum theory,10) the presence of photons in the
input modes 0 or 1 of a beam splitter is represented by
the complex-valued amplitudes (a0, a1).2, 14, 15) Accord-
ing to quantum theory, the complex-valued amplitudes
(b0, b1) of the photons in the output channels 0 and 1 of
a beam splitter are given by2, 14, 15)

(
b0
b1

)
=

1√
2

(
1 i
i 1

) (
a0

a1

)
, (10)

Writing a0 =
√
p0e

iψ0 and a1 =
√

1 − p0e
iψ1 , the prob-

ability to observe a photon in output channel 0 (1) is
given by

|b0|2 =
1 +

√
p0(1 − p0) sin(ψ0 − ψ1)

2
, (11)

|b1|2 =
1 − √

p0(1 − p0) sin(ψ0 − ψ1)
2

. (12)

Here ψ0 and ψ1 represent the phases of the photons. In
a quantum theoretical description, this phase is propor-
tional to the length of the optical path that the photons
have travelled before they enter the beam splitter.2, 14, 15)

We now show that the DLM-network shown in Fig.1
behaves as if it is a single-photon beam splitter. This
network receives events at one of the two input channels.
There is a one-to-one relation between each input chan-
nel and the corresponding input mode of the quantum
mechanical description. Each input event carries infor-
mation in the form of a two-dimensional unit vector. Ei-
ther input channel 0 receives (y0, y1) = (cosψ0, sinψ0)
or input channel 1 receives (y2, y3) = (cosψ1, sinψ1). In
terms of the single-photon experiments of Grangier et
al.,2) an event corresponds to the arrival of a photon at
channel 0 (1) with phase ψ0 (ψ1) of the beam splitter
(see Fig. 1).

The input message is fed into the DLM-network de-
scribed in Section 2. The purpose of DLM 1 is to trans-
form the information contained in two-dimensional input
vectors (of which only one is present for any given input
event), into a four-dimensional unit vector. The internal
vector x of DLM 1 learns about the amplitudes (a0, a1):
In the stationary regime we have

x0 ≈ √
p0 cosψ0,
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Fig. 2. Simulation results for the beam splitter shown in Fig. 1. Markers give the simulation results for the normalized intensity
N0/(N0 +N1) in output channel 0 as a function of φ = ψ0 −ψ1. Open circles: p0 = 1; Bullets: p0 = 0.5; Open squares: p0 = 0.25. The
results of quantum theory |b0|2 (see Eq. (11)) are represented by lines.

x1 ≈ √
p0 sinψ0,

x2 ≈
√

1 − p0 cosψ1,

x3 ≈
√

1 − p0 sinψ1. (13)

The four-dimensional internal vector of this device is split
into two groups of two-dimensional vectors (x0, x3) and
(x2, x1) and each of these two-dimensional vectors is ro-
tated by 45◦. Put differently, the four-dimensional vector
is rotated once in the (1,4)-plane about 45◦ and once in
the (3,2) plane about 45◦. The order of the rotations is
irrelevant. Physically, this transformation corresponds to
the reflection of the photons by 45◦ at the beam splitter.
The resulting four-dimensional vector is then sent to the
input of DLM 2. The internal vector z of DLM 2 learns
about the amplitudes (b0, b1): In the stationary regime
we have

z0 ≈ √
p0 cosψ0 −

√
1 − p0 sinψ1,

z1 ≈ √
p0 sinψ0 +

√
1 − p0 cosψ1,

z2 ≈
√

1 − p0 cosψ1 −√
p0 cosψ0,

z3 ≈
√

1 − p0 sinψ1 +
√
p0 cosψ0 (14)

DLM 2 sends (z0, z1) through output channel 0 if it used
rule m = 1, 2, 3, 4 (see Eq. (5)) to update its internal
state. Otherwise it sends (z2, z3) through output channel
1.

