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Abstract

The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic,
general purpose quantum computer and a graphical user interface. The latter is used to control the sim-
ulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms.
QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of
physically realizable quantum processors and as an interactive educational tool to learn about quantum
computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT
and the Toffoli gate, the quantum Fourier transform, Grover’s database search algorithm, an order finding
algorithm, Shor’s algorithm, a three-input adder and a number partitioning algorithm. We also review
the results of simulations of an NMR-like quantum computer.
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1. Introduction

Recent advances in quantum information processing has opened new avenues for using quantum phe-
nomena to perform computation [1]. Quantum computers (QCs) may solve problems such as factor-
ing integers [2, 3] and searching databases [4, 5] faster than a conventional computer. The potential
power of a QC stems from the fact that a quantum system can be in a superposition of states, al-
lowing exponentially many computations to be done in parallel [1, 6, 7, 8, 9, 10]. Candidate technolo-
gies for building quantum gates include ion traps, cavity QED, Josephson junctions, and NMR technol-
ogy [1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

Just as simulation is an integral part of the design process of each new generation of microprocessors,
software to emulate physical models of quantum processors may prove essential. In contrast to conventional
digital circuits where the internal working of each basic unit is irrelevant for the logical operation of the
whole machine, the internal quantum dynamics of each elementary gate is a key ingredient of the QC itself.
Therefore it is essential to incorporate into a simulation model, the physics of the elementary units that
make up the QC.

Theoretical work on quantum computation usually assumes the existence of units that perform highly
idealized unitary operations. However, in practice these operations are difficult to realize: Disregarding
decoherence, physical QCs will perform unitary operations that are more complicated than those considered
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in most theoretical work. Therefore it is important to have theoretical tools to validate designs of physically
realizable quantum processors.

The Quantum Computer Emulator (QCE) described in this paper, is software designed to simulate
physical models of QC hardware. The QCE consists of a simulator of a generic, general purpose QC and a
graphical user interface [37, 38]. The simulator simulates the physical processes that govern the operation
of the hardware quantum processor, strictly according to the laws of quantum mechanics. The graphical
user interface is used to control the simulator, to define the physical realization of the QC and to debug and
execute quantum algorithms (QAs). The QCE runs in a Windows 98/NT/2000/ME/XP environment [38].
It can be used as a research tool to validate designs of physically realizable quantum processors and as an
educational tool to learn about QCs and QAs in an interactive way. In the current version of QCE (8.1.0)
the maximum number of qubits is sixteen.

This paper contains a first detailed account of how the QCE can be used to simulate ideal and physical
QCs. A description of the internal working of the simulator itself can be found elsewhere [37, 39]. We
discuss the implementation of basic QC gates (CNOT and Toffoli gate) and more complicated applications
such as Grover’s search algorithm and the quantum Fourier transform on an ideal QC. We also present the
implementation of algorithms to find the order of a permutation, Shor’s factoring algorithm, a three-input
adder and an algorithm to solve the number partitioning problem on an ideal QC. We briefly review some
of our earlier work on the simulation of a physical NMR-like model of a QC [40].

2. Quantum Computers

2.1. Qubits

In a QC, the basic unit of information is a quantum bit or qubit. Whereas bits can take the logical values
0 and 1, a qubit can be in any linear superposition of the two states |0〉 and |1〉

Q = α|0〉 + β|1〉 ; α, β ∈ C, (1)

where |α|2 and |β|2 denote the frequencies of occurrence of both states |0〉 and |1〉, respectively. Hence, in
one qubit an infinite amount of classical information can be encoded. The principles of quantum mechanics,
however, do not allow to retrieve this information. If a measurement is performed on the qubit, the state |0〉
(|1〉) is measured with a frequency which is proportional to |α|2 (|β|2). What is then so special about a QC?
Consider a classical memory register consisting of three bits. At a certain point in time this register can store
one out of 23 = 8 possible numbers, namely in digital notation 000, or 001, or 010, ... or 111. A quantum
register with three qubits, however, can store all eight possible numbers in a superposition at a certain point
in time. If the quantum register is in the superposition of the eight states, operations can be performed on
the eight numbers simultaneously. This is called quantum parallelism. On a classical computer, the same
operation needs to be performed eight times or the operation has to be done on eight processors of a parallel
computer. The QC is thus a massive parallel computer.

The qubits on an ideal QC are ideal two-state quantum systems. Therefore, the operation of an ideal
QC does not depend on the intrinsic dynamics of its qubits. A physically realizable QC, on the other hand,
is a many-body system in which the dynamics of the qubits is essential to its operation. In what follows we
represent the qubit by a spin-1/2 system. The two basis states spanning the Hilbert space are denoted by
〈↑ | ≡ (10) ≡ 〈0| and 〈↓ | ≡ (01) ≡ 〈1|.

2.2. Models

QC hardware can be modeled in terms of qubits that evolve in time according to the time-dependent
Schrödinger equation (TDSE)

i
∂

∂t
|Φ(t)〉 = H(t)|Φ(t)〉, (2)

in units such that h̄ = 1. For pedagogical reasons we consider a three-qubit QC. The state

|Φ(t)〉 = a(↓, ↓, ↓; t)| ↓, ↓, ↓〉 + a(↓, ↓, ↑; t)| ↓, ↓, ↑〉 + . . . + a(↑, ↑, ↑; t)| ↑, ↑, ↑〉, (3)
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describes the state of the whole QC at time t. The complex coefficients a(↓, ↓, ↓; t), . . . , a(↑, ↑, ↑; t) completely
specify the state of the quantum system. For the time-dependent Hamiltonian we take

H(t) = −Jz12(t)Sz1S
z
2 − Jz13(t)Sz1S

z
3 − Jz23(t)Sz2S

z
3 −

3∑
j=1

∑
α=x,y,z

Hαj (t)Sαj , (4)

where Sαj denotes the α-th component of the spin-1/2 operator representing the j-th qubit, Jαjk(t) determines
the strength of the interaction between the spins labeled j and k, and Hαj (t) represents the external field
acting on the j-th spin. In terms of spin matrices, the expectation values Qαj of the three components of
qubit j are given by

Qαj =
1
2
− 〈Sαj 〉. (5)

The physical system defined by (4) is sufficiently general to serve as a physical model for a generic
(three-qubit) QC at zero temperature without coupling to other degrees of freedom (e.g. interactions with
the environment). For instance, it includes the simplest (Ising) model of a universal QC [7, 41]

Hideal = −J(Sz1S
z
2 + Sz1S

z
3 + Sz2S

z
3 ) −

3∑
j=1

∑
α=x,y,z

Hαj (t)Sαj . (6)

Specific candidate hardware realizations of (4) include linear arrays of quantum dots [29], Josephson
junctions [21] and NMR systems [15, 16, 17, 18, 31, 32, 33, 34]. An approximate model for the linear arrays
of quantum dots reads

H(t) = −
2∑
j=1

EjS
z
j S
z
j+1 −

3∑
j=1

Hxj (t)Sxj + E0

3∑
j=1

Pj(t)Szj , (7)

where Ej = E0 (Ej = 2E0) when j is odd (even) and Hxj (t) and Pj(t) are external control parameters [29].
Projection of the Josephson-junction model onto a subspace of two states per qubit yields [20, 25]

H(t) = −2EI(t)
2∑
j=1

Syj S
y
j+1 − EJ

3∑
j=1

Sxj −
3∑
j=1

Hzj (t)Szj , (8)

where the energy of the Josephson tunneling is represented by EJ and EI(t) denotes the energy associated
with the inductive coupling between the qubits [20, 25]. Here Hzj (t) and EI(t) may be controlled externally.

The model Hamiltonian for a three-qubit NMR-QC is given by (4) whith

Hαj (t) = hαj + h̃αj sin(2πfαj t + ϕαj ), (9)

where hαj and h̃αj represent the static (magnetic) and periodic (RF) field acting on the j-th spin respectively.
The frequency and phase of the periodic field are denoted by fαj and ϕαj . The simple choice for the time
dependence of the pulses is convenient for theoretical work. In practice, NMR experiments use much more
complicated pulses of electromagnetic radiation [42, 43].

3. QCE: Quantum Computer Emulator

The model parameters in the above Hamiltonians are determined by the specific experimental systems
that are simulated. The present version of QCE (8.1.0) can simulate models that are described by the
Hamiltonian

H(t) = −
∑
i�=j

∑
α=x,y,z

Jαij(t)S
α
i S
α
j −

∑
j

∑
α=x,y,z

Hαj (t)Sαj , (10)

with Hαj (t) given by Eq.(9). This Hamiltonian is sufficiently general to include e.g. models for NMR-like
QCs.
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Figure 1. Left: The main QCE window with a set of micro instructions implementing an ideal three-qubit quantum
computer. Right: Set of micro instructions implementing an ideal three-qubit quantum computer and a window with
the quantum program for the CNOT gate operating on the |110〉 state. The qubits in the final state of the quantum
computer (i.e. the expectation value of the spin operators), are shown at the bottom of the program window (dark
gray (red on screen) = |1〉, light gray (green on screen) = |0〉). QCE has an option to visualize the time evolution of
the state of the quantum computer in terms of arrows representing the expectation values of the qubits (see menu
item “Settings” on the top bar of the main window).

3.1. Quantum algorithms

A QA for QC model (10) consists of a sequence of elementary operations that change the state |Φ〉 of the
quantum processor according to the TDSE, i.e. by (a product of) unitary tranformations. We will call these
elementary operations micro instructions (MIs) in the sequel. They are not exactly playing the same role as
MIs do in digital processors. They merely represent the smallest units of operation of the quantum processor.
The action of a MI on the state |Φ〉 of the quantum processor is defined by specifying how long it acts (i.e.
the time interval it is active), and the values of all the J ’s and h’s appearing in (10). A MI transforms the
input state |Φ(t)〉 into the output state |Φ(t + τ)〉 where τ denotes the time interval during which the MI is
active. During this time interval the only time-dependence of H(t) is through the time-dependence of the
external fields on the spins.

