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1. INTRODUCTION

Cryptography is an artifice of exchanging information
between two parties such that an unauthorized person
cannot retrieve this information. To this end, the sender
usually employs some key to encrypt the information to
be transmitted, and the receiver applies a decryption algo-
rithm to recover the original information. If the crypto-
graphic system is secure, an eavesdropper can decipher the
encrypted message if and only if the eavesdropper knows
the key. Thus, the central problem of cryptography is to
establish a powerful key. We may imagine that the more
bits the key contains and the more complicated the key fs,
the more secure the process is. But, in practice, ifi the key
is generated and transmitted in a conventional, electronic
way, it may be possible to intercept the key. Then, the
eavesdropper can make a copy of the exchanged informa-
tion without changing it, such that the sender or receiver
did not notice that the information has been intercepted.

Quantum cryptography uses microscopic objects such
as individual photons as information carriers.! One of
the characteristic features of such microscopic systems is
that a measurement may change the information that the
microscopic system carries. Therefore, if an eavesdropper
attempts to make a measurement to determine a bit of the
key, there is no guarantee that the information carried by
the microscopic system is left unchanged. If the quantum
cryptography protocol is designed properly, the presence
of the eavesdropper is revealed by an increase of the error
rate in the bits that are being transmitted from sender to
receiver.
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Although there is no doubt that quantum theory is very
successful in describing a vast number of experimental
results, it is well-known that quantum theory has noth-
ing to say about individual events that are being recorded
in experiments.>? Yet, quantum cryptography uses indi-
vidual events to transmit information, its security being
guaranteed by axioms. Since the inception of quantum the-
ory, the major fundamental problem of incorporating in
quantum theory the fact that we observe events only is
often referred to as the quantum measurement paradox and
has not yet found a solution within the realm of quan-

|tum theory.? Therefore, it seems worthwhile the study the

fundamental question what it is that makes quantum cryp-
tography work: Logically speaking, it cannot be quantum
mechanics because quantum mechanics has nothing to say
about individual events.>3

In a number of recen papers,*!! we have demonstra-
ted that locally-connected networks of processing units
can simulate, event-by-event, the single-photon beam split-
ter, Mach-Zehnder interferometer experiments of Grangier
et al.,'”” and Einstein-Podolsky-Rosen experiments with
photons.!*'*  Furthermore, we have shown that this
approach can be generalized to simulate universal quantum
computation'® by an event-by-event process.>’ Therefore,
this suggests that at least in principle, it may be possible to
simulate all wave interference phenomena and many-body
quantum systems using particle-like processes only. In this
paper, we extend this approach to quantum cryptography
systems.

The paper is structured as follows. In Sections 2 and 3,
we briefly review the two most popular protocols of quan-
tum cryptography: the BB84 protocol'*'® and Ekert’s
protocol.!® Although both protocols are closely related,’
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from the point of view of simulation algorithm, the lat-
ter is considerably more complicated than the former,
which is the main reason for discussing both of them. The
simulation algorithms for the polarizer are presented in
Section 4. Simulation results for the BB84 and the Ekert
protocol, both with and without an eavesdropper, are given
in Sections 5 and 6. Although our simulation method does
not rely on any concept of quantum theory, it is neverthe-
less capable of simulating quantum cryptography protocols
on the event-by-event level. Therefore, it may shine light
on the question what is essential for quantum cryptogra-
phy to work. In Section 5.4, we discuss this issue. The
results of this paper are summarized in Section 7.

2. BB84 PROTOCOL

In 1989, an experimental prototype that implemented the
quantum cryptography protocol BB84,'!® demonstrated
that it is possible to transmit an encryption key using the
polarization state of single photons. In this section) we
briefly review the idea behind this protocol.

The BB84 protocol employs the polarization state' of
photons as the information carrier. As each detection of a
single photon yields one out of two definite answers for
the polarization of the photon, these observations can be
described by the quantum theory of a two-state system.
The BB84 protocol uses two sets of non-orthogonal coor-
dinate systems, which are the usual x—y (rectilinear) basis
and the diagonal basis which is the rectilinear basis rotated
by 45°. In the rectilinear basis, the photon can be either
in the horizontal (—) or in the vertical (1) polarization
state. In the diagonal linear basis, the photon can be either
in the diagonal () or in the anti-diagonal (\) polariza-
tion state. 2.0

Let Alice and Bob be the two parties who want
to exchange a secret key. Alice generates and sends
Bob a sequence of photons with polarization states that
are selected randomly from the four possible directions:
0°(—>), 45°("), 90°(1) and 135°(\). The bits of Alice
are encoded from these directions in the following way:
0° and 45° represent bit 0, 90° and 135° represent bit 1.
When a photon arrives at Bob’s observation station, Bob
performs a measurement on this photon based on a ran-
domly selected basis, either the rectilinear or the diagonal
basis. Bob encodes the outcome of his measurements in
the same way as Alice does. If Bob chooses a basis which
is consistent with Alice selection (for instance, Alice’s
sends a photon polarized in 0° or 90°, and Bob per-
forms the measurement on the rectilinear basis), then it is
assumed that Bob’s bit is identical to that of Alice. Oth-
erwise Bob will guess the wrong bit for about 50% of
the detected photons. Table I lists the various possibilities
that Alice and Bob may encounter during the exchange of
data. It should be clear from this discussion that up to this
point, it has been assumed that the detectors operate with
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Table I. Summary of the BB84 protocol. The first column shows the
bit that Alice wants to encode and send to Bob. The second and third
columns give the orientations of Alice’s and Bob’s polarizers, respec-
tively. The fourth and fifth columns are the probabilities that Bob detects
a photon in the output channel 0 and 1 of his polarizer. The last column
gives the bit that Bob obtains from his measurement. The question mark
indicates that the probability that Bob makes the wrong guess is 50%.

P P

0 I
Alice’s bit ¢, ¢, cos(p,—dy,) sin’(p,—¢,) Bob’s bit
0 0° 0° 1 0 0

45° 12 12 9
0 45 o 12 12 ?

45° 1 0 0
1 90° 0° 0 1 1

45° 12 1,2 9
1 135 0° 12 12 ?

45° 0 1 1

100% detection efficiency, that the coordinate systems of
Alice and Bob are perfectly aligned and so on, that is we
assume that the experiment is perfect.

After recording a collection of events, in the next step,
Alice and Bob will sift the key from the original raw
bits by communicating through a conventional classical
channel. For each photon that Bob has received, he tells
Alice which basis he has selected but he does not tell
her the result of the measurement. Then, for each photon,
Alice announces to Bob whether he made a correct choice.
Finally they discard all the bits for which Bob has made
the wrong choice of basis. The bits that survive the sifting
procedure constitute the key and be used to encrypt the
data that they want to send to each other.

An eavesdropper, conventionally called Eve, who
attempts to intercept some photons during the key trans-

| missiontprocess will cause some errors in the sifted key,

and.these errors can be detected by Alice and Bob through
publicly comparing randomly selected subsets of their
sifted key. If Eve performs the similar measurements as
Bob on all photons sent by Alice, and then prepares and
resends new photons according to her measurements, Alice
and Bob will observe an error rate of about 25% and con-
clude that their communication channel is not secure.

3. EKERT’S PROTOCOL

In 1991, Artur Ekert proposed another protocol based
on entanglement states with security guaranteed by Bell
inequalities.'” The source can be any two-particle system
with some property entangled. In the original proposal
of the protocol, pairs of spin-1/2 particles in a sin-
glet state are used as the information carrier, but in
the real experiments,?2! polarization entangled photon
pairs are most commonly used to implement this pro-
tocol. In Ref. [21], the CHSH inequality (one of the
many Bell inequalities) is used to test of the security. In
Ref. [20] another form of the Bell inequality, the Wigner
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inequality,?? provides a relative simple test of the security.
In this section, we briefly review the main idea of this
protocol.

