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Abstract

Three numerical algorithms are proposed to solve the time-dependent elastodynamic equations in elastic solids. All algo-
rithms are based on approximating the solution of the equations, which can be written as a matrix exponential. By approximating
the matrix exponential with a product formula, an unconditionally stable algorithm is derived that conserves the total elastic
energy density. By expanding the matrix exponential in Chebyshev polynomials for a specific time instance, a so-called
“one-step” algorithm is constructed that is very accurate with respect to the time integration. By formulating the conventional
velocity-stress finite-difference time-domain (VS-FDTD) algorithm in matrix exponential form, the staggered-in-time nature
can be removed by a small modification, and higher-order in time algorithms can be easily derived. For two different seismic
events the accuracy of the algorithms is studied and compared with the result obtained by using the conventional VS-FDTD
algorithm.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

Animportant aid in the understanding of wave propagation ininhomogeneous media is seismic forward modeling.
In all but the simplest cases, an analytical solution of the elastodynamic equations is not available, and one must
resort to numerical solutions. For this, two main strategies can be followed: one solves the elastodynamic equations
either in the strong formulation, where the equations of motion and boundary conditions are written in differential
form, or in the weak formulation, where the equations of motion are given in integral form. The latter formulation,
implemented by finite elemefit, 2], spectral elemeri8,4] or finite integral method,6], may be preferred to deal
with complex geometries, or non-trivial free surface boundary conditions.

The first strategy (the strong formulation) is followed in the finite-difference approach that is based on solving
either the first-order velocity-stress differential equatipih®], or the second-order wave equat{@0-12] In the
original formulation of the velocity-stress finite-difference time-domain (VS-FDTD) appiida8h space and time
are both discretized using second-order finite differences. Many enhancements have been introduced to increase
the accuracy and treatment of special boundary conditions. For example, spectral methods have been employed to
increase the accuracy of the approximation of the spatial derivative opdficBeli$] a rotated staggered spatial grid
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has been developed to surmount some instability and lack of spatial accuracy1&ueslynomial expansions of
the time evolution operator have been used to increase the accuracy and efficiency of the time integration proces:
[14,17]

Although each specific method cited above offers its own advantages and drawbacks, none of these method:
feature unconditional stability and/or exact energy conservation, which can be useful for long integration times, and
high material contrast situations, where instabilities have been ngfi6gdrhe algorithms that will be introduced
in this paper, address this issue.

Starting from the velocity-stress first-order differential equations, it can be showSéstien 3 that the solu-
tion of these equations can be written as the matrix exponential of a skew-symmetric matrix. This constitutes an
orthogonal transformation, conserving the total energy density. Guided by recent results regarding the numerical
solution of the time-dependent Maxwell equatigt8—24] where the underlying skew-symmetry of the equa-
tions of motion is exploited in a matrix exponential approach, we apply this framework to the current problem. In
Section 3this framework is briefly repeated for convenience and three algorithms are derived to solve the time-
dependent elastodynamic equations. The incorporation of the presence of a source is desSelotdrird For
some typical examples, the performance and efficiency of the algorithms is stu8iection 5and the conclusions
are summarized i8ection 6

2. Theory

In the absence of body forces, the linearized equation of momentum conservatiof2eads

92 3
Pﬁui = Z %Uij, 1)
7

wherep is the densityy; the displacement field ang the stress fieldi(= x, y, z). It can be recast into a coupled
first-order velocity-stress equati$ri, yielding in matrix form

0 -cDf
a (o o
t\ v -D 0 v
o)
Here,o = (0xx, Oxys Oxz, Gyx, Oyys Oyz, Ozx Oz 0221, V = (Uy, vy, V)| is the velocity field andD the matrix
containing the spatial derivatives operators,

o 19 109 190 190
— —— —-—— —-—— 0 0 -=-— 0 0
ox 20y 20z 20y 20z
10 19 19 19
D=| 0 =— 0 - = == 0 -— 0 1. 3
2 0x 20x dy 20z 20z (3)
o o 1% o o 12 1o 19 9
2 0x 20y 20x 29y 0z
The stiffness tensal’ = {Cjjk } relates the stress and strain,
oij = Ciji ek 4)

and is symmetric and positive definite for elastic solids.
Some important symmetries in matexjuation (2xan be made explicit by introducing the fields

w = ,/pv (5)
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and

s— %a. ©

The expressior/C is valid sinceC is symmetric and positive definite.
By definition, the length ofy = (s, w)T, given by

