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Dynamics of open quantum spin systems: An assessment of the quantum master equation approach
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Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin- 1
2

particle interacting with a bath of up to 32 spin- 1
2 particles is used to construct a Markovian quantum master

equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation,
which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian
effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that,
with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple
and accurate description of the dynamics of a spin- 1

2 particle in contact with a thermal bath. A calculation of
the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively
derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of
which agree very well with the solution of the time-dependent Schrödinger equation.
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I. INTRODUCTION

In general, a physical system can seldom be considered as
completely isolated from its environment. Such closed systems
can and should, of course, be studied in great detail. However,
as they lack the ability to interact with the environment in
which they are embedded or with the apparatus that is used
to perform measurements on it, such studies do not include
the effects of the, usually uncontrollable, environment which
may affect the dynamics of the system in a nontrivial manner.
The alternative is to consider the system of interest as an open
system that is a system interacting with its environment.

The central idea of theoretical treatments of open quantum
systems is to derive approximate equations of motion of
the system by elimination of the environmental degrees of
freedom [1–4]. In 1928, Pauli derived a master equation for the
occupation probabilities of a quantum subsystem interacting
with the environment [5]. Since then, various methods have
been developed to derive quantum master equations starting
from the Liouville–von Neumann equation for the density
matrix of the whole system [1–4,6]. In order to obtain an
equation of motion for the system which is tractable and readily
amenable to detailed analysis, it is customary to make the
so-called Markov approximation, which in essence assumes
that the correlations of the bath degrees of freedom vanish on
a short-time span.

Without reference to any particular model system, in
1970, Lindblad derived a quantum master equation which
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is Markovian and which preserves positivity (a non-negative
definite density matrix) during the time evolution [4,7]. The
applicability of the Lindblad master equation is restricted to
baths for which the time correlation functions of the operators
that couple the system to the bath are essentially δ functions [8],
an assumption that may be well justified in quantum optics [6].

Using second-order perturbation theory, Redfield derived a
master equation which does not require the bath correlations
to be approximately δ functions in time [1]. The Redfield
master equation has found many applications to problems
where the dynamics of the bath is faster than that of the system,
for instance, to the case of nuclear magnetic resonance in
which the system consists of one spin coupled to other spins
and/or to phonons. This approach and variations of it have
been successfully applied to study the natural linewidth of a
two-level system [9–11], systems of interacting spins [12] and
nonlinear spin relaxation [13].

The Redfield master equation can be systematically derived
from the principles of quantum theory but only holds for weak
coupling. However, the Redfield master equation may lead to
density matrices that are not always positive, in particular when
the initial conditions are such that they correspond to density
matrices that close to the boundary of physically admissible
density matrices [14,15].

Obviously, the effect of the finite correlation time of
the thermal bath becomes important when the time scale
of the system is comparable to that of the thermal bath. Then,
the Markovian approximation may no longer be adequate, and
in deriving the quantum master equation, it becomes necessary
to consider the non-Markovian aspects and to treat the initial
condition correctly [4,16–24].
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By introducing the concept of slippage in the initial
conditions, it was shown that the Markovian equations of
motion obtained in the weak coupling regime are a consistent
approximation to the actual reduced dynamics and that
slippage captures the effects of the non-Markovian evolution
that takes place in a short transient time, of the order of the
relaxation time of the isolated bath [14]. Provided that nonlocal
memory effects that take place on a very short time scale
are included, the Markovian approximation that preserves the
symmetry of the Hamiltonian yields an accurate description
of the system dynamics [14]. Following up on this idea, a
general form of a slippage operator to be applied to the initial
conditions of the Redfield master equation was derived [8].
The slippage was expressed in terms of an operator describing
the non-Markovian dynamics of the system during the time in
which the bath relaxes on its own, relatively short, time scale.
It was shown that the application of the slippage superoperator
to the initial density matrix of the system yields a Redfield
master equation that preserves positivity [8]. Apparently,
the difference between the non-Markovian dynamics and its
Markovian approximation can be reduced significantly by first
applying the slippage operator and then letting the system
evolve according to the Redfield master equation [8].

The work discussed and cited earlier almost exclusively
focuses on models of the environment that are described by a
collection of harmonic oscillators. In contrast, the focus of this
paper is on the description of the time evolution of a quantum
system with one spin- 1

2 degree of freedom coupled to a larger
system of similar degrees of freedom, acting as a thermal bath.
Our reasons for focusing on spin- 1

2 models are twofold.
First, such system-bath models are relevant for the de-

scription of relaxation processes in nuclear magnetic and
electron spin resonance [1,10,25] but have also applications
to, e.g., the field of quantum information processing, as most
of the models used in this field are formulated in terms
of qubits (spin- 1

2 objects) [26,27]. Second, the aim of this
work is to present a quantitative assessment of the quantum
master equation approach by comparing the results with those
obtained by an approximation-free, numerical solution of the
time-dependent Schrödinger equation of the system+bath. The
work presented in this paper differs from earlier numerical
work on dissipative quantum dynamics [28–32] by accounting
for the nontrivial many-body dynamics of the bath without
resorting to approximations, at the expense of using much
more computational resources. Indeed, with state-of-the-art
computer hardware, e.g., the IBM BlueGene/Q, and corre-
sponding simulation software [33], it has become routine to
solve the time-dependent Schrödinger equation for systems
containing up to 36 spin- 1

2 objects. As we demonstrate in
this paper, this allows us to mimic a large thermal bath at a
specific temperature and solve for the full dynamic evolution
of a spin- 1

2 object coupled to the thermal bath of spin- 1
2 objects.

From the numerically exact solution of the Schrödinger
dynamics we compute the time evolution of the density
matrix of the system and, by least-square fitting, obtain
the “optimal” quantum master equation that approximately
describes the same time evolution. For a system of one spin- 1

2
object, this quantum master equation takes the form of a
Bloch equation with time-independent coefficients. Clearly,
this procedure of obtaining the quantum master equation is

free of any approximation and accounts for all non-Markovian
effects inasmuch the general structure of the quantum master
equation allows. Our simulation results show that, with a
few rather exotic exceptions, the Bloch-type equation with
time-independent coefficients provides a very simple and
accurate description of the dynamics of a spin- 1

2 object in
contact with a thermal bath.

The paper is organized as follows. In Sec. II, we give the
Hamiltonians that specify the system, bath, and system-bath
interaction. Section III briefly reviews the numerical tech-
niques that we use to solve the time-dependent Schrödinger
equation, to compute the density matrix, and to prepare
the bath in the thermal state at a given temperature. We
also present simulation results that demonstrate that the
method of preparation yields the correct thermal averages. For
completeness, Sec. IV recapitulates the standard derivation
of the quantum master equation, writes the formal solution
of the latter in a form that is suited for our numerical work,
and shows that the Redfield equations have this form. We
then use the simulation tool to compute the correlations of
the bath operators that determine the system-bath interaction
and discuss their relaxation behavior. Section V explains the
least-square procedure of extracting, from the solution of
the time-dependent Schrödinger equation, the time-evolution
matrix and the time-independent contribution that determine
the “optimal” quantum master equation. This least-square
procedure is validated by its application to data that originate
from the Bloch equation, as explained in Appendix A. In
Sec. VI, we specify the procedure by which we fit the
quantum master equation to the data obtained by solving the
time-dependent Schrödinger equation and present results of
several tests. The results of applying the fitting procedure to
baths containing up to 32 spins are presented in Sec. VII.
Finally, in Sec. VIII, we discuss some exceptional cases for
which the quantum master equation is not expected to provide
a good description. The paper concludes with the summary,
given in Sec. IX.

II. SYSTEM COUPLED TO A BATH: MODEL

The Hamiltonian of the system (S) + bath (B) takes the
generic form

H = HS + HB + λHSB. (1)

The overall strength of the system-bath interaction is con-
trolled by the parameter λ. In this work, we limit ourselves to
a system which consists of one spin- 1

2 object described by the
Hamiltonian

HS = −hxσ x
0 , (2)

where σ n = (σx
n ,σ

y
n ,σ z

n ) = (σ 1
n ,σ 2

n ,σ 3
n ) denote the Pauli-spin

matrices for spin- 1
2 object n, and hx is a time-independent

external field. Throughout this paper, we adopt units such
that � = 1 and hx = 1

2 and express time in units of π/hx .
We will use the double notation with the (x,y,z) and (1,2,3)
superscripts because depending on the situation, it simplifies
the writing considerably.
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The Hamiltonian for the system-bath interaction is chosen
to be

HSB = −
NB∑
n=1

(
J x

n σ x
n σ x

0 + J y
n σ y

n σ
y

0 + J z
nσ z

nσ z
0

)
=

∑
α=x,y,z

σ α
0 Bα =

3∑
i=1

σ i
0Bi, (3)

where NB is the number of spins in the bath, the J α
n are real-

valued random numbers in the range [−J,+J ], and

Bx = B1 = −
NB∑
n=1

J x
n σ x

n ,

By = B2 = −
NB∑
n=1

J y
n σ y

n , (4)

Bz = B3 = −
NB∑
n=1

J z
nσ z

n

are the bath operators which, together with the parameter
λ, define the system-bath interaction. As the system-bath
interaction strength is controlled by λ, we may set J = 1

4
without loss of generality.

As a first choice for the bath Hamiltonian HB we take

HB = −K

NB∑
n=1

(
σx

n σ x
n+1 + σy

n σ
y

n+1 + �σz
nσ z

n+1

)
−

NB∑
n=1

(
hx

nσ
x
n + hz

nσ
z
n

)
. (5)

The fields hx
n and hz

n are real-valued random numbers in the
range [−hx

B,+hx
B] and [−hz

B,+hz
B], respectively. In our simu-

lation work, we use periodic boundary conditions σα
n = σα

n+NB

for α = x,y,z. Note that we could have opted equally well to
use open-end boundary conditions but for the sake of simplicity
of presentation, we choose the periodic boundary conditions.
For � = 1, the first term in Eq. (5) is the Hamiltonian of the
one-dimensional (1D) Heisenberg model on a ring.

