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I. INTRODUCTION

The theory of optical phenomena has a long and in-
teresting history1–3. The corpuscular theory of Newton
and his followers was abandoned in favor of extensions
of Huygens’ wave theory, culminating in Maxwell’s the-
ory of electrodynamics. Maxwell’s theory is extremely
powerfull. It applies to virtually all electrodynamic phe-
nomena that find practical, real-life applications. Yet,
as with any theory, Maxwell’s theory has its limitations.
With Einstein’s explanation of the photoelectric effect in
terms of photons, that is in terms of indivisible quanta
of light, the idea of a corpuscular description of light re-
vived. Einstein’s hypothesis of light quanta gave birth
to the quantum description of light. As the photoelec-
tric effect can be explained by treating the electromag-
netic field without assuming the existence of photons3,
the photoelectric effect itself does not indicate that light
consists of indivisible particles but the experiments to be
described next do.

A. Photon indivisibility experiments

The paper by Grangier et al.4 reports clear and direct
evidence for the indivisiblity of the single photons3. A
key feature in this work is the use of the three-level cas-
cade photon emission of the calcium atom. When the
calcium atoms are excited to the third lowest level, they
relax to the second lowest state, emitting photons of fre-
quency f , followed by another transition to the ground
state level causing photons of frequency f ′ to be emit-
ted5. It is observed that each such two-step process emits
two photons in two spatially well-separated directions,
allowing for the cascade emission to be detected using a
time-coincidence technique5.

In Fig. 1 we show a diagram of the first experiment
reported in Ref.4. One of two light beams produced by
the cascade is directed to detector D. The other beam is
sent through a 50-50 beam splitter to detectors D0 and
D1. Time-coincidence logic is used to establish the emis-
sion of the photons by the three level cascade process:
Only if detector D and D0, D1 or both fire, a cascade
emission event occurred. Then, the absence of a coinci-
dence between the firing of detectors D0 and D1 provides
unambiguous evidence that the photon created in the cas-
cade and passing through the beam splitter behaves as
one indivisible entity. The analysis of the experimental
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FIG. 1: Schematic diagram of the first experiment reported
in the paper by Grangier et al.4, demonstrating the indivisi-
blity of the photon. S: Light source; BS: 50-50 beam splitter;
D, D0, D1: Detectors Ncascade: Number of excitations of
the three-level cascade of the calcium atoms in the source
S; Ncoincidence: Number of times detector D0 and D1 fire
within a time window relative to the excitation of the cas-
cade4; Nreflected: Number of photons reflected by the BS;
Ntransmitted: Number of photons transmitted by the BS.
Solid lines: Flow of photons. Dashed lines: Flow of data.

data strongly supports the hypothesis that the photons
created by the cascade process in the calcium atom are
to be regarded as indivisible3.

Having established the corpuscular nature of single
photons, Grangier et al.4 extend the experiment shown
in Fig. 1 by sending the photons emerging from the
beam splitter to another beam splitter, as illustrated in
Fig. 2, thereby constructing a Mach-Zehnder interferom-
eter (MZI). As the mirrors M do not alter the parti-
cle character of the photons, the removal of the second
beam splitter yields an experimental configuration that
is equivalent to the one used to demonstrate the corpus-
cular nature of single photons. With the second beam
splitter in place, Grangier et al.4 observe that after col-
lecting many photons one-by-one, the detection counts
fit nicely to the interference curve that is predicted by
Maxwell’s theory, that is what they observe is the same
result as if the source would have emitted a wave. Thus,
it is shown that one-by-one these particles can build up
an interference pattern, just as in the experiment with
single-electrons6–8, for instance.

B. Particles, waves or magic?

In summary, the experimental observations lead to the
conclusions that



3

1( )T x

0D

1D

x

S 0TD

FIG. 2: Schematic diagram of the second experiment reported
in the paper by Grangier et al.4, demonstrating that photons
build up an interference pattern one by one. S: Light source;
BS: 50-50 beam splitter; T0: Fixed time-of-flight; T1(x): Vari-
able time-of-flight controlled by the external variable x; D0,
D1: Detectors. For clarity, the coincidence logic (see Fig. 2)
has been omitted.

1. Individual photons are indivisible

2. In a MZI, the collection of many individual photons
produces the interference pattern that is expected
from classical wave theory.

The conjunction of these two conclusions cannot be ex-
plained within Maxwell’s theory or quantum theory. This
is most obvious in the case of Maxwell’s theory which
does not pretend to describe particles. Imagining a sin-
gle photon to be a spatially localized excitation of a wave
field, this so-called wave packet would, according to wave
theory, be divided into two wave packets by a beam split-
ter. This is not what is observed in the experiments of
Grangier et al.4.
Particle-wave duality, a concept of quantum theory

which attributes to photons the properties of both wave
and particle depending upon the circumstances, does not
help to explain the experimental facts either. The exper-
iments4 show that each individual photon behaves as a
particle, not as a wave. In these experiments (and in
many others that use single-photon sources), it is clear
that one particular photon never interferes with itself nor
with other ones; the wave functions that are used in the
wave mechanical theory interfere if they interact with
material only9. It is only in the mathematical, statistical
description of many detected photons that (probability)
waves interfere10.
As a last resort to explain the experimental facts us-

ing concepts of quantum theory the idea of wavefunc-
tion collapse11 is often used. According to this idea, the
wavefunction materializes into a particle during the act
of measurement. The mechanism that gives rise to this
collapse has remained elusive for 78 years after its con-
ception. Therefore, with the present state of understand-
ing, invoking the wavefunction collapse to explain an ex-

perimental observation adds a flavor of mysticism to the
explanation. It is important to note that the mystical
element never enters a quantum theoretical calculation
of the statistical averages12 and is, for any practical pur-
pose, superfluous. It only serves to create the illusion
that quantum theory has something meaningful to say
about an individual event but this is not the case. Quan-
tum theory gives us a recipe to compute the frequencies
(averages) for observing events but does not describe in-
dividual events themselves13. Of course, the introduc-
tion of a mystical element is undesirable from a scientific
viewpoint and, as shown in the present paper, also un-
necessary to explain the observed phenomena.

C. Aim of this work

The present work is based on three assumptions,
namely

1. A photon is an indivisible entity.

2. Photons do not interact.

3. The result of many photons recorded by a detector
is described by Maxwell’s theory.

Obviously, there is strong empirical evidence for all these
three assumptions. As explained earlier, the conjunc-
tion of assumption 1 and 3 poses some serious conceptual
problems that cannot be resolved within quantum theory
proper.
In this paper, we show that quantum optics experi-

ments which are performed in the single-photon regime
(as the experiments discussed in Section IA), can be ex-
plained entirely

• with a universal event-based corpuscular model,

• without first solving a wave equation.

The event-based corpuscular model (EBCM) that we in-
troduce in this paper is universal in that it can, without
modification, be used to explain why photons build up
interference patterns, why they can exhibit correlations
that cannot be explained within Maxwell’s theory and so
on.
The EBCM gives a cause-and-effect description for ev-

ery step of the process, starting with the emission and
ending with the detection of the photon. By construc-
tion, the EBCM satisfies Einstein’s criterion of local
causality. Although not essential, an appealing feature
of the EBCM is that it allows for a realistic interpreta-
tion of the variables that appear in the simulation model.
The research presented in this paper unifies and extends
earlier work14–27.

D. Disclaimer

The present paper is not concerned with an interpreta-
tion or an extension of quantum theory. The existence of
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an EBCM for event-based phenomena does not affect the
validity and applicability of quantum theory or Maxwell’s
theory but shows that it is possible to give explanations
of observed phenomena that do not find a logically con-
sistent, rational explanation within these two theories.

E. Structure of the paper

The paper is organized as follows. In Section II, we ex-
amine the question of particle-versus-wave from a com-
putational point of view. We show that also from this
viewpoint, there are conceptual difficulties to merge the
wave description in terms of probability amplitudes with
the fact that detectors “click”. Section III discusses the
general ideas that underpin our event-by-event simula-
tion approach. In Section IV we introduce the EBCM
of the interface between two media and of the detec-
tor, that is we define the algorithms that will be used
in the particle-by-particle simulation. Section V is de-
voted to the validation of the EBCM: It is shown that
it reproduces the results of Maxwell’s theory for a sim-
ple interface, a plane-parallel plate, and the double-slit
experiment, without changing the algorithms of course.
Building on the EBCM of the interface, Section VI spec-
ifies the EBCM of the optical components that are used
in (quantum) optics. In Section VII, we show that the
same EBCM reproduces, event-by-event and without us-
ing the solution of a wave equation, Mach-Zehnder in-
terferometer experiments4, Wheeler’s delayed choice ex-
periment28, quantum eraser29 and photon tunneling ex-
periments30–32. Section VIII shows that the EBCM ap-
proach effortlessly extends to experiments with corre-
lated photons by showing that it reproduces the quan-
tum theoretical results of the Einstein-Podolsky-Rosen-
Bohm (EPRB) experiments with photons33–35 and Han-
bury Brown-Twiss (HBT) experiments. Our conclusions
and a discussion of open problems are given in Section IX.

II. COMPUTATIONAL POINT OF VIEW

Our approach employs algorithms, that is we define
processes, that contain a detailed specification of each
individual event which, as we now show by an explicit
example, cannot be derived from a wave theory such as
Maxwell’s theory or quantum theory.
To understand the subtleties that are involved, it is

helpful to consider as a simple example, the conventional
wave theoretical description of the Mach-Zehnder inter-
ferometer.

A. Mach-Zehnder interferometer

A schematic diagram of a MZI experiment is shown in
Fig. 2. We assume that the length L0 = cT0, c denoting
the speed of light, of the lower arm of the interferometer

is fixed and that the length L1(x) = cT1(x) of the upper
arm can be varied by changing the control variable x.
Assuming a coherent monochromatic light source S

with frequency ω and a fixed value x, it follows from
Maxwell’s theory1 that the electric-field amplitudes b0
and b1 on detectors 0 and 1 are related to the input am-
plitudes a0 and a1 by(
b0
b1

)
=

1

2

(
1 i
i 1

)(
eiφ0 0
0 eiφ1(x)

)(
1 i
i 1

)(
a0
a1

)
,

≡ ABA

(
a0
a1

)
, (1)

where

A =
1√
2

(
1 i
i 1

)
, B =

(
eiφ0 0
0 eiφ1(x)

)
, (2)

where φ0 = ωT0 and φ1(x) = ωT1(x). As the light enters
the MZI via port 0 of the left most BS, we have a0 =
1 and a1 = 0 up to an irrelevant phase factor. Then,
according to quantum theory, the probabilities P0 (P1)
for detectors D0 or (exclusive) D1 to generate a click, are
given by

Pk =

∣∣∣∣∣∣
∑
j=0,1

∑
i=0,1

Ak,jBj,iAi,0

∣∣∣∣∣∣
2

, k = 0, 1, (3)

respectively.
Using Eqs. (1) and (3) a simple calculation yields a

closed form expression for Pk, namely

P0 = sin2
ω(T0 − T1(x))

2
= sin2

φ0 − φ1(x)
2

, (4)

P1 = cos2
ω(T0 − T1(x))

2
= cos2

φ0 − φ1(x)
2

. (5)

Equations (4) and (5) show that the signal on the de-
tectors is modulated by the difference between the time-
of-flights T0 and T1(x) in the lower and upper arm of
the interferometer, respectively, or in other words by the
phase difference φ0 − φ1(x). This modulation is charac-
teristic for interference phenomena.

B. Using the solution of wave theory

Once we know Pk, it is trivial to construct a process
that generates clicks of the detectors D0 and D1. For
instance, if we want to mimic the unpredictable charac-
ter of the single-photon detection process, we may use a
pseudo-random number generator to produce detection
events. It is irrelevant whether we have a closed form ex-
pression for Pk or only know Pk in tabulated form. The
key point is that we worked out the sums over the in-
dices i and j in Eq. (3) ourselves, and that the solution
of the full wave mechanical problem is used to produce
the events.
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C. Fundamental problem: Example

Let us now assume that we do not know how to per-
form the sums over the indices i and j in Eq. (3). In
other words, we assume that we do not know the explicit
(or tabulated) form of P0 and P1. Then, we cannot sim-
ply use the pseudo-random number generator to generate
detector clicks.
Of course, we can still construct discrete-event pro-

cesses that perform the sums in Eq. (3) by select-
ing (one-by-one) the pairs (i, j) from the set S =
(0, 0), (1, 0), (0, 1), (1, 1). Any such process defines a se-
quence of “events” (i, j). The key question now is: Can
we identify the selection of the pairs with “clicks” that
correspond to detection events? We now provide a triv-
ial, rigorous proof that this is fundamentally impossible.
A characteristic feature of all wave phenomena is that

not all contributions to the sums in Eq. (3) have the same
sign: In wave theory, this feature is essential to account
for destructive interference. But, at the same time this
feature forbids the existence of a process of which the
“events” can be identified with the clicks of the detector.
This is easily seen by considering a situation in which,

for instance, P0 = 0. In this case, the detector D0 should
never click. However, according to Eq. (3), any process
that samples from the set S produces “events” such that
the sum over all these “events” vanishes. Therefore, if we
want to identify these “events” with the clicks that we
observe, we run into a logical contradiction: To perform
the sums in Eq. (3), we have to generate events that
in the end cannot be interpreted as clicks since in this
particular case no detector clicks are observed.