In Fig. 2 we present results of discrete-event simula-
tions using the DLM network depicted in Fig. 1. We de-
note the number of 0 (1) events by N0 (N1) and the
total number of events by N = N0 +N1. The correspon-

dence with the quantum system is clear: the probability
for a 0 event is given by |b0|2 ≈ N0/N , y′0 = Re b0/|b0|
and y′1 = Im b0/|b0|. The probability for a 1 event is
|b1|2 ≈ N1/N , y′2 = Re b1/|b1| and y′3 = Im b1/|b1|.
Before the simulation starts, the internal vectors of the
DLMs are given a random value (on the unit sphere).
Each data point represents 10000 events. All these sim-
ulations were carried out with α = 0.99. The simulation
procedure itself consists of four steps:
(1) Use two uniform random numbers in the range

[0, 360] to generate ψ0 and ψ1.
(2) For fixed values of ψ0 and ψ1, generate 10000 in-

put events. Input channel 0 receives (y0, y1) =
(cosψ0, sinψ0) with probability p0. Input channel 1
receives (y2, y3) = (cosψ1, sinψ1) with probability
p1 = 1 − p0.

(3) Count the number of output eventsN0 (N1) in chan-
nel 0 (1), see Fig. 1.

(4) Repeat steps 1 to 3. For each pair (ψ0,ψ1), store the
results for N0 (N1).

Plotting N0/(N0 + N1) and |b0|2 as a function of φ =
ψ0−ψ1 yields the results shown in Fig. 2. Actually, there
is no need to use random numbers to generate ψ0 and
ψ1. In Fig. 2, we only used this random process to show
that the order in which we pick ψ0 and ψ1 is irrelevant.
Random processes enter in the procedure to generate the
input data only. The DLM network processes the events
sequentially and deterministically. From Fig. 2 it is clear
that the output of the deterministic DLM-based beam
splitter reproduces the probability distributions as ob-
tained from quantum theory.10)
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Fig. 3. Diagram of a DLM network that simulates a single-photon Mach-Zehnder interferometer on an event-by-event basis.11) The
DLM network consists of two BS devices (see Fig. 1) and two passive devices R(φ0) and R(φ1) (see Eq. (3)) that perform plane
rotations by φ0 and φ1, respectively. The number of events Ni in channel i = 0, . . . , 3 is proportional to the probability for finding a
photon on the corresponding arm of the interferometer.

4. Mach-Zehnder Interferometer

In quantum physics,10) single-photon experiments
with one beam splitter provide direct evidence for the
particle-like behavior of photons.2, 5) The wave mechan-
ical character appears when one performs single-particle
interference experiments. We now describe a DLM net-
work that displays the same interference patterns as
those observed in single-photon Mach-Zehnder interfer-
ometer experiments.2) The schematic layout of the DLM
network is shown in Fig. 3. The network described in
Section 3 is used for the beam splitters. The phase shift
is taken care of by the devices R(φ0) and R(φ1) (that
do not contain DLMs) that perform plane rotations by
φ0 and φ1 (see Eq. (3), respectively. Clearly there is a
one-to-one correspondence between the components of
the DLM network and the elements of a physical Mach-
Zehnder interferometer.2, 13)

According to quantum theory,10) the amplitudes
(b0, b1) of the photons in the output modes 0 (N2) and
1 (N3) of the Mach-Zehnder interferometer are given
by2, 14, 15)

(
b0
b1

)
= U

(
a0

a1

)
, (15)

where

U =
1
2

(
1 i
i 1

) (
eiφ0 0
0 eiφ1

) (
1 i
i 1

)
, (16)

and a0 (a1) denotes the amplitude of the photons in
the input channel 0 (1). Note that in experiments it is

impossible to simultaneously measure (N0/(N0 + N1),
N1/(N0+N1)) and (N2/(N0+N1), N3/(N0+N1)): Pho-
ton detectors operate by absorbing photons.

In experiment,2, 13) there are no photons in input chan-
nel 1 of the first beam splitter, that is a1 = 0. From
Eq. (15), we see that the phase of the wave function de-
scribing the photons in input channel 0 of the first beam
splitter is irrelevant. However, as the photons leave the
first beam splitter the relation between their phases is
fixed. This relation can be changed through the opti-
cal path length for reaching the second beam splitter. A
change of the optical path length in channel 0 (1) results
in a phase shift by φ0 (φ1). If a1 = 0, the output am-
plitudes of the Mach-Zehnder interferometer are given
by

b0 = a0|a0|−1ei(φ0+φ1)/2 sin
φ0 − φ1

2
,

b1 = a0|a0|−1ei(φ0+φ1)/2 cos
φ0 − φ1

2
, (17)

from which we see that the probabilities |b0|2 and |b1|2
depend on φ = φ0 − φ1 only.