As a second choice, we consider the 1D ring with
Hamiltonian

HB = −
NB∑
n=1

(
Kx

nσ x
n σ x

n+1 + Ky
nσ y

n σ
y

n+1 + Kz
nσ

z
nσ z

n+1

)
−

NB∑
n=1

(
hx

nσ
x
n + hz

nσ
z
n

)
, (6)

where the Kx
n ’s, K

y
n ’s, and Kz

n’s are uniform random numbers
in the range [−K,K]. Because of the random couplings, it is
unlikely that it is integrable (in the Bethe-ansatz sense) or has
any other special features such as conserved magnetization,
etc.

The bath Hamiltonians (5) and (6) all share the property
that the distribution of nearest-neighbor energy levels is of
Wigner-Dyson type, suggesting that the correspondig classical
baths exhibit chaos. Earlier work along the lines presented in
this paper has shown that spin baths with a Wigner-Dyson-type

distribution are more effective as sources for fast decoherence
than spin baths with Poisson-type distribution [34]. Fast
decoherence is a prerequisite for a system to exhibit fast
relaxation to the thermal equilibrium state [35,36]. Extensive
simulation work on spin baths with very different degrees
of connectivity [37–40] suggests that as long as there is
randomness in the system-bath coupling and randomness in
the intrabath couplings, the simple models (5) and (6) may be
considered as generic spin baths.

Finally, as a third choice, we consider

HB = −
∑
〈n,n′〉

(
Kx

n,n′σ
x
n σ x

n′ + K
y

n,n′σ
y
n σ

y

n′ + Kz
n,n′σ

z
nσ z

n′
)

−
NB∑
n=1

(
hx

nσ
x
n + hz

nσ
z
n

)
, (7)

where the Kx
n,n′ ’s, K

y

n,n′ ’s, and Kz
n,n′ ’s are uniform random

numbers in the range [−K,K], and
∑

〈n,n′〉 denotes the sum
over all pairs of nearest neighbors on a three-dimensional (3D)
cubic lattice. Again, because the random couplings and the 3D
connectivity, it is unlikely that it is integrable or has any other
special features such as conserved magnetization, etc. As the
solution of the time-dependent Schrödinger equation (TDSE)
for the 3D model (7) takes about a factor of 2 more CPU time
than in the case of a 1D model with the same number of bath
spins, in most of our simulations we will use the 1D models
and only use the 3D model to illustrate that the connectivity
of the bath is not a relevant factor.

III. QUANTUM DYNAMICS OF THE WHOLE SYSTEM

The time evolution of a closed quantum system defined
by Hamiltonian (1) is governed by the time-dependent
Schrödinger equation

i
∂

∂t
|	(t)〉 = H |	(t)〉. (8)

The pure state |	(t)〉 of the whole system S + B evolves in
time according to

|	(t)〉 = e−itH |	(0)〉 =
DS∑
i=1

DB∑
p=1

c(i,p,t)|i,p〉, (9)

where DS = 2 and DB = 2NB are the dimensions of the
Hilbert space of the system and bath, respectively. The
coefficients {c(i,p,t)} are the complex-valued amplitudes of
the corresponding elements of the set {|i,p〉} which denotes
the complete set of the orthonormal states in up-down basis of
the system and bath spins.

The size of the quantum systems that can be simulated,
that is, the size for which Eq. (9) can actually be computed, is
primarily limited by the memory required to store the pure
state. Solving the TDSE requires storage of all the num-
bers {c(i,p,t)|i = 1,2 ,p = 1, . . . ,2NB}. Hence, the amount
of memory that is required is proportional to 2NB+1, that is,
it increases exponentially with the number of spins of the
bath. As the number of arithmetic operations also increases
exponentially, it is advisable to use 13–15 digit floating-point
arithmetic (corresponding to 16 = 24 bytes for each pair of
real numbers). Therefore, representing a pure state of NB + 1
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spin- 1
2 objects on a digital computer requires at least 2NB+5

bytes. For example, for NB = 23 (NB = 35) we need at least
256 MB (1 TB) of memory to store a single state |	(t)〉. In
practice, we need storage for three vectors, and memory for
communication buffers, local variables, and the code itself.

The CPU time required to advance the pure state by
one time step τ is primarily determined by the number of
operations to be performed on the state vector, that is, it
also increases exponentially with the number of spins. The
elementary operations performed by the computational kernel
can symbolically be written as |	〉 ← U |	〉 where the U ’s
are sparse unitary matrices with a relatively complicated
structure. A characteristic feature of the problem at hand is
that for most of the U ’s, all elements of the set {c(i,p,t)|i =
1,2 ,p = 1,2NB} are involved in the operation. This translates
into a complicated scheme for efficiently accessing mem-
ory, which in turn requires a sophisticated communication
scheme [33].

We can exclude that the conclusions that we draw from the
numerical results are affected by the algorithm used to solve
the TDSE by performing the real-time propagation by e−itH

by means of the Chebyshev polynomial algorithm [41–44].
This algorithm is known to yield results that are very accurate
(close to machine precision), independent of the time step used
[45]. A disadvantage of this algorithm is that, especially when
the number of spins exceeds 28, it consumes significantly
more CPU and memory resources than a Suzuki-Trotter
product-formula based algorithm [45]. Hence, once it has been
verified that the numerical results of the latter are, for practical
purposes, as good as the numerically exact results, we use the
latter for the simulations of the large systems.

A. Density matrix

According to quantum theory, observables are represented
by Hermitian matrices and the correspondence with measur-
able quantities is through their averages defined as [46]

〈A 〉 = Tr ρ(t)A , (10)

where A denotes a Hermitian matrix representing the observ-
able, ρ(t) is the density matrix of the whole system S + B at
time t , and Tr denotes the trace over all states of the whole
system S + B. If the numerical solution of the TDSE for a pure
state of NB + 1 spins already requires resources that increase
exponentially with the number of spins of the bath, computing
Eq. (10) seems an even more daunting task. Fortunately, we
can make use of the “random-state technology” to reduce the
computational cost to that of solving the TDSE for one pure
state [47]. The key is to note that if |�〉 is a pure state, picked
randomly from the 2NB+1-dimensional unit hypersphere, one
can show in general that for Hermitian matrices A [47]

Tr A = D〈�|A |�〉 ± O(D−1/2), (11)

where D is the number of diagonal elements of the matrix A
(= the dimension of the Hilbert space) and ±O(x) should be
read as saying that the standard deviation is of order x. For the
case at hand D = 2NB+1, hence, Eq. (11) indicates that for a
large bath, the statistical errors resulting from approximating
Tr A by 〈�|A |�〉 vanishes exponentially with the number
of bath spins. For large baths, this property makes the problem

amenable to numerical simulation. Therefore, from now on,
we replace the “Tr ” by a matrix element of a random pure
state whenever the trace operation involves a number of states
that increases exponentially with the number of spins (in the
present case, bath spins only).

The state of the system S is completely described by the
reduced density matrix

ρS(t) ≡ TrBρ(t), (12)

where ρ(t) is the density matrix of the whole system S + B
at time t , TrB denotes the trace over the degrees of freedom
of the bath, and TrSρS(t) = Tr ρ(t) = 1. In practice, as the
dimension of the Hilbert space of the bath may be assumed to
be large, we can, using the random-state technology, compute
the trace over the bath degrees of freedom as

(TrBA )i,j ≈
DB∑
p=1

c∗(i,p,t)c(j,p,t) 〈i,p|A |j,p〉. (13)

In the case that the system contains only one spin, which
is the case that we consider in this work, the reduced density
matrix can, without loss of generality, be written as

ρS(t) = 1

2

∑
α=x,y,z

[
1 + ρα(t)σα

0

] = 1

2

3∑
k=1

[
1 + ρk(t)σ k

0

]
, (14)

where ρx(t) = ρ1(t), ρy(t) = ρ2(t), and ρz(t) = ρ3(t) are real
numbers. Making use of the random-state technology, it
follows immediately from Eq. (14) that

ρ1(t) = ρx(t) = TrSρS(t)σx
0 = Tr ρ(t)σx

0 ≈ 〈	(t)|σx
0 |	(t)〉,

ρ2(t) = ρy(t) = TrSρS(t)σy

0 = Tr ρ(t)σy

0 ≈ 〈	(t)|σy

0 |	(t)〉,
ρ3(t) = ρz(t) = TrSρS(t)σ z

0 = Tr ρ(t)σ z
0 ≈ 〈	(t)|σ z

0 |	(t)〉.
(15)

Therefore, to obtain (accurate approximations to) the expecta-
tion values of the system operators we compute the expressions
that appear in the left-hand side of Eq. (15) using the numerical
solution of the TDSE in the form given by Eq. (9).

B. Thermal equilibrium state

As a first check on the numerical method, it is of interest
to simulate the case in which the system+bath are initially
in thermal equilibrium and study the effects of the bath size
NB and system-bath interaction strength λ on the expectation
values of the system spin. The procedure is as follows. First,
we generate a random state of the whole system, meaning that

|�(β)〉 = e−βH/2|�〉
〈�|e−βH |�〉1/2

, (16)

where β denotes the inverse temperature. As one can show
that for any observable A (t) [47]

〈A (t)〉 = Tr e−βH A (t)

Tr e−βH
= 〈�(β)|A (t)|�(β)〉 ± O(D−1/2),

(17)
we can use 〈�(β)|A |�(β)〉 to estimate 〈A (t)〉. As e−βH

commutes with e−itH , 〈A (t)〉 = 〈A (t = 0)〉 is time in-
dependent. Excluding the trivial case that [H,A (t)] = 0,
〈�(β)|A (t)|�(β)〉 = 〈�(β)|e+itH A e−itH |�(β)〉 depends on
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FIG. 1. Time evolution of the average of the system spin as obtained by solving the TDSE with a random thermal state at β = 2 as the initial
state. The Hamiltonian of the bath is given by Eq. (5) with K = − 1

4 and � = 1 (antiferromagnetic Heisenberg model). The parameters of the
system-bath Hamiltonian (3) are J = 1

4 and hx
B = hz

B = 1
8 . The system-bath interaction λ = 0.1. (a) NB = 13; (b) NB = 28. Lines connecting

the data points are guide to the eye.

time: indeed, in general the random state |�(β)〉 is unlikely to
be an eigenstate of H . Therefore, the simulation data obtained
by solving the TDSE with |�(β)〉 as the initial state should dis-
play some time dependence. However, from Eq. (17), it follows
directly that the time-dependent contributions will vanish very
fast, namely, as D−1/2. Hence, this time dependence, an artifact
of using random state technology, reveals itself as statistical
fluctuations and can be ignored.