112 = (yly) = [ Yy dr = f W2 +sH)dr = / (V2 +oTC o) dr @)
|4 Vv Vv

is related to the elastic energy density

w= 1(/0V2 +oTC o) = z pv? 4 Z Cijui €ij ek (8

2 2 ijkI o
of the fields.
In terms ofy,, matrixequation (2becomes
0 —ﬁDTi
. NG
V= v ="Hy. 9)
t 1
—DVJC 0
N/
Using the symmetric properties pfand+/C, one can prove that the matri is skew-symmetric
1 T 1
0 —Dﬁ) 0 JCDT —
: (% 7
veor LY 0 S N
NG VP

with respect to the inner product as definedtop (7) The formal solution oEq. (9)is given by

v(1) = €9 (0) = UDY0), (11)

wherey(0) represents the initial state of the fields and the opetatbetermines their time evolution. And, since
H is skew-symmetric the time evolution operafdis an orthogonal transformation:

UHT =U—D =U1@) = e ™, (12)
and it follows that
UOYO)NUDY)) = (YO (D) = (Y (0)|¥(0)). (13)

Hence, the time evolution operatd(r) rotates the vectoy (r) without changing its lengthy/||. In physical terms,
this means that the total energy density of the fields does not change with time, as can be expected on physical
groundg25].

In practice, the construction of a numerical algorithm requires to discretize space and time. During both these
procedures, the skew-symmetry#f(during the spatial discretization) and the orthogonality/¢@uring the time
integration) should be conserved. For the discretization of space, this requirement can be met by choosing a staggerec
spatial grid8] and a central difference approximation for the spatial derivative. This yields a skew-symmetric matrix
H for the discrete analogue &f. A unit cell of the grid is shown ifrig. 1 The explicit form ofH is derived in
Appendix A in the case of a two-dimensional isotropic elastic solid. Accordingly, the discrete analogi® f
given by vecton(z).
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Fig. 1. Unit cell of the three-dimensional staggered grid onto which the continuous velocity and stress fields of the elastodynamic equations
are mapped in order to conserve the skew-symmetry. Left: grid for elastic isotropic solids. Note: thedrastants andu coincide with the
stress field components, and the mass density is only defined on velocity field points. Right: grid for the general anisotrgpiccase, ).

The continuous problem, defined B#, is now translated to a lattice problem definedfy
w(t) = exp(tH)¥(0) = U@ w(0) (14)
or, in the time-stepping approach, we have for a small time-step,
Ut + 1) = exp(tH)¥(t) = U(D)¥(1). (15)

At this point, we invoke three different strategies to perform the time integration, i.e. to approximate the matrix
exponential exH). Here, we closely follow the derivation of algorithms to solve the time-dependent Maxwell
equationg19-24] where the problem to be solved is stated in a very similar form, although the underlying physics
is different. The first algorithm is based on conserving the existing symmetries during the discretization of time,
and is unconditionally stable. Here, the time integration is carried out by a time-stepping procedure. The second
algorithm is based on approximating the solution itself for a particular time instance, by means of a Chebyshev
expansion, and constitutes therefore a “one-step” algorithm. The last algorithm is based on recasting the original
velocity-stress finite-difference algorithm into matrix exponential form. This allows to remove the staggered-in-time
nature, and offers an elegant way to derive higher-order in time algorithms. The construction of the algorithms is
briefly repeated in the next section.