In Fig. 4 we present a representative selection of simu-
lation results for the Mach-Zehnder interferometer built
from DLMs. We assume that input channel 0 receives
(y0, y1) = (cosψ0, sinψ0) with probability one and that
input channel 1 receives no events. This corresponds to
(a0, a1) = (cosψ0 + i sinψ0, 0) in Eq. (15). We use uni-
form random numbers to determine ψ0. As in the case
of the beam splitter, we only use this random process
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Fig. 4. Simulation results for the DLM-network shown in Fig. 3. Markers give the simulation results for the normalized intensities as
a function of φ0. Open squares: N0/(N0 + N1); Solid squares: N2/(N2 + N3) for φ1 = 0; Open circles: N2/(N2 + N3) for φ1 = 30◦;
Bullets: N2/(N2 +N3) for φ1 = 240◦; Asterisks: N3/(N2 +N3) for φ1 = 0; Solid triangles: N3/(N2 +N3) for φ1 = 300◦. Lines represent
the results of quantum theory.

to show that the order in which we pick ψ0 is irrele-
vant. In all these simulations α = 0.99. The data points
are the simulation results for the normalized intensity
Ni/(N0 + N1) for i=0,2,3 as a function of φ = φ0 − φ1.
Each data point represents 10000 events (N0 + N1 =
N2 + N3 = 10000). Initially the rotation angle φ0 = 0
and after each set of 10000 events, φ0 is increased by
10◦. Lines represent the corresponding results of quan-
tum theory.10) From Fig. 4 it is clear that the determin-
istic, event-based DLM network generates events with
frequencies that are in excellent agreement with quan-
tum theory.

5. Universal quantum computation

It has been shown that an arbitrary unitary operation,
that is, the time evolution of a quantum system, can be
written as a sequence of single-qubit operations and the
controlled-NOT (CNOT) operation on two qubits.16, 17)

Therefore, in principle, single-qubit operations and the
CNOT operation are sufficient to construct a univer-
sal quantum computer or to simulate any quantum sys-
tem.17) In this section, we present results of event-based
simulations of single qubit operations and a two-qubit
quantum circuit containing the CNOT operation to illus-
trate that DLM-based networks can be used to simulate
universal quantum computers.

The state vector of a two-qubit system can be written
as7, 14, 17)

|Φ〉 = a0|0〉1|0〉2 + a1|1〉1|0〉2 + a2|0〉1|1〉2
+a3|1〉1|1〉2

= a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉
= a0|0〉 + a1|1〉 + a2|2〉 + a3|3〉, (18)

where a0, . . . a3 are the amplitudes of the four different
states and |0〉i and |1〉i represent the 0 and 1 state of the
i-th qubit, respectively. For convenvience, in the last line
of Eq.(18), we represent the basis states of the two-qubit
system in decimal notation, that is |00〉 = |0〉, |01〉 = |1〉,
|10〉 = |2〉, and |11〉 = |3〉.17)

5.1 CNOT gate
By definition, the CNOT gate flips the target qubit if

the control qubit is in the state |1〉.17) If we take qubit
1 (that is, the least significant bit in the binary notation
of an integer) as the control qubit, we have

CNOT|Φ〉 = a0|0〉1|0〉2 + a3|1〉1|0〉2 + a2|0〉1|1〉2
+a1|1〉1|1〉2

= a0|00〉 + a3|01〉 + a2|10〉 + a1|11〉
= a0|0〉 + a3|1〉 + a2|2〉 + a1|3〉. (19)

The schematic diagram of the DLM-network that
performs the CNOT operation on an event-by-event
(particle-by-particle) basis is shown in Fig. 5. Concep-
tually the structure of this network is the same as in
the case of the Mach-Zehnder interferometer. As in-
put to the DLM-network we now have four (0,1,2 or
3) instead of two different types of events. Each event
carries a message consisting of two real numbers y =
(y0, y1), corresponding to the quantum mechanical am-
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Fig. 5. Diagram of a DLM-based processor that simulates a CNOT gate on an event-by-event basis.