D. Fundamental problem: Generic case

From the point of view of wave theory, the example
of the MZI, though very simple, is generic: Characteris-
tic of Maxwell’s theory and quantum theory is that the
observable phenomena are described by expressions, such
as Eq. (3), that involve taking the square of the sum over
amplitudes that are real or complex valued. In general,
these expressions take the form

Pin+1,i0 =

∣∣∣∣∣∣
∑

{i1,...,in}
A

(n)
in+1,in

. . . A
(1)
i1,i0

∣∣∣∣∣∣
2

, (6)

where the elements of the matrices A(j) are, in general,
complex valued, and the sums over the indices ij can take
discrete values or, as in the case of a path integral, can
be continuous variables.
As one or more of the Pin+1,i0 ’s may be zero, the logi-

cally inescapable conclusion is that the individual terms
that appear in Eq. (6) do not contain the necessary in-
gredients to define a process that generates elements of
the set {i1, . . . , in} if each such element is to correspond
to an observable (in experiment) event.

It is of interest to note that if the matrices A(j) would
have all non-negative entries, each element of the set
{i1, . . . , in} would make a non-negative contribution to
the total and hence, it is possible to associate an event
to each n-tuple (i1, . . . , in). Of course, in this case, the
events can never form the interference patterns that are
characteristic of wave phenomena.

E. A way out

The crux of our event-by-event simulation approach is
that we do not start from an expression such as Eq. (6)
but construct a classical, dynamical, event-by-event pro-
cess that, while generating events that correspond to the
observed events, produces these events with a frequency
distribution that converges to the unknown (by assump-
tion) probability distribution Pin+1,i0 .

Initially, the system does not know about this limiting
distribution and hence, during a transient period, the
frequencies with which events are generated do not nec-
essarily agree with this limiting distribution. However,
as ample numerical simulations demonstrate, for many
events, these first few “wrong” events do not significantly
contribute to the averages and are therefore irrelevant for
the comparison of the event-based simulation results with
those of a wave theory.

III. EVENT-BY-EVENT SIMULATION

Our event-based simulation approach is unconven-
tional in that it does not require knowledge of the wave
amplitudes obtained by first solving a wave mechanical
problem. Instead, the detector clicks are generated event-
by-event by locally causal, adaptive, classical dynamical
systems. In this section, we discuss the general aspects
of our simulation approach.
The event-by-event simulation algorithms are most

easily formulated in terms of messengers that carry mes-
sages and units that accept messengers, process their
messages and send the messengers with a possibly mod-
ified message to the next unit. A source is a simple unit
that creates messengers with specified messages on de-
mand. A message consists of a set of numbers, conve-
niently represented by a vector. A messenger that ap-
pears at the output of a detection unit corresponds to
an event observed in experiment. The processing units
mimic the role of the optical components in the experi-
ment and the network by connecting the processing units
represents the complete experimental setup.
Within the realm of quantum optics experiments, in a

pictorial description, the photon is regarded as a messen-
ger, carrying a message that represents its time-of-flight
(phase) and polarization. In this pictorial description, we
may speak of “photons” generating the detection events.
However, these so-called photons, as we will call them in
the following, are elements of a model or theory for the
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real laboratory experiment only. The only experimental
facts are the settings of the various apparatuses and the
detection events. What happens in between activating
the source and the registration of the detection events
belongs to the domain of imagination.
In general, a processing unit consists of an input stage,

a transformation stage and an output stage. The in-
put (output) stage may have several ports at (through)
which messengers arrive (leave). As a messenger arrives
at an input port of a processing unit, the input stage
updates its internal state, also represented by a vector.
This update mechanism renders the unit adaptive and is
essential for the simulation approach to reproduce the re-
sults of wave mechanics. For reasons that are explained
later, this input stage is called deterministic learning ma-
chine (DLM). Next, the message together with the in-
ternal state of the unit are passed to the transformation
stage that implements the operation of the particular de-
vice. Finally, a new message is sent to the output stage
which selects the output port through which the messen-
ger will leave the unit. Some processing units are simpler
in the sense that the input stage may be omitted, in which
case the unit lacks adaptivity. The rule to decide which
type of unit to employ is simple: If the unit should be
able to deal with “interference phenomena” , it should be
adaptive, otherwise we may (but do not have to) use the
simpler device. Interfaces between materials of different
index of refraction, beam splitters and the like belong to
the first class. A device that causes a time delay only
belongs to the second class.
A very important feature of our simulation approach is

that at any given time, there is only one messenger being
routed through the whole network. Therefore there can
be no direct communication between the messengers. As
the internal state of a unit may depend on the messages
it has already processed, a unit can modify the messenger
and its message. It is this mechanism that can cause “in-
terference without waves”. From this general description
of the simulation algorithm, it should already be clear
that the process that is being generated by the network
of processing units is locally causal in Einstein’s sense.
The processing units that are essential for our approach

to reproduce the results of a wave theory are simple, lo-
cally causal, classical dynamical systems defined by an
update rule that specifies how the unit updates its inter-
nal state based on an incoming message. Such a unit ex-
hibits an elementary form of learning capability and op-
erates deterministically and is therefore called a DLM15.
As dynamical systems, DLMs are interesting in their

own right, in particular because they may be used for ap-
plications that have no relation to physics15. In appendix
A, we introduce them in a context-free manner.

IV. SIMULATION MODEL

In this section, we give a detailed description of the
EBCM of basic optical components, the interface be-

tween to media and single-photon detectors. For sim-
plicity of presentation, we consider materials for which
the permittivity is real and the permeability is one, that
is we consider ideal dielectrics only.

A. Messenger and message

As we want to construct an EBCM that reproduces
the results of Maxwell’s theory and the plane wave is a
central concept in Maxwell’s theory1, it makes sense to
define the messenger and the message such that there is
a one-to-one mapping onto the properties of the plane
wave. Therefore, we briefly review the properties of
plane electromagnetic waves propagating in a homoge-
neous medium and then show how to construct an EBCM
that reproduces these properties without using wave me-
chanics.
The EBCM that we introduce in this paper is not a

complete event-based model for all electrodynamic phe-
nomena. The focus of this paper is on optics experiments
in which the indivisible nature of the photons is of cen-
tral importance. In accordance with the classical theory
of optics1, for simplicity, we therefore ignore the inter-
action of electromagnetic radiation with the magnetic
degrees of freedom of the materials. It is however not
difficult to incorporate these interactions in the EBCM:
All that is needed is to add more data to the message
carried by the messengers and to define the appropriate
transformation rules.

1. Plane waves in Maxwell’s theory

A plane wave is fully specified by its wave vector q
and the amplitudes and phases of the electric field com-
ponents that are in the plane orthogonal to q. These
amplitudes and phases determine the intensity and po-
larization of the electromagnetic wave. The amplitudes
oscillate in time with a common frequency f which is re-
lated to the magnitude of the wave vector q = |q| and
the phase velocity v by q = 2πf/v, see Ref.1. In vacuum
v equals the speed of light c. If the plane wave propa-
gates through a dielectric material, its velocity is given
by v = c/n where n is a real number, the index of refrac-
tion of the material. Note that v and n are determined
indirectly via the law of refraction1.

For a plane wave traveling along the z-direction, the
amplitudes of the non-zero electric field components can
be written as1

E1(r, t) = a1 cos(τ + δ1)

E2(r, t) = a2 cos(τ + δ2), (7)

where the 1-2 coordinate system can be chosen freely
as long as it lies in the plane orthogonal to z and τ =
2πft−q·r where r denotes the position in 3D space. The
prefactors a1 and a2 determine the intensity of the plane
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wave and together with the phase difference δ = δ1 − δ2
also determine its polarization1.

In Maxwell’s theory, the amplitudes a1 and a2 deter-
mine the light intensity whereas in an EBCM, each mes-
senger is assumed to contribute one unit of light to the
total light intensity. Let us therefore rescale the fields E1

and E2 such that the average power of the E-field is one
half. We have

E1(r, t)√
a21 + a22

= sin ξ cos(τ + δ1)

E2(r, t)√
a21 + a22

= cos ξ cos(τ + δ2), (8)

where sin ξ = a1/
√
a21 + a22 and cos ξ = a2/

√
a21 + a22.

Expressing the Stokes parameters1 s0 = a21+a
2
2, s1 = a21−

a22, s2 = 2a21a
2
2 cos δ, s3 = 2a21a

2
2 sin δ in terms of the an-

gles ξ and δ yields s1/s0 = − cos 2ξ, s2/s0 = sin 2ξ cos δ,
s3/s0 = sin 2ξ sin δ, demonstrating that Eq. (8) is just
another representation of a plane monochromatic elec-
tromagnetic wave.

2. Definition of messenger and message

The particle is regarded as a messenger, traveling with
velocity v in the direction q/q. Each messenger carries
with it two harmonic oscillators that vibrate with fre-
quency f .
It may be tempting, but it is definitely wrong, to regard

the messenger+message as a plane wave with wave vector
q, the oscillators being the two electric field components
in the plane orthogonal to q. As there is no communi-
cation/interaction between the messengers there can be
no wave equation (i.e. no partial differential equation)
that enforces a relation between the messages carried by
different messengers. Indeed, the oscillators carried by a
messenger never interact with the oscillators of another
messenger, hence the motion of these pairs of oscillators
is not governed by a wave equation. Naively, one might
imagine the oscillators tracing out a wavy pattern as they
travel through space. However, as there is no relation be-
tween the times at which the messengers leave the source,
it is impossible to characterize all these traces by a field
that depends on one set of space-time coordinates, as
required for a wave theory.
There are many different but equivalent ways to de-

fine the message. As in Maxwell’s theory and quantum
theory, it is convenient (though not essential) to work
with complex-valued vectors, that is with messages rep-
resented by two-dimensional unit vectors

y =

(
eiψ

(1)

sin ξ

eiψ
(2)

cos ξ

)
. (9)

where ψ(i) = 2πft + δi for i = 1, 2. Note that, unlike
in the case of waves, there is no q · r contribution to

ψ(i). The angle ξ determines the relative magnitude of
the two components, which we call the polarization of
the message y.
A messenger with message y at time t and position r

that travels along the direction q during a time interval
t′ − t, changes its message according to

ψ(i) ← ψ(i) + φ , i = 1, 2, (10)

where φ = 2πf(t′ − t).
From Eq. (10), as the messenger moves, it changes its

message by applying to the vectors (cosψ(1), sinψ(1)) and
(cosψ(2), sinψ(2)) the same plane rotation

R(φ) =

(
cosφ − sinφ
sinφ cosφ

)
. (11)

This suggests that we may view these two-component
vectors as the coordinates of two local oscillators, carried
along by the messengers. In this pictorial description,
the messenger encodes its time-of-flight in these two os-
cillators.

3. Remarks

Recall that in Maxwell’s theory, the energy of the elec-
tromagnetic field is encoded in the amplitudes of the wave
components. In contrast, in the event-based corpuscular
approach, the energy of the electromagnetic field is en-
coded in the amount of particles that crosses an unit area
per unit of time.
The representation of the messages as a vector with

two complex-valued components is convenient, not only
to describe the propagation in a homogeneous medium
but, as we will see later, also to describe the effect of
for instance a beam splitter, a polarizing beam splitter
and so on. In essence, the interaction of the messenger
with a material will change the message y by applying
some transformation to it. However, there is no rational
argument to use the representation Eq. (9) other than
that it is convenient. Any other representation, such as
the ones used in our earlier papers work equally well.
When a messenger is created, its message needs to be

initialized, that is we have to specify the three angles
ψ(1), ψ(2), and ξ. This specification depends on the kind
of light source we want to simulate. For instance, to
simulate a coherent light source, the three angles should
be the same for all messengers that are being created.
Other choices are discussed when we consider specific ex-
periments.

B. Interface between two dielectric media

The reflection and transmission of light by a boundary
that separates two homogeneous media of different op-
tical properties is one of the basic phenomena in optics.
We briefly review the wave theoretical treatment of this
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(1)q

(4)q

(3)q
1n
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z

(2)q

1 3

42

FIG. 3: Refraction and reflection at a boundary between two
dielectric materials with indices of refraction n1 and n2. The
vectors q1, q2, q3, and q4 lie in the x–z plane.

problem and explain how we construct the corresponding
EBCM.

1. Wave theory

In Maxwell’s theory, assuming incident plane waves
from both sides of the interface (see Fig. 3), the directions
and amplitudes of the reflected and transmitted plane
wave follow from conservation of energy and the continu-
ity of the tangential field components at the boundary,
yielding Snell’s law and Fresnel’s formulas, respectively.
In Maxwell’s theory, Snell’s law follows from the kine-

matic properties of the waves. Conservation of momen-

tum in the x-direction implies q
(1)
x = q

(2)
x = q

(3)
x = q

(4)
x .