First, it is assumed that there is a source that emits pairs
of photons, one photon traveling to Alice and the other
photon traveling to Bob. It is assumed that the state of the
whole system, that is the description of the observation of
the polarization of many pairs, can be described by the
singlet state

1
7 M
where H and V denote the horizontal and vertical (linear)
polarization states. When a pair of photons A and B has
been generated at the source, they are spatially separated
and sent to Alice and Bob through free air or through some
special optical fiber. Then Alice and Bob perform mea-
surements on the polarization state of the received photon
using a polarizing beamsplitter. Both Alice and Bob inde-
pendently and randomly select between two polarization
orientations. Let us denote the two orientations of Alice
by ¢, and ¢,,, and those of Bob by ¢, and ¢y, . The
outcome for an individual measurement is represented by
either +1 or —1. Because of the assumed entanglement
between the polarization of the two photons, if Alice and
Bob select parallel but otherwise arbitrary orientations of
their polarizer, the outcomes of these two measurements
are expected to display perfect anticorrelation. Thus, anti-
correlation between the two measurements with ¢, = @5,
can be used to establish the key.

When the two photons of a particular pair are measured
in two non-parallel orientations, the correlation between
them cannot be recognized as such. Then, we need a test
to see if the correlation are those of a system in the singlet
state. The Wigner inequality provides a convenient foolito
do this. We denote by P, (¢, , &g,), Pii (P4, 45, and
P, (¢,4,, ¢p,) the probabilities to obtain +1 on both sides
for these three pairs of different orientations of the polatiz-
ers. Under the assumptions discussed in Appendix A these
three probabilities must obey Wigner inequality

P++(¢A,1’ ¢B,2) +P++(¢A,2’ ¢B,1)

_P++(¢A,2’ ¢B,2) = 0 (2)

In Appendix A, we give a simple proof of the Wigner
inequality. For later use, it is expedient to define the
Wigner parameter by

S = P++(¢A,l’ ¢B,2) +P++(¢A,2’ d’B.l)
_P++(¢A,2’ ‘153,2) 3)

For the singlet state Eq. (1), quantum theory predicts
that

(W) = —=(H)4lV)p = V) alH)p)

Pei(bar u) = 550~ Gu) @)

Inserting Eq. (4) into Eq (2), it is easy to check (see later
for examples) that for some range of ¢, |, dg 5, ¢, », and
¢35, we have S < 0. Hence the Wigner inequality Eq. (2)
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is violated by a quantum system in the singlet state. For a
particular choice of orientations that is used to implement
Ekert’s protocol namely ¢, | = ¢ ; =0, ¢, , =30°, and
¢, =—30°, we find that S = —1/8. Any attempt to tam-
per with the singlet state will change S from its minimum
value —1/8 to a larger one.

What happens to the observed data when photons
are intercepted and resend? Is the Wiger inequality still
powerful enough to reveal the insecurity of the whole sys-
tem? It turns out that the assumption of perfect anticor-
relation, essential for the derivation of Wigner inequality,
may cause a security problem. To alleviate this problem,
a modified Wigner inequality that does not rely on the
assumption of perfect anticorrelation was introduced in
Ref. [23]. An experimental test of the power of the modi-
fied Wigner inequality in the presence of eavesdropping is
given in Ref. [24]. A simple proof of this Modified Wigner
inequality is given in Appendix B. Introducing the modi-
fied Wigner parameter S” by

S = ++(¢A,1a ¢B,2) +P++(¢A,2’ d)B-,l)

+P——(¢A,l’ d)B,l)_P++(d)A,2’ d)B,Z) (5)
the modified Wigner inequality reads
§>0 (6)

Compared to the original Wigner inequality, an extra term
is added 'which contributes when both Alice and Bob
choose the same orientation of their polarizers. This extra
term significantly increases the possibility of detecting the
presence of an eavesdropper.

For the simulation of this protocol in the presence of
eavesdropping, we assume that Eve performs the intercept-

Iresend s'trategy. This implies that Eve detects the two pho-
| tons using two polarizers with orientations ¢, and i,

rqslpectively, and then uses the result of her measurement
of the two photons to prepare a photon that she sends to
Alice and another photon that she sends to Bob. Accord-
ing to quantum theory, the photons received by both Alice
and Bob are described by the product state

|W) = (cosips[H) o +singhy|V),)
x(costhp|H) g —siniy|V)p) (7

The predictions of quantum theory for the product state
and the singlet state are summarized in Table II.

In Table II, ¢, and ¢, denote the orientations of Alice’s
and Bob’s polarizer, respectively, P, (¢,) represents the
probability that Alice obtains +1 in her measurement,
P, (¢y) denotes the corresponding probability for Bob’s
measurement, and P, (¢,, ¢;) refers to the probability
that both Alice and Bob record a +1 result. In the last
two rows of Table II we list the results of quantum the-
ory for the original and the modified Wigner parameter
for the polarizer settings ¢, | = ¢z, =0, ¢, , =—0, and
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Table II.
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The quantum theoretical predictions for the single- and two particle probabilities of a system in

the singlet state and in the product state. The upper part shows the probability of observing 4 on one side
and the joined probability of observing + on both sides. The lower part gives the expressions for the Wigner

parameter S and the modified Wigner parameter S’.

Singlet state

Product state

P (d,) 1/2
P.(¢s) 1/2
P++(¢A’¢B) (1/2)5in2(¢A_¢5)
S sin? @ — (1/2) sin* 26
s’ sin? @ — (1/2) sin* 26

cos® (Y, —b,)

cos® (1 —¢b)

cos® (Y, —,) cos’ (Y — )

cos® i, cos? (P — ) +cos* (¢, + 0) cos® i
— o5, + 8) cos* (1, — )

cos? i, cos? (i — 0) +cos? (P, + 0) cos® i,
+sin® i, sin” ¢, — cos? (i, + ) cos? (i, — )

¢, = 0. For the singlet state, the additional term in the
modified Wigner parameter is zero. Hence there is no dif-
ference between S and S’ and both of them only depend
on 6. However in the case of a product state, the additional
term sin® i, sin” i, that depends on the polarization states
of the photons and is always non-negative, hence. S’ > S.
Thus, if Alice and Bob expect to observe the singlet state
they should find S’ = § = —1/8. However, if Eve is inter-
cepting and sending photons in a product state, the modi-
fied Wigner inequality provides more power to disclose the
existence of an eavesdropper because Eve’s actions will
cause S’ to change from being negative to positive while
S may remain negative (see the examples shown later).

4. EVENT-BASED SIMULATION OF
A POLARIZER

Both the practical realization of the BB84 and the Ekert
protocol use the detection of the photon polarization.
Hence, the polarizer is an indispensable apparatus for both
Alice and Bob to perform their measurements. The{efore,
to set up an event-by-event computer simulation model
for these quantum cryptography protocols, we first need to
consider event-based simulation models for a polarizer.
Some optically active materials such as calcite split an
incoming beam of light into two spatially separated beams
depending on the polarization property of the incident
beam.? If the incident beam has polarization ¢ and the
orientation of the polarizer is denoted by ¢, the intensities
of the two output beams 0 and 1 are given by Malus’ law

Iy = cos* (i — §)

I, = sin’( — ¢)
The polarization of output beam 0 is ¢, and the polariza-
tion of output beam 1 is ¢+ /2. The incident beam is
said to be randomly polarized if [, =1, = 1/2.

The simplest simulation model of a polarizer deter-
mines the type (0 or 1) of the output by comparing a
uniform pseudo-random number r with cos’(y — ¢). If
r < cos’( — ¢), the output is of type 0, otherwise it
is of type 1. For each individual input photon, the out-

come is pseudo-random, but if we repeat this process for
sufficiently many events (and the pseudo-random number

®)
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generator is of sufficient quality), the frequencies of observ-
ing photons in output 0 and 1 will agree with Malus’ law.
In the sequel, this model for the polarizer will be called the
probabilistic polarizer (PP).

