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Abstract. We describe a simulation approach to study the functioning of Quantum
Computer hardware. The latter is modeled by a collection of interacting spin-1/2
objects. The time evolution of this spin system maps one-to-one to a quantum
program carried out by the Quantum Computer. Our simulation software consists
of code that solves the time-dependent Schrödinger equation for a sequence of time-
dependent Hamiltonians and a graphical user interface to program and control the
solver. We present results of simulations on a 4-qubit Quantum Computer executing
Grover’s database search algorithm.

1 Introduction

Recent theoretical work has shown that a Quantum Computer (QC) has the
potential of solving certain computationally hard problems such as factor-
ing integers [1,2] and searching databases much faster than a conventional
computer [3]. In all this work the operation of a QC is described in terms of
highly idealized transformations on the qubits [1–4] . In conventional digital
circuits (which may be build using e.g. semiconductor devices) the internal
working of each basic unit is irrelevant for the logical operation of the whole
machine (but extremely relevant for the speed of operation and the cost of
the machine). This is not the case for a QC: The internal quantum dynam-
ics of each elementary constituent is a key ingredient of the QC itself. In a
QC the logical operation and the physical realization of the qubits are inti-
mately related and cannot be disentangled from each other. There is ample
evidence that simulation is an essential part of the design process of each new
generation of microprocessors. This will even be more so in the case of QC’s.
Software to simulate physical models representing hardware implementations
of a QC will be essential for the design and operation of QC’s. The present
paper serves to illustrate the use of such a piece of software.

2 Physical model of a Quantum Computer

Primitive 2-qubit QC’s have been implemented using nuclear magnetic res-
onance (NMR) [5–8]. Future technologies may use Josephson junctions [9].
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Physically all this QC hardware can be modeled in terms of S=1/2 spins
(the qubits) that evolve in time according to the time-dependent Schrödinger
equation (TDSE) i∂/∂t|Φ(t)〉 = H(t)|Φ(t)〉, where |Φ(t)〉 describes the state
of the whole QC at time t. We use units such that h̄ = 1. The time-dependent
Hamiltonian H(t) takes the form

H(t) = −
L∑

j,k=1

∑

α=x,y,z

Jj,k,α(t)S
α
j S
α
k

−
L∑

j=1

∑

α=x,y,z

(hj,α,0(t) + hj,α,1(t) sin(fj,αt+ ϕj,α))S
α
j , (1)

where the first sum runs over all pairs P of spins, Sαj denotes the α-th compo-
nent of the spin-1/2 operator representing the j-th qubit, Jj,k,α(t) determines
the strength of the interaction between the qubits labeled j and k, hj,α,0(t)
and hj,α,1(t) are the static (magnetic) and oscillating field acting on the j-th
spin respectively. The frequency and phase of the periodic field are denoted
by fj,α and ϕj,α. The number of qubits is L and the dimension of the Hilbert
space D = 2L. Hamiltonian (1) captures the physics of most candidate tech-
nologies for building QC’s.

A quantum algorithm consists of a sequence of elementary operations
that change the state |Ψ〉 of the quantum processor according to the TDSE,
i.e. by (a product of) unitary transformations. Each elementary operation is
completely specified by its Hamiltonian (1), i.e. the values of all the J ’s and
h’s (which are kept constant during the operation) and the time τ it takes to
complete the operation. During this time interval the only time-dependence
of H(t) is through the (sinusoidal) modulation of the fields on the spins.

Formally the solution of the TDSE can be expressed in terms of the
unitary transformation U(t + τ, t) ≡ exp+(−i

∫ t+τ
t

H(u)du), where exp+
denotes the time-ordered exponential function. To solve the TDSE we use
U(t+τ, t) = U(t+mδ, t) = U(t+mδ, t+(m−1)δ) · · ·U(t+2δ, t+δ)U(t+δ, t)
and replace each U(t + (n + 1)δ, t + nδ) by a Suzuki product-formula [10–
16]. For all practical purposes, the results obtained by this technique are
indistinguishable from the exact solution of the TDSE.