Using the relation between the frequency f of the oscil-
lations and the length of the wave vectors we find

2πf

c
=
q(1)

n1
=
q(2)

n2
=
q(3)

n1
=
q(4)

n2
, (12)

where

q(i) =

√
(q

(i)
x )2 + (q

(i)
z )2 , i = 1, 2, 3, 4, (13)

from which

n1
q
(1)
x

q(1)
= n2

q
(2)
x

q(2)
= n1

q
(3)
x

q(3)
= n2

q
(4)
x

q(4)
, (14)

which is Snell’s law in its more familiar form

n1 sin θ1 = n2 sin θ2 = n1 sin θ3 = n2 sin θ4. (15)

For later use, we introduce the symbols q̂(i) = q
(i)
z /q(i) =

(−1)i cos θi for i = 1, 2, 3, 4, n3 = n1 and n4 = n2. Note

that we also have θ3 = θ1, θ4 = θ2, q̂
(3) = −q̂(1), and

q̂(2) = −q̂(4). The kinematic properties of the particles
in the EBCM are assumed to be the same as those of the
waves in Maxwell’s theory.
In Maxwell’s theory the dynamic properties are con-

tained in the boundary conditions of the electromagnetic
fields at the interface. If Ai denotes the electric-field am-
plitude of the plane wave with wave vector q(i), these
boundary conditions enforce the relations(

A3

A4

)
=

(
r12 t21
t12 −r12

)(
A1

A2

)
. (16)

The reflection and transmission coefficients are1

r12 =
n1q̂

(1) − n2q̂(4)
n1q̂(1) + n2q̂(4)

t12 =
2n1q̂

(1)

n1q̂(1) + n2q̂(4)

t21 =
2n2q̂

(4)

n1q̂(1) + n2q̂(4)
, (17)

for S-polarized waves and

r12 =
n1q̂

(4) − n2q̂(1)
n1q̂(4) + n2q̂(1)

t12 =
2n1q̂

(1)

n1q̂(4) + n2q̂(1)

t21 =
2n2q̂

(4)

n1q̂(4) + n2q̂(1)
, (18)

for P -polarized waves.
In Maxwell’s theory the wave amplitudes are only con-

venient calculational tools: Observable effects are related
to the energy current per unit area1, the Poynting vectors
S(i) = cniq

(i)|Ai|2/4π|q(i)|.
It is not difficult to rewrite Eq. (16) such that it di-

rectly relates to physical observables. Define the “energy-

current amplitude” Ãi = (cni|q̂(i)|/4π)1/2Ai and the
transformation matrix R by

R =

(
(cn1q̂

(1)/4π)−1/2 0
0 (cn2q̂

(2)/4π)−1/2

)
. (19)

Then, from Eq. (16) it follows that(
Ã3

Ã4

)
= R−1

(
r12 t21
t12 −r12

)
R

(
Ã1

Ã2

)
,

=

(
r̃ t̃

t̃ −r̃
)(

Ã1

Ã2

)
≡ T̃

(
Ã1

Ã2

)
, (20)

where r̃ and t̃ are given by

r̃S =
n1q̂

(1) − n2q̂(4)
n1q̂(1) + n2q̂(4)

t̃S =
2
√
n1n2q̂(1)q̂(4)

n1q̂(1) + n2q̂(4)
, , (21)
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FIG. 4: Diagram of a DLM-based processing unit that per-
forms an event-based simulation of optical components. The
processing unit consists of three stages: An input stage
(DLM), a transformation stage (T) and an output stage (O).
The solid lines represent the input and output ports of the
device. The presence of a message is indicated by an arrow
on the corresponding port line. The dashed lines indicate the
data flow within the unit. The transformation matrix T is
component specific.

and

r̃P =
n1q̂

(4) − n2q̂(1)
n1q̂(4) + n2q̂(1)

,

t̃P =
2
√
n1n2q̂(1)q̂(4)

n1q̂(4) + n2q̂(1)
, (22)

in the case of S-polarized and P -polarized waves, re-
spectively. From Eqs. (18), (21) and (22) it follows di-

rectly that r̃2 + t̃2 = 1 and that the matrix T̃ is unitary

(with determinant minus one). As T̃ is unitary we have

|Ã3|2 + |Ã4|2 = |Ã1|2 + |Ã2|2, that is the total energy
of the incident waves is equal to the total energy of the
outgoing waves, as it should be.
Clearly, in an EBCM of refraction and reflection at a

dielectric, lossless interface, there can be no loss of parti-
cles: An incident particle must either bounce back from
or pass through the interface. If the EBCM is to re-
produce the results of Maxwell’s theory the boundary
conditions on the wave amplitudes in Maxwell’s theory
must translate into a rule that determines how a particle
bounces back or crosses the interface. But in the EBCM
there are only particles, no wave amplitudes. However, as
we have seen in Maxwell’s theory the wave energies, not
the wave amplitudes, appear in conservation laws. This

suggests that in an EBMC, we should use the matrix T̃
to transform the message carried by the messenger.

2. EBCM of the interface

We now have all ingredients to construct the processing
unit that performs the event-by-event, corpuscular simu-
lation of refraction and reflection of light at a dielectric,
lossless interface.

The processing unit has the generic structure, depicted
in Fig. 4, consisting of an input stage (DLM), a transfor-
mation stage (T), and an output stage (O)14–17. There
are two input and two output ports labeled by k = 0, 1.
Referring to Fig. 3, input port k = 0, 1 accepts messen-
gers travelling along directions q(1)/q(1) and q(2)/q(2),
respectively (recall that at any time, only one messen-
ger arrives at either port 0 or 1). Likewise, a messenger
leaves in the directions q(3)/q(3) and q(4)/q(4) through
output port k = 0, 1, respectively.
For simplicity, we assume that the incoming messenger

is constructed such that its first oscillator vibrates in the
plane that is orthogonal to the plane of incidence (the
xz-plane in Fig. 3) while its second oscillator vibrates
in the plane that is parallel to the plane of incidence,
corresponding to S and P polarized plane waves, respec-
tively. Note that this assumption merely amounts to a
convenient choice of the coordinate system.

3. Input stage

The DLM receives a message on either input port 0 or
1, never on both ports simultaneously. If we represent
the arrival of a messenger at port 0 (1) by the vectors
v = (1, 0) or v = (0, 1), it is clear that we can employ
the DLM of Section A3, second case, to estimate the
relative frequencies with which the messengers arrive on
ports 0 or 1, respectively.
According to Section A3, a DLM that is capable of

performing this task should have an internal vector x =
(x0, x1), where x0+x1 = 1 and xk ≥ 0 for all k = 0, 1. In
addition to the internal vector x, the DLM needs to have
two sets of two registers Yk = (Yk,1, Yk,2) to store the
last message y that arrived at port k. Thus, the DLM
has storage for exactly ten real-valued numbers.
Upon receiving a messenger at input port k, the DLM

performs the following steps: It copies the elements of
message y in its internal register Yk

Yk ← y (23)

while leaving Y1−k unchanged and replaces its internal
vector according to

x← γx+ (1− γ)v, (24)

where 0 ≤ γ < 1. Note that each time a messenger
arrives at one of the input ports, the DLM replaces the
values of the internal vector x and of the ones in the
registers Yk by overwriting the old ones. It does not
store all the messages, but only two!

4. Transformation stage

The second stage (T) accepts a message from the input
stage, and transforms it into a new message. From the
description of the input stage, it is clear that the internal
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registers Y0 and Y1 contain the last message that ar-
rived on input port 0 and 1 respectively. First, this data
is combined with the data of the internal vector x, the
components of which converge (after many events have
been processed) to the relative frequencies with which
the messengers arrive on port 0 and 1, respectively. The
output message generated by the input stage is⎛⎜⎜⎝

Y ′
0,1

Y ′
1,1

Y ′
0,2

Y ′
1,2

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
x
1/2
0 0 0 0

0 x
1/2
1 0 0

0 0 x
1/2
0 0

0 0 0 x
1/2
1

⎞⎟⎟⎟⎠
⎛⎜⎝ Y0,1
Y1,1
Y0,2
Y1,2

⎞⎟⎠ , (25)

Note that as x0+x1 = 1 and ‖Y0‖ = ‖Y1‖ = 1, we have
|Y ′

0,1|2 + |Y ′
0,2|2 + |Y ′

1,1|2 + |Y ′
1,2|2 = 1.

Recall that in the EBCM, the number of incoming mes-
sengers with message Yk represents the energy-density
current of the corresponding plane wave, which by con-
struction is proportional to |Y′

k|2. Therefore, accord-
ing to Eq. (20), the outgoing energy-density currents are
given by ⎛⎜⎝ Z0,1

Z1,1

Z0,2

Z1,2

⎞⎟⎠ = T

⎛⎜⎜⎝
Y ′
0,1

Y ′
1,1

Y ′
0,2

Y ′
1,2

⎞⎟⎟⎠ , (26)

where the transformation matrix T is given by

T =

⎛⎜⎜⎝
r̃S t̃S 0 0

t̃S −t̃S 0 0

0 0 r̃P t̃P
0 0 t̃P −r̃P

⎞⎟⎟⎠ , (27)

and the matrix elements are given by Eqs. (21) and (22).

5. Output stage

The output stage (O) uses the data provided by the
transformation stage (T) to decide on which of the two
ports it will send out a messenger (representing a pho-
ton). The rule is very simple: We compute z = |Z1,1|2 +
|Z1,2|2 and select the output port k̂ by the rule

k̂ = Θ(z − r), (28)

where Θ(.) is the unit step function and the 0 ≤ r < 1
is a uniform pseudo-random number (which is different
for each messenger processed). The messenger leaves

through port k̂ carrying the message

z =
1√

|Z
̂k,1|2 + |Ẑk,2|2

(
Z
̂k,1

Z
̂k,2

)
, (29)

which, for reasons of internal consistency, is a unit vector.

6. Remarks

The internal vector of the DLM can be given physi-
cal meaning: It represents the polarization vector of the
charge distribution of an atom. The update rule Eq. (24)
defines the equation of motion of this vector. In essence,
the EBCM is a simplified version of the classical Newto-
nian Lorentz model for the response of the polarization of
an atom/molecule to the applied electric field1, with one
important difference: It describes the interaction of a sin-
gle photon with the atom. The update rule Eq. (24) is not
the only rule which yields an EBCM that reproduces the
results of Maxwell’s theory (see Section V). The question
of the correctness of the update rule can only be settled
by a new type of experiment that addresses this specific
question.
The use of pseudo-random numbers to select the out-

put port is not essential15: We generally use pseudo-
random numbers to mimic the apparent unpredictability
of the experimental data only. From a simulational point
of view, there is nothing special about using pseudo-
random numbers. On a digital computer, pseudo-random
numbers are generated by deterministic processes anyway
hence instead of a uniform pseudo-random number gen-
erator, any algorithm that selects the output port in a
systematic manner might be employed as well15, as long
as the zero’s and one’s occur with a ratio determined by
z. For instance, we could use the DLM described in Sec-
tion A2. This will change the order in which messengers
are being processed but the stationary state averages are
the same.

C. Single-photon detectors

Ideally, each photon that hits a single-photon detec-
tor should simply produce a signal, a click. This ide-
alized model is used in virtually all quantum theoret-
ical modeling for very good reasons: Quantum theory
postulates that the observed intensity, the average over
many events, recorded by a detector is proportional to
the square of the absolute value of the complex-valued
wave amplitude. Likewise, Maxwell’s theory interprets
the intensity of light as the energy flux (Poynting vector)
per unit of time through a unit area orthogonal to the
directions of the electric and magnetic field vector1. Part
of the predictive power of both wave theories stems from
these postulates as they allow the calculation of inten-
sities completely independent of the details of how the
intensity is actually measured. In jargon, these theories
are noncontextual13.

It is generally accepted that a description on the level
of individual events necessarily entails contextuality13.
Therefore, in plain words, a description that aims to
go beyond quantum theory or Maxwell’s theory, that is
a cause-and-effect description on the level of individual
events, requires a detailed specification of the process
of measurement itself13. Obviously, such a specification
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should capture the essence of a real detection process.
In reality, photon detection is the result of a compli-

cated interplay of different physical processes36. There-
fore we briefly review some of the basic features of these
processes before we discuss the detector model that we
employ in our simulations.

1. Generalities

In essence, a light detector consists of material that
absorbs light. The electric charges that result from the
absorption process are then amplified, chemically in the
case of a photographic plate or electronically in the case
of photodiodes or photomultipliers. In the case of photo-
multipliers or photodiodes, once a photon has been ab-
sorbed (and its energy “dissipated” in the detector ma-
terial) an amplification mechanism (which requires ex-
ternal power/energy) generates an electric current (pro-
vided by an external current source)3,36. The resulting
signal is compared with a threshold that is set by the
experimenter and the photon is said to have been de-
tected if the signal exceeds this threshold3,36. In the case
of photographic plates, the chemical process that occurs
when photons are absorbed and the subsequent chemi-
cal reactions that renders visible the image serve similar
purposes.
In the wave-mechanical picture, the interaction be-

tween the incident electric field E and the material takes
the form P · E, where P is the polarization vector of
the material1. Treating this interaction in first-order
perturbation theory, the detection probability reads

Pdetection(t) =
∫ t
0

∫ t
0
〈〈ET (t′) · K(t′ − t′′) · E(t′′)〉〉dt′dt′′

where K(t′ − t′′) is a memory kernel depending on the
material only and 〈〈.〉〉 denotes the average with respect
to the initial state of the electric field3,12. Both the con-
stitutive equation1 P(ω) = χ(ω)E(ω) as well as the ex-
pression for Pdetection(t) show that the detection process
involves some kind of memory, as is most evident in the
case of photographic films before development. It is im-
portant to take note that for the integration over t′ and
t′′ to yield physically meaningful results, within the con-
text of a wave theory, the interaction interval [0, t] should
extend over many periods of the wave1.

An event-based model for the detector cannot be
“derived” from quantum theory simply because quan-
tum theory has nothing to say about individual events
but predicts the frequencies of their observation only13.
Therefore, any model for the detector that operates on
the level of single events must necessarily appear as “ad
hoc” from the viewpoint of quantum theory. The event-
based detector models that we describe in this paper
should not be regarded as realistic models for say, a pho-
tomultiplier or a photographic plate and the chemical
process that renders the image. In particular, there is no
need to account for the presence of a threshold (electri-
cal or chemical) that is essential for real photon-detection
systems to function properly3,36. In the spirit of Occam’s
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FIG. 5: Diagram of the event-based detector model defined
by Eqs. (30), (31), and (32). The dashed lines indicate the
data flow within the processing unit.

razor, these very simple event-based models capture the
salient features of ideal (i.e. 100% efficient) single-photon
detectors without making reference to the solution of a
wave equation or quantum theory.

2. EBCM of a detector

Photon detectors, such as a photographic plate of CCD
arrays, consist of many identical detection units each
having a predefined spatial window in which they can
detect photons. In what follows, each of these identical
detection units will be referred to as a detector. By con-
struction, these detector units operate completely inde-
pendently from and also do not communicate with each
other.
Here we construct a processing unit that acts as a de-

tector for individual messages. Instead of differentiating
between only two different directions as in the case of the
EBCM of an interface for instance, a detector should be
able to process messengers that come from many differ-
ent directions. The schematic diagram depicted in Fig. 5
shows that this processing unit has the same structure as
the general processing unit, see Fig. 4 except that it may
have more than two inputs ports. The number of input
ports is denoted by Np = K + 1.