For the system in thermal equilibrium at the inverse
temperature β we have〈

σx
0

〉 = tanh(βhx),
〈
σ

y

0

〉 = 0,
〈
σ z

0

〉 = 0. (18)

In Fig. 1, we show simulation results for a bath at β = 2 for
NB = 13 (left) and NB = 28 spins (right). If the system-bath
interaction is sufficiently weak then, from Eq. (18), we expect
that 〈σx

0 〉 ≈ tanh βhx which for βhx = 1 yields 〈σx
0 〉 ≈ 0.762.

From the TDSE solution with NB = 13, it is clear that the spin
averages fluctuate (due to the use of the random thermal state
which is not an eigenstate of H ). As expected, for NB = 28
the fluctuations are much smaller, in concert with Eq. (17).

Computing the time averages for a bath with NB = 13 and
for the time interval [0,T ] with T = 1000 yields

1

T

∫ T

0
dt 〈�(β)|σx

0 (t)|�(β)〉 = 0.81(0.14),

1

T

∫ T

0
dt 〈�(β)|σy

0 (t)|�(β)〉 = 0.00(0.05), (19)

1

T

∫ T

0
dt 〈�(β)|σ z

0 (t)|�(β)〉 = −0.01(0.05),

where the numbers in parentheses give the standard deviation.
For NB = 28 and for the time interval [0,T ] with T = 200 we
find

1

T

∫ T

0
dt 〈�(β)|σx

0 (t)|�(β)〉 = 0.76(0.01),

1

T

∫ T

0
dt 〈�(β)|σy

0 (t)|�(β)〉 = 0.00(0.01), (20)

1

T

∫ T

0
dt 〈�(β)|σ z

0 (t)|�(β)〉 = 0.00(0.01),

indicating that for most practical purposes, a bath of NB = 28
spin may be sufficiently large to mimic an infinitely large bath.
The numbers in Eq. (20) also give an indication of the statistical
fluctuations that we may expect for a bath containing NB = 28
spins. For the model parameters and the value of λ chosen, the
second-order corrections in λ are of the order of 0.01 and are
hidden in the statistical fluctuations, suggesting that values of
λ � 0.1 are within the perturbative regime.

The latter statement is not as obvious as it may seem. To
first order in λ, we have〈

σx
0

〉 = 〈
σx

0

〉
S − βλ

(〈
σx

0

〉
S − 1

)〈Bx〉B, (21)

where 〈. . .〉S and 〈. . .〉B denote the thermal equilibrium
averages with respect to the system and bath, respectively. For
the sake of argument, consider the case that K = 0, hz

n = 0,
and hx

n = hx
B for all n = 1, . . . ,NB (the same reasoning applies

to the contributions of second order in λ). Then, Eq. (21)
becomes〈
σx

0

〉 = tanh(βhx) + βλNB[1 − tanh(βhx)] tanh
(
βhx

B

)
, (22)

showing that the contribution of the “perturbation term”
increases with the number of spins in the bath. In other
words, it is not sufficient to consider small values of λ. For
the perturbation by the bath to be weak, it is necessary that
λNB is small. In this respect, the spin bath considered in this
paper is not different from, e.g., the standard spin-boson model
[4]. In our simulation work, we adopt a pragmatic approach:
we simply compute the averages and compare them with the
theoretical results of the isolated system (as we did above). The
coupling λ is considered to be small enough if the corrections
are hidden in the statistical fluctuations.

IV. QUANTUM MASTER EQUATION: GENERALITIES

We are interested in the dynamics of a system, the degrees
of freedom of which interact with other degrees of freedom of
a “bath,” “environment,” etc. The combination of system+bath
forms a closed quantum system. When we consider the system
only, we say that we are dealing with an open quantum system.
The quantum state of the system+bath is represented by the
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density matrix ρ = ρ(t) which evolves in time according to

∂ρ(t)

∂t
= i[ρ(t),H ], (23)

where H is the Hamiltonian of the system+bath (recall that
we adopt units such that � = 1).

The “relevant” part of the dynamics may formally be
separated from the “uninteresting” part by using the Nakajima-
Zwanzig projection operator formalism [2,3]. Let P be
the projector onto the “relevant” part and introduce the
Liouville operator L A = i[A,H ]. Denoting by Q = 1 − P
the projector on the “uninteresting” part, it follows that

∂Pρ(t)

∂t
= PL Pρ(t) + PL Qρ(t), (24)

∂Qρ(t)

∂t
= QL Pρ(t) + QL Qρ(t). (25)

Note that because H is Hermitian, iL , iPL P , and
iQL Q are Hermitian too. The formal solution of the matrix-
valued, inhomogeneous, linear, first-order differential equation
Eq. (25) reads as

Qρ(t) = etQL QQρ(t = 0)

+
∫ t

0
du euQL QQL Pρ(t − u), (26)

as can be verified most easily by calculating its derivative with
respect to time and using PP = P , PQ = QP = 0, and
QQ = Q. Substituting Eq. (26) into Eq. (24) yields

∂Pρ(t)

∂t
= PL Pρ(t) + PL QetQL QQρ(t = 0)

+
∫ t

0
du PL QeuQL QQL Pρ(t − u). (27)

We are primarily interested in the time evolution of the
system. Therefore, we choose P such that it projects onto
the system variables and we perform the trace over the bath
degrees of freedom. A common choice for the projector P is
[4,8,14,20,22,23]

PA = ρBTrB A, (28)

where

ρB = e−βHB

TrB e−βHB
(29)

is the density matrix of the bath in thermal equilibrium.
Accordingly, the density matrix of the system is given by

ρS(t) = TrBPρ(t) = TrBρ(t), (30)

consistent with Eq. (12).
In this work, we will mostly consider initial states that are

represented by the direct-product ansatz

ρ(t = 0) = ρSρB, (31)

but, occasionally, we also consider as an initial state the thermal
equilibrium state of the system+bath, that is, ρ(t = 0) =
e−βH /Tr e−βH (see Sec. III B). The direct-product ansatz (31)
not only implies Qρ(t = 0) = 0, but also defines the initial
condition for Eq. (27). In general, this initial condition may

be incompatible with the initial condition for the TDSE of the
whole system, which may affect the dynamics on a time scale
comparable to the relaxation time of the bath [22].

Adopting Eq. (31), Eq. (27) simplifies to

∂ρS(t)

∂t
= TrBPL Pρ(t)

+
∫ t

0
du TrBPL QeuQL QQL Pρ(t − u), (32)

which is not a closed equation for ρS(t) yet [20].
Using the explicit form of the Hamiltonian (1), the first

term in Eq. (32) may be written as TrBPL Pρ(t) = L0ρS(t)
where for any system operator XS,

L0XS ≡ −i

{
[HS,XS(t)] +

3∑
i=1

〈Bi〉B
[
σ i

0,XS(t)
]}

, (33)

and 〈Bi〉B ≡ TrBρBBi . Therefore, Eq. (32) may be written as

∂ρS(t)

∂t
= L0ρS(t)

+
∫ t

0
du TrBPL Qe(t−u)QL QQL ρBρS(u).

(34)

Using representation (14), multiplying both sides of
Eq. (34) by σ

j

0 , performing the trace over the system degree
of freedom, and denoting ρ(t) = (ρ1(t),ρ2(t),ρ3(t)), Eq. (34)
can be written as

∂ρ(t)

∂t
= Lρ(t) +

∫ t

0
du M(t − u)ρ(u) +

∫ t

0
du K(u),

(35)
where

Ljk = 1
2 TrSσ

j

0 L0σ
k
0 ,

Mjk(u) = 1
2 Tr σ

j

0 PL QeuQL QQL ρBσ k
0 , (36)

Kj (u) = 1
2 Tr σ

j

0 PL QeuQL QQL ρB.

As we have only made formal manipulations, solving Eq. (35)
of the system is just as difficult as solving Eq. (23) of the
whole system. In other words, in order to make progress, it is
necessary to make approximations. A common route to derive
an equation which can actually be solved is to assume that λ is
sufficiently small such that perturbation theory may be used to
approximate the second term in Eq. (34) and that it is allowed
to replace ρS(u) in Eq. (34) by ρS(t) [4].

As the purpose of this work is to scrutinize the approxima-
tions just mentioned by comparing the solution obtained from
the Markovian quantum master equation with the one obtained
by solving the TDSE, we will not dwell on the justification of
these approximations and derivation of this equation itself, but
merely state that the result of making these approximations is
an equation that may be cast in the form

∂ρ(t)

∂t
= Aρ(t) + b. (37)

In the following, we will refer to Eq. (37) as “the” quantum
master equation (QMEQ). In Sec. IV A, we give a well-known
example of a quantum master equation that is of the form (37).
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The formal solution of Eq. (37) reads as

ρ(t) = etAρ(0) +
∫ t

0
e(t−u)Ab du (38)

or, equivalently,

ρ(t + τ ) = eτAρ(t) +
∫ τ

0
e(τ−u)Ab du = eτAρ(t) + B, (39)

where

B =
∫ τ

0
e(τ−u)Ab du (40)

does not depend on time. Equation (39) directly connects to
the numerical work because, in practice, we solve the TDSE
with a finite time step τ .

Generally speaking, as a result of the coupling to the bath,
the system is expected to exhibit relaxation towards a station-
ary state, meaning that ρ(t) ≈ ρ(∞) for t sufficiently large.
If such a stationary state exists, it follows from Eq. (39) that
ρ(∞) ≈ eτAρ(∞) + B or that B ≈ (1 − eτA)ρ(∞), yielding

ρ(t + τ ) − ρ(∞) ≈ eτA[ρ(t) − ρ(∞)]. (41)

Equation (41) suggests that the existence of a stationary
state implies that there is no need to determine B. However,
numerical experiments with the Bloch equation model (see
Appendix A) show that using Eq. (41), a least-square fit to
solution of the Bloch equation often fails to yield the correct
eτA. Therefore, as explained in Sec. V, we will use Eq. (39)
and determine both eτA and B by least-square fitting to TDSE
or Bloch equation data.