H

H

H

H

Fig. 6. Quantum circuit representation of two equivalent CNOT operations. The dot and the cross on the line denote the control and
target qubit, respectively. The square boxes labeled H represent Hadamard gates.

plitudes a0, . . . a3. The internal state of each DLM is rep-
resented by a unit vector of eight real numbers x =
(x0, . . . , x7) and there are 16 candidate update rules
({j = 0, . . . 7; sj = ±1}, see Eq.(4)) to choose from. The
rule that is actually used is determined by minimizing
the cost function given by Eq.(5). The transformation
stage is extremely simple: According to Eq.(19), all it
has to do is swap the two pairs of elements (x2,x3) and
(x6,x7).

Instead of presenting results that show that a DLM-
processor correctly simulates the CNOT operation on an
event-by-event basis, we consider the more complicated
network of four Hadamard gates and one CNOT gate
shown in Fig. 6.17) Quantum mechanically, this network
acts as a CNOT gate in which the role of control- and
target qubit have been interchanged.17) For the corre-
sponding DLM-network to work properly it is essential
that the event-based simulation mimics the quantum in-
terference (generated by the Hadamard gates) correctly.

5.2 Hadamard operation
The Hadamard operation H is the single-qubit opera-

tion defined by17)

H ≡ 1√
2

(
1 1
1 −1

)
. (20)

Disregarding phase factors, it performs the same opera-
tion as a beam splitter.

The structure of a DLM-processor that performs a gen-
eral single-qubit operation is identical to the one shown
in Fig. 1. The only difference is in the transformation
stage. To implement the Hadamard operation, we use
the transformation matrix T (see Fig. 1)

1√
2

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞
⎟⎟⎠ . (21)

5.3 Simulation results
In Table I, we present simulation results for the DLM-

network shown in Fig. 6. Before the first simulation starts
we use uniform random numbers to initialize the inter-
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Table I. Simulation results for the DLM-network shown in Fig. 6, demonstrating that the network reproduces the results of the
corresponding quantum circuit, that is, a CNOT operation in which qubit 2 is the control qubit and qubit 1 is the target qubit.17) The
first half of the events are discarded in the calculation of the frequencies fi for observing an output event of type i = 0, 1, 2, 3. For 200
events or more, the difference between the event-based simulation results and the corresponding quantum mechanical probabilities is
less than 1%.

Processor Number of events Qubit 1 Qubit 2 f0 f1 f2 f3

Deterministic 100 0 0 0.98 0.00 0.00 0.02

Deterministic 100 1 0 0.20 0.74 0.01 0.04
Deterministic 100 0 1 0.16 0.04 0.00 0.80
Deterministic 100 1 1 0.16 0.04 0.72 0.08

Deterministic 200 0 0 1.00 0.00 0.00 0.00
Deterministic 200 1 0 0.00 1.00 0.00 0.00
Deterministic 200 0 1 0.00 0.00 0.00 1.00
Deterministic 200 1 1 0.01 0.00 0.99 0.00

Stochastic 2000 0 0 0.965 0.015 0.010 0.010
Stochastic 2000 1 0 0.007 0.970 0.012 0.011
Stochastic 2000 0 1 0.010 0.008 0.016 0.966
Stochastic 2000 1 1 0.005 0.016 0.963 0.016

Table II. Same as in Table I except that the control parameter α = 0.999 instead of α = 0.99 and that ten times as many event were
generated. The results for the deterministic simulations are exact within three-digit accuracy and have therefore been omitted.

Processor Number of events Qubit 1 Qubit 2 f0 f1 f2 f3
Stochastic 20000 0 0 0.995 0.003 0.001 0.002
Stochastic 20000 1 0 0.002 0.995 0.003 0.001
Stochastic 20000 0 1 0.002 0.001 0.002 0.995
Stochastic 20000 1 1 0.001 0.002 0.997 0.001

nal vectors of the DLMs (ten vectors in total). All these
simulations were carried out with α = 0.99. From Ta-
ble I, it is clear that, also for a modest number of events,
the network reproduces the results of the corresponding
quantum circuit, that is, a CNOT operation in which
qubit 2 is the control qubit and qubit 1 is the target
qubit.17)

As an illustration of the use of SLMs, we replace all
the DLM 2’s by SLMs in the DLM implementation of the
circuit shown in Fig. 6 and repeat the simulations. From
Tables I and II, we conclude that the randomized version
generates the correct results but significantly more events
are needed to achieve similar accuracy as in the fully
deterministic simulation.