3. Input stage

Representing the arrival of a messenger at port 0 ≤
k ≤ K by the vector v = (v0, . . . , vK)T with vi = δi,k the
internal vector is updated according to the rule

x← γ̂x+ (1− γ̂)v, (30)

where x = (x0, . . . , xK)T ,
∑K
k=1 xk = 1, and 0 ≤ γ̂ < 1.

The elements of the incoming message y are written in
internal register Yk

Yk ← y, (31)
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while all the otherYi (i 
= k) registers remain unchanged.
Thus, each time a messenger arrives at one of the input
ports, say k, the DLM updates all the elements of the
internal vector x, overwrites the data in the register Yk

while the content of all other Y registers remains the
same.

4. Transformation stage

The output message generated by the transformation
stage is

T = x ·Y =

K∑
k=0

xkYk, (32)

which is a complex-valued two-component vector, similar
to a message y.

5. Output stage

As in all previous event-based models for the optical
components, the output stage (O) generates a binary

output signal k̂ = 0, 1 but unlike components such as
a parallel plate, the output message does not represent

a photon: It represents a “no click” or “click” if k̂ = 0

or k̂ = 1, respectively. To implement this functionality,
we define (compare with Eq. (28) which is essentially the
same)

k̂ = Θ(|T|2 − r), (33)

where Θ(.) is the unit step function and 0 ≤ r < 1 are
uniform pseudo-random numbers (which are different for
each event). The parameter 0 ≤ γ̂ < 1 can be used to
control the operational mode of the unit. From Eq. (33)

it follows that the frequency of k̂ = 1 events depends on
the length of the internal vector T.

Note that in contrast to experiment, in a simulation,

we could register both the k̂ = 0 and k̂ = 1 events.

Then the sum of the k̂ = 0 and k̂ = 1 events is equal
to the number of input messages. In real experiments,

only k̂ = 1 events are taken as evidence that a photon
has been detected. Therefore, we define the total detector
count by

Ncount =

K∑
l=1

k̂l, (34)

where K is the number of messages received and l labels
the events. In words, Ncount is the total number of one’s
generated by the detector unit.

6. Detection efficiency

In general, the detection efficiency is defined as the
overall probability of registering a count if a photon ar-
rives at the detector36. One method to measure the de-
tection efficiency is to use a single-photon point source,
placed far away from a single detector36. In an EBCM
of such an experiment, all the messengers that reach the
detector will approximately have the same direction, im-
plying that these messengers arrive at this detector at
the same input port, say k. As explained in Section A3,
under these circumstances, xk converges exponentially to
one. Hence, after receiving a few photons, the detector
clicks every time a photon arrives. Thus, the detection
efficiency, as defined for real detectors, of the event-based
detector model is very close to 100%.
Comparing the number of ad hoc assumptions and un-

known functions that enter typical quantum theory treat-
ments of photon detectors3 with the two parameters γ̂
and Np of the event-based detector model, the latter has
the virtue of being extremely simple while providing a
description of the detection process at the level of detail,
the single events, which is outside the scope of quantum
theory.

V. MODEL VALIDATION

We validate the EBCM by simulating some very basic
optical experiments such as reflection and refraction by a
boundary between two dielectric materials and by a plane
parallel plate and the interference of two light beams.

A. Reflection and refraction from an interface

In Fig. 6, we show the diagram and its EBCM equiv-
alent of an experiment to measure the reflection and re-
fraction by a boundary between two dielectric materials.
In the EBCM, the source sends messengers with their ini-
tial time-of-flight set to zero to port 0 of the DLM-based
processor, described in Section IVB2. The message con-
sists of the vector y and the direction θ (or equivalently
q(1), see Fig. 3). The DLM-based processor accepts the
message, updates its internal state according to the rules,
given in Section IVB2. The result of this processing is
that a messenger leaves the processor via port 0 or (ex-
clusive) 1, corresponding to a reflected or transmitted
messenger, respectively. The messenger then proceeds to
either detector D0 or D1. Each detector is also a DLM-
based processor (recall that we impose the condition that
the same algorithms should be used in all experiments),
as described in Section IVC2. Counting the events pro-
duced by these detectors yields the reflectivity and trans-
missivity of the interface.
In Fig. 7 we compare EBCM simulation results with

the predictions of Maxwell’s theory1. It is clear that there
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FIG. 6: Diagram of the experiment to measure the reflection
and refraction from an interface (left) and the diagram of the
corresponding EBCM model (right). In Maxwell’s theory the
source emits plane waves and the amount of energy in the
reflected and transmitted light wave is recorded by detectors
D0 and D1, respectively. In the EBCM, the source emits par-
ticles which are either reflected or refracted by the interface
and the detectors D0 and D1 count the number of particles
that are reflected or transmitted, respectively.

is excellent agreement, even though the number of emit-
ted events is small compared to the number of photons
used in typical optics experiments. Obviously, the EBCM
passes this first test.

B. Multiple-beam fringes with a plane-parallel
plate

Light impinging on a transparent plane-parallel plate is
multiply reflected at the plate boundaries, a phenomenon
that has many important applications. The resulting in-
terference effects have, according to current teaching of
physics, no corpuscular analog. Therefore, this system
provides a stringent test case for the EBCM approach.
In Fig. 8, we present a schematic picture of the multiple

interference that occurs in the plane-parallel plate when
the latter is illuminated by a plane wave. We assume
that the plate of thickness h is a dielectric with an index
of refraction n2, surrounded by dielectrica with indices
of refraction n1 and n3.

Referring to Fig. 8 and assuming an incident plane
wave (as is done in Maxwell’s theory), by translational
invariance, all points labeled A are equivalent. Likewise,
all points labeled B are equivalent. Therefore, we may
replace the diagram of Fig. 8 by the simpler one, shown
in Fig. 9 (left). Within the realm of Maxwell’s theory,
this amounts to solving the wave equation for the plate
directly, without explicitly summing over all the contri-
butions of the multiply reflected waves, both approaches
giving identical results1.
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FIG. 7: EBCM simulation results (markers) for the reflec-
tivity of an interface between vacuum (n1 = 1) and glass
(n2 = 1.52) as a function of the angle of incidence of the in-
coming particles (see also Fig.1.12 of Ref.1). The solid lines
are the exact results of Maxwell’s theory1. Green markers and
lines: ξ = 0 (S-polarization); Blue markers and lines: ξ = π/4
(S+P polarization); Red markers and lines: ξ = π/2 (P -
polarization). Simulation parameters: 104 events per marker,
γ = γ̂ = 0.99 and Np = 1.

The EBCM of this problem, simplified by exploiting
the translation invariance, is shown in Fig. 9 (right). As
in the case of the single interface, the source sends mes-
sengers with their initial time-of-flight set to zero to port
0 of the DLM-based processor I that simulates interface
I. If processor I decides to send the messenger through
port 0, the messenger proceeds to detector D0 where
it generates a click and is counted as a reflected parti-
cle. If the messenger leaves the processor I through port
1, the messenger travels to interface II in straight line,
increasing its time-of-flight by T1 = v−1

2 hf cos θ′ where
n2 sin θ

′ = n1 sin θ (Snell’s law) and v2 = c/n2. The al-
gorithms executed by processors I and II are, of course,
identical. If processor II decides to send the messen-
ger through port 1, the messenger travels to detector D1

where it generates a click and is counted as a transmit-
ted particle. Otherwise, the messenger returns to the first
interface, increasing its time-of-flight by another amount
of T2 = v−1

2 hf cos θ′, and arrives at port 1 of processor
I. If processor I decides to send the messenger through
port 0, the messenger proceeds to detector D0 where it
generates a click and is counted as a reflected particle.
Otherwise the messenger is directed to processor II. In
this case, as is obvious from Fig. 9(right), the messenger
makes one or more loops, traveling from processor I to
II and back again. This process mimics the multiple in-
terference. Only after a messenger has been detected by
either D0 or D1, the source may send a new messenger
to port 0 of processor I.

In Figs. 10 and Figs. 11, we present EBCM simula-
tion results and compare them with the predictions of
Maxwell’s theory1. It is clear that in all cases, there
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FIG. 8: Wave mechanical picture of multiple reflection in a
plane-parallel plate1.
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FIG. 9: Left: Diagram of the experiment to measure the
reflection and refraction from a plane-parallel plate. In
Maxwell’s theory the source emits plane waves and the
amount of energy in the reflected and transmitted light wave
is recorded by detectors D0 and D1, respectively. Right: In
the EBCM, the source emits particles which are either re-
flected or transmitted by the interface I. In the latter case the
particle travels to interface II where it is transmitted or re-
flected. In the latter case the particle travels back to interface
I. The time-of-flights to travel from interface I to interface II
and back again are T1 and T2, respectively. The detectors D0

and D1 count the number of particles that are reflected or
transmitted by the parallel plate, respectively.

is excellent agreement, demonstrating that the EBCM
of the interface can be used as a basic building block
for constructing optical components such as wave plates,
beam splitters and the like.
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FIG. 10: EBCM simulation results (markers) for the reflectiv-
ity of a parallel plate (n1 = 1, n2 = 3, h = c/4fn2, n3 = 1.5,
corresponding to a quarter-wave plate) as a function of the
angle of incidence of the incoming particles. The solid lines
are the exact results of Maxwell’s theory1. Green markers and
lines: ξ = 0 (S-polarization); Blue markers and lines: ξ = π/4
(S+P polarization); Red markers and lines: ξ = π/2 (P -
polarization). Simulation parameters: 104 events per marker,
γ = γ̂ = 0.99 and Np = 1.
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FIG. 11: EBCM simulation results (markers) for the reflectiv-
ity of a parallel plate (n1 = 1, n3 = 1.5) as a function of the
optical thickness n2hf/c for normal incidence of the incoming
particles (see also Fig.1.18 of Ref.1). The solid lines are the
exact results of Maxwell’s theory1. For the legend and simu-
lation parameters, see Fig. 10. For normal incidence, markers
and solid lines for different polarizations coincide.

C. Two-beam interference experiments

In 1924, de Broglie introduced the idea that also mat-
ter, not just light, can exhibit wave-like properties37.
This idea has been confirmed in various double-slit ex-
periments with massive objects such as electrons6,7,38,39,
neutrons40,41, atoms42,43 and molecules such as C60 and
C70

44,45, all showing interference. In some of the double-
slit experiments6,7,46 the interference pattern is built up
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FIG. 12: Schematic diagram of the double-slit experiment
with two light sources S0 and S1 of width a, separated by
a center-to-center distance d, emitting light according to a
uniform current distribution (see Eq. (35)) and with a uni-
form angular distribution, β denoting the angle. The light
is recorded by detectors D positioned on a semi-circle with
radius X. The angular position of a detector is denoted by θ.

by recording individual clicks of the detectors. The in-
tellectual challenge is to explain how the detection of in-
dividual objects that do not interact with each other can
give rise to the interference patterns that are being ob-
served. According to Feynman, the observation that the
interference patterns are built up event-by-event is “im-
possible, absolutely impossible to explain in any classical
way and has in it the heart of quantum mechanics”47. In
this section we demonstrate that this conclusion needs
to be revised by constructing an EBCM for the interfer-
ence experiment with two light beams that reproduces
the results of Maxwell’s theory.

1. Wave theory

We consider the simple experiment sketched in Fig. 12.
The sources S0 and S1 are lines of length a, separated by
a center-to-center distance d. These sources emit coher-
ent, monochromatic light according to a uniform current
distribution, that is

J(x, y) = δ(x) [Θ(a/2− |y − d/2|) + Θ(a/2− |y + d/2|)] ,
(35)

where Θ(.) denotes the unit step function. In the Fraun-
hofer regime (d� X), the light intensity at the detector
on a circular screen with radius X is given by1

I(θ) = A

(
sin qa sin θ

2
qa sin θ

2

)2

cos2
qd sin θ

2
, (36)

where A is a constant, q = 2πf/c and θ denotes the
angular position of the detector D on the circular screen,
see Fig. 12.
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FIG. 13: Detector counts (circles) as a function of the angular
detector position θ as obtained from the EBCM simulation
of the two-beam interference experiment depicted in Fig. 12.
The solid line is a least-square fit of the EBCM data to the
prediction of wave theory, Eq. (36). The sources have a width
a = c/f and are separated by a distance d = 5c/f and emit
particles according to the current distribution Eq. (35). The
source-detector distance X = 100c/f , see Fig. 12. Simulation
parameters: On average, each of the 181 detectors receives
104 messengers, γ = γ̂ = 0.99 and Np = 500.

2. EBCM simulation

If it is true that individual particles build up the in-
terference pattern one by one and that there is no direct
communication between the particles, simply looking at
Fig. 12 leads to the logically unescapable conclusion that
the interference pattern can only be due to the internal
operation of the detector48: There is nothing else that
can cause the interference pattern to appear. Of course,
the EBCM of a detector is designed to cope with this
task.
In the EBCM, the messengers leave the source one-

by-one, at positions y drawn randomly from a uniform
distribution over the interval [−d/2− a/2,−d/2+ a/2]∪
[+d/2 − a/2,+d/2 + a/2], see Eq. (35). The angle β
is a uniform pseudo-random number between −π/2 and
π/2. When a messenger is created, its time-of-flight is
set to zero. For simplicity, we consider the case of fully
polarized light (the same ξ for all messages) only.