3. Thematrix exponential approach
3.1. Unconditionally stable algorithms

A sufficient condition for an algorithm to be unconditionally stable is {26}
IU@¥YOI < IO (16)

SincelU(7) is an orthogonal transformation (see previous section), we @@ w(r) || = ||¥ ()], and it is sufficient
to conserve the orthogonality r) for an approximatio/ (1) to U(r), in order to construct an unconditionally stable
algorithm. One way to accomplish this is to make use of the Lie—Trotter—Suzuki fofgTyk8B]and generalizations
thereof[29,30] If the matrix H is decomposed, so that = Zi”zl H;, then

Uq(t) = e ... gty (17)

is a first-order approximation t&/(r). More importantly, if each matri; is skew-symmetric, thed1(z) is
orthogonal by construction, and hence, algorithms based;0t), are unconditionally stable. Using the fact that
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bothU(r) andU;(t) are orthogonal matrices, the error Bi(z) is subject to the upper boutidl]

2 P
1U@ =A@l < 5 D IH: HI, (18)

i<j

where F‘Il‘, Hj] = H,‘Hj — HjH,'.

In Appendix A the decomposition off is carried out for two-dimensional isotropic elastic solids, for which
p = 12, and it is shown that each matr; is block diagonal. The computation of the matrix exponential of a
block diagonal matrixH; can be performed efficiently, as it is equal to the block diagonal matrix of the matrix
exponentials of the individual blocks. Therefore, the numerical calculatiod’®freduces to the calculation of
matrix exponentials of Z 2 matrices, which are rotations.

In practice, implementation of the first-order algorithm is all that is required to construct higher-order algorithms.
This is due to the fact that in the product formula approach, the accuracy of an approximation can be improved
in a systematic way by reusing lower order approximations, without changing the fundamental symmetries. For
example, the orthogonal matrix

T
Us(t) = Uy (%) Uy (%) — etHp/2 .. gtH1/2 gtH1/2 | oTH)/2 (19)

is a second-order approximationigz) [29,30] A particularly useful fourth-order approximation (applied in, for
example[19,20,28-40] is given by[29]

Us(1) = U2(at)Uz(at)U2((1 — 4a) 1) Uz(at) Uz(at), (20)

wherea = 1/(4 — 41/3),
3.2. One-step algorithm

A well-known alternative for time-stepping is to use Chebyshev polynomials to construct approximations to
time-evolution operatorgl1-45] This approach has also been successfully applied to the problem of seismic wave
propagatior{14,17] However, the main differences between these implementations and the algorithm explained
below, besides the spatial discretization (which is based here on a central difference approximation, instead of a
spectral method), is that in the present case, madris explicitly anti-symmetrized, which gives rise to purely
imaginary eigenvalueBl6]. This is an important property to justify the validity of the expansion. In the deriva-
tion of the current algorithm, we folloj21-23] a recent implementation of the Chebyshev algorithm to solve
electromagnetic wave propagation.

The basic idea is to expand the time evolution makfix) = exp(tH) for a specific time instancein matrix
valued Chebyshev polynomials on the domain of eigenvalued,ofvhich lies entirely on the imaginary axis
since H is skew-symmetric. For proper application of the expansion, the domain of eigenvalues is rescaled to
[—1, 1], by considering the matri8 = —iH/| H||1, where| H||; denotes the 1-norm of the matrix. It is given by
| Hll1 = max; ), |Hjj|, seef46], and is easy to compute since the matiixs sparse. Operating on stak€0), the
expansion becomes

W(1) = exp(tH)¥(0) = exp(izB¥(0) = [Jo(z)l + 22 In (z)Tn(B)} (0), (21)
n=1

wherel is the identity matrixz = ¢||H||, J,, is thenth-order Bessel function ar} (B) = i"T,(B) are the modified
Chebyshev polynomials, defined by the recursion relation

To(B)¥(0) = ¥(0), (22a)
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T1(B)¥(0) = i B¥(0), (22b)
T,11(B)W(0) = 2iBT, (B)¥(0) + T,_1(B)¥(0) for n > 1. (22c)

Due to the fact that the matri® is purely imaginary, it follows from the above recursion relat{g@a)—(22cYhat
T,,(B)¥(0) and thus¥(r) will be real valued and no complex arithmetic is involved, as should be the case.