As an alternative for the PP, we will also simu-
late both, protocols using a deterministic model for the
polarizer.*”:?° This model will be called the determinis-
tic polarizer (DP). As the details of this model are not of
importance for (the analysis of) the results presented in
this paper, we refer the reader who is interested in this and
other deterministic simulation models for quantum phe-
nomena to Refs. [4-7, 26]. In this paper, we show that both
the PP and DP models are capable of reproducing exactly
all the results of quantum theory for both the BB84 and the
Ekert protocol using an event-by-event based simulation
algorithm.

5. EVENT-BASED SIMULATION OF
THE BB84 PROTOCOL

In.this section, we present the results of an event-by-event

simulation of the BB84 protocol using both PPs and DPs.

+ We start with the original BB84 protocol and demonstrate

that the sifted bits obtained by Alice and Bob are identical,
as expected. Then, we simulate the effect of eavesdrop-
ping by Eve who uses the intercept-resend strategy and
show that this introduces significant errors in the sifted
key. Finally, we study the effect of misalignment of the
settings of both Alice’s and Bob’s polarizers by computing
the fidelity of the sifted key as a function of the misalign-
ment angles.

5.1. Simulation of the BB84 Protocol in
the Absence of an Eavesdropper

Two polarizers are needed to simulate this protocol, one
for Alice, and another one for Bob. Alice uses her polarizer
to encode the bits she wants to send by (randomly) select-
ing the polarization 0°(—), 45°(7), 90°(1) or 135°(\).
Thus, if Alice wants to encode a random sequence of
bits, Alice’s polarizer ¢, chooses randomly from these
four directions. In the simulation, we use uniform pseudo-
random numbers to select the polarizations, implying that
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Table III. The first 100 bits of the sifted key of the BB84 protocol without eavesdropping. The upper part
gives bits 0-50, the lower part gives bits 51-100. As expected, the sifted key of Alice is identical to the one

obtained by Bob.

Alice’s bits
Bob’s bits
Alice’s bits
Bob’s bits

10000001110011100110110001101000010011101011101010
10000001110011100110110001101000010011101011101010
10111111010010101011010010111110111011100101000010
10111111010010101011010010111110111011100101000010

half of the photons leave the polarizer through output
channel 0 while the others leave the polarizer through out-
put channel 1. The photons leaving through channel 1
are discarded and all the other photons are sent to Bob.
The orientation ¢ of Bob’s polarizer switches randomly
between 0°(—>) and 45°(7). These two directions define
Bob’s two measurement basis, the rectilinear or diagonal
linear basis.

As indicated in Table I, the probabilities to observe a
photon in output channel 0 and 1 are cos*(¢, — ¢j) and
sin?(¢, — ¢ ), respectively. It is clear from Table I that the
cases for which Bob has a definite outcome correspond to
situation in which Bob selected an observation basis that
is consistent with the choice made by Alice.

In Table III, we show the first 100 bits of the sifted
sequence, extracted from a simulation sequence of 10°
events. After passing through Alice’s polarizer, the num-
ber of the photons sent to Bob is 49920 (approximately
1/2 of the total number of events), and the length of the
sifted key is 25072 (approximately 1/4 of the total number
of events). From Table III, we see that the first 100 bits of
the sifted key that Alice and Bob obtain are identical, as
expected. We have checked that the other bits in the sifted
key are identical also (results not shown). Furthermore, the
simulation results for the sifted key do not depend on the
choice of the simulation model (PP or DP) for the ‘polar-
izer (results not shown). The fidelity F, defined as the ratio
of the correct bits in the sifted key to the length of the
sifted key is 100%. -

5.2. Simulation of the BB84 Protocol in
the Presence of an Eavesdropper

The presence of Eve is built into the simulation algorithm
by adding a polarizer and implementing the intercept-
resend strategy. Thereby, we assume that Eve intercepts
all the photons that Alice sends to Bob and that she is
able to perform the measurements in the same rectilinear
or diagonal linear basis as the ones used by Bob. It is easy

to see that for this type of eavesdropping, the error rate in
the sifted key should be about 25%. In Table IV, we show
the first 100 bits of the sifted sequence, extracted from
a simulation sequence of 10° events. The number of the
photons that Bob receives is 50074 (approximately 1/2 of
the total number of events), and the length of the sifted
key is 25043 (approximately 1/4 of the total number of
events). In this case, the fidelity is about 75.2%. As in the
case without eavesdropper, the simulation results for the
sifted key do not depend on the choice of the simulation
model (PP-or DP) for the polarizer (results not shown).

5.3. Misalignment of the Measurement Basis

In-this section, we consider a situation in which there is a
misalignment of the measurement basis of both parties.
In real experiments, it is unlikely that, say the rectilinear
basis used by Alice is perfectly aligned with the rectilin-
ear basis used by Bob. Furthermore, in real experiments
the polarization of the photons changes as they propa-
gate through the medium because of interactions with the
medium (air, fibers). Moreover, for some strategies, the
results of eavesdropping can be viewed as a rotation of
Bob’s measurement basis, making it more difficult to dis-
tinguish between a real misalignment of the basis and the
presence of an eavesdropper. Thus, it is important to study

Ithe effects of misalignments of the coordinate systems.

In our simulations, we use the orientations of Alice’s
polarizer as reference and tilt Bob’s basis by an angle 6y,.
Therefore Bob’s basis changes from 0° to 0° 4 6, and
from 45° to 45°+ 0,,. In Figure 1, we show our simulation
results for the fidelity as a function of 6.

Unlike in the two previous cases, the simulation results
for the sifted key depend on the choice of the simulation
model (PP or DP) for the polarizer. For the PP model, the
simulation data (solid circles in Fig. 1) is in good agree-
ment with experimental results.?”?® For this model, we
may compute the averaged fidelity by averaging (accord-
ing to Malus’ law) the probabilities for obtaining identical
bits in the sifted keys. We find

Table IV. The first 100 bits of the sifted key of the BB84 protocol in the presence of eavesdropping. The
upper part gives bits 0-50, the lower part gives bits 51-100. The differences between Alices’s and Bob’s sifted
key are emphasized by underlining the bits. The error rate is about 26%.

Alice’s bits
Bob’s bits
Alice’s bits
Bob’s bits

10100001001111000000101000001111011101101110011011
00100000001011000000001000001001010101100110011011

10111101010000001001110010110011001011100011011100
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Fig. 1. The fidelity F of the sifted key as a function of misalignment
04~ Solid circles (green): Simulation data using the PP model. Open
circles (red): Simulation data using the DP model. Dashed line (blue):
Theoretical prediction given by Eq. (9).

Fop = cos’ O )

This function is shown as the dashed line in Figure 1)
demonstrating that there is excellent agreement between
theory and simulation. The open circles in Figure 1 are the
simulation data as obtained with the DP model. Clearly,
the sifted keys obtained by using the DP model are much
more robust with respect to misalignments of the polarizers
than the ones obtained by using the PP model. On the other
hand, the DP results do not agree with currently available
experimental results,?”>2® suggesting that the polarizers that
are used in these experiments are not described by the DP
model.

5.4. Discussion

Clearly, our simulation algorithm for the BB84 does not
solve an equation of quantum theory nor does it rely on
concepts of quantum theory. This should not come as a
surprise: As quantum theory does not describe individ-
ual events (the quantum measurement paradox),*® there
is no reason to expect that quantum theory has any bear-
ing on quantum cryptography, other than that it describes
the averages over many events. As this point of view is
in conflict with popular statements that quantum cryptog-
raphy requires a full quantum mechanical description' or
that quantum cryptography relies on the Heisenberg uncer-
tainty relation, it is of interest to consider the question at
which point concepts of quantum physics enter into our
event-by-event simulation of the BB84 protocol.