When a messenger travels from the source at (0, y) to
the circular detector screen with radius X, it updates its
own time-of-flight. Specifically, a messenger leaving the
source at (0, y) under an angle β (see Fig. 12) will hit the
detector screen at a position determined by the angle θ
given by

sin θ =
y cos2 β + sinβ

√
X2 − y2 cos2 β

X
, (37)

where |y/X| < 1. The time-of-flight t is then given by

t =

√
X2 − 2yX sin θ + y2

c
. (38)



16

As a messenger hits a detector, this detector updates its
internal state (the internal states of all other detectors do
not change) using the data contained in the message and
then decides whether to generate a zero or a one output
event. Only after the message has been processed by the
detector, the source is allowed to emit a new messenger.
This process is then repeated many times.
In Fig. 13, we present simulation results for a rep-

resentative case. A Mathematica implementation that
uses a variant27 of the EBCM used in this paper can
be downloaded from the Wolfram Demonstration Project
web site49.
From Fig. 13 it is clear that the EBCM reproduces

the results of Maxwell’s theory without taking recourse
of the solution of a wave equation and that the detec-
tion efficiency of the detectors is very close to 100%.
In other words, the interference patterns generated by
EBCM cannot be attributed to inefficient detectors.

D. Remarks

It is of interest to compare the detection counts, ob-
served in the EBCM simulation of the two-beam inter-
ference experiment, with those observed in a real experi-
ment with single photons46. In the simulation that yields
the results of Fig. 13, each of the 181 detectors making
up the detection area is hit on average by ten thousand
photons and the total number of clicks generated by the
detectors is 296444. Hence, the ratio of the total number
of detected to emitted photons is of the order of 0.16,
orders of magnitude larger than the ratio 0.5× 10−3 ob-
served in the single-photon interference experiments46.

VI. OPTICAL COMPONENTS

The EBCM of optical components such as wave plates
and beam splitters can be constructed by connecting
several units that simulate the interfaces (with suitable
parameters) of these components50. From a simulation
point of view, such a construction is both inefficient and
unnecessary. Having shown that two connected EBCM’s
of an interface reproduce the result of a plane parallel
plate, it is legitimate to replace the two interfaces by one
“lumped” EBCM that simulates a beam splitter for in-
stance50. In this section, we specify the lumped EBCM
of optical components that are used in quantum optics
experiments.

A. Beam splitter

The processing unit that acts as a beam splitter (BS)
has the generic structure, depicted in Fig. 4. The device
has two input and two output ports labeled by k = 0, 1
and consists of an input stage, a DLM, a transformation
stage (T), and an output stage (O)14–17. In fact, up

zy

T

T

FIG. 14: Diagram of a processing unit that performs an event-
based simulation of wave plates. Compared to the generic dia-
gram Fig. 4, the DLM stage and the output stage are missing.
The solid lines represent the input and output ports of the de-
vice. The presence of a message is indicated by an arrow on
the corresponding port line. The transformation matrices T
for the HWP and QWP are given by Eq. (41) and Eq. (42),
respectively.

to the transformation matrix T, the processing unit is
identical to the one of a single interface.
For a 50-50 BS, the transformation matrix T reads

T =
1√
2

⎛⎜⎝ 1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1

⎞⎟⎠ , (39)

which is the same as the one employed in wave theory.

B. Polarizing Beam Splitter

A polarizing beam splitter (PBS) is used to redirect the
photons depending on their polarization. For simplicity,
we assume that the coordinate system used to define the
incoming messages coincides with the coordinate system
defined by two orthogonal directions of polarization of
the PBS.
The processing unit that acts as a PBS has the generic

structure depicted in Fig. 4. The unit differs from the
previous ones in the details of the transformation matrix
T only. For instance, if the PBS passes S-polarized light,
it reflects P -polarized light. In this case, the transforma-
tion matrix T of a PBS reads

T =

⎛⎜⎝ 1 0 0 0
0 1 0 0
0 0 0 i
0 0 i 0

⎞⎟⎠ , (40)

which is the same as the one employed in wave theory.

C. Wave plates

A half-wave plate (HWP) changes the polarization of
the light but also changes its phase. A quarter-wave plate
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(QWP) changes the polarization of the light and induces
a phase difference between the S and P components. In
optics, both plates are often used as retarders. In the
EBCM, this retardation of the wave corresponds to a
change in the time-of-flight of the messenger.
In contrast to the BS and PBS, as lumped devices the

HWP and QWP may be simulated without the input
stage, that is the DLM may be omitted. The lumped
device has only one input and one output port, as shown
in Fig. 14, and we therefore omit the subscript that labels
that input and output port in the following.
The transformation performed by the HWP reads

T = −i
(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
, (41)

where θ denotes the angle of the optical axis with respect
to the laboratory frame. Similarly, the transformation
performed by the QWP is

T =
1√
2

(
1− i cos 2θ −i sin 2θ
−i sin 2θ 1 + i cos 2θ

)
. (42)

D. Ideal mirror

The EBCM model of an interface with r̃S = r̃P = 1
can be used to simulate the operation of an ideal mirror
but from a computational viewpoint, it is both inefficient
and unnecessary to simulate the ideal mirror in this man-
ner. An ideal mirror merely acts as a hard wall at which
the messengers undergo an elastic scattering event and
the second component of the message y changes sign. In
practice, these rules are trivial to implement in a simu-
lation.

VII. SINGLE-PHOTON QUANTUM OPTICS
EXPERIMENTS

In the EBCM approach, the processing units that sim-
ulate the optical components are connected in such a way
that the simulation setup is an exact one-to-one copy of
the laboratory experiment. The source sends messen-
gers one-by-one but at all times, there is at most one
message being routed through the network of processing
units. Only after a detector has processed the message,
the source is allowed to create a new messenger. This pro-
cedure guarantees that the simulation process trivially
satisfies Einstein’s criterion of local causality. Needless to
say, the internal state of the processors may be given an
interpretation in terms of the polarization, displacement
or any other classical concept that describes the state of
the material (atoms, molecules...). In other words, all the
elements of the EBCM may be given an interpretation
within the realm of classical physics. As any such inter-
pretation, which would be necessarily subjective, has no
impact on the facts produced by the EBCM, we will not
engage in the endeavour to give such an interpretation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.25  0.5  0.75  1

In
te

ns
ity

fΔT

FIG. 15: EBCM simulation results for the number of parti-
cles registered by detectors D0 (solid markers) and D1 (open
markers), divided by the total count of detected particles,
as a function of the difference ΔT = (T0 − T1(x)) between
the time-of-flight in the lower and upper arm of the MZI, re-
spectively. The solid and dashed lines are the exact results
of Maxwell’s theory for the normalized intensities at D0 and
D1, respectively. Simulation parameters: 104 events per pair
of open en closed markers, γ = γ̂ = 0.99. The markers for
different polarizations (for the legend, see Fig. 10) coincide,
in agreement with Maxwell’s theory.

A. Mach-Zehnder interferometer

A description of the MZI was given in Section II. In
Fig. 15, we present the EBCM simulation results for the
number of particles registered by detectors D0 and D1,
divided by the total count of detected particles, as a
function of the difference between the time-of-flight in
the lower and upper arm of the MZI, respectively. In
this simulation, we set T1(x) = T0 − 2πx/f such that
fΔT = f(T0 − T1(x)) = 2πx and vary x from zero to
one. From Fig. 15, it is clear that the EBCM reproduces
the results of Maxwell’s theory.

The MZI may well be the simplest example that il-
lustrates the conceptual difficulties that arise when one
tries to apply concepts of quantum theory to give a ra-
tional, logically consistent, explanation of what actually
happens to the photons in the MZI. As shown in the
experiment of Grangier et al4, photons may be consid-
ered as indivisible particles3, each one following one par-
ticular path through the MZI. Assuming that the ob-
served interference in this experiment can only be a wave
phenomenon, the somewhat mystical concept of wave-
particle duality is introduced. It is said that photons
exhibit both wave and particle behavior depending upon
the circumstances of the experiment13, in contradiction
with the experiment4 which shows that photons are indi-
visible particles. As a last resort to save the quantum the-
oretical explanation, another mystical element, namely
the collapse of the wave function is introduced. The col-
lapse mechanism has remained mystical after hundred
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years of using quantum theory: A logically and physi-
cally acceptable, experimentally testable mechanism has
not been found. In effect, the main purpose of these two
mystical elements is to demonstrate, what is long known,
that quantum theory does not provide any insight into
what happens in the system. It does not contain the
elements to give a cause-and-effect description of natu-
ral phenomena but describes the statistical properties of
our observations very well. Instead of searching for ratio-
nal cause-and-effect descriptions, to get out of the logical
mess created by introducing elements of magic, quantum
theory simply postulates that such a rational cause-and-
effect description does not exist.
In the EBCM approach, there is no need to invoke

elements of magic or irrational reasoning to explain the
results of the MZI experiment of Grangier et al4. The
crux is to realize that interference is not necessarily a
wave phenomenon but can be generated by particles that
interact with some agent (the processors in the EBCM).

B. Wheeler’s delayed choice experiment

In 1978, Wheeler proposed a gedanken experiment51,
a variation on Young’s double slit experiment, in which
the decision to observe wave or particle behavior is made
after the photon has passed the slits. The pictorial de-
scription of this experiment defies common sense: The
behavior of the photon in the past is said to be changing
from a particle to a wave or vice versa.

1. Experiment

In an experimental realization of Wheeler’s delayed
choice experiment, Jacques et al.28 send linearly polar-
ized single photons through a polarizing beam splitter
(PBS) that together with a second, movable PBS forms
an interferometer (see Fig. 16). Moving the second PBS
induces a time-delay in one of the arms of the interferom-
eter28, symbolically represented by T1(x) in Fig. 16. The
electro-optic modulator (EOM) performs the same func-
tion as a HWP. Changing the electrical potential applied
to the EOM, changes the rotational angle that mixes the
two polarizations, see Eq. (41). In the experiment28, the
random number generator RNG generates a sequence of
binary random numbers rn = 0, 1. The output of RNG
is used to control the potential applied to the EOM. If
rn = 0, the rotation angle θEOM = 0 and if rn = 1,
θEOM = π/8. In the former case, there can be no inter-
ference: There is no mixing of S- and P -polarized light.
In the latter case, interference can occur and we expect
an interference pattern that is the same as the one of a
MZI.
Detector D0 (D1) counts the events generated at port

0 (1) of the Wollaston prism (WP). During a run of N
events, the algorithm generates the data set

Γ = {dn, rn|n = 1, ..., N ; fΔT} , (43)
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FIG. 16: Schematic diagram of the experimental setup for
Wheeler’s delayed-choice experiment with single photons28.
PBS: Polarizing beam splitter; HWP: Half-wave plate; EOM:
Electro-optic modulator; RNG: Random number generator;
WP: Wollaston prism (= PBS); D0, D1: Detectors. The
EBCM replaces the physical devices by the corresponding
message-processing units.

where dn = 0 (1) indicates that detector D0 (D1) fired
and rn = 0, 1 is a binary pseudo-random number that is
chosen after the nth message has passed the first PBS.

2. EBCM simulation

We simulate the Wheeler delayed-choice experiment of
Fig. 16 by connecting the various EBCM of the optical
components in exactly the same manner as in Fig. 16.
The simulation generates the data set Γ just like in the
experiment28,52 and is analyzed in the same manner. The
EBCM simulation results presented in Fig. 17 show that
there is excellent agreement between the event-based sim-
ulation data and the predictions of wave theory.
Of course, in the case of the classical, locally causal

EBCM, there is no need to resort to concepts such as
particle-wave duality and the mysteries of delayed-choice
to give a rational explanation of the observed phenom-
ena. In the simulation we can always track the particles,
independent of rn = 0, 1. These particles always have
full which-way information, never directly communicate
with each other, arrive one by one at a detector but nev-
ertheless build up an interference pattern at the detector
if rn = 1. Thus, the EBCM of Wheeler’s delayed-choice
experiment provides a unified particle-only description of
both cases rn = 0, 1 that does not defy common sense.

C. Quantum Eraser

In 1982, Scully and Drühl proposed a photon inter-
ference experiment, called “quantum eraser”53, in which
the photons are labelled by which-way markers. In this
experiment, the which-way information of the photons
is known to the experimenter and hence, according to
common lore, no interference is to be expected. However
by erasing the which-way information afterwards by a
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FIG. 17: EBCM simulation results (markers) for the Wheeler
delayed-choice experiment depicted in Fig. 16. The number
of particles registered by detectors D0 and D1 divided by the
total count of detected particles, as a function of the difference
ΔT = (T0−T1(x)) between the time-of-flight in the lower and
upper arm of the interferometer, respectively. Open circles:
Intensity measured by D0 for θEOM = 0 (rn = 0); Open
squares: Intensity measured by D1 for θEOM = 0; Closed
circles: Intensity measured by D0 for θEOM = π/4 (rn = 1);
Closed squares: Intensity measured by D1 for θEOM = π/4;
Dashed line: Intensities measured by D0 and D1 as obtained
from Maxwell’s theory for θEOM = 0; Solid red (blue) line:
Intensity measured by D0 (D1) as obtained from Maxwell’s
theory for θEOM = π/4. Simulation parameters: 2600 emitted
events per pair of open/closed markers, γ = γ̂ = 0.99 and
Np = 1. The actual counts (= 1300 × intensities) are in
good quantitative agreement with the experimental results
reported in Ref.28.

“quantum eraser”, the interference pattern can be recov-
ered53, even from data that has been recorded and saved
in a file54.

Quantum eraser experiments have been described “as
one of the most intriguing effects in quantum mechanics”,
but have also been regarded as “the fallacy of delayed
choice and quantum eraser”55. Clearly, they challenge
the point of view that the wave and particle behavior of
photons are complementary: The observation of interfer-
ence, commonly associated with wave behavior, depends
on the way the data is analyzed after the photons have
passed through the interferometer.