The QCE solves TDSE (2) by a Suzuki product-formula [37, 44, 45] in terms of elementary unitary
operations. For all practical purposes, the results obtained by this technique are indistinguishable from the
exact solution of the TDSE.

3.2. Graphical user interface

The graphical user interface (GUI) of QCE has been developed to facilitate the specification of the MIs (to
model the QC hardware) and the execution of the quantum programs (QPs). The QCE runs in a Windows
98/NT/2000/ME/XP environment. Using the GUI requires no skills other than the basic ones needed to
run a standard MS-Windows application. The QCE is freely distributed as a self-installing executable,
containing the program, documentation, and various QPs [38]. The file help.htm [46] contains information
about how to install and how to start the QCE. The QCE starts up in full screen mode and requires the
choice of a MI set. Any of the listed MI sets can be chosen. It can be modified or renamed afterwards.

The main window of the QCE (see Fig. 1) contains a window showing the set of MIs that is currently
active. Tooltips appear when the mouse moves over the buttons. The top bar of the main window contains a
menu item “File” and buttons to create, open and save QPs and menu items to control (“Tools”, “Settings”,
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“Window”) QCE. The menu item “Settings” offers the option to turn on the visualization of the time
evolution of the state of the QC and to generate text files with the numerical results for further processing.
Note that the window, showing the arrows representing the qubits (see Fig. 1), appears for the first time
when a QP is started. The name of the window corresponds to the QP that is executed. QP windows within
the main window can be rearranged using the menu item “Window” or by pressing Ctrl-A. The button
labeled “MI” can be used to create a completely new MI set.

The MI set defines the hardware realization of a QC. Each MI set has two reserved MIs: “Breakpoint”
to allow a QP to pause at a specified point and “initialize” to specify the initial state of the QC (normally
the first MI in a QP). The top bar of the MI set window contains buttons to open, save and copy an MI
set, to create, copy and delete a MI, to sort MIs and to add QPs. The number of qubits of the QC can be
specified by clicking the button showing two qubits on the top bar of the MI set window.

The QCE supports the (non-recursive) use of QPs as MIs (see Fig. 1). QPs can be added to a particular
MI set through the button labeled “QP” (top right of the MI set window). During execution, a QP that is
called from another QP will call either another QP or a genuine MI from the currently loaded set of MIs.
The QCE will skip all initialization MIs except for the first one. This facilitates the testing of QPs that are
used as sub-QPs. A QP calling a MI or QP that cannot be found in the current MI set will generate an
error message and force termination of the execution.

Writing a QA on the QCE from scratch is a two-step process. First one has to specify the MIs, taking
into account the particular physical realization of the QC that one wants to emulate. A new MI set is created
by clicking on the “MI” button at the top of the main window of the QCE. The MI set window offers all
necessary tools to edit and manipulate the MIs. New MIs in the MI set window are obtained by clicking
on the “white page” button at the top of this window. The parameters specifying the MI can then be filled
out. Existing MIs can be edited by double-clicking the MI icon.

The second step, writing a QP, consists of dragging and dropping MIs onto a QP window. New QP
windows are created by clicking on the “white page” button at the top of the main window of the QCE,
old QPs are opened by clicking on the “folder” button at the top of the main window of the QCE or by
double-clicking on a QP in a MI set window.

Execution of a QP on the QCE is realized by the control buttons at the top of the QP program. The
results of executing a QP appear in color-coded form at the bottom of the corresponding QP window. For
each qubit the expectation value of the three spin components (see Eq.(5)) are shown: green (light gray)
corresponds to 0, red (dark gray) to 1. Usually one row of values (the z-component) will be of interest. Note
that in general only QPs can be executed that contain MIs and QPs that are defined in the active MI set.

4. Ideal Quantum Computer

This section discusses the use of QCE as an ideal QC.

4.1. Single-qubit operations

The three components of the spin-1/2 operator S acting on the Hilbert space spanned by the states |0〉
and |1〉 are defined by

Sx =
1
2

(
0 1
1 0

)
, Sy =

1
2

(
0 −i
i 0

)
, Sz =

1
2

(
1 0
0 −1

)
, (11)

in units such that h̄ = 1. By convention this representation is chosen such that |0〉 and |1〉 are eigenstates
of Sz with eigenvalues +1/2 and -1/2, respectively. In general rotation of spin j about an angle φ around
an axis β can be written as (h̄ = 1)

Sα(φ, β) = eiφS
β

Sαe−iφS
β

= Sα cosφ + εαβγS
γ sinφ, (12)

where use has been made of [Sα, Sβ ] = iεαβγS
γ , εαβγ is the totally asymmetric unit tensor (εxyz = εyzx =

εzxy = 1, εαβγ = −εβαγ = −εγβα = −εαγβ , εααγ = 0) and the summation convention is used. Rotations of
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Figure 2. Left: MI set window “Manual” together with the MI window “New” which is edited to become MI “X1”.
Right: MI set window “Manual” together with the QP window “New” which is edited to become QP “000”.

spin j about π/2 around the x and y-axis are often used as basic QC operations. In matrix notation, they
are given by

Xj ≡ eiπS
x
j /2 =

1√
2

(
1 i
i 1

)
, Yj ≡ eiπS

y
j
/2 =

1√
2

(
1 1

−1 1

)
, (13)

respectively. Xj and Yj represent operations on single qubits. The matrix expressions for the inverse of the
rotations Xj and Yj , denoted by Xj and Y j respectively, are obtained by taking the Hermitian conjugates
of the matrices in (13). With our convention 〈0|Y jSxj Yj |0〉 = −1/2 so that a positive angle corresponds to
a rotation in the clockwise direction. For a two-qubit QC we have

X1


|00〉
|01〉
|10〉
|11〉

 ≡ 1√
2


1 0 i 0
0 1 0 i
i 0 1 0
0 i 0 1




|00〉
|01〉
|10〉
|11〉

 , (14)

where |b1b2〉 ≡ |b1〉|b2〉 and bi = 0, 1. For example X1|10〉 = (|10〉+i|00〉)/√2 and X1|10〉 = (|10〉−i|00〉)/√2.
Using the same labeling of states as in (14) we have

Y2 ≡ 1√
2


1 1 0 0

−1 1 0 0
0 0 1 1
0 0 −1 1

 , (15)

e.g. Y2|10〉 = (|10〉 − |11〉)/√2 and Y 2|10〉 = (|10〉 + |11〉)/√2.
The rotations Xj , Yj and Xj , Y j can be implemented as MIs on the QCE. For example, on a three-qubit

QC, this can be done as follows: Start up the QCE and choose one of the MI sets. Create a new MI set by
clicking on the button “MI” on the toolbar of the main window and name the new MI set “Manual”. Click
on the button with the two qubits (at the top of the MI set window) and choose the number of qubits to
be equal to three. Create a new MI by clicking the “white page” button at the top of the MI set window.
An MI window with the name New opens. Give the MI the name X1 and optionally type the text “rotation
of pi/2 about x, qubit 1, clock-wise !” in the description field. The parameters need to be chosen such
that −iτHideal = iπSx1 /2, where Hideal is given by (6). In practice we put hx1 = 1 (field (Hx 0,1) in Fig. 2),
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Table 1. Input and output states and the corresponding expectation values (Qz
1,Q

z
2) of the qubits for the CNOT

operation.

Input state Qz1 Qz2 Output state Qz1 Qz2
|00〉 0 0 |00〉 0 0
|01〉 0 1 |01〉 0 1
|10〉 1 0 |11〉 1 1
|11〉 1 1 |10〉 1 0

τ/2π = 1/4 (“Time step” in Fig. 2), “Main steps” = “Intermediate steps = 1” and leave all other parameters
equal to zero (see Fig. 2). The execution time τ of a MI is determined by four parameters. There is an
option to select the unit of time: Here it is convenient to express time in units of 2π. The total execution
time is given by (Main steps)*(Intermediate steps)*(Time step). “Main steps” controls the pace at which
(visualization) output is generated. Taking a too large value of “Main steps” may have negative impact on
the real-time performance of the QCE. The MIs Xj for j = 2, 3 can be copied from X1 by using the button
with the overlaying pages. MIs Yj and Xj , Y j can be constructed in a similar way. MIs can be deleted by
first selecting them and by then clicking on the delete button (cross) on the toolbar of the MI set window.

4.1.1. Hadamard gate

The Hadamard gate, a single-qubit gate, is one of the most useful quantum gates. The Hadamard operation
rotates the state |0〉 into (|0〉 + |1〉)/√2 (up to an irrelevant phase factor), i.e. the uniform superposition
state. In terms of the elementary rotations X and Y the Hadamard operation on qubit j reads

Wj = X2
j Y j = YjX

2
j = −X

2

jY j = −YjX
2

j =
i√
2

(
1 1
1 −1

)
. (16)

For example

Wj |0〉 = Wj

(
1
0

)
=

i√
2

(
1
1

)
. (17)

The Hadamard operation can be generalized to an arbitrarily number of qubits [1]. The generalized operation
is known as the Hadamard transform or as the Walsh-Hadamard transform. This operation consists of N
Hadamard gates acting in parallel on N qubits. For example for N = 2, W2W1|00〉 = −(|00〉+ |01〉+ |10〉+
|11〉)/2. The Walsh-Hadamard transform produces a uniform superposition of all basis states.

4.2. Communication between two qubits

Computation requires some form of communication between the qubits. Two qubits j and k “communi-
cate” with each other through the controlled phase shift

Ijk ≡


eiφ00 0 0 0

0 eiφ01 0 0
0 0 eiφ10 0
0 0 0 eiφ11

 . (18)

4.3. Two-qubit operations: CNOT gate

A fundamental two-qubit operation is provided by the CNOT gate. The CNOT gate flips the second
qubit if the state of the first qubit is |1〉, i.e. the first qubit acts as a control qubit for the second one,
see Table 1. An arbitrary QA can be written as a combination of the CNOT function and single-qubit
operations (universal gates) [1]. On an ideal QC the CNOT gate can be implemented by a combination of
single-qubit operations and the controlled phase shift.
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Figure 3. MI set window “Manual” together with the QP windows “000”, “100”, “010” and “110”.