We can now formulate more precisely the procedure to test
whether or not a quantum master equation of the form (37)
provides a good approximation to the data ρk(t) = 〈σ k(t)〉
obtained by solving the TDSE of the system interacting with
the bath using a time step τ . To this end, we use the latter
data to determine the matrix eτA and vector B such that, in a
least-square sense, the difference between the data obtained
by solving Eq. (39) for a substantial interval of time and the
corresponding TDSE data is as small as possible. If the values
of ρ(t) computed according to Eq. (39) are in good agreement
with the data ρk(t), one might say that at least for the particular
time interval studied, there exists a mapping of the Schrödinger
dynamics of the system onto the QMEQ (37).

A. Markovian quantum master equation: Example

We consider the Redfield master equation [1] under the
Markovian assumption [4,8]

dρS(t)

dt
= −i[HS,ρS(t)] + λ2

3∑
j=1

[RjρS(t)σj

+σjρS(t)R†
j − σjRjρS(t) − ρS(t)R†

j σj ], (42)

where ρS(t) is the density matrix of the system. The operators
Rj are given by [8]

Rj =
3∑

k=1

∫ ∞

0
dt Cjk(t)e−itHs σke

+itHs , j = 1,2,3 (43)

where Cjk(t) = TrBρBBj (t)Bk(0) are the correlations of the
bath operators [8]. The specific form of Cjk(t) is not of interest
to us at this time (but also see Sec. VII). For what follows, it
is important that the specific form (43) of the operators Rj

allows us to write

Rj =
3∑

k=1

rjkσk, (44)

where

rj1 =
∫ ∞

0
dt Cj1(t),

rj2 =
∫ ∞

0
dt [Cj2(t) cos 2hxt + Cj3(t) sin 2hxt], (45)

rj3 =
∫ ∞

0
dt [Cj3(t) cos 2hxt − Cj2(t) sin 2hxt]

do not depend on time (due to the Markov approximation).
As a first step, we want to derive from Eq. (42) the

corresponding equations in terms of the ρk(t)’s. This can
be done by using representation (14), multiplying both sides
of Eq. (42) with σk for k = 1,2,3 and taking the trace, a
calculation for which we resort to MATHEMATICA. We obtain

dρ1

dt
= +4λ2

[(
r I

23 − r I
32

) − (
rR

22 + rR
33

)
ρ1 + rR

21ρ2 + rR
31ρ3

]
,

dρ2

dt
= +hxρ3 + 4λ2[(r I

31 − r I
13

) + rR
12ρ1

−(
rR

11 + rR
33

)
ρ2 + rR

32ρ3
]
,

dρ3

dt
= −hxρ2 + 4λ2

[
r I

12 − r I
21 + rR

13ρ1 + rR
23ρ2

−(
rR

11 + rR
22

)
ρ3

]
, (46)

where we used the notation z = zR + izI. It directly follows
that Eq. (46) can be written in the form (37). It is straightfor-
ward to show that this holds for quantum master equations of
the Lindblad form as well.

B. Bath correlations

A crucial assumption in deriving the QMEQ (37) from the
exact equation (34) is that the correlations of the bath decay
on a short time scale, short relative to the time scale of the
motion of the system spin [4]. Moreover, in the perturbative
derivation of quantum master equations, such as the Redfield
master equation, it is assumed that the time evolution of the
bath operators is governed by the bath Hamiltonian only [4].

Having the time evolution of the whole system at our
disposal, we can compute, without additional assumptions or
approximations, the correlations

C(i,j,t) = Trρ(t = 0)Bi(t)Bj (0), i,j = 1,2,3 (47)

of the bath operators (4). Note that, in general, Eq. (47)
is complex valued and that, because of the choice (31),
C(i,j,t) = Cij (t) if λ = 0. Of particular interest is the question
whether, for the chosen value of the system-bath interaction λ,
the dynamics of the system spin significantly affects the bath
dynamics.
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FIG. 2. The absolute values of three of the nine bath-operator correlations Eq. (47) as obtained by solving the TDSE for a bath of NB = 32
spins with a random thermal state at β = 1 as the initial state. The bath-operator correlations that have absolute values that are too small to be
seen on the scale of the plot have been omitted. The parameters of the system-bath Hamiltonian HSB are J = 1

4 and hx
B = hz

B = 1
8 . (a) The bath

Hamiltonian HB is given by Eq. (5) with K = − 1
4 and � = 1 (antiferromagnetic Heisenberg model) and λ = 0; (b) same as (a) except that

λ = 0.1; (c) the bath Hamiltonian HB is given by Eq. (6) with K = 1
4 and λ = 0; (d) same as (a) except that λ = 0.1.

In Fig. 2, we present simulation results of the correlations
|C(i,i,t)| for a bath of NB = 32 spins, for different choices
of the bath Hamiltonian, and with and without system-bath
interaction. The calculation of the nine correlations (47)
requires solving four TDSEs simultaneously, using as the
initial states the random thermal state |	(β)〉, B1|	(β)〉,
B2|	(β)〉, and B3|	(β)〉. As the whole system contains 33
spins, these calculations are fairly expensive in terms of CPU
and memory cost. One such calculation needs somewhat less
than 1 TB memory to run and takes about 5 h using 65536
BlueGene/Q processors which, in practice, limits the time
interval that can be studied.

In all four cases, the absolute values of correlations for
i 
= j are much smaller than those for i = j and have therefore
been omitted in Fig. 2. The remaining three correlations decay
rapidly but, on the time scale shown, are definitely nonzero
at t = 20. Comparison of the top and bottom figures of Fig. 2
may suggest that the bath correlations decay faster if the bath is
described by the antiferromagnetic Heisenberg model (5) than
if the bath Hamiltonian has random couplings [see Eq. (6)].
However, this is a little misleading. For the bath Hamiltonian
with random couplings Kα

n in the range [− 1
4 , 1

4 ], we have
〈|Kα

n |〉 ≈ 1
8 . On the other hand, for the antiferromagnetic

Heisenberg bath we have K = − 1
4 roughly indicating that the

bath dynamics may be about two times faster than in the case
of the bath Hamiltonian with random couplings. The presence
of random couplings renders the quantitative comparison of
the relaxation times nontrivial. However, from Fig. 2 it is

clear that as a bath, the antiferromagnetic Heisenberg model
performs better than the model with random interactions in
the sense that for t > 10 the correlations of the former seem
to have reached a stationary state whereas in the case of
the latter, they do not. Moreover, using the full Hamiltonian
(λ = 0.1) instead of only the bath Hamiltonian to solve the
TDSE, for t > 10 the changes to the correlations are less
pronounced if the bath is an antiferromagnetic Heisenberg
model than if the bath has random interactions. Based on these
results, it seems advantageous to adopt the antiferromagnetic
Heisenberg model (K = − 1

4 ) as the Hamiltonian of the bath.
Qualitatively, in all cases, the correlations are either small

for all t or decrease by about order of magnitude on a short
time scale (t < 10), indicating that the approximations that
changed Eq. (35) into Eq. (37) may apply to the spin model
we are considering.

V. ALGORITHM TO EXTRACT eτA AND
B FROM TDSE DATA

Recall that our primary objective is to determine the
Markovian master equation (37) which gives the best (in the
least-square sense) fit to the solution of the TDSE. Obviously,
this requires taking into account the full motion of the system
spin, not only the decay envelope, over an extended period of
time.

The numerical solution of the TDSE of the full problem
yields the data ρk(t) = 〈σ k(t)〉. In this section, we consider
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these data as given and discuss the algorithm that takes as input
the values of ρk(t) and returns the optimal choice of the matrix
eτA and vector B, meaning that we minimize the least-square
error between the data {ρk(t)} and the corresponding data,
obtained by solving Eq. (39).

Denoting ρk(n) ≡ ρk(nτ ), it follows that if Eq. (39) is
assumed to hold, we must have⎛⎝ρ1(1) ρ1(2) . . . ρ1(N )

ρ2(1) ρ2(2) . . . ρ2(N )
ρ3(1) ρ3(2) . . . ρ3(N )

⎞⎠
=

⎛⎝(eτA)11 (eτA)12 (eτA)13 (B)1

(eτA)21 (eτA)22 (eτA)23 (B)2

(eτA)31 (eτA)32 (eτA)33 (B)3

⎞⎠

×

⎛⎜⎝ρ1(0) ρ1(1) . . . ρ1(N − 1)
ρ2(0) ρ2(1) . . . ρ2(N − 1)
ρ3(0) ρ3(1) . . . ρ3(N − 1)

1 1 1 1

⎞⎟⎠, (48)

where N is the number of time steps for which the solution
of the TDSE is known. We may write Eq. (48) in the more
compact form

Z = YX, (49)

where Z is a 3 × N matrix of data, Y is a 3 × 4 matrix that we
want to determine, and X is a 4 × N matrix of data.

We determine Y by solving the linear least-square problem,
that is, we search for the solution of the problem minY ||Z −
YX||2. A numerically convenient way to solve this minimiza-
tion problem is to compute the singular value decomposition
[48,49] of X = U�VT where U is an orthogonal 3 × 3 matrix,
� is the 3 × N matrix with the singular values of X on its
diagonal, and VT is an orthogonal N × N matrix. In terms of
these matrices we have

Y = ZV�+UT , (50)

where �+ is the pseudoinverse of �, which is formed by
replacing every nonzero diagonal entry of � by its reciprocal
and transposing the resulting matrix.

Numerical experiments show that the procedure outlined
above is not robust: it sometimes fails to reproduce the known
eτA and B = 0, in particular in the case that eτA is (close to)
an orthogonal matrix. Fortunately, a straightforward extension
renders the procedure very robust. The key is to use data from
three runs with different initial conditions. This also reduces
the chance that the estimates of eτA and B are good by accident.
In practice, we take the initial states to be orthogonal (see
Sec. VI for the precise specification).

Labeling the data for different initial states by superscripts
we have

(Z(1) Z(2) Z(3)) = Y(X(1) X(2) X(3)), (51)

but now Z = (Z(1) Z(2) Z(3)) and X = (X(1) X(2) X(3)) are 3 ×
3N and 4 × 3N matrices of data, respectively. Using Eq. (50)
we compute

Y =
⎛⎝(eτA)11 (eτA)12 (eτA)13 (B)1

(eτA)21 (eτA)22 (eτA)23 (B)2

(eτA)31 (eτA)32 (eτA)33 (B)3

⎞⎠, (52)

from which the matrix eτA and vector B immediately follow.
In Appendix A, we discuss the method that we used to validate
the extraction method.