The quantum eraser has been implemented in several
different experiments with photons, atoms, etc.29,54,56–60.
In this paper, we consider the experiment performed by
Schwindt et al.29 in which the polarization of the pho-
tons is employed to encode the which-way information.
The experimental setup (see Fig. 18) consists of a lin-
early polarized single-photon source (not shown), a MZI
of which the time-of-flight of path 1 (see Fig. 18) can be
varied by moving the mirror M and an analysis system
which is a combination of a QWP, a HWP (HWP1), and
a calcite prism (WP) operating as a PBS. Another ad-
justable HWP (HWP0) is inserted in path 0 of the MZI

BS

BS

HWP0

HWP1

QWP PBS

0

1

0

1

SS

S1D

S0D

FIG. 18: Schematic diagram of the experimental setup for the
quantum eraser experiment with photons studied in Ref.29.
Moving the mirror labeled M changes the difference ΔT be-
tween the time-of-flight in the lower and upper arm of the
interferometer.
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FIG. 19: The number of particles registered by detectors D0

and D1 divided by the total count of detected particles as a
function of the time-of-flight difference ΔT for θ0 = π/3, θ1 =
π/4, and θ2 = π/8, as obtained from the EBCM simulation of
the quantum eraser experiment depicted in Fig. 18. Circles:
Intensity measured by D0; Squares: Intensity measured by
D1; Solid red (blue) line: Intensity measured by D0 (D1)
as obtained from Maxwell’s theory, see Eqs. (44)and (45).
Simulation parameters: 104 events, γ = γ̂ = 0.99 and Np = 1.

to entangle the photon’s path with its polarization29.

1. Wave theory

If a photon, described by a pure S-polarized state is
injected into the interferometer with the HWP0 set to
45◦, the photon that arrives at the second BS of the MZI
carries a which-way marker: The photon will be in the
P polarized state if it followed path 0 and will be in the
S polarized state if it followed path 1. If the rotation
angle of HWP1 is zero, there will be no interference and
the detectors reveal the full which-way information of
each detected photon. If the rotation angle of HWP1
is nonzero, the S- and P -polarized states interfere, the
which-way information of each photon will be partially
or completely “erased”. Thus, by varying the rotation
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angle of HWP1, the illusion is created that the character
of the photon in the MZI “changes” from particle to wave
and vice versa.
Assuming that the photons emitted by the source are

described by a pure S-polarized state, wave theory pre-
dicts that the intensities at the detectors D0 and D1 are
given by

I0 =
1

16
{4− cos 4(θ2 − θ1)− cos 4θ1

− cos 4(θ2 − θ1 − θ0)− cos 4(θ1 − θ0)
+4 cos fΔT sin(2θ2 − 4θ1) sin 2θ0

−2 sin fΔT [cos(4θ2 − 4θ1 − 2θ0)

+ cos(4θ1 − 2θ0)− 2 cos 2θ0]} (44)

I1 =
1

16
{4 + cos 4(θ2 − θ1) + cos 4θ2

+cos 4(θ2 − θ1 − θ0) + cos 4(θ1 − θ0)
−4 cos fΔT sin(2θ2 − 4θ1) sin 2θ0

+2 sin fΔT [cos(4θ2 − 4θ1 − 2θ0)

+ cos(4θ1 − 2θ0) + 2 cos 2θ0]} , (45)

where θ0, θ1, and θ2 are the rotation angles of HWP0,
HWP1, and QWP, respectively.

2. EBCM simulation

In an earlier paper in this journal, it was shown that
quantum eraser experiments can be simulated without
invoking concepts of quantum theory and without first
solving a wave mechanical problem25. In this paper, we
demonstrate that the same experiment can be simulated
by simply re-using the EBCM of the optical components.
In Fig. 19 we present the results of an event-by-event

simulation of the experiment depicted in Fig. 18. It
is clear that there is excellent agreement between the
EBCM data and the prediction of quantum theory for
the system described by the pure state. Elsewhere, we
have already demonstrated that the EBCM can also cope
with systems that quantum theory describes in terms of
mixed states25. The EBCM correctly describes the out-
come of the quantum eraser experiment of Fig. 18 under
all circumstances25.

D. Single-photon tunneling

A conceptually simple, direct experimental demonstra-
tion that photons behave as indivisible entities and that
displays both particle and wave characteristics was pro-
posed by Ghose et al.61, drawing inspiration from an
experiment that was carried out with microwaves al-
most hundred years earlier62. The experimental setup
is sketched in Fig. 20.
It is instructive to consider Maxwell’s theory for this

experiment first. A light wave is sent to a prism that
is separated from another prism by a distance w. If

w is very large, the total internal reflection in the first
prism causes virtually all light to be reflected1. If w is
of the order of the wavelength or less, evanescent waves
at the surface of the first prism can penetrate the sec-
ond prism, giving rise to a measurable flux of light in the
second prism62. It is said that the wave can “tunnel”
through the gap separating the prisms. In the case of
waves, the experimental observation of this tunneling ef-
fect can be completely understood within the framework
of Maxwell’s theory.
Let us now try to explain this observation if we accept,

as we do in this paper, that light is made out of indi-
visible entities, that is out of photons. Assuming ideal
single-photon detectors and a single-photon source, the
experiment may show that

1. Both detectors D0 and D1 click within a time win-
dow, much smaller than the time between two suc-
cessive single-photon emissions.

2. Detectors D0 and D1 click in perfect anti-
coincidence.

Experimental results favor the second possibility30–32

(see also our discussion of the experiment by Grangier
et al. in Section IA) and within the standard interpre-
tation of quantum theory are considered to be a proof
that the particle-wave duality must be considered in weak
sense and not in the orginal “complementarity” sense of
Bohr13,32. There is not much point to dwell on this is-
sue here because, as we show now, the EBCM approach
provides a simple picture of this phenomenon without
introducing the mystique of particle-wave duality.
The results of an EBCM simulation, using the “lumped

device” representation of the two-prism system, of the
experiment depicted in Fig. 20 are shown in Fig. 21, to-
gether with the predictions of Maxwell’s theory. It is
clear that there is excellent agreement between the cor-
puscular model and the wave model, demonstrating once
more that the predictions of the latter can be obtained
from a simulation that involves particles only.

VIII. PHOTON CORRELATION
EXPERIMENTS

A. Einstein-Podolsky-Rosen-Bohm experiment

To construct an event-based computer simulation
model of the EPRB experiment with photons performed
by Weihs et al.35), we use the same EBCMs for the opti-
cal components as in the previous sections. The resulting
EBCM for the whole EPRB experiment is substantially
different from our earlier event-based simulation mod-
els that reproduce the result of quantum theory for the
singlet state and product state18–21,24,63. The difference
is that in our earlier work we adopted the tradition in
this particular subfield to use simplified mathematical
models for the optical components that, when re-used
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FIG. 20: Schematic diagram of the experimental setup for the
photon tunneling experiment Ref.30. The hypotenuses of the
identical prisms are separated from each other by a distance
w.
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FIG. 21: The number of particles registered by detectors
D0 (transmissivity, open markers) and D1 (reflectivity, closed
markers) divided by the total count of detected particles as
a function of the width w of the gap between the two prisms
(n = 1.52), as obtained from an EBCM simulation of the pho-
ton tunneling experiment depicted in Fig. 20. The solid lines
are the exact results of Maxwell’s theory1. Green markers and
lines: ξ = 0 (S-polarization); Blue markers and lines: ξ = π/4
(S+P polarization); Red markers and lines: ξ = π/2 (P -
polarization). Simulation parameters: 104 events per marker,
γ = γ̂ = 0.99 and Np = 1.

for different optics experiments, would fail to reproduce
the results of these experiments. In this section, we sim-
ply use (without any modification) the EBCMs for the
optical components that are present in the laboratory ex-
periment and analyze the simulation data in exactly the
same manner as the experimental data for this experi-
ment has been analyzed35.

TABLE I: The single spin expectations, the two-spin ex-
pectation and the spin-spin correlation of two spin-1/2 par-
ticles in the singlet state |Singlet〉 = (|SP 〉 − |PS〉) /√2
and in the product state |Product〉 = (cos η1|P 〉1 +
sin η1|S〉1)(cos η2|P 〉2 + sin η2|S〉2).

|Singlet〉 |Product〉
̂E1(α1) 0 cos 2(α1 − η1)
̂E2(α2) 0 cos 2(α2 − η2)
̂E12(α1, α2) − cos 2(α1 − α2) cos 2(α1 − η1) cos 2(α2 − η2)

ρ̂12(α1, α2) ̂E12(α1, α2) 0

1. Laboratory experiment

In Fig. 22, we show a schematic diagram of an EPRB
experiment with photons (see also Fig. 2 in35). The
source emits pairs of photons. Each photon of a pair
travels to an observation station in which it is manip-
ulated and detected. The two stations are assumed to
be identical. They are separated spatially and tempo-
rally, preventing the observation at station 1 (2) to have a
causal effect on the data registered at station 2 (1)35. As
the photon arrives at station i = 1, 2, it passes through
an EOM that rotates the polarization of the photon by
an angle depending on the voltage applied to the modu-
lator. These voltages are controlled by two independent
binary random number generators. A PBS sends the
photon to one of the two detectors. The station’s clock
assigns a time-tag to each generated signal. We consider
two different experiments, one in which the source emits
photons with opposite but otherwise unpredictable po-
larization and those with a source emitting photons with
fixed polarization.

2. Quantum theory

The quantum theoretical description of the EPRB ex-
periment with photons exploits the fact that the two-
dimensional vector space spanned by two orthogonal po-
larization vectors is isomorphic to the vector space of
spin-1/2 particles. The predictions of quantum theory
for the single and two-particle averages for an experiment
described by a quantum system of two spin-1/2 particles
in the singlet state and a product state are given in Ta-
ble I and serve as a reference for the EBCM simulation.

3. EBCM of the EPRB experiment

The detectors, PBSs and EOMs are simulated using
their EBCMs described earlier. Recall that the EBCM
of the detector mimics a detector with 100% detection
efficiency. The EBCM of the EPRB experiment trivially
satisfies Einsteins criteria of local causality, does not rely
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FIG. 22: Schematic diagram of an EPRB experiment with
photons35.
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FIG. 23: Computer simulation data and quantum theoret-
ical results for the single-particle and two-particle averages
of the EPRB experiment depicted in Fig. 22 as a func-
tion of θ = α1 − α2. The source emits particles with op-
posite polarization, uniformly distributed over the unit cir-
cle. Open circles and squares: Eq. (48) and 49), respec-
tively; Closed squares: Eq. (50) Closed circles: Eq. (51) for
W = TEPRB, that is by ignoring the time-tag data; Blue

solid line: ̂E12(α1, α2) = − cos 2θ; Red solid line: −2−1 cos 2θ.
Simulation parameters: 3×105 pairs, TEPRB = 1000, W = 1,
d = 4, γ = γ̂ = 0.99 and Np = 1. Note that the total number
of pairs emitted by the source is about the same as the number
of photons per station detected in the experiment reported in
Ref.35 (experimental data set called longdist35).

on any concept of quantum theory and, as will be shown
below, reproduces the results of quantum theory for both
types of experiments.

The data generated by the EBCM of the EPRB ex-
periment is analyzed in exactly the same manner as in
experiment35. In the simulation, the firing of a detec-
tor is regarded as an event. At the nth event, the data
recorded on a hard disk at station i = 1, 2 consists of
xn,i = ±1, specifying which of the two detectors fired,
the time tag tn,i indicating the time at which a detector
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FIG. 24: Computer simulation data and quantum theoretical
results for the single-particle and two-particle averages of the
EPRB experiment depicted in Fig. 22 as a function of θ =
α1 − η1 with α2 = 0. Same as in Fig. 23 except that the
source emits particles with P (η1 = 0) and S (η2 = π/2)
polarization only. Open circles and squares: Eq. (48) and
49), respectively; Closed squares: Eq. (50); Closed circles:
Eq. (51) for W = TEPRB, that is by ignoring the time-tag

data; Blue solid line: ̂E12(α1, α2) = cos 2(α1 − η1) cos 2(α2 −
η2) = − cos 2θ. Simulation parameters: Same as in Fig. 23.

fired, and the two-dimensional unit vector αn,i that rep-
resents the rotation of the polarization by the EOM at
the time of detection. Hence, the set of data collected at
station i = 1, 2 during a run of N events may be written
as

Υi = {xn,i = ±1, tn,i, αn,i|n = 1, . . . , N} . (46)

In the (computer) experiment, the data {Υ1,Υ2} may be
analyzed long after the data has been collected35. Coin-
cidences are identified by comparing the time differences
{tn,1 − tn,2|n = 1, . . . , N} with a time window35 W . In-

troducing the symbol
∑′

to indicate that the sum has to
be taken over all events that satisfy αi = αn,i for i = 1, 2,
for each pair of directions α1 and α2 of the EOMs, the
number of coincidences Cxy ≡ Cxy(α1, α2) between de-
tectors Dx,1 (x = ±1) at station 1 and detectors Dy,2

(y = ±1) at station 2 is given by

Cxy =

N∑′

n=1

δx,xn,1
δy,xn,2

Θ(W − |tn,1 − tn,2|), (47)

where Θ(t) is the Heaviside step function. We empha-
size that we count all events that, according to the same
criterion as the one employed in experiment, correspond
to the detection of pairs35. The average single-particle
counts are defined by

E1(α1, α2) =

∑
x,y=±1 xCxy∑
x,y=±1 Cxy

, (48)
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and

E2(α1, α2) =

∑
x,y=±1 yCxy∑
x,y=±1 Cxy

, (49)

where the denominator is the sum of all coincidences.
The correlation of two dichotomic variables x and y is

defined by64

ρ12(α1, α2) = E12(α1, α2)− E1(α1, α2)E2(α1, α2), (50)

where

E12(α1, α2) =

∑
x,y xyCxy∑
x,y Cxy

=
C++ + C−− − C+− − C−+

C++ + C−− + C+− + C−+
, (51)

is the two-particle average.
In general, the values for the average single-particle

counts E1(α1, α2) and E2(α1, α2), the two-particle aver-
ages E(α1, α2), and the total number of the coincidences
C(α1, α2) =

∑
x,y=±1 Cxy(α1, α2), not only depend on

the directions α1 and α2 but also on the time window W
used to identify the coincidences.