5.4 Technical note
All simulations that we presented in this section have

been performed for α = 0.99. From the description of
the learning process it is clear that α controls the rate
of learning or, equivalently, the rate at which learned
information can be forgotten. Furthermore it is evident
that the difference between a constant input to a DLM
and the learned value of its internal variable cannot be
smaller than 1 − α. In other words, α also limits the
precision with which the internal variable can represent
a sequence of constant input values. On the other hand,
the number of events has to balance the rate at which
the DLM can forget a learned input value. The smaller
1 − α is, the larger the number of events has to be for
the DLM to adapt to changes in the input data.

We use the example of this section to illustrate the ef-
fect of changing α and the total number of events N . In

Table II we show the results of repeating the procedure
used to obtain the data shown in Table I but instead of
α = 0.99 we used α = 0.999 and adjusted the number of
events accordingly. As expected, the difference between
the simulation data and the results of quantum theory
decreases if 1−α decreases and the number of events in-
creases accordingly. Comparing Table I with Table II it
is clear that the decrease of this difference is roughly pro-
portional to the inverse of the square root of the number
of events.

6. Discussion

We have proposed a new procedure to construct algo-
rithms that can be used to simulate quantum processes
without solving the Schrödinger equation. There is a one-
to-one correspondence between the components of the
network and the processing units and the physical parts
of the experimental setup. Furthermore, only simple ge-
ometry is used to construct the simulation algorithm. In
this sense, the simulation approach we propose satisfies
Einstein’s criteria of realism and causality.5)

An analogy may be helpful to understand the concep-
tual difference between the conventional description of
quantum theory and the event-based approach proposed
in this paper. It is well known that an ensemble of sim-
ple, symmetric random walks may be approximated by a
diffusion equation (for vanishing lattice spacing and time
step). Also here we have two options. If we are interested
in individual events, we have no other choice than to sim-
ulate the discrete random walk. However, if we want to
study the behavior of many random walkers, it is compu-
tationally much more efficient to solve the corresponding
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diffusion problem. The latter describes the outcome of
(infinitly) many individual events but does not provide
information about individual events. The random walk
is the fundamental mechanism that gives rise to diffusion
behavior. In this sense, the DLMs described in this paper
may be regarded as building blocks for a dynamic, deter-
ministic, local and causal system that generates individ-
ual events in such a manner that the collective behavior
of these events is described by quantum theory.

It may be of interest to compare our approach with
stochastic wavefunction methods.18–33) Instead of solv-
ing the equation of motion of the density matrix, these
methods solve stochastic differential equations for an en-
semble of independent realizations of pure states. Typ-
ically, these methods are used to study open quantum
systems in which a small number of degrees of freedom
is coupled to a large reservoir. An attempt to use a vari-
ant of the stochastic wavefunction method to perform
an event-by-event study of photon emission was reported
in Ref.30) In stochastic wavefunction methods, the wave
function evolves in time according to the time-dependent
Schrödinger equation. An uncorrelated random process
interrupts this evolution to project the wave function
(that is, make a quantum jump) onto another normal-
ized state. This evolution of the wave function is similar
to the change of the internal state of a SLM if we consider
one isolated event that is processed by the transforma-
tion stage T and a SLM (see Fig. 1). However, as a SLM
is capable of learning from previous events, the process
of generating output events is non-Markovian, this simi-
larity being very superficial. The fundamental difference
between the two approaches can also be seen as follows.
In the stochastic wavefunction method, we can calculate
the time evolution of each member of the ensemble in
parallel, at least in principle. In the DLM-approach, this
is impossible: To exhibit quantum mechanical behavior,
it is imperative that the DLM-network processes events
in a sequential manner. In the fully deterministic DLM-
approach (that is, without the randomizing feature of the
SLM), there is no stochastic process at all. Therefore,
there also is no relation between the stochastic wave-
function method and the deterministic, machine-learning
approach discussed in this paper.

In conclusion, we have shown that single-particle quan-
tum interference and quantum computers can be simu-
lated on an event-by-event basis using local and causal
processes, without the need of concepts such as wave
functions or particle-wave duality.
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