VI. FITTING A QUANTUM MASTER EQUATION
TO THE SOLUTION OF THE TDSE

The procedure to test the hypothesis as to whether the
QMEQ (37) provides a good approximation to the exact TDSE
of a (small) system which is weakly coupled to a (large)
environment can be summarized as follows:

(1) Make a choice for the model parameters hx
B, hz

B, K , �,
and the system-bath interaction λ, for the number of bath spins
NB, the inverse temperature β of the bath, and the time step τ

(τ = 1 unless mentioned explicitly).
(2) Prepare three initial states |	(0)〉x = |x〉|φ〉,

|	(0)〉y = |y〉|φ〉, and |	(0)〉z = |↑〉|φ〉 where
|x〉 = (|↑〉 + |↓〉)/√2, |y〉 = (|↑〉 + i|↓〉)/√2, and
|φ〉 denotes a pure state picked randomly from the
2NB -dimensional unit hypersphere. For each of the three initial
states we may or may not use different realizations of |φ〉. If
β > 0, prepare typical thermal states by projection [47], that is,
set |	(0)〉x = |x〉|φ(β/2)〉/〈φ(β/2)|φ(β/2)〉1/2 (and similarly
for the two other initial states) where |φ(β/2)〉 = e−βHB/2|φ〉.

(3) For each of the three initial states, solve the TDSE
for 0 � t = nτ � T = Nτ . The case of interest is when T

is large enough for the system bath to reach a steady state.
For each of the three different initial states compute ρi,j (k) ≡
〈	(kτ )|σ i

0 |	(kτ )〉j , for i,j = x,y,z and store these data.
(4) Use the data ρi,j (k) to construct the 3 × 3N matrix

Z = (Z(1) Z(2) Z(3)) and 4 × 3N matrix X = (X(1) X(2) X(3))
[see Eq. (51)] and compute the 3 × 4 matrix Y, yielding the
best (in the least-square sense) estimates of eτA and B.

(5) Use the estimates of eτA and B to compute the
averages [denoted by ρ̃i,j (k)] of the three components of the
system spin operators σ 0(t), according to Eq. (39) for each
of the three different initial states. Quantify the difference
of the reconstructed data, i.e., the solution of the “best”
approximation in terms of the QMEQ, and the original data
obtained by solving the TDSE by the number

emax(t = kτ ) = max
i,j

|ρi,j (k) − ρ̃i,j (k)|. (53)

(6) Check if the approximate density matrix of the system,
defined by ρ̃i,j (k), is non-negative definite. In none of our
simulation runs the approximate density matrix of the system
failed this test.

Test of the procedure to fit Eq. (37) to TDSE data

If the system does not interact with the bath (λ = 0), the
system spin simply performs Larmor rotations in the magnetic
field H = (hx,0,0). Therefore, the λ = 0 case provides a
simple but as mentioned in Appendix A from the numerical
viewpoint the most difficult case for the fitting procedure.

In Fig. 3, we present simulation results of the y and
z components of the system spin as obtained by solving
the TDSE with initial states |y〉|φ〉 and |↑〉|φ〉, respectively.
Looking at the time interval shown in Fig. 3 and recalling that
the spin components perform oscillations with a period π/hx ,
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FIG. 3. Comparison between the spin averages as obtained by solving the TDSE (solid lines) and the QMEQ (solid circles) with eτA and
B extracted from the TDSE data. (a) Initial state |y〉|φ〉; (b) initial state |↑〉|φ〉. The model parameters are λ = 0, NB = 13, β = 0, K = − 1

4 ,
� = 1, and hx

B = hz
B = 1

8 . For clarity, the system-spin averages are shown with a time interval of 100. The markers represent the data obtained
by least-square fitting to 15 000 numbers generated by the TDSE solver.

it is clear that Fig. 3 does not show these rapid oscillations.
Instead, not to clutter the plots too much, we only plotted the
values at regular intervals, as indicated by the markers. For the
initial state |x〉|φ〉, the x component is exactly constant (both
for the TDSE and time evolution using the estimated eτA and
B) and therefore not shown. The difference between the spin
averages obtained from the TDSE and from time evolution
according to Eq. (39) (using the estimated eτA and B) is rather
small [emax(t) < 10−5 for 0 � t � 10 000] and is therefore not
shown either.

The small values of emax(t) are reflected in the excellent
agreement between the TDSE and QMEQ [Eq. (37)] data
shown in Fig. 3. From these simulation data we conclude that

for λ = 0, the matrix eτA and vector B obtained by least-square
fitting to the TDSE data define a QMEQ that reproduces the
correct values of the spin averages.

The next step is to repeat the analysis for the case of
weak system-bath interaction λ = 0.05 (recall that we already
found that λ = 0.1 corresponds to a weak interaction). To head
off misunderstandings, recall that our least-square procedure
estimates the best eτA and B using the data of three different
solutions of the TDSE. It does not fit data for individual spin
components separately nor does it fit data obtained from a
TDSE solution of one particular choice of the initial state. Our
procedure yields the best global estimates for eτA and B in the
least-square sense.
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FIG. 4. Comparison between the spin averages as obtained by solving the TDSE (solid lines) and the QMEQ (solid circles) with eτA and
B extracted from the TDSE data. (a)–(c) Show how the TDSE data (solid line) are being sampled, namely, at times indicated by the t values of
the markers, which in the case corresponds to a time steps of 0.2. (d)–(f) The sampled data of the whole interval [0,1000], in this case 15 000
numbers, are used to determine by the least-square procedure described in Sec. V, the parameters that enter the time evolution of the Markovian
master equation (37). The latter is then used to compute the time evolution of the spin components, the data being represented by the markers.
For clarity, in the bottom figures, the data are shown with a time interval of 10. The model parameters are hx

B = hz
B = 1

8 and λ = 0.1, NB = 13,
β = 0, K = − 1

4 , and � = 1. (a), (d) initial state |x〉|φ〉; (b), (e) initial state |y〉|φ〉; (c) initial state |z〉|φ〉; (f) the error emax(t).
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FIG. 5. Same as Fig. 4, except that the bath contains NB = 24 spins and λ = 0.05. The markers represent the data obtained by least-square
fitting to 15 000 numbers generated by the TDSE solver. For clarity, the data are shown with a time interval of 6.

In Fig. 4, we illustrate the procedure for sampling and
processing the TDSE data and for plotting these data along
with the data obtained from Eq. (39) using the estimated eτA

and B. We present data for short times (top figures) and for the
whole time interval (bottom figures). The TDSE data (solid
line) is being sampled, namely. at times indicated by the t

values of the markers, which in the case corresponds to a
time steps of 0.2 [see Figs. 4(a)–4(c)]. The sampled data of
the whole interval [0,1000] are used to determine eτA and B
by the least-square procedure described in Sec. V. In this
particular case, the TDSE solver supplies 15 000 numbers
to the least-square procedure. The estimated eτA and B thus
obtained are then used to compute the time evolution of the
spin components, the data being represented by the markers.

From Fig. 4(d), it is clear that although the QMEQ produces
the correct qualitative behavior of the x component of the
system spin, the difference with the TDSE data is significant
[as is also clear from emax(t)]. In particular, the TDSE data of
the x component of the system spin do not show relaxation
to the thermal equilibrium value, which is zero for β = 0. At
first sight, this could be a signature that the fitting procedure
breaks down because it is certainly possible to produce a much
better fit to the TDSE data of the x component if we would fit a
curve to these data only. But, as explained above, we estimate
eτA and B by fitting to the nine (three spin components ×
three different initial states) of such curves simultaneously.
Apparently, the mismatch in the x component is compensated
for by the close match of the y component [see Fig. 4(e) and
z component (not shown)].

Remarkably, the matrix eτA and vector B extracted from the
TDSE data yield a QMEQ that does indicate that the system
spin relaxes to a state that is close to thermal equilibrium: the
QMEQ yields a value of 0.04 for the expectation value of the
x component of the system spin and values less than 10−4

for the other two components. From the general theory of the
QMEQ in the Markovian approximation [4], we know that if
the correlations of the bath operators (47) satisfy the Kubo-
Martin-Schwinger condition, the stationary state solution of
the QMEQ is exactly the same as the thermal equilibrium state
of the system [ignoring corrections of O(λ), see Ref. [20] for
a detailed discussion].

The mismatch between the QMEQ and TDSE data of the x

component can be attributed to the fact that a bath of NB = 13
spins is too small to act as a bath in thermal equilibrium.
However, the argument that leads to this conclusion is

somewhat subtle. As shown in Sec. III B, the random state
approach applied to the system+bath yields the correct thermal
equilibrium properties. In particular, in the case at hand (β = 0,
NB = 13), within the usual statistical fluctuations it yields
〈�(β = 0)|σα

0 (t)|�(β = 0)〉 ≈ 0 for α = x,y,z. Note that in
this kind of calculation, the initial state |�(β = 0)〉 is a random
state of the system+bath. In contrast, the data shown in
Fig. 4(d) are obtained by solving the TDSE with the initial
state |	(0)〉x = |x〉|φ〉 (see Sec. VI). Therefore, the results of
Fig. 4(d) demonstrate that for NB = 13, the statement that

|x〉|φ〉 −→ TDSE evolution −→ |�̃〉, (54)

where �̃ denotes an (approximate) random state of the whole
system, is not necessarily true. Otherwise, we would have
〈�̃|σx

0 (t)|�̃〉 ≈ 0 for t large enough, in contradiction with the
data shown in Fig. 4(d). Roughly speaking, one could say
that a bath of NB = 13 is not sufficiently “complex” to let the
TDSE evolve certain initial states towards a random state of
the whole system. For a discussion of the fact that, in general,
Eq. (54) does not necessarily hold (see Ref. [36]).

As a check on this argument, we repeat the simulation
with a bath NB = 24 spins. The results are shown in Fig. 5.
Comparing Figs. 4 and 5, it is clear that for long times the
value of the x component decreases as the number of spins in
the bath increases and that the agreement between the TDSE
data and the fitted QMEQ data has improved considerably.
This suggests that as the size of the bath increases and with
the bath initially in a random state, the TDSE evolution can
drive the state to an (approximate) random state of the whole
system, meaning that the whole system relaxes to the thermal
equilibrium state. However, as discussed in Sec. IX, there are
exceptions [36].