4. Time-tag model

From Eq. (46), it is clear that a model that aims to
describe real EPRB experiments should incorporate a
mechanism to produce the time tags tn,1 and tn,2. The
importance of incorporating such a mechanism has been
pointed out by S. Pascazio who presented a concrete
time-tag model that yields a good approximation to the
correlation of the singlet state (see Table I)65.

Following our earlier work18–21,63, we assume that as
a particle passes through the EOM, it experiences a
time delay. This is a very reasonable assumption as
EOMs are in fact used as retarders in optical commu-
nication systems. For simplicity, the time delay tn,i
is assumed to be distributed uniformly over the inter-
val [0, T ]. From our earlier work we know that the

choice T = TEPRB sin2d 2(ξn − αn,i) rigorously repro-
duces the results of Table I, that is the results of quan-
tum theory for the EPRB experiment, if d = 4 and
W � TEPRB

18–21,63. Therefore, we adopt this time-tag
model in the present paper also.

5. Simulation results

The EBCM generates the data set Eq. (46), just as ex-
periment does35. We choose the coincidence window W
and compute the coincidences, single-spin and two-spin
averages according to the Eqs. (47)–(51). The simula-
tion results for the two different types of experiments are
presented in Figs. 23 and 24. It is obvious that the fully
classical, locally causal EBCM reproduces the results of

quantum theory for both the singlet state and the prod-
uct state. Note that the detectors have 100% detection
efficiency.

6. Remarks

It is not uncommon to find in the literature, statements
that it is impossible to simulate quantum phenomena by
classical processes. Such statements are thought to be
a direct consequence of Bell’s theorem66 but are in con-
flict with other work that has pointed out the irrelevance
of Bell’s theorem 67–91. This conclusion is supported
by several explicit examples that prove that it is pos-
sible to construct algorithms that satisfy Einstein’s cri-
teria for locality and causality, yet reproduce exactly the
two-particle correlations of a quantum system in the sin-
glet state, without invoking any concept of quantum the-
ory18–21,23,63. The simulation results presented in Fig. 23,
obtained from different (but similar) simulation models
than the ones used in previous work, provides yet another
illustration that Bell’s no-go theorem is of very limited
value: It applies to a marginal class of classical mod-
els only and becomes relevant to the EPRB experiments
that are performed in the laboratory if the coincidence
window W approaches infinity (on the time scale of the
experiment).

B. Hanbury Brown-Twiss experiment

HBT experiments92 measure the correlation of light
intensities originating from two different, uncorrelated
sources. HBT showed that under conditions for which the
usual two-beam interference fringes measured by each of
the two detectors vanish, the correlated intensities of the
two detectors can still show interference fringes. When a
HBT experiment is performed with detectors operating
in the single-photon-detection regime, the observation of
the fringes in the correlated detector intensities is at-
tributed to the wave-particle duality of the beam10,93,94.

1. Scalar wave theory

Conceptually, the HBT experiment of Fig. 25 can be
viewed as a two-beam experiment with two detectors.
Assume that source Sm (m = 0, 1) emits coherent light of
frequency f and produces a wave with amplitude Ame

iφm

(Am and φm real). For simplicity of presentation, we
assume that A0 = A1 = A. According to Maxwell’s
theory, the total wave amplitude Bn on detector n is

Bn = A
(
ei(φ0+2πfT0,n) + ei(φ1+2πfT1,n)

)
, (52)

where the time-of-flight for each of the four possible paths
from source Sm to detector Dn is denoted by Tm,n where
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FIG. 25: Schematic diagram of a HBT experiment. Single
photons emitted from point sources S0 and S1 are registered
by two detectors D0 and D1. The time-of-flight for each of the
four possible paths from source Sm to detector Dn is denoted
by Tm,n where m,n = 0, 1.

m,n = 0, 1. The light intensity In = |Bn|2 on detector
Dn is given by

In = 2A2 {1 + cos [φ0 − φ1 + 2πf(T0,n − T1,n)]} . (53)

If the phase difference φ0 − φ1 in Eq. (53) is fixed, the
usual two-beam (first-order) interference fringes are ob-
served. In this section, 〈.〉 denotes the average over the
variables φ0 and φ1.
The essence of the HBT experiment is that if the phase

difference φ0 − φ1 is a random variable (uniformly dis-
tributed over the interval [0, 2π[) as a function of obser-
vation time, these first-order interference fringes vanish
because

〈In〉 = 2A2. (54)

However, the average of the product of the intensities is
given by

〈I0I1〉 = 4A4

(
1 +

1

2
cos 2πfΔT

)
, (55)

where ΔT = (T0,0−T1,0)−(T0,1−T1,1). Accordingly, the
intensity-intensity correlation Eq. (55) exhibits second-
order interference fringes, a manifestation of the so-called
HBT effect.

2. EBCM simulation

In Fig. 26 we present the EBCM simulation results of
the HBT experiment depicted in Fig. 25 with messen-
gers that contain the time-of-flight and the angle ξ, see
Eq. (9). For simplicity, we have put detector D1 at (X, 0)
and plot the single detectors and coincidence counts as
a function of the y-position of detector D0. In each sim-
ulation step, both sources S0 and S1 create a messen-
ger with their initial time-of-flight set to some randomly
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FIG. 26: Computer simulation data of the single-particle
and two-particle counts for the HBT experiment depicted in
Fig. 25. Red open circles: EBCM results for the counts of de-
tector D0. Blue open triangles: EBCM results for the counts
of detector D1. Red closed circles: EBCM results for the co-
incidence counts. The dashed and solid lines are least-square
fits of the predictions of wave theory to the EBCM data for
the single detector and coincidence counts, respectively. Sim-
ulation parameters: Ntot = 2 × 105 events per y1f/c-value,
NF = 40, X = 100000c/f , d = 2000c/f , γ = γ̂ = 0.99 and
Np = 2.

chosen messages ym (m = 0, 1) which are kept fixed for
NF successive pairs of messengers. Two pseudo-random
numbers are used to determine whether the messengers
travel to detector D0 or D1. The time-of-flights are given
by

Tm,n =

√
X2 + ((1− 2m)d/2− yn)2

c
, (56)

where m = 0, 1 and n = 0, 1 label the source and de-
tector, respectively. As Fig. 26 shows, averaging over
the randomness in the initial messages wipes out all in-
terference fringes in the single-detector counts, in agree-
ment with Maxwell’s theory. Denoting the total num-
ber of emitted pairs of messengers by Ntot, we find that
the number of single-detector counts fluctuates around
Ntot/2, as expected from Maxwell’s theory, providing nu-
merical evidence that the detectors have indeed 100% de-
tection efficiency. Similarly, the data for the coincidence
counts are in excellent agreement with the expression

Ncoincidence =
Ntot

8

(
1 +

1

2
cos 2πfΔT

)
, (57)

predicted by Maxwell’s theory.
For simplicity, we have confined the above presentation

to the case of a definite polarization. Simulations with
randomly varying polarization (results not shown) are
also in concert with Maxwell’s theory. Elsewhere, we
show that three-photon interference can be modeled by
an EBCM as well26.
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3. Nonclassicality

From Eq. (57), it follows that the visibility of the in-
terference fringes, defined by

V =
max(Ncoincidence)−min(Ncoincidence)

max(Ncoincidence) + min(Ncoincidence)
, (58)

cannot exceed 50%. It seems commonly accepted that
the visibility of a two-photon interference experiment
exceeding 50% is a criterion of the nonclassical nature
of light. On the other hand, according to Ref.95, the
existence of high-visibility interference in the third and
higher orders in the intensity cannot be considered as a
signature of three- or four-photon interference. Thus, it
seems that the two-photon case may be somewhat spe-
cial, although there is no solid argument why this should
be so.
As in the case of the EPRB experiment, HBT experi-

ments employ time-coincidence to measure the intensity-
intensity correlations. It is therefore quite natural to ex-
pect that a model that purports to explain the obser-
vations accounts for the time delay that occurs between
the time of arrival at a detector and the actual click of
that detector. In quantum theory, time is not an ob-
servable and can therefore not be computed within the
theory proper, hence there is no way that these time de-
lays, which are being measured, can be accounted for by
quantum theory. Consequently, any phenomenon that
depends on these time delays must find an explanation
outside the realm of quantum theory (as it is formulated
to date).
It is straightforward to add a time-delay mechanism to

the EBCM of the detector. As an illustrative example,
we assume that the time of the detector click, relative to
the time of emission, is given by

tdelay = Tm,n + rTmax(1− |T|2)h, (59)

where 0 < r < 1 is a pseudo-random number, and T is
given by Eq. (27). The time scale Tmax and the exponent
h are free parameters of the time-delay model. Coinci-
dences are counted by comparing the difference between
the delay times of detectors D0 and D1 with a time win-
dow W , exactly in the same way as is done in the EPRB
experiment (see Eq. (47).
From the simulation results presented in Fig. 27, it

is clear that by taking into account that there are fluc-
tuations in the time delay that depend on the time-of-
flight and the internal state of the detector, the visibility
changes from V = 50% to V ≈ 100%. In Fig. 27, the solid
line represents the least square fit of a(1 + b cos 2πfΔt)
to the simulation data.
This example demonstrates that a purely classical cor-

puscular model of a two-photon interference experiment
can yield visibilities that are close to 100%, completing
the picture that high visibilities in two-, three- or four-
photon interference experiments can be explained within
the realm of a classical theory, such as an EBCM. In any
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FIG. 27: Computer simulation data of the single-particle
and two-particle counts for the HBT experiment depicted in
Fig. 25, generated by the same EBCM that produced the
data of Fig. 26 extended with the time-delay model Eq. (59).
Red open circles: EBCM results for the counts of detector
D0. Blue open triangles: EBCM results for the counts of
detector D1. Red closed circles: EBCM results for the coin-
cidence counts. The dashed and solid lines are least-square
fits of the predictions of wave theory to the EBCM data for
the single detector and coincidence counts, respectively. Sim-
ulation parameters: Ntot = 2 × 105 events per y1f/c-value,
NF = 40, X = 100000c/f , d = 2000c/f , γ = γ̂ = 0.99,
Np = 2, W = 2/f , Tmax = 2000/f and h = 8.

case, the commonly accepted criterion of the nonclassical
nature of light needs to be revised.

The time delay model Eq. (59) is perhaps one of the
simplest that yield interesting results but it is by no
means unique. The study of various time delay mod-
els with applications to fermion and boson statistics will
be published elsewhere.

IX. SUMMARY AND OUTLOOK

We have demonstrated that one universal event-based
corpuscular model (EBCM) for the interaction of pho-
tons with matter suffices to explain the interference and
correlation phenomena that are observed when individual
photons are detected one by one. Of course, this model
produces the frequency distributions for observing many
photons that are in full agreement with the predictions of
Maxwell’s theory and quantum theory. This is not sur-
prising: Maxwell’s theory is used as a guiding principle to
determine the single-event dynamics of the model. The
main conclusion of these simulations is that the effects
such as EPR correlations and enhanced visibility in two-
photon interference in the HBT experiment are contained
in a corpuscular model of light and simply appear as the
result of the particular processing of the detection events.
The EBCM is entirely classical in the sense that it uses
concepts of the macroscopic world and makes no refer-
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ence to quantum theory but is nonclassical in the sense
that it does not rely on the rules of classical Newtonian
dynamics.
It is remarkable that the observations of all the funda-

mental quantum optics experiments covered in this paper
can be explained using a computer simulation model that
is elementary. All that is required is elementary algebra
and some Euclidian geometry. This is in sharp contrast
with the mathematical machinery that has to be mas-
tered in order to understand the meaning of the symbols
used to formulate Maxwell’s theory or quantum theory.
One may argue that a finite-difference time-domain

(FDTD) Maxwell solver96 also carries out very simple
arithmetic operations but the point is that the simple
update rules for the electromagnetic-field variables are
derived from a set of differential (or integral) equations.
In contrast, in the EBCM approach, the rules are con-
structed such that the stationary state of the classical,
dynamical system of processing units yields the inten-
sity distribution of the wave problem, not the other way
around. In other words, for quantum optics experiments,
Maxwell’s theory and quantum theory are contained in
the EBCM presented in this paper. We consider it un-
likely that this EBCM is unique: There may be several
ways to modify the update rule of the processors such
that the stationary state of the EBCM agrees with the
prediction of Maxwell’s theory,
An important question is whether the EBCM can make

predictions that can be tested experimentally. From the
nine examples presented in this work, it is clear that af-
ter a few hundreds of photons have been processed by the
EBCM, the frequencies of observations are hardly distin-
guishable from the intensities expected from Maxwell’s
theory (recall that the EBCM of the detector has 100%
detection efficiency) Therefore, to test the EBCM, one
has to conceive an experiment that is capable of testing
the transient regime of the EBCM, that is the regime be-
fore the EBCM reaches its stationary state. Elsewhere we
have proposed an experiment with a Mach-Zehnder in-
terferometer that might be used for this purpose97. We
hope that our simulation results will stimulate the de-
sign of new time-resolved single-photon experiments to
test our corpuscular model for optical phenomena.
We would like to draw attention to the fact that the

EBCM approach may have practical applications as a
new method for simulating optical phenomena. From a
computation viewpoint, the salient features of our event-
based approach are:

• It yields the stationary solution of the Maxwell
equations by simulating particle trajectories only.