From Table 1 it can be seen that the CNOT gate can be written in matrix notation as

CNOT


|00〉
|01〉
|10〉
|11〉

 ≡ 1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




|00〉
|01〉
|10〉
|11〉

 . (19)

In order to bring the above matrix into a similar form as the controlled phase shift, the matrix needs to
diagonalized. This may be done as follows

CNOT =
(

I1 0
0 2Sx2

)
=

(
I1 0
0 2Y 2S

z
2Y2

)
= Y 2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Y2 = e−iαY 2I12Y2, (20)

where I1 denotes the 2 × 2 identity matrix for qubit 1, and e−iα is a global phase factor. From Eq.(18) and
Eq.(20) it follows that

I12 =


eiφ00 0 0 0

0 eiφ01 0 0
0 0 eiφ10 0
0 0 0 eiφ11

 = eiα


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (21)

so that φ00 = φ01 = φ10 = α and φ11 = α− π.
We can implement the controlled phase shift, I12 = e−iτH , by means of the Ising model

H = −JSz1S
z
2 − h(Sz1 + Sz2 ). (22)

Then the values for φjk are φ00 = τ(J/4 + h), φ01 = φ10 = −τJ/4 and φ11 = τ(J/4 − h). With these values
for φjk and the condition φ00 = φ01 = φ10 = α, φ11 = α − π, we find that h = −J/2 and Jτ = −π. Hence
the CNOT gate can be implemented as Y 2I12Y2 with the conditions h = −J/2 and τJ = −π.

We now describe the main steps of how to program an ideal three-qubit QC so that it gives the outcome
of a CNOT gate operating on the |110〉 state. The final result can be found in the MI set “gates” and the
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Figure 4. Left: MI set window “Manual” together with the QP windows “cnot 12” operating on the state |110〉.
The QP “cnot 12” stops at the MI “Breakpoint”. The three components of the three qubits are shown at the bottom
of the QP window: Qx

1 = Qx
2 = Qx

3 = Qy
1 = Qy

2 = Qy
3 = 0.5 (greenisch brown or middle gray), Qz

1 = Qz
2 = 1 (dark

gray or red) and Qz
3 = 0 (green or light gray), corresponding to the state |110〉. Right: MI set window “Manual”

together with the QP window “cnot 12” operating on the state |110〉. The three components of the three qubits
are shown at the bottom of the QP window: Qx

1 = Qx
2 = Qx

3 = Qy
1 = Qy

2 = Qy
3 = 0.5, Qz

1 = 1 and Qz
2 = Qz

3 = 0,
corresponding to the state |100〉, the correct final state of the quantum computer.

QP “cnot 12” (see Fig. 1), included in the QCE software distribution. We start from the MI set “Manual”
built in section 4.1. First the QC has to be initialized (setting each of the three qubits to |0〉) and then the
first and second qubit have to be put in the state |1〉. We accomplish this on the QCE by creating the QP
“110” which consists of the QPs “000”, “100” and “010”. We first make QP “000”, which only contains the
MI “initialize”, a reserved MI in the QCE (see section 3.2), and puts the QC in the state |000〉. Starting
from the MI set “Manual” open a new QP by clicking on the “white page” button or the menu item “File”
on the top bar of the main window. A QP window named New opens. Drag the MI “initialize” from the
MI set window “Manual” and drop it on the QP window (see right-hand side of Fig. 2). Save the QP by
clicking on the save button (diskette) on the top bar of the QP window or by clicking the menu item “Tools”
on the top bar of the main window and choose “Save program” or “Save program as”. The “Save program
as” window opens showing the QCE directory. If the subdirectory “Manual” does not yet exist, first create
it using the standard Windows procedures and save the QP as “000.qcp” in “Manual”. Add QP “000” to
the MI set “Manual” by clicking on the “QP” button on the top bar of the MI set window “Manual”. The
“Add Quantum Program” opens, showing the subdirectory “Manual”. Select “000.qcp” and click on open
or press enter. Using the same procedure as described above we create QP “100” and QP “010”. QP “100”
(QP “010”) consists of two MI’s “Y1” (“Y2”) and rotates clock-wise qubit 1 (qubit 2) about π around the
y-axis. Finally we create QP “110” by a similar procedure but now we drag the QPs “000”, “100” and
“010” from the MI set window manual on a new QP program window (see Fig. 3). The instructions in the
program window can be rearranged by clicking on the instruction that you want to move and dragging it
to the instruction below which you want to place it. The instruction is dropped below the instruction that
becomes high-lighted during this movement. Instructions can be deleted by first selecting them and by then
clicking on the delete button in the toolbar of the QP window. QP “110” puts the QC in the state |110〉,
the starting position for our particular example. The QPs can now be closed by clicking on the cross in the
top right corner of the QP windows.

The next task is to implement the CNOT gate itself. Create a new QP and call it “cnot 12”. This QP
needs to compute Y 2I12Y2 on the state |110〉. Since operations need to be read from right to left we first put
the QC in the state |110〉 by dragging the QP “110” on the QP “cnot 12” window. For debugging reasons
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we drag MI “Breakpoint” on the QP window. This allows us to check whether we start from the correct
input state. Second we rotate clock-wise qubit 2 about π/2 around the y-axis by means of MI “Y2”. This
brings the QC in the state (|100〉 + |110〉)/√2. Then we apply the controlled phase shift I12. We construct
MI “i12” by taking the parameters such that h = −J/2 and Jτ = −π, i.e. Jz12 = −1, hz1 = hz2 = 1/2,
τ/2π = 1/2, “Main steps” = “Intermediate steps” = 1 and leaving all other model parameters equal to zero.
Apart from some global phase factor this brings the QC in the state (|100〉 − |110〉)/√2. Finally operating
with Y 2 on this state results in the final state |100〉 of the QC.

Run (step by step) the QP “cnot 12” by clicking on the corresponding play button in the QP window
(or press Alt-F5). The program stops at the breakpoint. This is indicated by the arrow in front of the MI
“Breakpoint”. The values of the qubits appear when the mouse is moved over the bottom region of the QP
window: Qx1 = Qx2 = Qx3 = Qy1 = Qy2 = Qy3 = 0.5 (greenisch brown or middle gray), Qz1 = Qz2 = 1 (dark gray
or red) and Qz3 = 0 (green or light gray), corresponding to the state |110〉 (see Fig. 4). We can now stop the
program by clicking at the stoplight button, continue or step back by clicking the appropriate buttons. We
continue by clicking on the play button. The program finishes and the expectation values of the three qubit
components become: Qx1 = Qx2 = Qx3 = Qy1 = Qy2 = Qy3 = 0.5, Qz1 = 1 and Qz2 = Qz3 = 0, corresponding to
the state |100〉, the correct final state of the QC (see Fig. 4).

4.3.1. Operation of CNOT gate on singlet state

In the previous section we have demonstrated the operation of the CNOT gate on the state |110〉, a simple
basis state. In what follows we demonstrate how the CNOT gate operates on an entangled state such as the
singlet state, |singlet〉 = (|01〉 − |10〉)/√2.

We first have to bring the QC in the singlet state. Assume that the QC is in a state |00〉. Applying the
rotation operator Y1 yields (|00〉 − |10〉)/√2. Next we apply to Y1|00〉 the rotation operator Y 2. This gives
(|00〉+ |01〉− |10〉− |11〉)/2. Application of the controlled phase shift I12, as defined in Eq.(21) with α = 2π
gives I12Y 2Y1|00〉 = (|00〉 + |01〉 − |10〉 + |11〉)/2. Finally, we again apply Y 2 and find

Y 2I12Y 2Y1|00〉 = (|01〉 − |10〉)/
√

2 ≡ |singlet〉. (23)

Applying CNOT to a singlet state gives

CNOT|singlet〉 = (|01〉 − |11〉)/
√

2, (24)

and hence 〈singlet|CNOT Qz1 CNOT |singlet〉 = 1/2. We can obtain a clear-cut answer in terms of expec-
tation values of both qubits by applying additionally Y1

Y1CNOT|singlet〉 = −|11〉. (25)

Then, in the final state, Qz1 = Qz2 = 1.
On the QCE we first build the QPs “singlet” and “cnot singlet” for qubits 1 and 2 and add them to the

MI set “Manual” using the procedure described above (see Fig. 5). Run the QP “cnot singlet”. The program
stops at the two breakpoints. After the first breakpoint the three-qubit QC is in the state (|010〉−|100〉)/√2,
i.e. qubits 1 and 2 form a singlet and qubit 3 is in the state |0〉. We have: Qx1 = Qx2 = Qx3 = Qy1 = Qy2 =
Qy3 = 0.5, Qz1 = Qz2 = 0.5 and Qz3 = 0. After the second breakpoint the CNOT gate on qubits 1 and 2 has
been applied, resulting in the following values for the qubits: Qx1 = 1, Qy1 = Qz1 = 0.5, Qx2 = Qy2 = 0.5,
Qz2 = 1 and Qx3 = Qy3 = 0.5, Qz3 = 0. At the end of the program the QC is in the state −|110〉 and
Qx1 = Qx2 = Qx3 = Qy1 = Qy2 = Qy3 = 0.5, Qz1 = Qz2 = 1 and Qz3 = 0 (see Fig. 5).