In general, we may expect that for short times, a Markovian
QMEQ cannot represent the TDSE evolution very well [8,14].
But, if we follow the evolution for times much longer than the
typical correlation times of the bath operators, the difference
between the QMEQ and TDSE data for short times does not
affect the results of fitting the data over the whole, large time
interval in a significant manner. Hence, there is no need to
discard the short-time data in the fitting procedure. As a matter
of fact, the data shown in Fig. 4 indicate that the least-square
procedure applied to the whole data set yields a Markovian
master equation that reproduces the short-time behavior quite
well.
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FIG. 6. Same as Fig. 5, except that the bath is initially at β = 1.

Finally, we check that the conclusions reached so far for a
bath at β = 0 also hold when β > 0. In Fig. 6, we show the
simulation results for β = 1, for the same system and bath as
the one used to obtain the data shown in Fig. 5. From Fig. 6 we
conclude that the agreement between the TDSE and QMEQ
data is quite good.

VII. SIMULATION RESULTS: NB = 28,32

As already mentioned in Sec. III, in practice, there is a
limitation on the sizes and time intervals that can be explored.
By increasing the system-bath interaction λ, we can shorten the
time needed for the system to relax to equilibrium. On the other
hand, λ should not be taken too large because when we leave
the perturbative regime, the QMEQ of the form (37) cannot
be expected to capture the true quantum dynamics. From our

exploratory simulations, we know that λ = 0.1 is still within
the perturbative regime, hence, we will adopt this value when
solving the TDSE for baths with up to NB = 32 spins.

In Fig. 7, we present the results as obtained with a bath con-
taining NB = 28 spins, prepared at β = 0,1,2. Although Fig. 7
may suggest otherwise, the maximum error maxk emax(t) ≈
0.05,0.1,0.2 for β = 0,1,2, respectively, indicating that the
difference between the TDSE data and the QMEQ approxima-
tion increases with β. The results presented in Fig. 8 for a bath
of NB = 32 spins and β = 1 provide additional evidence for
the observation that a bath of NB = 28,32 spins are sufficiently
large to mimic an infinite thermal bath. At any rate, in all cases,
there is very good qualitative agreement between the TDSE
and QMEQ data.

From the TDSE data, we can, of course, also extract the
values of the entries in the matrix A and vector b [see Eq. (37)].
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FIG. 7. Simulation data for a bath with NB = 28 spins and system-bath interaction λ = 0.1. The model parameters are hx
B = hz

B = 1
8 ,

K = − 1
4 , and � = 1 eps. Solid lines: TDSE data; solid circles: QMEQ data. Top row: 〈σx(t)〉 as obtained by starting from the initial state |x〉|φ〉,

(a)–(c) corresponding to β = 0,1,2, respectively. Bottom row: 〈σy(t)〉 as obtained by starting from the initial state |y〉|φ〉, (d)–(f) corresponding
to β = 0,1,2, respectively. The TDSE simulations yield 〈|σx

0 (t = 200)|〉 = 0.044, 〈|σx
0 (t = 200)|〉 = 0.475, and 〈|σx

0 (t = 200)|〉 = 0.756 for
β = 0,1,2, respectively, whereas for the system in equilibrium we have 〈σx

0 〉 = 0,0.462,0.762 for β = 0,1,2, respectively. For clarity, the data
are shown with a time interval of 0.6. The TDSE solver provided 3000 numbers as input to the least-square procedure.
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FIG. 8. Simulation data for a bath with NB = 32 spins prepared at β = 1 and system-bath interaction λ = 0.1. The model parameters are
hx

B = hz
B = 1

8 , K = − 1
4 , and � = 1. (a), (b) Show TDSE data (solid lines) and QMEQ data (solid circles). (a) Initial state |x〉|φ〉; (b) initial

state |y〉|φ〉; (c) the error emax(t). The data obtained with the initial state |↑〉|φ〉 are very similar as the data obtained with the initial state |y〉|φ〉
and are therefore not shown. For clarity, the data are shown with a time interval of 0.4. The TDSE solver provided 3000 numbers as input to
the least-square procedure.

Writing Eq. (37) more explicitly as

∂
〈
σ x

0(t)
〉

∂t
= A1,1

〈
σ x

0(t)
〉 + A1,2

〈
σ

y

0(t)
〉 + A1,3

〈
σ z

0(t)
〉 + b1,

∂
〈
σ

y

0(t)
〉

∂t
= A2,1

〈
σ x

0(t)
〉 + A2,2

〈
σ

y

0(t)
〉 + A2,3

〈
σ z

0(t)
〉 + b2,

∂
〈
σ z

0(t)
〉

∂t
= A3,1

〈
σ x

0(t)
〉 + A3,2

〈
σ

y

0(t)
〉 + A3,3

〈
σ z

0(t)
〉 + b3,

(55)

and using, as an example, the data shown in Fig. 7 we obtain
the values of the coefficients as given in Table I. From Table I,
we readily recognize that (i) A2,3 ≈ −A3,2 ≈ 1 represents the
precession of the system spin in the magnetic field hx = 1

2 ,
(ii) there is a weak coupling between the x and (y,z)
components of the system spin, and (iii) the three spin
components have different relaxation times.

As a final check, whether λ = 0.1 is well within the
perturbative regime, we repeat the simulations for a bath
containing NB = 32 spins and system-bath interaction λ = 0.2
and β = 0. The simulation data are presented in Fig. 9. Clearly,
there still is good qualitative agreement between the TDSE and
QMEQ data but, as expected, maxk emax(t) has become larger
(by a factor of about 3).

TABLE I. The parameters that appear in Eq. (55) as obtained by
fitting the QMEQ to the TDSE data shown in Fig. 7.

β i Ai,1 Ai,2 Ai,3 bi

0 1 −0.29 × 10−1 +0.57 × 10−3 −0.11 × 10−2 −0.31 × 10−3

0 2 −0.55 × 10−2 −0.73 × 10−1 +1.01 −0.95 × 10−4

0 3 −0.73 × 10−3 −1.01 −0.74 × 10−1 −0.56 × 10−4

1 1 −0.40 × 10−1 +0.11 × 10−1 −0.11 × 10−3 −0.18 × 10−1

1 2 −0.11 × 10−1 −0.36 × 10−1 +0.99 −0.29 × 10−3

1 3 −0.54 × 10−3 −0.99 −0.53 × 10−1 −0.32 × 10−3

2 1 −0.35 × 10−1 +0.29 × 10−1 +0.75 × 10−3 −0.27 × 10−1

2 2 −0.22 × 10−1 −0.45 × 10−1 +0.98 −0.47 × 10−2

2 3 −0.84 × 10−3 −0.98 −0.40 × 10−1 −0.16 × 10−3

In Table II, we present results (first three rows) for the
least-square estimates of the parameters that enter the QMEQ,
as obtained from the TDSE data shown in Fig. 8. Taking
into account that with each run, the random values of the
model parameters change, the order-of-magnitude agreement
between the data for NB = 28 (Table I, rows 4–6) and the
NB = 32 data is rather good. We also present results (middle
and last three rows) for the parameters that enter the Redfield
equation (46), as obtained from the TDSE data of the bath-
operator correlations C(i,j,t) for 0 � t � 40 [see Figs. 2(a)
and 2(c) for a picture of some of these data]. From Table II,
it is clear that there seems to be little quantitative agreement
between a description based on the Redfield quantum master
equation (46) obtained by using the bath-operator correlations
C(i,j,t) data and the parameters obtained from the least-square
fit of Eq. (55) to the TDSE data. Simulations using the 3D bath
Hamiltonian (7) support this conclusion (see Appendix B).

Although our results clearly demonstrate that QMEQ (37)
quantitatively describes the true quantum dynamics of a spin
interacting with a spin bath rather well, the Redfield quantum
master equation (46) in the Markovian approximation, which
is also of the form (37), seems to perform rather poorly in
comparison. The estimates of the diagonal matrix elements
of the matrix A as obtained from the expressions in terms
of the bath-operator correlations C(i,j,t) are too small by
factors 3–7. This suggests that the approximations involved
in the derivation of Eq. (46) are not merely of a perturbative
nature, but affect the dynamics in a more intricate manner (see
Ref. [19] for an in-depth discussion of these aspects).

VIII. EXCEPTIONS

The simulation results presented in Secs. VI and VII
strongly suggest that, disregarding some minor quantitative
differences, the complicated Schrödinger dynamics of the
system interacting with the bath can be modeled by the
much simpler QMEQ of the form (37). But, as mentioned
in Sec. IV, there are several approximations involved to justify
the reduction of the Schrödinger dynamics to a QMEQ. In this
section, we consider a few examples for which this reduction
may fail.
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FIG. 9. Same as Fig. 8 except that β = 0 and λ = 0.2.

The first case that we consider is defined by the Hamiltonian

H = −hxσ x
0 + λ

4

NB∑
n=1

(
σx

n σ x
0 + σy

n σ
y

0 + σ z
nσ z

0

)
+1

4

NB∑
n=1

(
σx

n σ x
n+1 + σy

n σ
y

n+1 + σ z
nσ z

n+1

)
. (56)

In other words, both the system-bath and intrabath interactions
are of the isotropic antiferromagnetic Heisenberg type and
all interaction strengths are constant. The simulation results
for this case are presented in Fig. 10. From Fig. 10(a), it is
immediately clear that the system does not relax to its thermal
equilibrium state at β = 0 [for which limt→∞〈σx

0 (t)〉 = 0].
Apparently, the bath Hamiltonian is too “regular” to drive
the system to its thermal equilibrium state, hence, it is also
not surprising that the attempt to let the QMEQ describe the
Schrödinger dynamics fails.