• Material objects are represented by DLM-based
units placed on a boundary of these objects, which
in practice involves some form of discretization.
Disregarding this discretization, all calculations are
performed using Euclidean geometry.

• Artifacts due to the unavoidable termination of the

simulation volume which are inherent to wave equa-
tion solvers96 are absent: Particles that leave the
simulation volume can simply be removed from the
simulation.

• Unlike wave equation solvers which may consume
substantial computational resources (i.e. memory
and CPU time) to simulate the propagation of
waves in free space, it calculates the motion of the
corresponding particles in free space at almost no
computational cost.

• Modularity: Starting from the unit that simulates
the behavior of a plane interface between two ho-
mogeneous media other optical components can be
constructed by repeated use of the same unit.

The work presented in this paper may open a route to
rigorously include the effects of interference in ray-tracing
software. For this purpose, it may be necessary to extend
the DLM-based model for a lossless dielectric material
to, say a Lorentz model for the response of material to
the electromagnetic field96 and to extend the model to
simulate phenomena that, in Maxwell’s theory, are due
to evanescent waves. We leave these extensions for future
research.
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APPENDIX A: DETERMINISTIC LEARNING
MACHINES

We begin by asking the following simple question:
Given a real number 0 ≤ y ≤ 1 how can we generate a
sequence of binary variables y1, . . . , yK = 0, 1 such that
their average (y1+. . .+yK)/K yields a good (in a certain
sense to be defined later) approximation for y?

1. Pseudo-random machine

Perhaps the most obvious answer to this question is
the following: Use a pseudo-random number generator
to produce numbers 0 < r1, . . . , rK ≤ 1 and to set
yk = 0 (yk = 1) if rk ≤ y (rk > y). If the pseudo-
random number generator is any good, we expect that
(y1+. . .+yK)/K ≈ y if K is large but much less than the
period of the pseudo-random number generator98. Theo-
retically, we can analyze the properties of these sequences
by imagining that there exists a device that generates
random variables in the Kolmogorov sense. Then, we
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would have

lim
K→∞

1

K

K∑
k=1

yk
P→ y, (A1)

where the notation A
P→ B means that A is equal to B

with probability one, which in plain words means it is
likely that A = B but that it can happen that A 
= B.
For sufficiently large K, probability theory tells us that
with K binary variables, we can represent of the order of
(c(d)

√
K)−1 real numbers, where c(d) is proportional to

the number of significant digits d of these real numbers99.
Thus, when we use (pseudo) random numbers, the

problem can be solved in a rather trivial manner. But
can we do better and dispose of random numbers alto-
gether? Yes, we can and perhaps surprisingly, the al-
gorithm15 that follows is not more complicated than the
simplest algorithms that are used to generate pseudo ran-
dom numbers98.

2. Deterministic learning machine I

Let us consider a machine that receives input messages
in the form of numbers 0 ≤ yk ≤ 1 for k = 1, 2, . . .. For
each yk that it receives, the machine updates its internal
state, represented by 0 ≤ xk ≤ 1 according to

xk = γxk−1 + (1− γ)Δk, (A2)

where Δk = Θ(|γxk−1+(1−γ)−yk|−|γxk−1−yk|) with
Θ(.) denoting the unit step function. In words, the ma-
chine will choose the new internal state xk such that the
difference with the input yk is minimum15. The sequence
Δ1,Δ2, . . . are the output messages of the machine. The
parameter 0 ≤ γ < 1 controls both the speed and accu-
racy with which the machine can learn the input value
yk

15,99. As a detailed mathematical analysis of the dy-
namics of the machine defined by the rule Eq. (A2) is
given in Ref. 99, it will not be repeated here.
Here, we illustrate the operation of the DLM defined

by update rule Eq. (A2) by a simple example in which we
feed the DLM by a sequence of 500 messages with fixed
value yk = 0.3 followed by another 500 messages with
fixed value yk = 0.8. Initially the machine is in the state
x0 = 1/2 and γ = 0.99.
In Fig. 28 (red line) we show simulation results of the

internal state xk of the DLM as a function of the num-
ber of events k that have been received by the DLM.
From Eq. (A2), x0 = 0.5 and y = 0.3 it immediately
follows that initially Δk = 0 and that it takes about
k0 = (log 0.3 − log 0.5)/ log 0.99 ≈ 51 events for the in-
ternal vector to reach a state where xk ≈ yk = 0.3 (for
k ≤ 500), in concert with the data of Fig. 28 (red line).

Once the DLM has reached this regime, its behavior
changes drastically: With yk still fixed, its internal vec-
tor will start oscillating about yk. If xk decreases (in-
creases), the machine generates Δk = 0(1) as output15,99.
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FIG. 28: The internal state of the DLM as a function of
the number of input events k. Red line: DLM defined by
the update rule Eq. (A2). Green line: DLM defined by the
update rule Eqs. (A3) and (A4).

It can be shown that in this stationary regime (and this
regime only) with fixed input value yk = y, the average

K−1
∑K
k=1 Δk = N/K is an optimal, rational approxi-

mation to y, optimal in the sense that the variance of
the bit stream is minimal, implying that subsequences of
the Δk’s yield obviously less accurate but again optimal
approximations15,99. In plain words, the sequence of Δk’s
is such that each subsequence yields an approximation to
the fixed input yk = y.

From Fig. 28 (red line), it is clear that if we change
the input from yk = 0.3 for k ≤ 500 to yk = 0.8 for
501 ≤ k ≤ 1000, the machine needs about eighty input
events to reach the new stationary state This relaxation
process would take even much longer if we would have
chosen γ = 0.999 instead of γ = 0.99. Thus, for this very
simple machine, there is a trade off between accuracy and
the time it needs to respond to significant changes of the
input value.
It is not difficult to modify the machine such that it

responds much faster to changes of the input value. As
one particular example of such a modification, consider
the machine defined by the rules

γ′ = min(1− |xk−1 − yk|, γ), (A3)

xk = γ′xk−1 + (1− γ′)Δk. (A4)

In Fig. 28 (green line), we present the results of a sim-
ulation in which we feed the DLM defined by Eqs. (A3)
and (A4) by a sequence of 500 messages with fixed value
yk = 0.3 followed by another 500 messages with fixed
value yk = 0.8. Comparing the results of the DLMs de-
fined by Eq. (A2) and Eqs. (A3),(A4), respectively, it is
clear that the former responds much slower to changes in
the input than the latter.
It should be noted that there is nothing special about

the DLM defined by Eq. (A3): There are many ways to
improve the response time by letting γ′ depend on the in-
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put, the current state and γ, some examples being given
elsewhere27. It should be noted though that if DLMs
are used to construct event-based processes that repro-
duce the results of wave mechanics, the only requirement
is that these results are being reproduced in the regime
where the DLMs have reached the stationary state, that
is after many events have been processed.

3. Deterministic learning machine II

The DLM of Section A1 encodes the data (a real num-
ber) contained in messages it receives in its internal state
and for each message it receives, generates as output a
one-bit message. If the input messages are constant over
a sufficiently long period, the stream of output bits is an
accurate representation of the input data. From the de-
scription of this machine, it is rather obvious that it can
be generalized to accept messages that contain several
real numbers.

In this section, we consider a different type of DLM,
namely a DLM that updates its internal state such that it
represents the average of the data contained in the input
messages. Specifically, we consider messages containing
as data d-dimensional unit vectors vk (Euclidean norm
‖vk‖ = 1) and a DLM with an internal state represented
by a d-dimensional vector xk.

The state of the DLM is updated according to the rule

xk = γxk−1 + (1− γ)vk, (A5)

where 0 < γ < 1 and Euclidean norm of the initial in-
ternal state is assumed to satisfy ‖x0‖ ≤ 1. The formal
solution of Eq. (A5) reads,

xk = γk−k
′
xk′ + (1− γ)

k∑
j=k′+1

γk−jvj , (A6)

for all 0 ≤ k′ < k. From Eq. (A6) it immediately follows
that ‖xk‖ ≤ γk‖x0‖+ 1− γk ≤ 1 for all k ≥ 1, meaning
that the vectors representing the internal state of the
DLM can never leave the d-dimensional sphere of radius
one. In other words, the update rule Eq. (A6) defines a
numerically stable iterative procedure.

Note that the amount of internal storage that this
DLM uses is “as large” as the storage needed to rep-
resent the data contained in a single message and that
the last term Eq. (A6) has the structure of a convolution
of the input data vj and a “memory” kernel γj .

From the formal solution Eq. (A6), the fact that in
practice the sequence {v1,v2, · · · ,vK} is finite, and the
usual trick to assume a periodic continuation of the se-

quence, we have

xmK = γKx(m−1)K + (1− γ)
mK∑

j=(m−1)K+1

γmK−jvj

= γKx(m−1)K + (1− γ)
K∑
j=1

γK−jvj+(m−1)K

= γKx(m−1)K + (1− γ)fK , (A7)

where

fK =

K∑
j=1

γK−jvj , (A8)

and m ≥ 0. From Eq. (A7) we find

xmK = γmKx0 + (1− γ)1− γ
mK

1− γK fK , (A9)

and hence

lim
m→∞xmK =

1− γ
1− γK

K∑
j=1

γK−jvj , (A10)

such that

lim
γ→1−

lim
m→∞xmK =

1

K

K∑
j=1

vj . (A11)

From Eq. (A11), we conclude that as γ → 1− the inter-
nal vector converges to the time average of the vectors
v1,v2, · · · ,vK .
Some analytical insight into the behavior of this DLM

can be obtained by assuming that xk and vk are the
values of time-dependent vectors x(t) and v(t) sampled
at regular time intervals τ . If x(t) allows a Taylor se-
ries expansion, we may write xk = x(τk), xk−1 =
x(τk)−τdx(t)/dt|t=τk+O(τ2) such that the update rule
Eq. (A5) can be expressed as

dx(t)

dt
= −1− γ

τγ
x(t) +

1− γ
τγ

v(t). (A12)

In order that Eq. (A12) makes sense for τ → 0, we must
have limτ→0(1−γ)/τγ = Γ. This requirement is trivially
satisfied by putting γ = 1/(1+τΓ). Then Eq. (A12) takes
the form of the first-order linear differential equation

dx(t)

dt
= −Γx(t) + Γv(t). (A13)

The formal solution of Eq. (A13) reads

x(t) = e−tΓx(0) + Γ

∫ t

0

e−uΓv(t− u)du. (A14)

As in Eq. (A6), the last term Eq. (A14) has the structure
of a convolution of the input data v(u) and the memory
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FIG. 29: The two components of the internal vector xk =
(x1,k, x2,k) as a function of the number of received events
k for four different input messages ek = (1,−1)/

√
2 (red

lines) with statistical average (1,−1)/
√
2, ek = (r

1/2
k , (1 −

rk)
1/2) (black lines) with statistical average (2/3, 2/3),

ek = (cosπrk,− sinπrk) (blue lines) with statistical aver-
age (0, 2/3), and ek = (cos 2πrk, sin 2πrk) (green lines) with
statistical average (0, 0), 0 ≤ rk < 1 being uniform pseudo-
random numbers. Solid lines: x1,k; Dashed lines: x2,k. In all
cases x0 = (0, 0) and γ = 0.99.

kernel e−uΓ. From the derivation of Eq. (A13), it fol-
lows that if we interpret τ as the time interval between
two successive messages and let τ approach zero, then
γ = 1/(1 + τΓ) approaches one and the DLM defined by
the update rule Eq. (A5) “solves” the differential equa-
tion Eq. (A13). Therefore, we may view Eq. (A13) as a
course-grained, continuum approximation to the discrete,
event-by-event process defined by Eq. (A5).
As an illustration of how this DLM can be used, we

consider two simple cases:

1. A DLM with one input port receiving messages rep-
resented by a two-dimensional unit vector vk. Ac-
cording to Eq. (A11), after the DLM has received
enough events such that it reached its stationary
state, its internal state represents the time average

of the events, that is we have xK ≈ K−1
∑K
k=1 vk

of γ � 1. In Fig. 29, we present some simula-
tion results for different random vectors vk. In all
cases, the internal state shows the expected behav-
ior, namely it converges to the time-average of the
input data. Note that the DLM has no information
about the total number of events.

2. A DLM that receives messages (the precise content
of which is of no importance here) on either input
port “0” or input port “1” (but never on both ports
simultaneously) and has its initial state set such
that x1,0+x2,0 = 1. Then, setting vk = (1, 0) (vk =
(0, 1)) if the message arrives thought port 0 (1), it
follows directly from Eq. (A11) that x1,k+x2,k = 1
for all k ≥ 1 and that as a result, the internal state
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FIG. 30: The first components x1,k of the internal vector
xk = (x1,k, x2,k) of a DLM that has two input ports to re-
ceive messages. A message arriving on input port 0(1) is
represented by vk = (1, 0) (vk = (0, 1)). The probability that
a message arrives on input port 0(1) is p0 (1 − p0). Initially,
the DLM is in the state x0 = (1/2, 1/2) and γ = 0.99. Red
line: p0 = 0.2; Green line: p0 = 0.4; Blue line: p0 = 0.6;
Black line: p0 = 0.8. This DLM estimates the frequency with
which the messages arrive on input ports 0 and 1.

of the DLM will converge to the relative frequencies
with which the messages arrive on ports 0 and 1.
Some illustrative simulation results are presented in
Fig. 30, showing that this DLM can be employed
to estimate from a time series of two different types
of events, the relative frequency of these events.

For later applications, it is of the utmost importance
that these DLMs can estimate averages without having
to count the total number of events (which in real optics
experiments is not known). From Figs. 28 and 29, it is
clear that it may take quite a number of event for the
DLMs to reach their stationary state. If necessary, the
relaxation time can be reduced (significantly) by adding a
rule that changes γ, analogous to the trick we introduced
in Section A2.
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