4.4. Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is an essential subroutine in e.g. Shor’s factoring algorithm,
the order finding algorithm and phase estimation in general [1, 9]. The QFT is a not a new kind of Fourier
transform: it is a particular application of the standard discrete Fourier transform. The latter is defined by
x = Uy where x = (x0, . . . , xN−1), y = (y0, . . . , yN−1) and Uj,k = e2πijk/N/

√
N . Clearly U is a unitary

matrix. In the context of quantum computation, the vectors x and y are just two different representations

10



K. Michielsen and H. De Raedt

Figure 5. MI set “Manual” together with the QPs “singlet” and “cnot singlet” operating on the state |singlet〉.
The expectation values of the three qubit components are shown at the bottom of the QP window: Qx

1 = Qx
2 = Qx

3 =
Qy

1 = Qy
2 = Qy

3 = 0.5, Qz
1 = Qz

2 = 1 and Qz
3 = 0 corresponding to the state ±|110〉, the final state of the quantum

computer.

of the basis vectors that span the Hilbert space of dimension N . The QFT relates the amplitudes in these
two representations:

N−1∑
j=0

aj |xj〉 =
1√
N

N−1∑
j,k=0

e2πijk/Naj |yk〉 =
N−1∑
k=0

bj |yk〉. (26)

Readers more familiar with traditional quantum mechanics recognize the similarity with the coordinate and
momentum representation. For applications in QAs, it is expedient to label the states not by one integer
but by the binary representation in terms of the states of the individual qubits. Then N = 2n where n is
the number of qubits. Exploiting the massive parallelism of the ideal QC, the QFT can be carried out in
O(n) quantum operations [1, 9].

In Fig. 6 we show a quantum network that performs a 4-qubit QFT [9]. The blocks labeled W perform a
Walsh-Hadamard transform and the other blocks perform a controlled phase shift by the angle indicated. Not
shown in the network is the series of SWAP-gates that interchanges the output qubits (1,4) and (2,3) [1, 9],
hence the different labeling of input and output lines in Fig. 6. For the applications that we discuss below,
these interchanges merely add to the operation count and can therefore be omitted.

The right-hand side of Fig. 6 shows the QCE with the MI-set “dft” and QPs that perform the 3 and 4-
qubit QFT algorithm (included in the QCE software distribution). There is a clear one-to-one correspondence
between the network and the QPs. The controlled phase shifts by π/2, π/4 and π/8 are performed by the
MIs b1(j, k), b2(j, k), and b3(j, k) respectively. For example, to define MI b1(1, 3), we proceed as in the case
of the CNOT gate, i.e., we use Hamiltonian H = −JSz1S

z
3 − h(Sz1 + Sz3 ) with τJ = π/2, τh = −π/4.

In Fig. 6 dft3(4) performs a QFT on the initial state |000〉 (|0000〉), yielding the uniform superposition
of the 3(4) qubits. As the uniform superposition can be written as a direct product of superpositions of each
qubit, knowing the expectation values of the three components of each spin is sufficient to characterize the
state. Thus we can easily check the result by reading off the three values per qubit from the bottom of the
QP window.
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Figure 6. Left: Quantum network that performs a 4-qubit Quantum Fourier Transform. W and P denote the
Walsh-Hadamard transform and permutation, respectively. The operations “2”,“4”, and “8” perform controlled
phase shifts with angles π/2, π/4 and π/8, respectively. Right: Ideal quantum computer implementation of a 3 and
4-qubit Quantum Fourier Transform on QCE.

4.5. Finding the period of a periodic function

Assume that we are given the function f(n) = f(n+M) for n = 0, . . . , N−1. On a QC we can determine
the period M as follows. We use one register of qubits to store n and another one to store f(n). As a first
step, the QC is put in the state of uniform superposition over all n. The state of the QC can be written as

1√
N

N−1∑
n=0

|n〉|f(n)〉 =
1√
N

{
M−1∑
n=0

|n〉|f(n)〉 +
2M−1∑
n=M

|n〉|f(n)〉 + . . .

}

=
1√
N

M−1∑
n=0

(|n〉 + |n + M〉 + . . .) |f(n)〉, (27)

where, in the last step, we used the periodicity of f(n). Using the Fourier representation of |n〉 we obtain

1√
N

N−1∑
n=0

|n〉|f(n)〉 =
1
N

M−1∑
n=0

N−1∑
k=0

(
1 + e2πikM/N + e4πikM/N + . . .

)
e2πikn/N |k〉|f(n)〉. (28)

Assuming that f(n) = f(n′) implies n = n′ for 0 ≤ n, n′ < M , the probability pk(M) to find the QC in the
state |k〉 is given by

pk(M) =

∣∣∣∣∣ 1
N

M−1∑
n=0

(
1 + e2πikM/N + e4πikM/N + . . .

)∣∣∣∣∣
2

. (29)

The results for pk(M) in the case N = 8 (3 qubits) are given in Table 2. From Table 2 is follows directly
that the expectation values of the qubits are (Qz1 = Qz2 = Qz3 = 0) if the period M = 1, (Qz1 = Qz2 = 0,
Qz3 = 0.5) if the period M = 2, (Qz1 = 0.5, Qz2 = 0.375, Qz3 = 0.34375) if the period M = 3, and (Qz1 = 0,
Qz2 = Qz3 = 0.5) if the period M = 4. Thus, in this simple case the periodicity of f(n) can be unambigously
determined from the expectation values of the individual qubits.
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Table 2. Probability pk(M) to observe the state |k〉 after performing the Quantum Fourier Transform on the perodic
function f(n) = f(n + M) for n = 0, . . . , 7.

k pk(M = 1) pk(M = 2) pk(M = 3) pk(M = 4)

0 1 0.5 0.34375 0.25
1 0 0.0 0.01451 0.00
2 0 0.0 0.06250 0.25
3 0 0.0 0.23549 0.00
4 0 0.5 0.31250 0.25
5 0 0.0 0.23549 0.00
6 0 0.0 0.06250 0.25
7 0 0.0 0.01451 0.00

4.6. Examples of Quantum Algorithms

4.6.1. Toffoli gate

The Toffoli gate works with two control qubits: Only if for the first two qubits Qz1 = Qz2 = 1, the third qubit
is flipped (see Table 3). We discuss two different implementations of the Toffoli gate.

A schematic representation of the first implementation is given in Fig. 7 [1, 47]. A dot (control bit) and
a cross (target bit) connected by a vertical line represent a CNOT gate: If the qubit on the horizontal line
with a dot equals one, the qubit on the horizontal line with a cross flips. A similar rule applies to the qubits
connected by a vertical line with endpoints a dot and a square box (see Fig. 7). Only if the control qubit
equals one, operation V or V is carried out.

Figure 7. Left top: Quantum network for the Toffoli gate using CNOT gates and controlled phase shifts V and V .
Left bottom: Quantum network for the Toffoli gate using CNOT gates and single-qubit ±π/4 rotations “±4”. Right:
Ideal quantum computer implementation of the two Toffoli gate networks on QCE.

The internal operation of the Toffoli gate is shown in Table 3. The first two colums give all possible
combinations of Qz1 and Qz2. The next five columns show schematically the outcome of the various operations
that build up the Toffoli gate (see Fig. 7). The colums labeled “CNOT” only show the value of the second
qubit since the first qubit acts as a control bit and does not change. A “x” means that the operation is not
carried out because the control bit is zero. The last column shows the full operation on the third qubit.
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Table 3. Internal operation of the quantum network Fig. 7 (left top) of the Toffoli gate.

Qz1 Qz2 V CNOT V CNOT V Result
0 0 x x x x x Qz3
0 1 V x V x x V V Qz3 = Qz3
1 0 x 1 V 0 V V V Qz3 = Qz3
1 1 V 0 x 1 V V 2Qz3 = 1 −Qz3

From Table 3 it follows that operation V has to be constructed such that V 2 flips Q3 and that V V is equal
to the identity matrix. These conditions are fullfilled by taking

V =
e−iπ/4√

2

(
1 i
i 1

)
. (30)

For example,

V12 =


|00〉
|01〉
|10〉
|11〉

 ≡


1 0 0 0
0 1 0 0
0 0 e−iπ/4/

√
2 ie−iπ/4/

√
2

0 0 ie−iπ/4/
√

2 e−iπ/4/
√

2




|00〉
|01〉
|10〉
|11〉

 . (31)

In order to bring the above matrix into a similar form as the controlled phase shift, we first diagonalize this
matrix. This may be done using the same procedure as in section 4.3:

V12 =
(

I1 0
0 2−1/2e−iπ/4(I2 + 2iSx2 )

)
=

(
I1 0
0 2−1/2e−iπ/4(I2 + 2iY 2S

z
2Y2)

)

= Y 2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iπ/2

Y2 ≡ e−iβY 2U12Y2, (32)

where I1 and I2 denote the 2 × 2 identity matrix for qubit 1 and 2 respectively, and e−iβ is a global phase
factor. From Eq.(18) and Eq.(32) it follows that

U12 =


eiφ00 0 0 0

0 eiφ01 0 0
0 0 eiφ10 0
0 0 0 eiφ11

 = eiβ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iπ/2

 , (33)

so that φ00 = φ01 = φ10 = β and φ11 = β − π/2. Using the Ising model (22) to implement the controlled
phase shift U12 we find that h = −J/2 and τJ = −π/2 yields Ujk.

From the quantum network on the upper left-hand side of Fig. 7 and Eq.(32) it can be seen that the
Toffoli gate can be implemented by the following sequence of operations

Y 3U13Y3Y 2I12Y2Y 3U23Y3Y 2I12Y2Y 3U23Y3. (34)

This sequence can be shortened by observing that in some cases a rotation is followed by its inverse. This
leads to

Y 3U13Y 2I12Y2U23Y 2I12Y2U23Y3. (35)

The implementation of this version of the Toffoli gate on the QCE is very similar to the one of the
CNOT gate. The QPs corresponding to the sequences (34) and (35) are “toffoli” and “toffoli-optimized”,
respectively. Both QPs are included in the QCE software distribution. We only discuss the latter. Open MI
set “gates” by clicking on the “folder” button on the top bar of the MI set window and open QP “toffoli-
optimized” in the directory “gates” by clicking on the “folder” button or on the menu item “File” on the
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top bar of the main window. QP “toffoli-optimized” acts on the state |110〉 (see Fig. 7). Execution of the
program brings the QC in the state |111〉, the correct final state of the QC (see Fig. 7). It is easy to change
QP “toffoli-optimized” so that it runs with other input states. In the QP “toffoli-optimized”, first select
the QP “110” and then delete it by pressing the delete button on the toolbar of the QP “toffoli-optimized”
window. In the MI set “gates” window select another QP that creates another input state and drag it to
the QP “toffoli-optimized” window and drop it on top of the MI “initialize”.