3 Grover’s database search algorithm

Finding the needle in a haystack of N elements requires O(N) queries on a
conventional computer [17]. Grover has shown that a QC can find the needle
using only O(

√
N) attempts [3]. This algorithm has been implemented on

a 2-qubit NMR QC for the case of a database containing four items [6,8].
Assuming a uniform probability distribution for the needle, for N = 4 the
average number of queries required by a conventional algorithm is 9/4 [8,17].
With Grover’s QA the correct answer can be found in a single query [6,8].
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For the 2-qubit QC, Grover’s algorithm may be implemented by applying
the sequences of pulses [8,15]

U0 = X1Ȳ1X2Ȳ2I(π)X1Ȳ1X2Ȳ2I(π) , (2a)

U1 = X1Ȳ1X2Ȳ2I(π)X1Ȳ1X̄2Ȳ2I(π) , (2b)

U2 = X1Ȳ1X2Ȳ2I(π)X̄1Ȳ1X2Ȳ2I(π) , (2c)

U3 = X1Ȳ1X2Ȳ2I(π)X̄1Ȳ1X̄2Ȳ2I(π) , (2d)

where the Un correspond to the case where the needle is in position n, Xi
(Yi) denotes a clock-wise rotation of spin i about π/2 along the x(y)-axis,
and X̄i (Ȳi) stands for the inverse operation. The two qubits “communicate”
with each other through the operation I(a) ≡ e−iaS

z
1S
z
2 . These sequences

are to be applied on the uniform superposition state which is obtained by
letting the sequence X̄2X̄2Ȳ2X̄1X̄1Ȳ1 act on the state with all spins up [8,15].
Experiments [6,8] and simulations [15,16] using sequences (2) show that the
NMR QC returns the correct answer.

The implementation described above uses the two qubits, e.g. the two
nuclear spins of the molecules, for two different tasks. First they are used to
store the information contained in the database and second they are used to
carry out Grover’s algorithm to query the very same two qubits. Although
this is sufficient to demonstrate the realization of a 2-qubit QC, to be useful in
practice the database and quantum processor should have their own qubits.
This obviously requires at least 4 qubits, two to hold the database information
(in superposition state) and two to process the query. Furthermore we require
an operation to copy (not clone) the state of the database into the quantum
processor. This operation should transfer the amplitudes of an arbitrary linear
combination of spin-up and spin-down of e.g. spin 1 to e.g. spin 3, initially
in a state of spin up. More specifically we want C1,3(a| ↑〉1 + b| ↓〉1)| ↑〉3 =
| ↑〉1(a| ↑〉3+b| ↓〉3). In principle this can be done by a network of Controlled-
NOT gates [4] but we have chosen to adopt another approach. It is easy to
see that a spin Hamiltonian of the XY type performs the required transfer
of amplitudes, up to some phase factors that can be removed by single-spin
rotations. A short calculation shows that the operation

C1,3 = Y3X̄3Ȳ3e
−iτJ(Sx1 S

x
3+S

y
1 S

y
3 ) , (3)

with τJ = π performs the desired task.
We have tested these ideas by simulating a 4-qubit NMR QC on our Quan-

tum Computer Emulator (QCE) [16]. In Fig.1 we show a picture of the QCE
window, for the case where the needle is in position 2, corresponding to the
sequence U2 in the 2-qubit case. The left most panel contains the elementary
operations, called micro-instructions (MI’s, e.g. “MI -X1”, corresponding to
X̄1), that completely specify the QC hardware (i.e. the spin model and the
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Fig. 1. Picture of the Quantum Computer Emulator running Grover’s database
search algorithm
.

sinusoidal pulses that may be applied). Also included in this panel are quan-
tum programs (QP’s, e.g. “QP case 2”) that may be used as “subroutines”.
These quantum programs are build from MI’s and QP’s. Each MI and hence
the full QCE is fully programmable. The QP 4grov2 is the 4-qubit quantum
program to search for the needle in the database represented by qubits 1 and
2. Subroutines prep1234 and case2 store the information in the database(for
case 2) and initialize the quantum processor (qubits 3 and 4). The query of
the database consists of two steps: Copy the information from the database
into qubits 3 and 4 (copy 1 3 and copy 2 4 ) and determine the position of the
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item in the database by inverting the state held in qubits 3 and 4 around the
mean [3,8,16]. The final result of the query is shown in color-coded form in
the grid at the bottom of the QP 4grov2 window. The QCE can also animate
the motion of the spins as the execution of the quantum program proceeds.
A snapshot of the 3D representation of the final state of the four qubits is
also shown in Fig.1.

The expectation value of the z-components of spin 3 and 4 gives the
position of the item in binary form. It is clear that spins 3 and 4 (bottom part
of animation window) are not perfectly down and up. This is due to the fact
that the pulses used in the NMR implementation do not exactly correspond
to the ideal rotations assumed in the theoretical analysis (by changing the
MI’s the QCE also simulates an ideal QC). For 2-qubit NMR QC’s we have
shown that calculations with sequences obtained by interchanging logically
commuting operations may yield unpredictable results [15]. Although the
copy-qubit operation (3) does not seem to generate instabilities by itself the
mere fact that additional elementary steps, and hence more non-commuting
operations, are required enhances the intrinsic instabilities already observed
in the 2-qubit case [15]. Research exploring the effect of these instabilities on
the performance of QC hardware is in progress.
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