From the description of the simulation algorithm, it is
clear that in order for the BB84 to be secure, it is essen-
tial that the message and messenger have the following
properties:

1. A message can be one out of two pairs of possible
items only.
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2. The messenger tells the recipient which of the two pairs
the item that the messenger carries belongs to, but the
messenger cannot tell a recipient which item it is.

3. The messenger can deliver the message only once and
after delivering the message, the messenger self-destructs.

It is not too difficult to build a macroscopic device with
these properties (minor modifications to intelligent con-
tainers used for transport of valuables and cash would do).
Imagine that Alice has a set of boxes (the messengers)
with the following properties:

1. Once closed, the box explodes when it is being tam-
pered with. The box is shielded such that when it detects
penetrating radiation, it explodes, making it impossible to
analyze its content without destroying the content. Note
that for secure quantum cryptography, similar conditions
apply to Alice’s and Bob’s station too.!

2. As long as the box is open, Alice can wire the electron-
ics inside the box such that the electronic circuit encodes
one of ‘the’ four possibilities according to Table I. After
wiring her bit, she closes the box and sends it to Bob.
3.7On the outside, the box has a button and a switch, the
setting of which corresponds to Bob’s choice of the orien-
tation of his measurements basis (see Table I). Bob puts
the switch in one of its two positions and then he presses
the button. The electronics inside the box, causes the box
to explode immediately, after five seconds or after ten sec-
onds, corresponding to the case where Bob detects a 0, ?,
or 1, respectively (see Table I).

It is not difficult to see that this classical, macroscopic
device is no less vulnerable to eavesdroppers than the
quantum cryptography system. Of course, the latter is
much more user-friendly and less expensive to operate.

6. EVENT-BASED SIMULATION OF
1+ THE EKERT PROTOCOL

Starting from the observation that coincidence in time
is a key ingredient in experimental realizations of the
EPR gedanken experiment, several computer simulation
algorithms have been proposed that (1) satisfy Einstein’s
conditions of local causality and realism and (2) exactly
reproduce the two-particle correlation that is characteristic
for a quantum system in the singlet state.®!' These algo-
rithms generate the data event-by-event, use integer arith-
metic and elementary mathematics to analyze the data, and
do not rely on concepts of probability theory or quantum
theory.

In this section, we use these algorithms to perform an
even-by-event simulation of Ekert’s quantum cryptography
protocol. For the sake of brevity, we do not review all
the details of the algorithms. The reader who is interested
in these aspects should consult the original papers.®!!
The rigorous, probabilistic treatment given in Appendix C
proves that our classical simulation model reproduces the
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Fig. 2. Schematic diagram of the event-by-event simulation of Ekert’s quantum cryptography protocol, using the (modified) Wigner inequality as
a guard against eavesdroppers. The source emits pairs ‘of particles with orthogonal but random polarization. The particles fly to Alice’s and Bob’s
observation station, respectively. The rectangular boxes labeled by R direct the particles to one of the two polarizers, using a binary pseudo-random
number. When the particle emerges from a polarizer it generates a +1 or —1 event, and a clock is used to attach a time tag to this event. After
collecting all events, Alice and Bob use time coincidence to correlate their data and to extract the key.

correlations that are characteristic for a quantum system in
the singlet state.

6.1. Simulation of the Ekert Protocol in
the Absence of an Eavesdropper

A schematic diagram of the simulation procedure is shown

in Figure 2. In the simulation algorithm, the' source

generates pairs of particles (photons in the real experi-
ment). Particle A and B travel to Alice and Bob, respec-
tively. Each particle carries a two-dimensional unit vector
given by

Sn, 1= (COS dln’ Sin d’n)
[4pt]Sn,2 = (_ sin ¢n’ Cos ¢n)

where n labels the number of the event. The vectors
S,.1 and S, , represent the polarizations ¢, and ¢, + 7/2
of the two photons that fly to Alice and Bob, respec-
tively. The distribution of i, is taken to be uniform over
the interval [0,27]. Note that after projecting the vec-
tors S, ; and S, , onto dichotomic variables, the latter
satisfy the conditions for deriving the Wigner inequality
(see Appendix A).

When the particle arrives at Alice’s (Bob’s) station,
labeled by i =1 (i =2), a random number is used to select
the polarizer that will be used to perform the polariza-
tion measurement on the photon. This measurement maps
the angle s, onto the variable x, ; = x, ;(,, A, ;) = £1.

(10)
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Thus, the results of generating N of these events can be
summarized by

F.:

n,i

{x,, =1L, A, ,==1|n=1,...,N} (11)

where A, ; denotes which of the polarizers has been
selected. It is clear that we have assumed that the value of
1Xp; depends on the incoming polarization and the internal
orientation of the selected polarizer only.

. In any real experiment, one needs a criterion to decide
whether two objects form a single two-particle system or
whether they may be considered as two single-particle sys-
tems. EPR experiments are no exception to this.'*!'* EPR
experiments with photons use coincidence in time to iden-
tify a single pair of two photons. Note that time coinci-
dences play an essential role in real quantum cryptography
experiments.

In practice, Alice and Bob add time tags to their detec-
tion events in order to be able to count coincidences. As
the optical components (polarizers) induce time delays, it
is reasonable for a particle to experience a time delay when
it passes through the detection system. To mimic this, we
introduce the time delay into our simulation algorithm.®!!
At each station, we generate a time tag that depends on
the local settings only. Then, we compare the difference
between the two time tags with a certain time window W.
If this difference is smaller than W, the detection events
are considered to be coincident. Otherwise, they are
discarded.
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We assume that the maximum time delay 7, ; for a par-
ticle passing through a polarizer depends only on the angle
difference between the polarization of the incident particle
and the internal orientation of the polarizer. For instance,
on Alice’s side, we set T, | =T, (i, — ¢4 ;). The time
tag 7, ; itself is taken to be a pseudo-random number from
the interval [0, 7, ,].*'" Summarizing, the simulation algo-
rithm generates two data sets

T,,={x,,=%1,A, ,=+1,1,,|n=1,...,N} (12)

for i =1 (Alice) and i =2 (Bob). The structure of these
data sets is identical to the data sets collected in EPR
experiments with photons.'> 4

From Refs. [8-11], we know that the simulation model
can reproduce all the results of quantum theory of a sys-
tem of two S = 1/2 particles if we take 7, ;(6) =|sin2|
(note that we have chosen the maximum time delay as
the unit of time). Here d is a free parameter, which we
call the time-delay parameter. If d =0, we have T, ; =1,
implying that the maximum time delay does not depend
on the relative orientation. In this case, the time delay has
no essential influence on the final results.®!! In our simu-
lation (and also in experiment'®), we first fix the time-tag
resolution, denoted by 0 < 7 < 1. Then, in our simulations,
the time window is defined by W = k7, where k is an inte-
ger. It is clear that 7 effectively determines the resolution
by which we can resolve differences in the angles. After
generating N pairs and collecting the data Eq. (12), we
count the coincidences and we obtain an estimate for the
probability

Ciy

P L by) =
i (Das dp) C..1C_+C,_FC.,

(13)

where C,, = C, (¢,, ) denotes the number of coinci-

dences between the signal x = £1 at station 1 and'a signal "

y =1 at station 2 for a fixed combination of ¢, andip,
and is given by

N
ny = st,xmlSy,xnl@(W_ |tn,1 _tn,2|) (14)

n=1

From Eq. (13) we compute the Wigner parameter S
according to Eq. (3).

We first show simulation results obtained by using
the DP model. In Figure 3, we plot the probability
P, (¢4, ¢p) for fixed ¢, =0 and 0 < ¢z <27. The val-
ues of the other parameters used in the simulation are
k=1, d =2, 7=0.00025, and N = 10%. The dashed
line in Figure 3 is the quantum theoretical prediction
Eq. (4). From Figure 3, we conclude that there is an excel-
lent agreement between the simulation data and quantum
theory.

