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Abstract

We describe a Quantum Computer Emulator for a generic, general purpose Quantum Computer. This emulator consists of
a simulator of the physical realization of the quantum computer and a graphical user interface to program and control the
simulator. We illustrate the use of the quantum computer emulator through various implementations of the Deutsch–Jozsa and
Grover’s database search algorithm. 2000 Elsevier Science B.V. All rights reserved.

PACS:03.67.Lx; 05.30.-d; 89.80.+h; 02.70Lq

1. Introduction

Recent progress in the field of quantum information processing has opened new prospects to use quantum
mechanical phenomena for processing information. The operation of elementary quantum logic gates using ion
traps, cavity QED, and NMR technology has been demonstrated. A primitive Quantum Computer (QC) [1–4] and
secure quantum cryptographic systems have been build [5–7]. Recent theoretical work has shown that a QC has
the potential of solving certain computationally hard problems such as factoring integers and searching databases
much faster than a conventional computer [8–13].

The fact that a QC might be more powerful than an ordinary computer is based on the notion that a quantum
system can be in any superposition of states and that interference of these states allows exponentially many
computations to be done in parallel [14]. This intrinsic parallelism might be used to solve other difficult problems
as well, such as, for example, the calculation of the physical properties of quantum many-body systems [15–18].
In fact, part of Feynman’s original motivation to consider QC’s was that they might be used as a vehicle to perform
exact simulations of quantum mechanical phenomena [19].

Just as simulation is an integral part of the design process of each new generation of microprocessors, software to
emulate the physical model representing the hardware implementation of a quantum processor may prove essential.
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In contrast to conventional digital circuits (which may be build using vacuum tubes, relays, CMOS, etc.) where
the internal working of each basic unit is irrelevant for the logical operation of the whole machine (but extremely
relevant for the speed of operation and the cost of the machine of course), in a QC the internal quantum dynamics
of each elementary constituent is a key ingredient of the QC itself. Therefore it is essential to incorporate into a
simulation model, the physics of the elementary units that make up the QC.

Theoretical work on quantum computation usually assumes the existence of units that perform highly idealized
unitary operations. However, in practice these operations are difficult to realize: Disregarding decoherence, a
hardware implementation of a QC will perform unitary operations that are more complicated than those considered
in most theoretical work. Therefore it is important to have theoretical tools to validate designs of physically
realizable quantum processors.

This paper describes a Quantum Computer Emulator (QCE) to emulate various hardware designs of QC’s.
The QCE simulates the physical processes that govern the operation of the hardware quantum processor, strictly
according to the laws of quantum mechanics. The QCE also provides an environment to debug and execute
quantum algorithms (QA’s) under realistic experimental conditions. This is illustrated for several implementations
of the Deutsch–Jozsa [20,21] and Grover’s database search algorithm [12,13] on QC’s using ideal and more
realistic units, such as those used in the 2-qubit NMR QC [3,4]. Elsewhere [18] we present results of a
QA to compute the thermodynamic properties of quantum many-body systems obtained on a 21-qubit hard-
coded version of the QCE. The QCE software runs in a W98/NT4 environment and may be downloaded from
http://rugth30.phys.rug.nl/compphys/qce.htm.

2. QCE: Quantum Computer Emulator

Generically, hardware QC’s are modeled in terms of quantum spins (qubits) that evolve in time according to the
time-dependent Schrödinger equation (TDSE)

i
∂

∂t

∣∣Φ(t)〉=H(t)∣∣Φ(t)〉, (1)

in units such that̄h= 1 and where∣∣Φ(t)〉= a(↓,↓, . . . ,↓; t) |↓,↓, . . . ,↓〉+ a(↑,↓, . . . ,↓; t) |↑,↓, . . . ,↓〉 + · · ·
+ a(↑,↑, . . . ,↑; t) |↑,↑, . . . ,↑〉, (2)

describes the state of the whole QC at timet . The complex coefficientsa(↓,↓, . . . ,↓; t), . . . , a(↑,↑, . . . ,↑; t)
completely specify the state of the quantum system. The time-dependent HamiltonianH(t) takes the form [22]

H(t)=−
L∑

j,k=1

∑
α=x,y,z

Jj,k,α(t)S
α
j S

α
k

−
L∑
j=1

∑
α=x,y,z

(
hj,α,0(t)+ hj,α,1(t)sin(fj,αt + ϕj,α)

)
Sαj , (3)

where the first sum runs over all pairsP of spins (qubits),Sαj denotes theαth component of the spin-1/2 operator
representing thej th qubit,Jj,k,α(t) determines the strength of the interaction between the qubits labeledj and
k, hj,α,0(t) andhj,α,1(t) are the static (magnetic) and periodic (RF) field acting on thej th spin, respectively. The
frequency and phase of the periodic field are denoted byfj,α andϕj,α . The number of qubits isL and the dimension
of the Hilbert spaceD = 2L.