In practice, the summation i&g. (21)will be truncated at some expansion index This number depends on
the value ofz, since the amplitude of the coefficienis(z) decrease exponentially far > z; this is explained in
more detail iN[21-23] Consequently, the computation of one time-step amounts to carrying oepetitions of
recursion relatiorEq. (22a)—(22c)o obtain the final state. This is a simple procedure: only the multiplication of a
vector with a sparse matrix and the summation of vectors are involved.

3.3. A modified VS-FDTD algorithm

In Section 3.1it was shown that in the product formula formalism, higher-order in time algorithms can be
constructed by reusing the lower order algorithms. This elegant technique to increase the accuracy of time integratior
can also be applied to FDTD algorithms (in case of the Maxwell equation§24peand hence the conventional
VS-FDTD algorithm, if it is recast into an exponent operator form.

The update equations of the VS-FDTN8] algorithm can be written as

O _grmas | 0 V=u o 23
vt 1 = (I +tA)I + tB) iin) " 1D vi—1n) (23)
where
a—(° ~co' 24
“\o o )’ (24)
and
0O O
B = ED ol (25)
o

SinceA? = B2 = 0, the time evolution operatdf; (7) is equal to
U1(7) = exp(tA) exp(zB) (26)

and second-order accurate in time operating on fields that are defined staggered-in-time. Howavey, if
interpreted as an approximation to the operator(expt+ tB), working on fields non-staggered-in-time, it is a
first-order approximation. Furthermore, since the time evolution operator is now expressed in matrix exponential
form, the accuracy can be increased by the same procedure as was used for the unconditionally stable algorithm
(cf. Egs. (19) and (20) Therefore, the operator

Uz (1) = exp(37A) exp(tB) exp(37tA) (27)

constitutes a second-order approximation to the exact time evolution operator. And similarly, a fourth-order algorithm
can be derived, sdeq. (20)

So, by introducing a small modification to the original VS-FDTD algorithm, that would require a minimal change
in existing numerical codes, the staggered-in-time nature is removed, and higher-order in time algorithms are derived.
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4. Sources

In the presence of an explosive initial condition, or another time-dependent body force, the equation of motion
reads

3
5w(z) = Hy @) + ¢(1), (28)

where the time-dependent source is denoted by thed€rmThe formal solution is given by
t

Y(t) = exptH)y(0) + /o exp((t — u)H)p(u) du. (29)

In the time-stepping approach (e.g. the unconditionally stable algorithms), the source term—if its time dependence
is known explicitty—can be integrated for each time-step. For example, a standard quadrature formula can be
employed to compute the integral overlike the fourth-order accurate Simpson r{4&]

t+71 T T
/ STy du e = (€0 + 462 (14 Z) + 60+ 1)) (30)
p 6 2
In case of the one-step algorithm, this approach of incorporating the source term is not efficient, as for each value of
t — u the recursior{22a)—(22cwould have to be performed, and a different route is taken. Instead, each of the two
terms on the right-hand side Bfj. (29)is expanded in modified Chebyshev polynomials separately. The expansion

of the first term is discussed Bection 3.2For the second term, the source-term integral, the procedure is carried
out here for a source with Gaussian time dependence,

o(1) = f(S(r) = exp(—a(r — 10)%)S(r), (31)

whereS(r) denotes the spatial dependence of the source.
The source term

t
ht, to, o, H) = / du " fu) (32)
0
is expanded in modified Chebyshev polynomials,
1 Ko
h(t, to, a, H)S(r) = (Ebol + ;Okak> S(r), (33)

where the expansion coefficients are given by
2 [T
by =i k= / h(t, to, o, COSH) COSkO do. (34)
7 Jo