For comparison, in Figure 4 we present the simulation
results for d =0 and d = 4. For d = 0, the two time
tags that we generated are just two independent uniform

J. Comput. Theor. Nanosci. 5, 490-504, 2008

Event-by-Event Simulation of Quantum Cryptography Protocols

0.5 T T T T Ly
"‘ﬂ *,
.j “i
0.4r S ]
8 4
s <
S L 3 [} -
& 03 > &
- » L)
K ; s
= g A
ot 02f ¢ * 1
¢ °
¢ D)
s Y
0.1 & % .
o %
s
0 . . . . . . . .

0 20 40 60 80 100 120 140 160 180
[0A—0g

Fig. 3. P, (¢4, ¢5) as a function of |¢p, — ¢y|. Solid circles (red):
Simulation data obtained by using the DP model with d = 2. Dashed line
(blue): Quantum theory (Eq. (4)).

pseudo-random numbers between 0 and 1 and contain no
information about the polarizations of the incident photons
or the orientations of the polarizers. Therefore, because of
the procedure to count coincidences, the size of the win-
dow can only influence the numbers of events we collect:
W affects the statistical fluctuations only. As a check, we
have taken a fairly large time window (W = 1007) and
found that in this case, the distribution P, (¢,, ¢p) is
very close to the distribution that we find if we accept
all the events (no coincidence window). For d = 4, we
see from Figure 4 that the correlations are “stronger” than
those of the quantum system.3-!!

Next, we consider the Wigner parameter S for the fixed
relation of the four orientations mentioned above: ¢, | =

b1 =0, by =¢—0, by, =@+0. Inserting these spe-

(cial values into Eq. (3) we get

. 1
- S(6) =sin® 6 — 3 sin”26 (15)

0.5

Py (94, 05)

60 80 100 120 140 180

|0A=0gl

160

Fig. 4. P_ (¢, ¢;) as a function of |p, — ¢,|. Open circles (red):
Simulation data by using the DP model with d = 0. Solid circles (green):
Simulation data obtained by using the DP model with d = 4. Dashed line
(blue): Quantum theory (Eq. (4)).
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Fig. 5. The Wigner parameter S as a function of . Solid circles (red):
Simulation data obtained by using the DP model with d = 2. Dashed line
(blue): Quantum theory (Eq. (3)).

Since in this case, the Wigner parameter depends, on. 6
only, it is sufficient to consider the case ¢ = 0.

The simulation results are plotted in Figure 5. The val-
ues of the parameters used in the simulation are k = I,
d =2, 7=0.00025, and N = 10%. Again, we see an excel-
lent agreement between the simulation data and quantum
theory. Furthermore, from Figure 5 it is clear that the max-
imum violation of Wigner inequality is reached at § = 30°.
Therefore, in the Ekert protocol, the orientations of both
parties are chosen to be ¢, | = ¢y =0°, ¢, , = 30°,
¢ , = —30°. Then, the violation of the Wigner inequal-
ity signals the strong anti-correlation of the pairs and the
Wigner parameter S can be used to quantify the security
of the protocol.

For completeness, we show in Figure 6 the results for
the Wigner parameter for the cases d =0 and d =4.
As discussed above, d = 0 corresponds to the case .

for which correlations are computed without taking the " "

time-tag information into account, showing “classical’cor-
relations. For d =4, the correlation is stronger than the one
of the quantum system, hence the violation of the Wigner
inequality can be larger.

Having established that our simulation algorithm repro-
duces the results of quantum theory of a single system of
two polarizations, we now use the algorithm to simulate
Ekert’s quantum cryptography protocol.

As discussed earlier, the anticorrelated bits are gener-
ated using a parallel basis (that is, the basis selected by
both parties is ¢, | = ¢ = 0°). After inverting all the

Zhao and De Raedt
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Fig. 6. The Wigner parameter S as a function of 6. Open circles (red):
Simulation data obtained by using the DP model with d = 0. Solid circles
(green): Simulation data obtained by using the DP model with d = 4.
Solid line (red): Quantum theory (Eq. (3)).

bits-from one of the two parties, we expect to obtain two
identical sequences. The first 100 bits from a long simula-
tion"are shown in Table V. In this simulation, which uses
the DP model, we observe an almost perfect anticorrela-
tion of the two photons. Indeed, if ¢, | = ¢ ; =0°, the
relative error in the key is of the order of 107>,

Finally, we simulate this protocol by using the PP
model. It is known that in order to reproduce the correct
quantum correlations, we must take d = 4.'%'! Except for
the value of d, we take the same simulation parameters
as in the DP-model simulations and repeat the calculation.
The simulation results are shown in Figure 7.

After inverting all the bits from one of the two parties,
we obtain two sequences of bit strings, the first 100 bits
being shown in Table VI. The error rate in this simulation
|is of'thé order of 1072, That this error rate is larger than
in the DP simulation is easy to understand: If we use the
PP model, the outcome of each individual measurement is
inherently (pseudo-) random instead of deterministic as in
the case of the DP model.

6.2. Simulation of the Ekert Protocol in
the Presence of an Eavesdropper

In the previous subsection, we have demonstrated that by
using the perfectly anticorrelated source, together with the
time-tag model and a time window to count coincidences,
we can reproduce the correlation that is characteristic for
a quantum system in the singlet state. In this subsection,

Table V. The first 100 bits of the sifted key of Ekert’s protocol without eavesdropping, as obtained by using
the DP model. The upper part gives bits 0-50, the lower part gives bits 51-100. In this case, there are no
errors in this part of the sifted key (the error rate is very low (107°)).

Alice’s bits
Bob’s bits
Alice’s bits
Bob’s bits

11100010011011111110100000100001011101001111010101
11100010011011111110100000100001011101001111010101

10010110010100100011010010110101100110100000010000
10010110010100100011010010110101100110100000010000
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Fig. 7. The Wigner parameter S as a function of . Solid circles (green):
Simulation data obtained by using the PP model with d = 4. Open cir-
cles (red): Simulation data obtained by using the PP model with d = 0.
Dashed line (blue): Quantum theoretical result for S (see Table II);
Dashed line (black): Analytical results for S and d =0 (see Appendix C).

we simulate the situation in which an eavesdropper, is
present.

First, we consider the special case in which- Eve
uses two polarizers with fixed, perpendicular orientations:
Y, = 45° and ¢, = 135°. We should imagine that Eve can
put these polarizers on both sides of the source. Hence,
she can manipulate the polarization that Alice and Bob
will observe in their measurements.

Our simulation model can easily deal with this com-
plication: We just put two PPs (or DPs) between the
source and Alice and the source and Bob, respectively. We
repeat the simulations as in the case without an eavesdrop-
per and plot the two Wigner parameters S and S" as a
function of 6.

In Figure 8, we see two groups of curves with the same
shape: The simulation result of S’ (blue solid diamonds)

and the quantum theoretical result of the modified Wigner " *

parameter (red solid line) agree very well. The simulation
result of S (green solid triangles) and the quantum theoret-
ical result of the Wigner parameter (blue dashed line) are
in excellent agreement too. Both the data for S and S’ are
larger than zero, signaling the presence of an eavesdrop-
per. As S’ > S, the modified Wigner parameter clearly is
more powerful to disclose the eavesdropper.

Also shown in Figure 8 is the fidelity of the sifted key
as a function of 6. The simulation data for F(6) lies on
top of the theoretical expectation F(6) = 1/2. It is clear

Table VI.
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Fig. 8. The fidelity F of the sifted key and the two Wigner parame-
ters S and S’ as a function of 6. Solid circles (red): Simulation data for
F; Dashed line (blue): quantum theoretical result for F' (F = 1/2); solid
diamonds (blue): Simulation data for S’; solid line (red): Quantum theo-
retical result for S’ (see Table II); solid triangles (green): simulation data
for S; dotted line (black): Quantum theoretical result for S (see Table II).

that-the fidelity does not depend on the angle 6. In this
case, the value of the fidelity is about 0.5 due to the choice
of the orientations of Eve’s polarizers.