The second case that we consider is defined by the
Hamiltonian

H = −hxσ x
0 + λ

4

NB∑
n=1

J z
nσ z

nσ z
0 + 1

4

NB∑
n=1

σ z
nσ z

n+1, (57)

TABLE II. First three data rows: coefficients that appear in
Eq. (55) as obtained by fitting the QMEQ to the TDSE data shown in
Fig. 8. Middle three rows: the corresponding coefficients as obtained
by numerically calculating the parameters rjk that appear in the
Redfield quantum master equation (46) according to Eq. (45), using
the TDSE data of the bath-operator correlations shown in Fig. 2(a).
Last three rows: same as the middle three rows except that the used
TDSE data of the bath-operator correlations are shown in Fig. 2(c).
Note that the baths used in these simulations are very different (see
Fig. 2), yet the relevant numbers (those with absolute value larger
than 10−4) are in the same ballpark.

i Ai,1 Ai,2 Ai,3 bi

1 −0.49 × 10−1 +0.82 × 10−2 −0.56 × 10−3 −0.19 × 10−1

2 −0.80 × 10−2 −0.42 × 10−1 +1.02 −0.14 × 10−4

3 −0.38 × 10−3 −1.01 −0.41 × 10−1 −0.40 × 10−3

1 −0.71 × 10−2 −0.15 × 10−3 +0.18 × 10−3 −0.29 × 10−2

2 −0.13 × 10−3 −0.15 × 10−1 +1.00 −0.63 × 10−4

3 +0.16 × 10−3 −1.00 −0.15 × 10−1 +0.75 × 10−4

1 −0.64 × 10−2 +0.16 × 10−3 +0.14 × 10−3 −0.26 × 10−2

2 +0.75 × 10−3 −0.14 × 10−1 +1.00 +0.64 × 10−4

3 −0.16 × 10−3 −1.00 −0.15 × 10−1 +0.64 × 10−4

with system-bath interactions J z
n chosen at random and

distributed uniformly over the interval [−1,1] and the bath
is modeled by an Ising Hamiltonian. The model (57) is known
to exhibit quantum oscillations in the absence of quantum
coherence [50]. As the bath Hamiltonian commutes with
all other terms of the Hamiltonian, the only nonzero bath
correlation C(3,3,t) is constant in time, hence, one of the
basic assumptions in deriving the QMEQ (37) does not hold.

Because of the special structure of the Hamiltonian (57), it
is straightforward to compute closed form expressions for the
expectation values of the system spin. For β = 0 we find

z
〈
σx

0 (t)
〉 = 1 − 2λ2

〈〈
B2 sin2 t

√
(hx)2 + B2

(hx)2 + B2

〉〉
,

|	(t = 0)〉 = |x〉|φ〉, (58)〈
σ

y

0 (t)
〉 = 〈〈cos 2t

√
(hx)2 + B2〉〉, |	(t = 0)〉 = |y〉|φ〉,

(59)

〈
σ z

0 (t)
〉 = 1 − 2λ2(hx)2

〈〈
sin2 t

√
(hx)2 + B2

(hx)2 + B2

〉〉
,

|	(t = 0)〉 = |↑〉|φ〉, (60)

where B = B({sn}) = ∑NB
n=1 J z

n sn and

〈〈X 〉〉 ≡
∑

{s1=±1}
. . .

∑
{sNB =±1}

|〈s1 . . . sNB |φ〉|2X ({sn}) (61)

denotes the average over all the bath-spin configurations.
From Eq. (58) it follows immediately that if the

system+bath is initially in the state |	(t = 0)〉 = |x〉|φ〉,
we must have 〈σx

0 (t)〉 � 1 − 2λ2. Hence, the system will
never relax to its thermal equilibrium state [for which
limt→∞〈σx

0 (t)〉 = 0]. Nevertheless, from Fig. 11 it may still
seem that the QMEQ captures the essential features of the
Schrödinger dynamics but the qualitative agreement is a little
misleading. More insight into this aspect can be obtained by
considering the limit of a very larger number of bath spins
NB, by assuming |φ〉 to be a uniform superposition of the 2NB

different bath states and by approximating B, being a sum of
independent uniform random variables, by a Gaussian random
variable. Then, we have (after substituting B = hxu)

〈σy(t)〉 = 1

σ
√

2π

∫ +∞

−∞
du e−u2θ/2σ 2

cos(2thx
√

1 + u2).

(62)
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FIG. 10. Simulation data for a bath with NB = 32 spins prepared at β = 0 and system-bath interaction λ = 0.2. The system Hamiltonian
is given by Eq. (2). The system-bath interaction is given by Eq. (3) with J x

n = J y
n = J z

n = 1
4 . The bath Hamiltonian is given by Eq. (5) with

K = − 1
4 , � = 1, and hx

n = hz
n = 0. The full Hamiltonian is given by Eq. (56). (a), (b) Show TDSE data (solid lines) and QMEQ data (solid

circles). (a) Initial state |x〉|φ〉; (b) initial state |y〉|φ〉; (c) the error emax(t). The data obtained with the initial state |↑〉|φ〉 are very similar as the
data obtained with the initial state |y〉|φ〉 and are therefore not shown. With this choice of parameters of bath and system-bath Hamiltonians, the
system does not relax to its thermal equilibrium state limt→∞〈σ x

0 (t)〉 = limt→∞〈σ y

0 (t)〉 = limt→∞〈σ z
0 (t)〉 = 0. For clarity, the data are shown

with a time interval of 0.4. The TDSE solver provided 3000 numbers as input to the least-square procedure.

For large t , we can evaluate Eq. (62) by the stationary phase
method and we find that 〈σy(t)〉 decays as 1/

√
t . Such a slow

algebraic decay cannot result from a time evolution described
by a single matrix exponential etA. In other words, the apparent
agreement shown in Fig. 11 is due to the relatively short-time
interval covered. On the other hand, as already mentioned, the
model defined by Eq. (57) is rather exceptional in the sense
that the bath correlations do not exhibit any dynamics. Hence,
it is not a surprise that the QMEQ cannot capture the 1/

√
t

dependence.
Finally, in Fig. 12 we illustrate what happens if the λ = 1,

that is, if the system-bath interaction becomes comparable
to the other energy scales hx and K . Then, the perturbation
expansion that is used to derive the QMEQ of the form (37)
is no longer expected to hold [4]. The data presented in
Fig. 12 clearly show that even though the time it takes for
the system to reach the stationary state is rather short (because
λ = 1), the QMEQ fails to capture, even qualitatively, the
dynamic behavior of the system. Note that the Schrödinger
dynamics drives the system to a stationary state which
is far from the thermal equilibrium state of the isolated

system. The TDSE solution yields 〈σx
0 (t = 100)〉 = 0.264

[|〈σ z
0 (t = 100)〉| � 10−2, |〈σ z

0 (t = 100)〉| � 10−2], whereas
from statistical mechanics for the isolated system at β = 1 we
expect 〈σx

0 〉 = tanh(1/2) = 0.462 [〈σy

0 (t = 100)〉 = 〈σ z
0 (t =

100)〉 = 0], a significant difference which, in view of the strong
system-bath interaction, is not entirely unexpected.

IX. SUMMARY

We have addressed the question to what extent a quantum
master equation of the form (37) captures the salient features
of the exact Schrödinger equation dynamics of a single spin
coupled to a bath of spins. The approach taken was to solve the
time-dependent Schrödinger equation of the whole system and
fit the data of the expectation values of the spin components
to those of a quantum master equation of the form (37).

In all cases in which the approximations used to derive a
quantum master equation of the form (37) seem justified, it was
found that the quantum master equation (37) extracted from
the solutions of the time-dependent Schrödinger equation de-
scribes these solutions rather well. The least-square procedure
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FIG. 11. Simulation data for a bath with NB = 32 spins prepared at β = 0 and system-bath interaction λ = 0.2. The system Hamiltonian is
given by Eq. (2). The system-bath interaction is given by Eq. (3) with J x

n = J y
n = 0 and J z

n uniformly random between − 1
4 and 1

4 , in which case
the interaction of the system and bath spins is through the coupling of the z components of the spins only. The bath Hamiltonian is given by
Eq. (6) with Kx

n = Ky
n = hx

n = hz
n = 0 and Kz

n uniformly random between −1 and 1. The full Hamiltonian is given by Eq. (57). (a), (b) Show
TDSE data (solid lines) and QMEQ data (solid circles). (a) Initial state |x〉|φ〉; (b) initial state |y〉|φ〉; (c) the error emax(t). The data obtained with
the initial state |↑〉|φ〉 are very similar as the data obtained with the initial state |y〉|φ〉 and are therefore not shown. With this choice of bath and
system-bath Hamiltonians, the system does not relax to its thermal equilibrium state limt→∞〈σ x

0 (t)〉 = limt→∞〈σ y

0 (t)〉 = limt→∞〈σ z
0 (t)〉 = 0.

For clarity, the data are shown with a time interval of 0.4. The TDSE solver provided 3000 numbers as input to the least-square procedure.
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FIG. 12. Same as Fig. 8 except that β = 1 and λ = 1.

that is used to fit the quantum master equation (37) data to the
time-dependent Schrödinger data accounts for non-Markovian
effects and nonperturbative contributions. Quantitatively, we
found that differences between the data produced by the
quantum master equation, obtained by least-square fitting
to the time-dependent Schrödinger data, and the latter data
increase with decreasing temperature.

The main finding of this work is that the exact Schrödinger
dynamics of a single spin- 1

2 object interacting with a spin- 1
2

bath can be accurately and effectively described by Eq. (37)
which, for convenience of the reader, is repeated here and reads
as

∂ρ(t)

∂t
= Aρ(t) + b, (63)

where the 3 × 3 matrix A and the three elements of the vector
b are time independent. As the mathematical structure of the
(Markovian) quantum master equation (63) is the same as that
of the Bloch equation (A1), as a phenomenological description,
the quantum master equation (63) offers no advantages over the
latter. Of course, when the system contains more than one spin,
the Bloch equation can no longer be used, whereas the quantum
master equation (63) still has the potential to describe the
dynamics. We relegate the assessment of the quantum master
equation approach to systems of two or more spins to a future
research project.
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APPENDIX A: BLOCH EQUATIONS

Whatever method we use to extract eτA and B, it is necessary
to validate the method by applying it to a nontrivial problem

for which we know the answer for sure. The Bloch equations,
originally introduced by Bloch [52] as phenomenological
equations to describe the equations of motion of nuclear
magnetization, provide an excellent test bed for the extraction
algorithm presented in Sec. V.