A schematic representation of the second implementation of the Toffoli gate is also given in Fig. 7 and
corresponds to the sequence of operations

A3Y 3I23Y3A3Y 3I13Y3A3Y 3I23Y3A3, (36)

where Aj denotes a rotation of π/4 around the y-axis. The QP “toffoli2” (see Fig. 7) executes this sequence
of operations and can also be found on the directory “gates”.

4.6.2. Grover’s database search algorithm

As a more complicated example of a QA, we consider Grover’s database search algorithm to find the needle in
a haystack [4, 5]. On a conventional computer, finding an item out of N elements requires O(N) queries [48].
Grover has shown that a QC can find the item using only O(

√
N) attempts [4, 5]. Assuming a uniform

probability distribution for the needle, for N = 4 the average number of queries required by a conventional
algorithm is 9/4 [17, 48]. With Grover’s QA the correct answer can be found in a single query [15, 17]
(this result only holds for a database with 4 items). Grover’s algorithm for the four-item database can be
implemented on a two-qubit QC.

The key ingredient of Grover’s algorithm is an operation that replaces each amplitude of the basis states
in the superposition by two times the average amplitude minus the amplitude itself. This operation is called
“inversion about the mean” and amplifies the amplitude of the basis state that represents the searched-for
item [4, 5]. To see how this works it is useful to consider an example. Consider a database containing four
items and functions gj(x), j = 0, . . . , 3 that upon query of the database return minus one if x = j and plus one
if x �= j. Let us assume that the item to search for corresponds to e.g. number 2 (g2(0) = g2(1) = g2(3) = 1
and g2(2) = −1). Using the binary representation of integers, the QC is in the state (up to an irrelevant
phase factor as usual)

|Ψ〉 =
1
2

(|00〉 + |01〉 − |10〉 + |11〉). (37)

The operator D that inverts states like (37) about their mean reads

D


|00〉
|01〉
|10〉
|11〉

 =
1
2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1




|00〉
|01〉
|10〉
|11〉

 . (38)

Applying D to |Ψ〉 results in D|Ψ〉 = |10〉, i.e. the correct answer. In general, for more than two qubits,
more than one application of D is required to get the correct answer [4, 5]. In this sense the two-qubit case
is somewhat special.

Implementation of the above example on a two-qubit QC requires an expression of the preparation and
query steps and of the operation of inversion about the mean in terms of elementary rotations. Initially
we set the QC in the state |00〉 and then transform |00〉 to the state (37) by a two-step process. First
we use the Walsh-Hadamard transform to bring the QC in the uniform superposition state: W2W1|00〉 =
−(|00〉 + |01〉 + |10〉 + |11〉)/2, where Wj is given by Eq.(16). Next we apply a transformation F2 that
corresponds to the application of g2(x) to the uniform superposition state

F2


|00〉
|01〉
|10〉
|11〉

 =
1
2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




|00〉
|01〉
|10〉
|11〉

 . (39)
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This transformation can be implemented by first letting the system evolve in time

GW2W1|00〉 =
e−iπS

z
1S

z
2

2
(|00〉+|01〉+|10〉+|11〉) =

1
2

(e−iπ/4|00〉+e+iπ/4|01〉+e+iπ/4|10〉+e−iπ/4|11〉), (40)

and applying a sequence of single-spin rotations to change the four phase factors such that we get the desired
state. The two-qubit operation G is defined by

G


|00〉
|01〉
|10〉
|11〉

 =


e−iπ/4 0 0 0

0 e+iπ/4 0 0
0 0 e+iπ/4 0
0 0 0 e−iπ/4




|00〉
|01〉
|10〉
|11〉

 , (41)

and performs a controlled phase shift. The two sequences YjXjY j and YjXjY j operating on qubit j are
particulary useful for this purpose since

YjXjY j |0〉 = e+iπ/4|0〉, YjXjY j |1〉 = e−iπ/4|1〉, YjXjY j |0〉 = e−iπ/4|0〉, YjXjY j |1〉 = e+iπ/4|1〉. (42)

We find

Y1X1Y 1Y2X2Y 2

[
1
2

(e−iπ/4|00〉 + e+iπ/4|01〉 + e+iπ/4|10〉 + e−iπ/4|11〉)
]

=
1
2

(e−iπ/4|00〉 + e−iπ/4|01〉 + e+3iπ/4|10〉 + e−iπ/4|11〉) =
e−iπ/4

2
(|00〉 + |01〉 − |10〉 + |11〉). (43)

Thus we can construct the sequence Fj that transforms the uniform superposition state to the state that
corresponds to gj(x):

F0 = Y1X1Y 1Y2X2Y 2G, F1 = Y1X1Y 1Y2X2Y 2G, F2 = Y1X1Y 1Y2X2Y 2G, F3 = Y1X1Y 1Y2X2Y 2G. (44)

Finally we need to express the operation of inversion about the mean, i.e. the matrix D (see (38)), by a
sequence of elementary operations. It is not difficult to see that D can be written as

D = W1W2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

W1W2 ≡ W1W2PW1W2. (45)

The same approach that was used to implement g2(x) also works for the controlled phase shift P (= −F0)
and yields

P = Y1X1Y 1Y2X2Y 2G. (46)

The complete sequence Uj operating on |00〉 reads

Uj = W1W2PW1W2FjW2W1. (47)

Each sequence Uj can be shortened by observing that in some cases a rotation is followed by its inverse.
Making use of the alternative representations of the Walsh-Hadamard transform Wi (see Eq.(16)), the
sequence for e.g. j = 1 can be written as

W1W2F1 = −X1X1Y 1X2X2Y 2Y1X1Y 1Y2X2Y 2G = −X1Y 1X2Y 2G. (48)

The sequences for the other cases can be shortened as well, yielding

U0 = X1Y 1X2Y 2GX1Y 1X2Y 2GX2X2Y 2X1X1Y 1,

U1 = X1Y 1X2Y 2GX1Y 1X2Y 2GX2X2Y 2X1X1Y 1,

U2 = X1Y 1X2Y 2GX1Y 1X2Y 2GX2X2Y 2X1X1Y 1,

U3 = X1Y 1X2Y 2GX1Y 1X2Y 2GX2X2Y 2X1X1Y 1. (49)

16



K. Michielsen and H. De Raedt

Figure 8. MI set window “Ideal” together with the QP windows “grov0”, “grov1”, “grov2” and “grov3”, implement-
ing Grover’s database search algorithm on a two-qubit quantum computer for the four different cases g0(x), . . . g3(x).

Note that the QAs (49) are by no means unique: Various alternative expressions can be written down by
using the algebraic properties of the X’s and Y ’s. Sequences (49) return the correct answer, i.e. the position
of the searched-for item. This is easily verified on the QCE. Open on the QCE the MI set “Ideal” and
open the QPs “grov0”, . . ., “grov3” in the directory “grover” (see Fig. 8). In the MI set “Ideal”, MI “tau”
corresponds to the operation G. To implement G using (22) the parameters in MI “tau” are chosen such
that h = 0 and (τ/2π)J = −1/2. Running the four QPs results in

U0|00〉 = |00〉, U1|00〉 = |10〉, U2|00〉 = |01〉, U3|00〉 = |11〉, (50)

as can be seen from Fig. 8. Using the binary representation of integers with the order of the bits reversed,
the final state of the QC gives the location of the item in the database. Hence QP “grov0”, “grov1”, “grov2”
and “grov3” return 0, 1, 2 and 3, respectively, which are the correct answers.

4.6.3. Finding the order of a permutation

As an illustration of using the QCE to determine the period of a function we consider the problem of finding
the order of a permutation [30]. An experimental realization of this QA on a 5-qubit NMR QC for the case
of a permutation of 4 items is described in Ref. [30]. The theory in this section closely follows Ref. [30].
The problem is defined as follows: Given a permutation P of the integers {0, 1, ..., N − 1} and an integer
0 ≤ y ≤ N − 1, the order r(y) is the smallest integer for which P r(y)y = y. Thus, the purpose of the QA is
to determine r(y), for a given y and permutation P .

The basic idea of the QA to find the order of a permutation is to exploit the quantum parallelism to
compute P (y), P 2(y), P 3(y) and P 4(y) simultaneously and filter out the power r(y) that yields P r(y)y = y.
Denoting f(n) = Pn, finding r(y) is the same as finding the period of f(n), a problem that is solved by
invoking the QFT.

First we consider the problem of generating a permutation of N = 4 items. We need two qubits to
specify one of the 4 items. Using the binary representation of the integers {0, 1, 2, 3} it is easy to see that
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the CNOT operation C12 (the first subscript denoting the control bit) corresponds to the permutation (in
cycle notation) P = (0)(1)(23) that interchanges items 2 and 3. Likewise, C21 generates the permutation
P = (0)(2)(13) and C12C21C12 is equivalent to the permutation P = (0)(1)(23). The remaining interchanges
of two items can be generated by a combination of CNOT gates and NOT operations. Denoting the NOT
operation on the j-th qubit by Nj , we find that C12N1 = N1C12 yields P = (01)(2)(3), C21N2 = N2C21

yields P = (1)(3)(02), and C21N1C12C21 yields P = (1)(2)(03). Using these elementary interchanges we can
construct any permutation.