Next, we take 6 = 30° (the optimal values for Ekert’s
protocol without eavesdropper) to study the dependence
of the fidelity on the settings of Eve’s polarizers. We
consider two different situations: The first one is that
Eve’sspolarizers always have perpendicular orientations.
The second one is that we fix one of Eve’s polarizers at
s =90°, and change the other setting ¢, gradually from
0° to 180°.

The results for the first case are shown in Figure 9. The
upper curves show the dependence of the fidelity on the
|orientation of Eve’s polarizer: The solid circles represent
the .simulation data and the dashed line is the theoreti-
cal result according to Malus’ law (F =1 — % sin? 2¢).
The data in the middle are the simulation results (solid
blue diamonds) and the quantum prediction (red line) of
the Wigner parameter S’. The bottom curves in Figure 9
show the simulation data and the theoretical result for the
Wigner parameter S. Recall that in order to detect the pres-
ence of an eavesdropper, we must have S >0 or §' > 0
for all ¢,. Clearly, there is excellent agreement between
theory and simulation.

The results for the second case are depicted in
Figure 10. The legend is the same as in Figure 8. Again,

The first 100 bits of the sifted key of the Ekert protocol without eavesdropping, as obtained by

using the PP model. The upper part gives bits 0-50, the lower part gives bits 51-100. The differences between
Alices’s and Bob’s sifted key are emphasized by underlining the bits. There are only 2 errors in this part of

the sequence.

Alice’s bits
Bob’s bits
Alice’s bits
Bob’s bits

00000011010010101010110010010001001001110111100011
00000011010010101010110010110001001001110111100011

11100010110001011100110000000100100101101000100001
11100010110001011000110000000100100101101000100001
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Fig. 9. The fidelity F and the two Wigner parameter S and S’ as a
function of s, for the case i, =y, +90°. For the legend, see Figure 8.
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Fig. 10. The fidelity F and the two Wigner parameter S and S’ as a

function of s, for the case {; = 90°. For the legend, see Figure18.|

. > 3 3
there is excellent agreement between theory and'simula-*"

tion. From Figure 10, it is clear that as S < O for some
range of angles, using the Wigner parameter S would not
allow Alice and Bob to recognize the existence of the
eavesdropper, whereas if they use S’ they can.

7. SUMMARY

We present a new approach to simulate quantum cryp-
tography protocols using event-based processes. The main
feature of this approach is that it simulates the transmis-
sion of the individual bits by an event-based process. The
algorithm that generates the events does not solve any
quantum mechanical equation, thereby circumventing the
fundamental problems arising from the quantum measure-
ment paradox. Our simulation data for the BB84 and the
Ekert protocol are, in all respects, in excellent agreement
with the theoretical expectations. Extending the simulation
method to account for effects such as depolarization by the
medium (fibers, air) and noise is left for future research.
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APPENDIX A: WIGNER INEQUALITY

We consider a two-particle system (particle A and B) and a
pair of instruments that can measure a two-valued variable
on each particle. The two possible values of the observed
variable are taken to be 1. Each instrument has a range
of settings. For applications to quantum cryptography, it is
sufficient to consider the special case for which particle A
is detected using one of the two settings ¢, ; and ¢, ,,
and particle B is detected using the two settings ¢, | =
¢, and ¢, ,. Each setting corresponds to a particular
orientation of the apparatus that measures the polarization.
It is assumed that the two observed results for a pair of
particles are always opposite if the two instruments have
the same setting. The Wigner inequality

P++(¢A,17 ¢B,2)+P++(¢A,2’ d’B,l)
_P++(¢A,2’ d)B,z) 2 0

is a convenient tool to characterize the correlation between
the results of the measurements on particles A and B.

Proof. For any combination of settings, for example,
¢, and ¢y ,, the frequency of obtaining +1 on both
sides is given by

(A

N++(¢A, 1> ¢B, 2)

F++(¢A,l’ ¢B,2) = N

(A2)
where- N, (¢, |, ¢p ,) denotes the number of events for
which both instruments yield +1 and N is the total number
of events. For a different combination of the settings, the
value of N is assumed to be the same (= ideal experiment
assumption). We now show that

“ b Nep(da 1952 + N (Da oy b5 1)
| _N++(¢A,2’ ¢B,2) = 0

holds under the conditions mentioned earlier.
Let us denote by ¢, and ¢\’ the results recorded
for the ith pair using the settings ¢, , and ¢, Then

N, (¢, 1. Pp o) can be written as

(A3)

a1

N++(¢A,1’ d)B,z) = Z —_—

A4
27 > (A4)

If the settings of the two instruments are such that
¢4 = dp, then we have d)f{?l = —¢>§;f)l and

N 1+¢('1) 1+¢(”)
N++(¢A,l’¢3,l):Z—M—M=O

AS
2 > (AS)

Hence, instead of proving Eq. (A3), we can equally well
prove that

N++(¢A, 1° d)B,Z) +N++(¢A,2s d)B, 1) - N++(¢A,2’ ({bB,z)
_N++(¢’A,1» d)B, 1) =20 (A6)
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Substituting Eq. (A4) into Eq. (A6) we obtain

§[<1+¢E;’?1><1+¢§;2>+<1+¢<"> )(1+ by,

n=1
—(1+ 51+ %) — (1+ 657D+ ¢")] >
(A7)
After simplification, we find
Z(d»(") Su) (B —di) > (A8)
Making use of the assumption that ¢, = —¢\",, we find

that (d)(") qb(") )t(qﬁ(") (bfg",)l) > 0. Hence, inequality
Eq. (A8) holds and so do inequalities Eqs. (A6) and (A3).
In the proof of Eq. (A3), it has been assumed
that the observations {¢\ | n=1,...,N}, {¢p\s | n=
SNV Y In=1,...,N},and (¢} |n=1,..., N}
do not depend on whether we record N, (4 1, Pp2)s
N, (a2 &p1)s O Ny (b2, dp5). In a computer sim-
ulation, it is a simple matter to satisfy this assumption
because we have perfect control over the pseudo-random
numbers that are used to generate the events but in real
experiments, the validity of this assumption cannot be
taken for granted.
Having shown that

F++(¢A, 1> ¢B,2) +F++(¢A,2’ d)B. 1)
_F++(¢)A,2’ d)B,z) 2 0

and assuming that the observations {qﬁgf)l |n=1,..., N},
{¢4h | n=1,....N}, {¢§) [n=1,...,N}, and {$’
n=1,..., N} are independent random variables, we may
invoke the law of large numbers®® to argue/ that for
N — o0, Fi (¢4 1, Pp.2) = Pri(da . dp ) with proba-,
bilty one. Under these assumptions, the Wigner 1nequa11ty
Eq. (A1) holds.

(A9)

APPENDIX B: MODIFIED WIGNER
INEQUALITY

The proof of the modified Wigner inequality

P++(¢A,1’ ¢B,2) +P++(¢A,2’ ¢B,1) +P——(¢A,17 ¢B,1)
_P++(¢A,2s d)B,Z) =20 (Bl)

is very similar to the proof of the original Wigner inequal-
ity. The essential difference is that the modified Wigner
inequality holds if we drop the assumption of perfect anti-
correlation.