The replacement off by cost emphasizes tha should be normalized such that all eigenvalues lie in the range
[—1, 1]. We proceed by evaluating, o, «, H). After substitution ok = ||H||1, zo = tollHl|1, 8 = a/||H||§ and
x = —iH/| H||1 to normalize the matrix/, we obtain

1 /n . x2 ix ix
h(z,zo, B, x) = 5 EeXp<(Z —zo)lx — 4_}3) X |:erf (ZO - m) + erf <(Z - ZO)\/E'F m)} .
(35)

Now we putx = cosh and the remaining integral ovérin Eq. (34)is computed by a Fast Fourier transformation:

N-1
: 2mn
by =20 KN e2WNp (220, 8, cosT— ). 36
k Z 2,20, B N (36)

n=0
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The derivation of the Chebyshev expansion coefficients for a source defined by equation
0
g(t) = o f() = —2u(t — o) eXp(—at(z — 10)°) (37)

is very similar, and will not be treated explicitly here.

5. Results

The performance and accuracy of the algorithms introduced in the previous sections is studied by comparing the
results with a reference solution generated by the one-step algorithm, denak€d Byhis choice is motivated by
the fact that the latter, considering the time integration, produces numerically exact[ie$di¥s42] Furthermore,
there are rigorous bounds on the error of the unconditionally stable algorithilaqcf18): in the presence of a
sourcep(r), the difference between the exact solutibfi) and the approximate solutioh(r), obtained by using
the fourth-order unconditionally stable algorithm is boundediiay

t
@) — T < carr? (II‘P(O)II +/0 du||¢(u)ll> , (38)

wherec, is a constant. For the difference between the exact solution and the solution obtained by using the one-step
algorithm, we can write using the triangle inequality

1) — T < W0 = FOI + 1T@) — PO (39)

Using Egs. (38) and (39&nd the fact that the differend@ () — ¥ (1)|| vanishes withr#, as we will show below,
we can be confident that the one-step algorithm indeed produces numerically exact results. This justifies to define
the error a3 & (t) — ¥ ()| /II¥ @) |

The performance of the following algorithms is considered: the original VS-FDTD algorithm, denoted by Vir; the
unconditionally stable algorithms, denoted by LTS-2 and LTS-4, for respectively, second- and fourth-order accuracy
in time; and the non-staggered-in-time modified VS-FDTD algorithm, denoted by VNS-2 and VNS-4, depending
on the accuracy in time.

Consider a rectangular system consisting of two different materials, displalyed tx This system is also studied
in [8,10], and proved to be a good testing situation for the performance of an algorithm solving the elastodynamic
equations. The time evolution of the velocity and stress fields is computed using an explosion as initial condition,
modeled byEq. (37) up tor = 6 s, with the six different algorithms. Fig. 3, the kinetic-energy density distribution
is shown for two different time instances.

19.8 km

11 km

I 1I 15 km

Fig. 2. The corner-edge system, consisting of two different materials. The system size and location of thesarededjcated in the picture.
At the top, a free-surface boundary condition is imposed, the other boundaries are rigid. The overall densi8680 kg nT3, and the mesh
size is§ = 100 m. In the bulk material (1), the wave velocities age= 6 andv, = 2km s, whereas in the inner material (I1), they arg= 9
andv, = 3kms™1. The source excites thg, andsyy stress fields with time dependenge) from Eq. (37)and parameteks = 40 andrp = 1.5s.
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Fig. 3. Two snapshots of the kinetic-energy density distribution of the corner-edge systemdf eft: state at = 1.8 s, right: state at= 6.0 s.

Table 1

Error as function of time-step for all time-stepping algorithms, for the system defirféid.ie?

Time-step (s) Vir VNS-2 VNS-4 LTS-2 LTS-4
5x 1072 00 00 00 3.0x 1P 3.1x 1P
5x 1073 1.7x 1072 17x 102 41x10° 59x 101 1.6x 104
5x 104 17 x 104 17 x 104 41x 10710 6.1x 1073 1.6x 1078
5x 107° 1.7x10°6 1.7 x10°8 20x 10718 6.1x10°° 2.0x 10710
5x 1076 17x10°8 17x10°8 28x 10713 6.1x 107 -

2 An infinite symbol o) denotes that the algorithm was not stable, whereas in one case (-) the computation was not performed.