The quantum network that carries out the QA to find the order of a permutation P is shown in Fig. 9.
There is a ono-to-one mapping from this network onto the QA to find the period of the function f(n)
(see section 4.5). The first three qubits hold the integer n, qubits 4 and 5 hold y = 2y1 + y0. The three
Walsh-Hadamard operations change the initial state |000〉|y0y1〉 into |uuu〉|y0y1〉 where we use the label ”u”
to denote the uniform superposition. Then, we apply the permutations P 0y, P 1y, . . . , P 7y. In the actual
implementation, the sequence of CNOT and NOT operations that implement the permutation P need to be
replaced by Toffoli and CNOT gates respectively because (the power of) P is applied to the fourth and fifth
qubit (representing the integer y), conditional on the state of the first three qubits. Finally, we perform a
QFT on the first three qubits and consider the value of the first three qubits Qz1, Qz2, and Qz3. As explained
above, in this simple case we can extract the period of the function, and hence the order of P acting on y,
from the values of Qz1, Qz2, and Qz3.

The MI-set for this problem is called “order” and the QCE programs themselves can be found in the
folder “order”. In Fig. 10 we show the QCE window with the programs for r = 1, r = 2, r = 3, and r = 4
for the permutations P = (0)(2)(13), P = (01)(23), P = (0)(132), P = (3210) respectively. Also shown are
the subprograms that perform these permutations. Executing these programs yields values of the three first
qubits from which (by using Table 2) the correct value of r(y) directly follows.

Figure 9. Quantum network of a quantum algorithm to find the order of a permutation of 4 items. W and Pk

denote the Walsh-Hadamard transform and k applications of the permutation P, respectively. The operations “2”
and “4” perform controlled phase shifts with angles π/2 and π/4, respectively.

4.6.4. Number factoring: Shor’s algorithm

As another illustration of using the QFT to determine the period of a function we consider the problem of
factoring integers, i.e. Shor’s algorithm. For the case N = 15, an experimental realization of this QA on a
7-qubit NMR QC is given in Ref. [35]. The theory in this section closely follows Ref. [36].

The theory behind Shor’s algorithm has been discussed at great length elsewhere [1, 3, 9]. Therefore we
only recall the basic elements of Shor’s algorithm and focus on the QCE implementation of the algorithm
for the case N = 15. Shor’s algorithm is based on the fact that the factors p and q of an integer N = pq can
be deduced from the period M of the function f(j) = ajmodN for j = 0, . . . , 2n − 1 where N ≤ 2n. Here
a < N is a random number that has no common factors with N . Once M has been determined, at least one
factor of N can be found by computing the greatest common divisor (g.c.d.) of N and aM/2 ± 1.
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Figure 10. Left: Ideal quantum computer implementation on QCE of a quantum algorithm to find the order of a
permutation of 4 items. Right: Ideal QC implementation on QCE of Shor’s algorithm to factor 15.

Compared to the example of the previous section, the new aspect is the modular exponentiation anmodN .
For N = 15 this calculation is almost trivial. Using the binary represention of j we can write anmodN =
a2n−1jn−1 . . . a2j1aj0modN = (a2n−1jn−1modN) . . . (a2j1modN)(aj0modN)modN , showing that we only need
to implement (a2kjkmodN). For N = 15 the allowed values for a are a = 2, 4, 7, 8, 11, 13, 14. If we pick
a = 2, 7, 8, 13 then a2k

modN = 1 for all k > 1 while for the remaining cases we have a2k

modN = 1 for all
k > 0. Thus, for N = 15 only two (not four) qubits are sufficient to obtain the period of f(j) = ajmodN [36].
As a matter of fact, this analysis provides enough information to deduce the factors of N = 15 using Shor’s
procedure so that no further computation is necessary. Non-trivial quantum operations are required if we
decide to use three (or more) qubits to determine the period of f(j) = ajmodN [36]. Following Ref. [36] we
will consider a 7-qubit QC with 4 qubits to hold f(j) and three qubits to perform the QFT.

In essence the quantum network for the Shor algorithm is the same as the one shown in Fig. 9 (and
therefore not shown) with the permutations (two qubits) replaced by modular exponentiation (four qubits).
The quantum networks to compute ajmod15 for j = 0, . . . , 7 and a fixed input a are easy to construct.
For example, consider the case a = 11 = |1011〉. If j is odd then 11jmod15 = 11 and the network should
leave |1011〉 unchanged. Otherwise 11jmod15 = 1 and hence it should return |0001〉. The network for this
operation consists of two CNOT gates that have as control qubit, the same least-significant qubit of the three
qubits that are input to QFT. The sequence of CNOT and Toffoli gates that performs similar operations for
the other cases can be found in the same manner.

The results of this excercise are shown in the right-hand side of Fig.10 where we present a snapshot of
the QCE implementation. The three QPs at the top show Shor’s algorithm for the case a = 2, 7, 11. The
examples a = 7, 11 are taken from Ref. [36]. The QPs for the corresponding modular exponentiation are
shown in the lower part. In this simple case, we can determine the period of the function f(j) = ajmodN
from the expectation values of the first three qubits. For a = 2, 7 we find (Qz1 = 0, Qz2 = 0.5, Qz3 = 0.5)
and hence the period M = 4, yielding the correct factors g.c.d.(72 ± 1, 15) = 3, 5 of N = 15. Similarily,
for a = 11 we find (Qz1 = 0, Qz2 = 0, Qz3 = 0.5) corresponding to the period M = 2 and the factors
g.c.d.(11 ± 1, 15) = 3, 5.

4.6.5. A three-input adder

This subsection gives another illustration of the use of the QFT: A quantum algorithm to add the content of
three 4-qubit registers. This example is taken from the PhD thesis of S. Bettelli [49]. The quantum network
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Figure 11. Quantum network of a three-input adder, as described in Ref. [49]. The algorithm performs a Quantum
Fourier Transform (QFT) of register 3 (qubits 9 to 12), adds the content of register 2 (qubits 5 to 8) and the content
of register 1 (qubits 1 to 4), followed by a QFT on register 3 to yield the final answer (register 1 + register 2 +
register 3 mod16). W denotes the Walsh-Hadamard transform. The operations “±1”, “±2”, “±4”, and “±8” perform
conditional phase shifts with angles ±π, ±π/2, ±π/4 and ±π/8, respectively. Squares that touch each other indicate
operations that can be done simultaneously.

of the complete circuit is shown in Fig. 11. The modular structure of this approach is clear. Note that
with respect to the QFT network of Fig. 6, both the labeling of qubits and the order of operations has been
reversed. The former is merely a change of notation and the latter allowed because quantum algorithms are
reversible (unitary transformations) by construction [1]. The basis idea of this algorithm is to use the QFT to
first transfer the information in a register to the phase factors of the amplitudes, then use conditional phase
shifts to add information from the two other registers and finally QFT back to the original representation.
Note that this quantum network differs considerably from the one described in Ref. [47] and is also easier
to implement.

The QCE implementation is shown in Fig. 12. The correct results of the three examples (1+1+1, 1+2+3,
and 9+9+9) provided in the QCE software distribution can be read off from the bottom of the QPs. Not
shown in Fig. 12 because of lack of space are many of the MIs and the parts of the QPs that set the initial
state of the three four-qubit registers. Also clear from this example is that programming more complicated
examples like this one should not be done by hand: the MIs and QPs for this examples have been generated
by another program. Some of the MIs may look rather complicated but that is a little misleading: Whenever
it is logically allowed to perform operations simultaneously, these operations have been put into one MI.

4.6.6. Number partitioning

As the last example, we discuss a QA to count the number of solutions of the number partitioning problem
(NPP) [50]. The NPP is defined as follows: Does there exist a partitioning of the set A = {a1, ..., an} of n
positive integers aj into two disjoint sets A1 and A2 = A − A1 such that the difference of the sum of the
elements of A1 and the sum of the elements of A2 is either zero (if the sum of all elements of A is even) or
one (if the sum of all elements of A is odd)? The simple examples included in the QCE software distribution
may be useful to understand the problem. If A = {1, 2, 3, 4} (see QP “npp1234”) the answer to the NPP
is yes because for A1 = {1, 4} and A2 = {2, 3}, the sum of the elements of A1 and A2 are both equal to
five. In this case there are two solutions because we can interchange A1 and A2. If A = {1, 1, 1, 4} (see
QP “npp1114”) the answer is again yes as there is one solution namely A1 = {1, 1, 1} and A2 = {4}. The
difference of the sum of the elements of A1 and A2 is equal to one and that is OK because the sum of all
elements of A is odd. If A = {2, 2, 2, 4} (see QP “npp2224”) there is no solution to the NPP.

The quantum network for the NPP QA is shown in Fig. 13. The basic idea behind this QA is a number
of transformations that reduce the counting of the number of solutions of the NPP to finding the number
of zero eigenvalues of a spin-1/2 Hamiltonian [50]. The largest part (in terms of the number of operations)
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Figure 12. QCE implementation of the quantum network of Fig. 11 for adding three quantum registers of four
qubits each. QPs (from left to right) compute 1+2+3, 1+1+1, and 9+9+9 mod16. Not shown are the MIs that set
the initial values of the three four-qubit registers.

of the QA is a combination of gates that transforms the state of the QC such that the number of solutions
ns is a physically measureable quantity (the expectation values of the 15-th spin). For n = 4 we have
ns = 16

√
Qz15 [50].

In Fig. 13 we show the QCE window with (part of) the NPP MI set and the three examples discussed
earlier. In the final state the values of Qz15 are 0.015625, 0.00390625, and 0 respectively. The corresponding
number of solutions is ns = 2, ns = 1 and ns = 0. Clearly the QCE programs correctly solves NPP problems.

5. NMR-like quantum computer

Having described how QCE can be programmed to act as an ideal QC we now turn to the simulation
of physical QCs. In this section we briefly discuss the main steps of going from an ideal, computer-science-
type QC to a more realistic, physical model of QC hardware [37, 50]. We limit our presentation to the
implementation of the CNOT gate and Grover’s algorithm on a two-qubit, NMR-like QC. A more extensive
discussion as well as many other examples can be found in Ref. [40] and in the QCE software distribution.