Adopting the same strategy as in Appendix A, we have
to prove that

Ny (ba 1, d52)+N +(qﬁA 2 Pp 1) FN__(Py 15 b5 1)
- ++(¢A,2s ¢B,2) = (BZ)
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Using Eq. (A4), we can rewrite Eq. (B2) as

STA+DA+ 5% + 1+ (1+ by

n=1

+(1=d D)1=y ) — L+ 1+ 55 >

(B3)
After simplification, we find
N
Z[2+¢('Z) (¢('l) (ﬂ) )+¢(11) (d)(") (n) ] >0 (B4)
n=1
It is easy to see that
24+ ¢ (@) — ) + by (B + ) >0 (BS)

always holds. Hence, inequality Eq. (B2) holds. Invoking
the same arguments that were used to replace frequen-
cies by probabilities in Appendix A, it then follows that
inequality Eq. (B1) holds.

APPENDIX C: PROBABILISTIC TREATMENT

If we replace the deterministic sequence of pseudo-random
numbers that we use in the computer simulations by
the mathematical concept of logically independent ran-
dom variables, as defined in the (Kolmogorov) theory of
probabilitity,”®*° we can readily obtain analytical expres-
sions for the expectation values that we compute with the
simulation model. This then allows us to analyze the event-
based simulation of Ekert’s protocol analytically. In par-
ticular, we will prove that for both the deterministic model
of the polarized beam splitter (DP) and the probabilistic
model of the polarized beam splitter (PP), the event-by-

| event simulation reproduces exactly the two-particle prob-
| -ability Eq. (13) of quantum theory.

We start by assuming that there exists a probability,
denoted by P(x,,x,,1,,1, | a, B), to observe the data
{x,,,} and {x,,t,} for fixed orientations {a, 8} on both
observation stations.

As a first step, let us express the probability for observ-
ing the data {x,, x,, t;, t,} as an integral over the mutually
exclusive events &, &,. According to the rules of probabil-
ity theory,”3® we have

P(x;, xy, t, 4, | @, B)
1 27 27
ZR/O /0 P(x;, %y, t, 1 |, B, &, &)
x P&, & | a, B)dé, dé,

where £, &, denotes the two-dimensional unit vector rep-
resenting the polarization. Starting from the exact repre-
sentation Eq. (C1), we may now use the knowledge that in
our simulation model (but not necessarily in experiment),
for each event, the values of {x,, x,,t,1,} are logically
independent of each other and that the values of {x,, ,}

(ChH
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({x,, 1,}) are also logically independent of B and &, (@
and ¢,). Thus, we may write

P(x;, x5, 11,1, | a, B)

1 27 P27
:mK) [) P(xl’tl|x2’t2’a’ﬁ’§l’§2)
X P(xy, 1 |, B, &, &)P(&1, & | o, B) dE, dE,

1 297 P21
=) [ Pnla)
X P(xy, 1, | B, &)P(&), & | @, B) d§; dE,

= #/Ow/(; 7TP(’CI |, )Pt | a, §)P(x, | B, &)
X P(ty | B, &)P(&), & | a, B) dé, d§,

27 27
:#/o /0 P(x; [ a,&)P(t) | a, &)P(x, | B, &)

x P(t, | B. &)P (&, &) d, dé&, (€2)
where, in the last step, we used the knowledge 'that in our
simulation model, the values of & and &, are logically
independent of « or B. Note that Eq. (C2) gives the exact
probabilistic description of our simulation model.

The mathematical structure of Eq. (C2) is the same as
the one that is used in the derivation of Bell’s results. Thus,
if we would continue along the same line as in Bell’s work
the model defined by Eq. (C2) cannot produce the corre-
lation of the singlet state. However, the real factual situa-
tion in the experiment is different: The events are selected
using a time window W that the experimenters try to make
as small as possible."* Accounting for the time,window,
that is multiplying Eq. (C2) by the step function (see Eq.

(14)) and integrating over all 7, and 7,, the expression for '

the probability for observing the event (x,, x,) reads

P(x), x|, B)

_ L TITPO@ E) PG | B w(a. Bg £, WP (6 &) dE dé
Samst fo JoT PGy | E)P(x, | B &) w(a. B.€). & W)P(£,. &) dE, dE,

_ o ST PO @ )P | B wa B £ WP (6 6) dE dE, (©3)
JoT T W@, B g6 WP (E). £) dE dE,

where the weight function in our simulation is

w(a7 B’ §1’ 52’ W)

1 /T’d S dnOW |4 (C4)

=— t / t — |t —t

Tl )y 1=k
with 7} = Ty|sin2(a — §,)|¢ and T, = Ty|sin2(B — &,)|¢,
and the time delays ¢, are distributed uniformly over the
interval [0, 7;]. The weight function will be less than one
unless W is larger than the range of (7,, t,). The integrals
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in Eq. (C4) can be worked out analytically, yielding

w(a, B, &, 6. W)

[T2 4+ T2 +2(T, + T,)W + (W —T))|W — T}

T AT T,
+(W—T)|W—T,|—(W—T,+T)
X |W—T1+T2|—(W+T1—T2)|W+T1—T2|] (CS)

We now consider the specific case of the PP and the DP
model, respectively. The PP reproduces Malus law for a
single polarizer, that is the probability distributions P(x, |
a,€)) and P(x, | B, &) can be written as

1+ x,cos2(a—§))
2

1 +x,c052(8— &)
2

P(xl | @, gl) =
(Co)

P(x, | B, &) =

Let us now consider the case of Ekert’s protocol and spe-
cialize to the case that the source emits particles with
opposite, polarization P(&,, &) = 6(&,+7/2—&,)P(&))
with P(&,) being a uniform distribution. If d =0 and
W < T,, we have w(a, B, &, &, W) = (T, — W)W/TE.
Likewise, if W > Tj, w(a, B, &, &, W) = 1. Therefore, if
W > 1, or d =0, we have

P(x, % |, )
LTI Py @ £)P(n | B &P &) dé, dé,
R GRAYRS
- i/h(wx, cos2(a— £))(1 — x,cos2(B — £)) dé
87 Jo

_'2 L x,co82(a— B)

C7
. ()
and, more specifically,
2 —cos2(a—pB)
Pefa, p) = =R (C8)

The corresponding expression of the Wigner parameter S

reads
2 —cos26+cos46

8

From Egs. (C7), (C8) and (C9), it is clear that if we
ignore the time-tag information, the two-particle probabil-
ity takes the form of the hidden variable models considered
by Bell,’! and the event-based model cannot reproduce the
results of quantum theory.

Next, we take into account the time-tag information and,
to be able to obtain a closed-form expression, we focus on
the limit W — 0. Then, Eq. (C5) reduces to

S =

(C9)

w(a, B, &, 6, W—0)= +@(W?) (Cl10)

max(7;, )
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Inserting Eq. (C10) and P(&,&,) =6(&,+7/2—&,)
into Eq. (C3) we find

P(x, x, | a, B)

27 2w
= </0 /0 P(x; | e, &)P(x, | B, &)P (&), &)

< max(|sin2(£, — ). | sin2(é, — B)])“ dt, dfz)

/</027T /OZWP(g], &) max(|sin2(¢, — @),

|sin2(& — B))) dé, dgz)
_ <14f2”(1 +x, cos2(a — £))(1 —x, cos2(B— &)
0
x max(|sin2(§ — a)|, | sin2(§ — B)|)’d d§)

/</02” max(|sin2(¢ —a)|, |sin2(¢§ —B)) ¢ d§>
(C11)

For d = 4 the integrals in Eq. (C11) can be worked out
analytically and the result of this excercise reads

—x;x,c082(a— B)
4

1
P(x;, x| a,B)= (C12)
yielding

P _(a,B)= %sinz(a—ﬁ) (C13)

in exact agreement with the expression for a system of two
S = 1/2 quantum objects in the singlet state.
The analytical results for the deterministic model of the

polarizing beam splitter can be derived in the same man- & |

ner: We only have to change the specific expression for
the probability distribution of a single polarizer. In the DP
model, the values of x, and x, are determined by the sign
function. The corresponding probability distributions can
be written as