Forthe corner-edge system, the errors are listédlie 1 and are showniRig. 4. The error in the staggered-in-time
Vir algorithm is determined by averaging the error in the kinetic and potential energy density at, respectively, the
final time instance and the final time instance shifted by half a time-step. The time shifting procedure is carried out
by the Chebyshev algorithm and also applied to prepare the initial condition. For the largest time-step, the VS-FDTD
algorithms (Vir, VNS-2, VNS-4) are unstable. This can be expected, since the maximum time-step is limited by the

Error

1e+02

1e+00 [

1e-02 [

1e-04 [

1e-06 [

1e-08 [

1e-10 T

1e-12

VNS-4
LTS-2
LTS-4

__E__

1e-14
1e-06

1e-04

1e-03

1e-02 1e-01

timestep (s)

Fig. 4. Error as function of time-step for all time-stepping algorithms, for the system defirkég. 8 using the data frorifable 1 Note: the
graphs for Vir and VNS-2 overlap completely and therefore both are represented by the graph of VNS-2.
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Table 2

Error as function of time-step for all time-stepping algoritdms

Time-step (s) Vir VNS-2 VNS-4 LTS-2 LTS-4
5x 1072 00 00 00 1.2 x 10° 58 x 1072
5x 103 1.3x 1071 1.3x 101 1.6 x 107 5.4 x 102 1.3x10°°
5x 104 1.3x 103 1.3x 103 1.6 x 1079 5.4 x 1074 14 x 1079
5x10°° 1.3x10°° 1.3x10°° 1.6 x 10713 5.4 x 1076 17x 101
5x 1076 13x 1077 13x 1077 11x 1018 54 x 1078 1.7x 10710

In this case, the one-step algorithm employs= 321 expansion terms. The system measiires: L, = 10, with a mesh o = 0.1, and
the material parameteys A, u vary randomly in space with values distributed randomly in the interva@][IThe error is determined at= 3
(all quantities are expressed here in dimensionless units).

1e+02 - - - -

1e+00

Error

1e-02 [

1e-04 |

1e-06 [

1e-08 [

1e-10 [

o LTS2 —>—
1e-12 | e 1
- LTS4 —v—

1e-14 ' ' ' '
1e-06 1e-05 1e-04 1e-03 1e-02 1e-01

timestep

Fig. 5. Error as function of time-step for all time-stepping algorithms, for a random medium and random initial conditions, using the data from
Table 2 Note: the graphs for Vir and VNS-2 overlap completely and therefore both are represented by the graph of VNS-2.

largest velocity, the, velocity, and the mesh size, through the Courant I[8iit
)
o2

Furthermore, fronifable lit is clear that for all algorithms the error scales according to the order of accuracy
in time. We also see that for the corner-edge system, the VS-FDTD algorithms perform much better than the
energy-conserving LTS algorithms, as long as the time-step is smaller than the Courant limit. For time-steps larger
than the Courant limit, the LTS algorithms (LTS-2 and LTS-4) are stable, although the error does not (yet) scale
according to the order of accuracy in tirh€or very accurate results (errors below 1), the number of operations
the achieve this accuracy becomes so large that the error does not scale systematic anymore.

With respect to the efficiency of the algorithms, we note that the number of matrix-vector opeldtinasessary
to perform one time-step, is 1 for the Vir algorithm, 1.5 for the second-order VNS-2 and LTS-2 algorithms, and

T<

(40)

L This behavior is also noticed when unconditionally stable algorithms are used to solve the time-dependent Maxwell equé#idhs, see
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10 for the fourth-order VNS-4 and LTS-4 algorithms. For the specific example here, the corner-edge system, the
one-step algorithm employs = 1514 expansion terms. At= 6 andr = 0.005, the VNS-2 algorithm already uses

more (namely 1800) matrix-vector operations. Therefore, we draw the conclusion that one-step algorithm should be
preferred to be used to solve the time evolution for this problem. Note that in general, the choice of which algorithm
to use depends heavily on which degree of error is acceptable. In this specific case, there are vafaes/foch

the VNS-2 algorithm uses less matrix-vector operations than the one-step algorithm, but then the error will be larger
than the error for = 0.005, and maybe unacceptably high. On the other hand, one VNS-2 or LTS-2 matrix-vector
operation is carried out (in practice) faster than one Chebyshev recursion iteration, although this may depend on
the actual implementation.