In matrix notation, the Bloch equations read as

dM(t)

dt
= ÂM(t) + b̂, (A1)

where M is the magnetization,

Â =
⎛⎝−1/T2 hz −hy

−hz −1/T2 hx

hy −hx −1/T1

⎞⎠, (A2)

and b̂ = M0/T1 where M0 is the steady-state magnetization.
The transverse and longitudinal relaxation times T2 and T1 are
strictly larger than zero. The special but interesting case in
which there is no relaxation corresponds to 1/T1 = 1/T2 = 0,

Obviously, Eq. (A1) has the same form as Eq. (37). Hence,
we can use Eq. (A1) to generate the data ρ(t) = M(t) that is
needed to test the algorithm described in Sec. V. In order that
the identification ρ(t) = M(t) makes sense in the context of
the quantum master equation, we have to impose the trivial
condition that ‖M(t = 0)‖ � 1 and ‖M0‖ � 1.

We generate the test data by integrating Eq. (A1). In
practice, we compute eτ Â using the second-order product
formula [53]

eτ Â ≈ eτ Ã = (
eτA1/2meτA2/meτA1/2m

)m
, (A3)

where Â = A1 + A2 and

A1 =
⎛⎝−1/T2 0 0

0 −1/T2 0
0 0 −1/T1

⎞⎠, (A4)

A2 =
⎛⎝ 0 hz −hy

−hz 0 hx

hy −hx 0

⎞⎠. (A5)

The second-order product-formula approximation satisfies
the bound ‖eτ Â − eτ Ã‖ � c2τ

3/m2 where the constant c2 =
O(‖[A1,A2]‖). Hence, the error incurred by the approximation
is known and can be reduced systematically by increasing m.

It is straightforward to compute the closed form expressions
of the matrix exponentials that appear in the second-order
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TABLE III. The errors eA, eB, and eρ as obtained fitting the matrix eτA and the constant term B to the data of the numerical solution of
the Bloch equation with three different initial conditions (see text). The Bloch equations are solved for N = 500 steps with the time step τ .
The value of the vector M0 = (0,0,0.4)T . The data of the whole time interval [0,N − 1] were used for the least-square fitting procedure. The
column labeled �i 
= 0 indicates whether all singular values are nonzero or not. For the meaning of all other symbols, see text.

hx hy hz 1/T1 1/T2 τ �i 
= 0 eA < 10−10 eB < 10−10 eρ < 10−10

0.5 1.5 0.7 0.05 0.3 0.1 � � � �
0.5 1.5 0.7 0 0 0.1 � � � �
0.5 1.5 0.7 0.01 0 1.0 � � � �
0 0 1 0 0 1.0 � � � �

product formula. We have

eτA1 =
⎛⎝e−τ/T2 0 0

0 e−τ/T2 0
0 0 e−τ/T1

⎞⎠,

eτA2 = 1

�2

⎛⎝ h2
x + (

h2
y + h2

z

)
cos τ� hxhy(1 − cos τ�) + hz� sin τ� hxhz(1 − cos τ�) − hy� sin τ�

hxhy(1 − cos τ�) − hz� sin τ� h2
y + (

h2
x + h2

z

)
cos τ� hyhz(1 − cos τ�) + hx� sin τ�

hxhz(1 − cos τ�) + hy� sin τ� hyhz(1 − cos τ�) − hx� sin τ� h2
z + (

h2
x + h2

y

)
cos τ�

⎞⎠, (A6)

where �2 = h2
x + h2

y + h2
z .

Summarizing, the numerical solution of the Bloch equa-
tions (A1) is given by

ρ(t + τ ) = eτ Ãρ(t) + B̃, (A7)

where ρ(t) = M(t) and the trapezium rule was used to write

B̂ =
∫ τ

0
e(τ−u)Âb̂ du ≈ τ

2
(1 + eτ Ã )̂b = B̃. (A8)

The approximate solution obtained from Eqs. (A7) and (A8)
will converge to the solution of Eq. (A1) as τ → 0. Clearly,
Eq. (A7) has the same structure as Eq. (39) and hence we can
use the solution of the Bloch equations as input data for testing
the extraction algorithm. Note that the extraction algorithm is
expected to yield eτ Ã and B̃, not eτ Â and B̂.

1. Validation procedure

We use the Bloch equation model to generate the data
set D = {ρ(kτ )| 0 � k � N − 1}. The validation procedure
consists of the following steps:

(1) Choose the model parameters hx , hy , hz, 1/T1, 1/T2

and the steady-state magnetization M0.
(2) Choose τ and m.
(3) For each of the three initial states ρ(1)(0) = (1,0,0)T ,

ρ(2)(0) = (0,1,0)T , and ρ(3)(0) = (0,0,1)T repeat the opera-
tion

ρ(j )[(k + 1)τ ] ← eτ Ãρ(j )(kτ ) + B̃, k = 0, . . . ,N − 1,

j = 1,2,3

and store these data.
(4) Use the data {ρ(j )(kτ )} to construct the matrices 3 ×

3N matrix Z = (Z(1) Z(2) Z(3)) and the 4 × 3N matrix X =
(X(1) X(2) X(3)). Then, use the singular value decomposition of
X to compute the matrix Y according to Eq. (50) and extract
the matrix eτA and vector B from it [see Eq. (48)]. If one or
more of the singular values are zero, the extraction failed.

(5) Compute the relative errors

eA = ‖eτ Ã − eτ Â‖/‖eτ Â‖, (A9)

eB = ‖B̃ − B̂‖/‖B̂‖, (A10)

eρ = max
k

‖ρ[(k + 1)τ ] − eτ Ãρ(kτ ) − B̃‖/‖ρ(kτ )‖. (A11)

A necessary condition for the algorithm to yield reliable results
is that the errors eA and eB are small, of the order of 10−10.
Indeed, if one or more of the singular values are zero and the
extraction has failed, eρ may be (very) small but eA or eB is
not.

In the case that is of interest to us, the case in which the
whole system evolves according to the TDSE, we do not know
eτA nor B and a small value of eρ is, by itself, no guarantee
that the extraction process worked properly. Hence, it also is
important to check that all singular values are nonzero.

2. Numerical results

In Table III, we present some representative results for
the errors incurred by the extraction process. In all cases, the
relative errors on the estimate of the time evolution operator
and the constant term are, for the present purpose, rather small.
Therefore, the algorithm to extract the time evolution operator
eτ Ã and constant term B̃ appearing in the time evolution
equation (39) from the data obtained by solving the TDSE
yields accurate results when the data are taken from the
solution of the Bloch equations. No exceptions have been
found yet.

APPENDIX B: SIMULATION RESULTS USING THE 3D
BATH HAMILTONIAN (7)

In this Appendix, we present some additional results in
support of the conclusions drawn from the simulations of using
the 1D bath Hamiltonians (5) and (6).
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TABLE IV. First three data rows: coefficients that appear in
Eq. (55) as obtained by fitting the QMEQ (37) to the TDSE data
for hx = 1

2 , λ = 0.1, NB = 27, the 3D bath Hamiltonian (7) with
random couplings (K = 1

4 ) and random h fields (hx
B = hz

B = 1
4 ). Last

three rows: the corresponding coefficients as obtained by numerically
calculating the parameters rjk that appear in the Redfield quantum
master equation (46) according to Eq. (45) from the TDSE data of
the bath-operator correlations.

i Ai,1 Ai,2 Ai,3 bi

1 −0.25 × 10−1 −0.82 × 10−2 +0.67 × 10−3 −0.11 × 10−1

2 +0.11 × 10−1 −0.47 × 10−1 +0.99 +0.91 × 10−4

3 +0.16 × 10−3 −1.00 −0.47 × 10−1 +0.51 × 10−3

1 −0.49 × 10−2 +0.49 × 10−5 −0.80 × 10−4 −0.20 × 10−2

2 +0.15 × 10−3 −0.19 × 10−1 +1.00 × 10+0 +0.59 × 10−5

3 +0.53 × 10−2 −0.99 × 10+0 −0.19 × 10−1 −0.50 × 10−4

Table IV summarizes the results of the analysis of TDSE
data, as obtained with the 3D bath Hamiltonian (7) with
random intrabath couplings and random h fields for the bath
spins. The model parameters that were used to compute the
TDSE data are the same as those that yield the results for the
1D bath presented in Table II. Comparing the first three rows
[the parameters that appear in the Markovian master equation
(55) with the corresponding last three rows (the parameters rjk

that appear in the Redfield quantum master equation (46)], we
conclude that changing the connectivity of the bath does not
significantly improve (compared to the data shown in Table I)
the quantitative agreement between the data in the two sets of
three rows.

In Table V, we show the effect of increasing the energy
scale of the bath spins by a factor of 10, reducing the relaxation
times of the bath correlations by a factor of 10, i.e., closer to

TABLE V. The same as Table IV except that the random couplings
(K = 10

4 ) and random h fields (hx
B = hz

B = 10
4 ).

i Ai,1 Ai,2 Ai,3 bi

1 −0.77 × 10−2 +0.20 × 10−1 −0.77 × 10−4 −0.37 × 10−3

2 −0.19 × 10−1 −0.99 × 10−2 +0.99 −0.52 × 10−4

3 +0.43 × 10−2 −0.99 −0.88 × 10−2 −0.21 × 10−4

1 −0.16 × 10−2 +0.19 × 10−4 +0.38 × 10−4 −0.66 × 10−4

2 +0.87 × 10−5 −0.64 × 10−2 +1.00 +0.13 × 10−4

3 −0.67 × 10−2 −1.01 −0.66 × 10−2 +0.17 × 10−4

the regime of the Markovian limit in which Eq. (46) has been
derived. The differences between the QMEQ estimates (first
three rows) and the Redfield equation estimates (second three
rows) values of A2,2 and A3,3 are significantly smaller than
in those for the case shown in, e.g., Table IV but the A1,1

elements differ by a factor of 4 and the A(2,1) elements differ
even much more. Although the results presented in Tables IV
and V indicate that the data extracted from the TDSE through
Eq. (55) and those obtained by calculating the parameters rjk

that appear in the Redfield quantum master equation (46) in
the Markovian limit will converge to each other, it becomes
computationally very expensive to approach that limit closer.
The reason is simple: by increasing the energy scale of the bath,
it is necessary to reduce the time step (or equivalently increase
the number of terms in the Chebyshev polynomial expansion)
in order to treat the fast oscillations properly. Keeping the same
relaxation times roughly the same but taking a smaller time
step requires more computation. For instance, it takes about 4
(20) h CPU time of 16384 BlueGene/Q processors to produce
the TDSE data from which the numbers in Table IV (Table V)
have been obtained.
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