As a prototype QC model we will take the spin Hamiltonian for the two nuclear spins of the 1H and 13C
atoms in a carbon-13 labeled chloroform molecule that has been used in the NMR-QC experiments [17, 18].
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Figure 13. Left: Block diagram of the quantum algorithm that solves the number partitioning problem. The first
four qubits are used to represent the integers to be partitioned. Qubits 5 to 8 are used to determine the number of
solutions of the number partitioning problem. The remaining 7 qubits are used to relate ns to a physically measurable
quantity: The expectation value of the 15-th qubit. The unitary transformation U prepares the uniform superposition
of the first 8 qubits, U is the inverse of U , and the combination of INVERT and AND gates sets the 15-th qubit to
one if and only if the first eight qubits are all one. Right: QCE implementation of a quantum algorithm that solves
the number partitioning problem.

The strong external magnetic field in the z-direction defines the computational basis. If the spin is aligned
along the direction of the field the state of the qubit is |0〉, if the spin points in the other direction the state
of the qubit is |1〉. In the absence of interactions with other degrees of freedom this spin-1/2 system can be
modelled by the Hamiltonian

HNMR = −Jz12S
z
1S
z
2 − hz1S

z
1 − hz2S

z
2 , (51)

where hz1/2π ≈ 500MHz, hz2/2π ≈ 125MHz, and J ≡ Jz12/2π ≈ −215Hz [17]. In our numerical work we use
the rescaled model parameters

J = −0.43 × 10−6, hz1 = 1, hz2 = 1/4. (52)

The ratio γ = hz2/h
z
1 = 1/4 expresses the difference in the gyromagnetic ratio of the nuclear spin of the 1H

and 13C atom.
NMR uses radio frequency (RF) electromagnetic pulses to rotate the spins [42, 43]. By tuning the

frequency of the RF-field to the precession frequency of a particular spin, the power of the applied pulse (=
intensity times duration) controls how much the spin will rotate. The axis of the rotation is determined by the
direction of the applied RF-field. By selecting the appropriate RF pulses, arbitrary single-spin rotation can
be carried out. In other words, using RF pulses we can perfom any single-qubit operation. Communication
between the qubits is accomplished through the spin-spin interaction in model (51).

5.1. Single-qubit operations

In NMR experiments it is impossible to shield a particular spin from the sinusoidal field. An application
of a sinusoidal field not only affects the state of the resonant spin but also changes the state of the other
spins (unless they are both perfectly aligned along the z-axis). An analytical, quantitative analysis of this
simple-looking many-body problem is rather difficult. As the values of the model parameters (52) suggest,
the interaction between the spins will have a negligible impact on the time evolution of the spins during
application of the sinusoidal pulse if the duration of the pulse is much shorter than 1/J (we use units such
that τJ is dimensionless). Thus, as far as the single-qubit operations are concerned, we may neglect the
interaction between the two spins (this is also confirmed by numerical simulation of (51), see below). In this
section we closely follow [40].
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We consider the two-spin system described by the time-dependent Schrödinger equation

i
∂

∂t
|Φ(t)〉 = −

[
hz1S

z
1 + hz2S

z
2 + h̃x1(Sx1 sinωt + Sy1 cosωt) + h̃x2(Sx2 sinωt + Sy2 cosωt)

]
|Φ(t)〉, (53)

for two interacting spins in a static and a rotating sinusoidal field. As usual, it is convenient to work in a
rotating frame [42]. Substituting |Φ(t)〉 = eitω(Sz

1+Sz
2 )|Ψ(t)〉 we obtain

i
∂

∂t
|Ψ(t)〉 = −

[
(hz1 − ω)Sz1 + (hz2 − ω)Sz2 + h̃x1S

y
1 + h̃x2S

y
2

]
|Ψ(t)〉. (54)

Our aim is to determine the conditions under which we can rotate spin 1 about an angle ϕ1 without affecting
the state of spin 2. First we choose

ω = hz1, (55)

i.e. the frequency of the sinusoidal field is tuned to the resonance frequency of spin 1. Then (54) can easily
be integrated. The result is

|Φ(t)〉 = eith
z
1(Sz

1+Sz
2 )eith̃

x
1S

y
1 eitS2·v12 |Φ(0)〉, (56)

where vnm ≡ (0, h̃xm, hzm − hzn). The third factor in (56) rotates spin 2 around the vector v12. This factor
can be expressed as

eitSm·vnm =
(

1 0
0 1

)
cos

t|vnm|
2

+ i|vnm|−1

(
hzm − hzn −ihxm

ihxm hzn − hzm

)
sin

t|vnm|
2

, (57)

and we see that the sinusoidal field will not change the state of spin 2 if and only if the duration t1 of the
pulse satisfies

t1|v12| = t1

√
(hz1 − hz2)2 + (h̃x2)2 = 4πn1, (58)

where n1 is a positive integer. The second factor in (56) is a special case of (57). Putting

t1h̃
x
1 = ϕ1, (59)

the second factor in (56) will rotate spin 1 about ϕ1 around the y-axis. Therefore, if conditions (55), (58),
and (59) are satisfied we can rotate spin 1 about ϕ1 without affecting the state of spin 2, independent of the
physical realization of the QC. However, the first factor in (56) can still generate a phase shift. Although it
drops out in the expression of the expectation value of the qubits, it has to be taken into account in a QC
calculation because this phase shift depends on the state of the spins. Adding the condition

t1h
z
1 = 4πk1, (60)

where k1 is a positive integer (hzi > 0 by definition), the first factor in (56) is always equal to one. A last
constraint on the choice of the pulse parameters comes from the fact that

hα2 = γhα1 , h̃α2 = γh̃α1 ; α = x, y, z. (61)

Without loss of generality we may assume that 0 < γ < 1.
Using conditions (55), (58), (59), (60), and (61) and reversing the role of spin 1 and spin 2 we obtain

(1 − γ)2k2
1 +

γ2

4

(ϕ1

2π

)2

= n2
1 , (1 − 1

γ
)2k2

2 +
1

4γ2

(ϕ2

2π

)2

= n2
2, (62)

where k1, k2, n1, and n2 are positive integers. The angles of rotation about the y-axis can be chosen such
that 0 ≤ ϕ1 ≤ 2π and 0 ≤ ϕ2 ≤ 2π. Of course, similar expressions hold for rotations about the x-axis.

In general (62) has no solution but a good approximate solution may be obtained if γ is a rational number
and k1 and k2 are large. Let γ = N/M where N and M are integers satisfying 0 < N < M . It follows that
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the representation k1 = kMN2 and k2 = kNM2 will generate sufficiently accurate solutions of (62) if the
integer k is chosen such that 2kNM(M −N) � 1. In terms of k, N , and M , the relevant physical quantities
are then given by

t1h
z
1

2π
= 2kMN2 ,

h̃x1
hz1

=
1

2kMN2

ϕ1

2π
, ,

t2h
z
1

2π
= 2kM3 ,

h̃x2
hz1

=
1

2kM3

ϕ2

2π
. (63)

We have derived conditions (63) under the assumption of ideal sinusoidal RF pulses. In experiment there
is no such limitation: the sinusoidal fields may be modulated by almost any waveform [43, 51]. However,
the fact that in QC applications it is necessary to use single-spin pulses that do not change the state of the
other spins remains. For general pulses, finding the form of the pulse that rotates spin 1 such that the state
of spin 2 is not affected is a complicated non-linear optimization problem [40].

To summarize: If conditions (55), (58), (59), and (60) are satisfied we can rotate spin 1 about ϕ1 without
affecting the state of spin 2 and without introducing unwanted phase shifts. In our numerical experiments
we use Eq.(63) to determine the duration of the sinusoidal pulses. These sinusoidal pulses will then be
optimized in the sense that a pulse that rotates spin 1 (2) will change the state of spin 2 (1) only slightly if
k satisfies 2kNM(M −N) � 1.

5.2. Two-qubit operations

In section4.3 we implemented the CNOT sequence (20) using the Ising model (22). Therefore some
modification is necessary to account for the fact that the two nuclear spins feel different static fields (see
(51)). Comparison of (22) with (51) shows that the implemention of the CNOT operation requires additional
rotations:

CNOT = Y 2e
−iτ(hz

1−h)Sz
1 e−iτ(h

z
2−h)Sz

2 e−iτHNMRY2 = Y 2e
−iτ(hz

1−h)Sz
1 e−iτ(h

z
2−h)Sz

2Y2Y 2e
−iτHNMRY2, (64)

where we used the fact that Y2Y 2 = 1. The extra phase shifts in (64) can be expressed in terms of single-qubit
operations. The identities

e−iτ(h
z
1−h)Sz

1 = Y1X
′
1Y 1 = X1Y

′
1X1, e−iτ(h

z
2−h)Sz

2 = Y2X
′
2Y 2, (65)

define the single-spin rotations X ′
1, Y ′

1 , and X ′
2.

In the case of Grover’s database search algorithm, the representation of G in terms of the time evolution
of (51) reads

G = e−iπS1S2 = e−iτh
z
1S

z
1 e−iτh

z
2S

z
2 e−iτHNMR = Y2X

′′
2 Y 2Y1X

′′
1 Y 1e

−iτHNMR , (66)

where τ = −π/J . This choice of τ also fixes the angles of the rotations, and also all parameters of the
operations X ′′

1 and X ′′
2 .