It is important to note that the initial condition plays an important role in the error of the solution produced by a
specific algorithm. From the results of the corner-edge system, one might draw the conclusion that the VS-FDTD
algorithms achieve better results than the LTS algorithms for all systems. This is not tiadalén? the error is
listed as a function of time-step for all algorithms, as compared with the one-step algorithm, for a system consisting
of a random medium (also studied in, for examp8]) and starting from a random initial condition. The results
are also shown ifrig. 5. From the table and the figure, it is clear that in this case, the LTS family of algorithms
perform better than the VS-FDTD algorithms. Again we see that the error scales according to the order of accuracy
in time, except for very small errors (below 1¥9). Especially for the LTS-4 algorithm, we see that accumulation
of rounding errors, due to large number of operations, increases the error.

6. Conclusions

In this paper, we have introduced algorithms to solve the time-dependent elastodynamic equations, based on a
matrix exponential approach. The conservation of the underlying skew-symmetry of the first-order partial differential
equations while discretizing the spatial operators and fields, offers a sound starting point to expand the time evolution
operator in Chebyshev polynomials. The resulting one-step algorithm is accurate up to machine precision, and this
statement is justified by rigorous bounds on the error of the unconditionally stable algorithms. The latter class of
algorithms proved particularly useful if the total energy should be conserved or if a random initial condition is
used.

Finally, the original VS-FDTD algorithm is modified by recasting it into an exponent operator form. In this
new formulation, the staggered-in-time nature is removed and higher-order in time algorithms are derived, based
on the lower-order algorithms. Existing VS-FDTD codes can be modified with minor effort to benefit from these
advantages.

In this paper, only free and rigid boundary conditions are considered. Future research is aimed at incorporating
absorbing boundary conditions, and the presence of visco-elastic materials. These circumstances will give rise
to negative real eigenvalues in the time evolution matrix. Early study indicates that incorporating ABCs into the
unconditionally stable time-stepping methods require minimal change, and these changes will not affect stability,
as the eigenmodes will be attenuated. However, for the one-step method, a different approach must be taken, for
example, by choosing a different polynomial basis that accounts for the presence of real negative eigenvalues, see
[17].

More sophisticated discretization schemes, conserving the skew-symmetry, can be easily incd3@jrated
do not require conceptual changes.
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Appendix A. Discretization and decomposition of 7 for two-dimensional isotropic elastic solids

Here it is shown how the matrix

1
0 —J/CcDT—
H = . VP (A.1)
%D\/E 0

is discretized conserving its skew-symmetric properties, for two-dimensional isotropic elastic solids. In two-
dimensional P-SV wave propagation, no dependency yperassumed. For isotropic elastic solids, the stiffness
matrix is given in terms of the Lamé coefficientandu by [25]

A+2u A 0
C= A A+20 0], (A.2)
0 0 n

in the basisr = (oxx, 022 0x) . In the skew-symmetric basis, using the variables /v ands = C~Y2¢, one
needsy/C, which reads

a B 0
JC = B a 0 |, (A.3)
0 0 Vi
where
o= %(M + i), (A4)
B= (it - . (A5)
V2
This gives for the explicit form of the matrik
0 0 0 |afs B
0 0 0 s Qs
H=| 0 0 0 \WVAS T Vg |
G0 G0 a0 0
#%ﬁ ﬁ%a #;—’\/ﬁ 0 0 (A.6)

in the basis) = (sxx, Sz Sxz, Wx, wZ)T. The discrete analogue ¢f, the vector, is obtained by mapping the fields
onto the two-dimensional staggered gi@ that is shown irFig. 6. We adopt the convention that thg ands;;
stress fields are located in tlig 1) corner of the grid. The values of the discretized fiefdare related to their
continuous counterpartsby