P(x; | a, &) = 0O(x, cos2(a—§))
P(x, | B, &) = O(x,c082(B—&,))

Now we study the same specific cases as we did earlier.
First we consider the case for which W > T;, or d = 0.
Then, we have

P(x17x2 | «a, B)
ST T P(x, | @, €)P(x, | By £)P(E), &) dE, dé,
BT P(E. £) dE, dE,
= o [0 con 2 £)O(—xscos2(8 - £)
(C15)

(C14)
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yielding
1

P (a,B)= 5

Second, we consider the limit W — 0 and find that
for fixed (a, B), the probability for observing the event
(x,, x,) is given by

P(x, x, | @, B)

- (/0 77/0 7P(x1 | @, §))P(x, | B, &) max(|sin2

(C16)

(6~ el sin2(E, - ) P61 &) d, s )
J ([ [ maxtsinate, ol sin2(6: - )
<P(E1, &) df, )
e ( /0 0 (x, cos2(a — £))O(—x, c0s 2(B — £))
([ sin2(€ ~ @), [sin2(6 - ) )

/</027 max(|sin2(¢ — @), |sin2(¢§ — B)|) ¢ d§>
(C17)

Writing § = 8 — « and putting d = 2, we find that the
probability P, , («, 8) is given by

P, (a,B)
3m/d+0/2 | . _ 3m/at | . _
- o sin2g |~ dg+ [T | sin2(&— 0)| 7 dé
I ™= 4+0/2 ) . w/2+6/2 ) .
2 f‘;;é+/ |sm2§|*dd§+fﬂ/4:9/2 |sin2(& — )|~ dé
T 8%y
__=!§sm 0 (C18)

in exact agreement with the expression for a system of two
S = 1/2 quantum objects in the singlet state.

Acknowledgments: We thank K. De Raedt, A. Keim-
pema, K. Michielsen, and S. Yuan for fruitful discussions.

References

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys.
74, 145 (2002). -

2. D. Home, Conceptual Foundations of Quantum Physics, Plenum
Press, New York (1997).

3. L. E. Ballentine, Quantum mechanics, A Modern Development,
World Scientic, Singapore (2003).

4. K. De Raedt, H. De Raedt, and K. Michielsen, Comp. Phys. Comm.
171, 19 (2005).

5. H. De Raedt, K. De Raedt, and K. Michielsen, J. Phys. Soc. Jpn.
Suppl. 76, 16 (2005).

6. H. De Raedt, K. De Raedt, and K. Michielsen, Europhys. Lett. 69,
861 (2005).

503


http://www.ingentaconnect.com/content/external-references?article=0034-6861(2002)74L.145[aid=6779865]
http://www.ingentaconnect.com/content/external-references?article=0034-6861(2002)74L.145[aid=6779865]
http://www.ingentaconnect.com/content/external-references?article=0010-4655(2005)171L.19[aid=7891904]
http://www.ingentaconnect.com/content/external-references?article=0010-4655(2005)171L.19[aid=7891904]
http://www.ingentaconnect.com/content/external-references?article=0295-5075(2005)69L.861[aid=7891903]
http://www.ingentaconnect.com/content/external-references?article=0295-5075(2005)69L.861[aid=7891903]

Event-by-Event Simulation of Quantum Cryptography Protocols

7.

8.

9.

10.

11.

12.

13.

14.
15.

16.
17.
18.

K. Michielsen, K. De Raedt, and H. De Raedt, J. Comput. Theor.
Nanosci. 2, 227 (2005).

K. De Raedt, K. Keimpema, H. De Raedt, K. Michielsen, and
S. Miyashita, Euro. Phys. J. B 53, 139 (2006).

K. De Raedt, H. De Raedt, and K. Michielsen, Comp. Phys. Comm.
176, 642 (2007).

S. Zhao, H. De Raedt, and K. Michielsen, Found. of Phys. (2007),
submitted.

H. De Raedt, K. De Raedt, K. Michielsen, K. Keimpema, and
S. Miyashita, J. Comput. Theor. Nanosci. 4, 957 (2007).

P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173
(1986).

G. Weihs, T. Jennewein, C. Simon, H. Weinfurther, and A. Zeilinger,
Phys. Rev. Lett. 81, 5039 (1998).

G. Weihs, Ph.D. Thesis, University of Vienna (2000).

M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, Cambridge (2000).

C. Bennett, G. Brassard, and A. Ekert, Sci. Am. 267, 26 (1992).

G. Stix, Sci. Am. 292, 65 (2005).

C. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin,
J. Cryptology 5, 3 (1992).

504

19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.

Zhao and De Raedt

A. Ekert, Phys. Rev. Lett. 67, 661 (1991).

T. Jennewein, C. Simon, and G. Weihs, Phys. Rev. Lett. 84, 4729
(2000).

D. Naik, C. Peterson, and A. White, Phys. Rev. Lett. 84, 4733 (2000).
E. Wigner, Am. J. Phys. 38, 1005 (1970).

S. Castelletto, I. Degiovanni, and M. Rastello, Phys. Rev. A 67,
044303 (2003).

F. Bovino, A. Colla, and G. Castagnoli, Phys. Rev. A 68, 034309
(2003).

M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford
(1964).

H. De Raedt, K. De Raedt, K. Michielsen, and S. Miyashita, Comp.
Phys. Comm. 174, 803 (2006).

Y. Jiang, X. Wang, B. Shi, and A. Tomita, Opt. Exp. 13, 9415 (2005).
Q. Zhang, J. Yin, and T. Chen, Phys. Rev. A 73, 020301 (2006).

G. R. Grimmet and D. R. Stirzaker, Probability and Random Pro-
cesses, Clarendon Press, Oxford (1995).

E. T. Jaynes, Probability theory, The Logic of Science, Cambridge
University Press, Cambridge (2003).

J. S. Bell, Speakable and Unspeakable in Quantum Mechanics,
Cambridge University Press, Cambridge (1993).

Received: 7 October 2007. Accepted: 8 November 2007.

J. Comput. Theor. Nanosci. 5, 490-504, 2008


http://www.ingentaconnect.com/content/external-references?article=1546-1955(2005)2L.227[aid=7891902]
http://www.ingentaconnect.com/content/external-references?article=1546-1955(2005)2L.227[aid=7891902]
http://www.ingentaconnect.com/content/external-references?article=0010-4655(2007)176L.642[aid=7891889]
http://www.ingentaconnect.com/content/external-references?article=0010-4655(2007)176L.642[aid=7891889]
http://www.ingentaconnect.com/content/external-references?article=1546-1955(2007)4L.957[aid=8249250]
http://www.ingentaconnect.com/content/external-references?article=0295-5075(1986)1L.173[aid=6779977]
http://www.ingentaconnect.com/content/external-references?article=0295-5075(1986)1L.173[aid=6779977]
http://www.ingentaconnect.com/content/external-references?article=0031-9007(1998)81L.5039[aid=7891893]
http://www.ingentaconnect.com/content/external-references?article=0933-2790(1992)5L.3[aid=6779867]
http://www.ingentaconnect.com/content/external-references?article=0031-9007(1991)67L.661[aid=249433]
http://www.ingentaconnect.com/content/external-references?article=0031-9007(2000)84L.4729[aid=8249247]
http://www.ingentaconnect.com/content/external-references?article=0031-9007(2000)84L.4729[aid=8249247]
http://www.ingentaconnect.com/content/external-references?article=0031-9007(2000)84L.4733[aid=8249246]
http://www.ingentaconnect.com/content/external-references?article=0002-9505(1970)38L.1005[aid=8249245]
http://www.ingentaconnect.com/content/external-references?article=0010-4655(2006)174L.803[aid=7891877]
http://www.ingentaconnect.com/content/external-references?article=0010-4655(2006)174L.803[aid=7891877]