As (65) suggests, there are many different, logically equivalent sequences that implement the CNOT gate
on an NMR-like QC. We have chosen to limit ourselves to the respresentations

CNOT1 = Y1X
′
1Y 1X

′
2Y 2I

′Y2, CNOT2 = Y1X
′
1X

′
2Y 1Y 2I

′Y2, CNOT3 = X1Y
′
1X

′
2Y 2X1I

′Y2, (67)

where we introduced the symbol I ′ to represent the time evolution e−iτHNMR with τ = −π/J .
On an ideal QC there is no difference between the logical and physical computer and the sequences (67)

give identical results. However, on a physical QC such as the NMR-like QC (51) this is not the case. On a
physically realizable NMR-like QC X1X2 �= X2X1 unless 2kNM(M −N) � 1 and (63) are satisfied exactly.
We will use sequences (67) to demonstrate this unpleasant feature of realistic QCs.
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Table 4. Model parameters of single-qubit operations on an NMR-like quantum computer using rotating sinusoidal
fields for the case (k = 1, N = 1, M = 4), see (63). Parameters of model (53) that do not appear in this table
are zero, except for the interaction J = −0.43 × 10−6 and the constant magnetic fields hz

1 = 1 and hz
2 = 0.25. The

time-dependent Schrödinger equation is solved using a time step δ/2π = 0.01.

τ/2π ω h̃x1 h̃x2 ϕx h̃y1 h̃y2 ϕy
X1 8 1.00 -0.0312500 -0.0078125 −π/2 -0.0312500 -0.0078125 0
X2 128 0.25 -0.0078125 -0.0019531 −π/2 -0.0078125 -0.0019531 0
Y1 8 1.00 0.0312500 0.0078125 0 0.0312500 0.0078125 π/2
Y2 128 0.25 0.0078125 0.0019531 0 0.0078125 0.0019531 π/2
X ′

1 8 1.00 0.0559593 0.0139898 −π/2 0.0559593 0.0139898 0
X ′

2 128 0.25 0.0445131 0.0111283 −π/2 0.0445131 0.0111283 0
Y ′

1 8 1.00 -0.0559593 -0.0139898 0 -0.0559593 -0.0139898 π/2
X ′′

1 8 1.00 0.0872093 0.0218023 −π/2 0.0872093 0.0218023 0
X ′′

2 128 0.25 0.0523256 0.0130914 −π/2 0.0523256 0.0130914 0

5.3. Model parameters

The model parameters for the rotating sinusoidal fields are determined according to the theory outlined
above. We use the integer k to compute all free parameters and label the results of the QC calculation by
the subscript s = 2kMN2. For reference we present the set of parameters corresponding to s = 8 (k = 1)
in Table 4. Multiplying s (the duration of the sinusoidal pulse) with the unit of time (2 ns for the case at
hand) shows that in our simulations, single-qubit operations are implemented by using short pulses that are,
in NMR terminology, non-selective and hard. In contrast to the analytical treatment given in section 5.1, in
all our simulations the interaction J is non-zero.

The two-qubit operation I ′ can be implemented by letting the system evolve in time according to Hamil-
tonian HNMR, given by (51). I ′ is the same for both an ideal or NMR-like QC. Note that the condition
τJ = −π yields τ/2π = 1162790.6977, a fairly large number (compared to hz1 = 1, see (51)).

5.4. Results

As a first check we execute all sequences on a QCE implementation of the ideal QC and confirm that
they give the exact answers (results not shown). It is also necessary to rule out that the numerical results
depend on the time step δ used to solve the time-dependent Schrödinger equation. The numerical error of
the product formula used by QCE is proportional to δ2 [52]. It goes down by a factor of about one hundred
if we reduce the time step by a factor of 10. Within the two-digit accuracy used to present our data, there
is no difference between the results for δ = 0.01 and δ = 0.001.

In Table 5 we present simulation results for CNOT5 acting on one of the basis states and Y1CNOT5 acting
on a singlet state, using the three logically equivalent but physically different implementations CNOT1,
CNOT2 and CNOT3 (see Eq.(67)). It is clear that some of the least accurate implementations (s = 8)
do not reproduce the correct answers if the input corresponds to one of the four basis states. Moreover,
if the operations act on the exact singlet state, the results strongly depend on the CNOT implementation
if s ≤ 32. In agreement with the theoretical analysis given above, the exact results are recovered if s is
sufficiently large. The pulses used in these simulations are so short that the presence of a non-zero J has a
negligible effect on the single-qubit pulses. These simulations convincingly demonstrate that in order for a
QA to work properly, it is not sufficient to show that it correctly operates on the basis states.

In contrast to computation in the classical framework, quantum computation can make use of entangled
states. At the point where the QA actually uses an entangled state, the QA is most sensitive to (accumu-
lated) phase errors. As another illustration of this phenomenon, we present in Table 6 some typical results
obtained by executing Grover’s database search algorithm. We used the same NMR-like QC as for the
CNOT calculations. We conclude that reasonably good answers are obtained if s ≥ 32, in concert with our
observations for the CNOT operation.
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Table 5. Expectation values of the two qubits as obtained by performing a sequence of five CNOT operations on an
NMR-like quantum computer. The initial states |10〉, |01〉, |11〉, and |singlet〉 = (|01〉− |10〉)/√2 have been prepared
by starting from the state |00〉 and performing exact rotations of the spins. The CNOT operations on the singlet
state are followed by a π/2 rotation of spin 1 to yield a non-zero value of qubit 1. The time s = τ/2π = 2kMN2

determines the duration and strength of the sinusoidal pulses through relations (63), see Table 4 for the example of
the case s = 8. The CNOT operation itself was implemented by applying the CNOT sequence given by (67). On an
ideal quantum computer, CNOT4 is the identity operation. For s = 256 all results are exact within an error of 0.01.

Ideal QC s = 8 s = 16 s = 32 s = 64
Operation Qz1 Qz2 Qz1 Qz2 Qz1 Qz2 Qz1 Qz2 Qz1 Qz2

(CNOT1)5|00〉 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(CNOT2)5|00〉 0.00 0.00 0.24 0.76 0.50 0.26 0.20 0.07 0.06 0.02
(CNOT3)5|00〉 0.00 0.00 0.23 0.76 0.50 0.26 0.20 0.07 0.06 0.02
(CNOT1)5|10〉 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(CNOT2)5|10〉 1.00 1.00 0.76 0.24 0.50 0.74 0.80 0.93 0.95 0.98
(CNOT3)5|10〉 1.00 1.00 0.77 0.24 0.50 0.74 0.80 0.93 0.95 0.98
(CNOT1)5|01〉 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
(CNOT2)5|01〉 0.00 1.00 0.24 0.24 0.51 0.74 0.20 0.93 0.06 0.98
(CNOT3)5|01〉 0.00 1.00 0.23 0.24 0.51 0.74 0.20 0.93 0.06 0.98
(CNOT1)5|11〉 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
(CNOT2)5|11〉 1.00 0.00 0.76 0.76 0.50 0.26 0.80 0.07 0.95 0.02
(CNOT3)5|11〉 1.00 0.00 0.77 0.76 0.50 0.26 0.80 0.07 0.95 0.02

Y1(CNOT1)5|singlet〉 1.00 1.00 0.90 1.00 0.03 1.00 0.58 1.00 0.88 1.00
Y1(CNOT2)5|singlet〉 1.00 1.00 0.98 0.24 0.95 0.74 0.98 0.93 0.99 0.98
Y1(CNOT3)5|singlet〉 1.00 1.00 0.79 0.24 0.55 0.74 0.82 0.93 0.95 0.98

5.5. Physical QCs: generic features

In contrast to a conventional computer, a QC accepts as input linear superpositions of basis states and
can return superpositions as well. If a quantum gate correctly operates on each of the basis states, it will
also do so for any general linear superposition unless the operation generates additional phase factors that
depend on the input state. Of course this does not happen on an ideal QC but, as we have seen in the simple
case of a 2-qubit NMR-like QC, on a realistic QC it is bound to occur.

For each realization of QC hardware, there is a one-to-one correspondence between the QA and the unitary
matrix that transforms the superposition accordingly. A QA will operate correctly under all circumstances
if the whole unitary matrix representing the QA is a good approximation to the ideal one. In other words,
the magnitude and the phase of all matrix elements should be close to their ideal values. It is not sufficient
to have, for instance, two different CNOT gates that operate correctly by themselves: Also the relative
phases that they generate should match. For n qubits there are 2n(2n − 1) complex numbers that specify
the unitary matrix corresponding to a QA. All these numbers should be close to their ideal values, otherwise
the QA is bound to produce wrong answers for some inputs.

6. Summary and outlook

In this paper we have shown how the Quantum Computer Emulator (QCE) can be programmed to
execute a variety of quantum algorithms on different types of quantum computer hardware. An important
topic that we did not touch upon at all is the effect of the interaction of the quantum computer with its
environment (dissipation, decoherence).

Dissipation cannot be treated within the context of the models that the QCE can solve: Instead of solving
the time-dependent Schrödinger equation we need to solve the equations of motion of the full density matrix.
Although still feasible for a small number of qubits N , the computation time now scales with 22N instead
of with 2N . The attractive features of QCE, interactivity and real-time performance, are then rapidly lost
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Table 6. Expectation values of the two qubits as obtained by running Grover’s database search algoritm on an
NMR-like quantum computer. The time s = τ/2π = 2kMN2 determines the duration and strength of the sinusoidal
pulses through relations (63), see Table 4 for the example of the case s = 8. Within two-digit accuracy all results for
s = 256 are exact.

Ideal QC s = 8 s = 16 s = 32 s = 64
Item position Qz1 Qz2 Qz1 Qz2 Qz1 Qz2 Qz1 Qz2 Qz1 Qz2

0 0.00 0.00 0.48 0.53 0.15 0.16 0.04 0.04 0.01 0.01
1 1.00 0.00 0.52 0.50 0.85 0.15 0.96 0.04 0.99 0.01
2 0.00 1.00 0.55 0.48 0.15 0.84 0.04 0.96 0.01 0.99
3 1.00 1.00 0.45 0.50 0.85 0.85 0.96 0.96 0.99 0.99

if the number of qubits increases. On the other hand, important aspects of decoherence can be studied
within the general model (2) with (10). Hence QCE can be used for this purpose as well. Exploring these
interesting aspects is left for future research.
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