£, j.1) = g(3i8, 5j8.1). (A7)
Therefore, using the unit vectefi, j, k), fields within the vectow can be indexed on the grid by
Wi, . sxx 1) = € () = sxx(i, . 1) (A.8)

and analogous equations apply for indexing the other stress and velocity fieldsithin
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Fig. 6. Unit cell of the two-dimensional staggered grid onto which the continuous velocity and stress fields of the elastodynamic equations are
mapped in order to conserve the skew-symmetry.

Due to the staggered nature of the grid and the choice of the originytheds;; stress fields are only defined

on thex = odd andz = odd lattice points. Similarly, they, andw, velocity fields are defined at, respectively,

x = everyz = odd andx = odd/z = even lattice points, and thg; stress field is given at the = even and

z = even grid entries. Note that all for simplicity of notation the fields are indexed on the full grid, despite the fact
that they are not defined on each point.

It is assumed that the total number of lattice points in each direction is odd, and also that the boundary is located
at the first and last rows/columns of the grid. The free or rigid boundary conditions themselves are implemented by
excluding the field points that are located at the boundary and should remain zero during the time integration.

Using this grid and the central-difference approximation to the spatial derivative, we obtain the spatially discretized
analogue ofq. (A.6), for example

wx(l+1 j’t) wx(l_l’]’t)}_i_ﬁ( ) [wz(l .]+1 t) wz(i?j_l’t)}

ad
_SXX(is jv t) Ol(l ]) |:

ot voi+1,)) Ve —1,)) VoG, j+1) VoG, j—1
(A.9)
and
8 .. a(l + 17 j)SXX(i + 17 jv t) - a(l - 17 j)SXX(i - 17 j1 t)
—wy(, j,t) = —
ot 5/ PG, Jj)
+ ﬁ(l + 11 .])SZZ(l + 17 j’ t) - ﬂ(l - 17 j)SZZ(i - 1! jv t)
3vp(, )
+ \Y M(lv .] + 1)SXZ(iv ] + 17 t) Y I’L(l’ ] - l)SXZ(i1 ] - 17 t) (A 10)
5v/p, J)
Similar equations hold faf,,, sx; andw,. Using this notation, the matrik can be decomposed into
H = H(szXXswx) + H(X»SZvax) + H(X»YXstz) + H(Z»Sxx,wz) + H(Z,Szz,wz) + H(Zysxz,wx)’ (All)
where, for instance, the explicit form & -5+ is given by
\ ny—2' . .
— oG+1,))
H&Eswe) Z Z ol [ei is e;:—l -y . eT. ]
— s Jo XX Sy Wy i+1, j,wx S, jisxx
= ia 8o, J)
Dol G, )
+ Z Z [ i, Jy Sxx l+1 Jywy — €1, jw, el s vxx] (A.12)
P S/p(i+ 1))

@soowy) H(X Sxx W) + H(X Sx06Wx) (A.13)
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Here, the prime in the summation indicates that the summation index is increased with strides of two. It is easy

to convince oneself that the matriceg™ "+ andHéx’s”’"’*) are block diagonal and skew-symmetric. The other
matrices irEq. (A.11)have similar explicit forms and can also be decomposed into block diagonal parts. Therefore,
a first-order approximation to the matrix exponent, as givekdpy(17) reads

exp(tH) = exp(tH{"")) exp(rHy ") exp(tHy""*") x exp(tHs""*"") exp(tH, ")
x eXpTHy ") x exp(tHy ™ ") exp(tHy ™ ") exp(tHy ™ "™"<)) x exp(rHy =)

x exp(tH ™)) exp(tHY ")) 4+ O(7?). (A.14)
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