Hamiltonian (3) is sufficiently general to capture the salient features of most physical models of QC’s.
Interactions between qubits that involve different spin components have been left out in (3) because we are not
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aware of a candidate technology of QC where these would be important. Incorporating these interactions requires
some trivial additions to the QCE program.

A QA for QC model (3) consists of a sequence of elementary operations which we will call micro instructions
(MIs) in the sequel. They are not exactly playing the same role as MIs do in digital processors, they merely
represent the smallest units of operation the quantum processor can carry out. The action of a MI on the state|Ψ 〉
of the quantum processor is defined by specifying how long it acts (i.e. the time interval it is active), and the values
of all theJ ’s andh’s appearing in (3). TheJ ’s andh’s are fixed during the operation of the MI. A MI transforms
the input state|Ψ (t)〉 into the output state|Ψ (t + τ )〉 whereτ denotes the time interval during which the MI is
active. During this time interval the only time-dependence ofH(t) is through the sinusoidal modulation of the
fields on the spins.

Procedures to construct unconditionally stable, accurate and efficient algorithms to solve the TDSE of a
wide variety of continuum and lattice models have been reviewed elsewhere [23–26]. A detailed account of the
application of this approach to two-dimensional quantum spin models can be found in [27]. Here we limit ourselves
to a discussion of the basic steps in the construction of an algorithm to solve the TDSE for an arbitrary model of the
type (3). According to (2) the time evolution of the QC, i.e. the solution of TDSE (1), is determined by the unitary
transformationU(t + τ, t)≡ exp+(−i

∫ t+τ
t

H (u)du), where exp+ denotes the time-ordered exponential function.
Using the semi-group property ofU(t + τ, t) we can write

U(t + τ, t)=U(t +mδ, t + (m− 1)δ
) · · ·U(t + 2δ, t + δ)U(t + δ, t), (4)

whereτ =mδ (m> 1). In general the first step is to replace eachU(t + (n+1)δ, t +nδ) by a symmetrized Suzuki
product-formula approximation [23,29]. For the case at hand a convenient choice is (other decompositions [27,30]
work equally well but are somewhat less efficient for our purposes):

U
(
t + (n+ 1)δ, t + nδ)≈ Ũ (t + (n+ 1)δ, t + nδ), (5a)

Ũ
(
t + (n+ 1

)
δ, t + nδ)= e−iδHz(t+(n+1/2)δ)/2e−iδHy(t+(n+1/2)δ)/2

×e−iδHx(t+(n+1/2)δ)e−iδHy(t+(n+1/2)δ)/2

×e−iδHz(t+(n+1/2)δ)/2, (5b)

where

Hα(t)=−
L∑

j,k=1

Ji,j,αS
α
j S

α
k

−
L∑
j=1

(
hj,α,0+ hj,α,1 sin(fj,αt + ϕj,α)

)
Sαj ; α = x, y, z. (6)

Note that in (6) we have omitted the time dependence of theJ ’s and theh’s to emphasize that these parameters are
fixed during the execution of a particular MI.

EvidentlyŨ(t + τ, t) is unitary by construction, implying that the algorithm to solve the TDSE is uncondition-
ally stable [23]. It can be shown that‖U(t + τ, t)− Ũ(t + τ, t)‖ 6 cδ3, implying that the algorithm is correct to
second order in the time-stepδ [23]. If necessary,̃U(t + τ, t) can be used as a building block to construct higher-
order algorithms [31–33]. In practice it is easy to find reasonable values ofm such that the results obtained no
longer depend onm (andδ). Then, for all practical purposes, these results are indistinghuisable from the exact
solution of the TDSE (1).

As already indicated above, as basis states{|φn〉} we take the direct product of the eigenvectors of theSzj (i.e.

spin-up|↑〉j and spin-down|↓〉j ). In this basis e−iδHz(t+(n+1/2)δ)/2 changes the input state by altering the phase of
each of the basis vectors. AsHz is a sum of pair interactions it is trivial to rewrite this operation as a direct product
of 4× 4 diagonal matrices (containing the interaction-controlled phase shifts) and 4× 4 unit matrices. Hence the
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computation of exp(−iδHz(t + (n+ 1/2)δ)/2)|Ψ 〉 has been reduced to the multiplication of two vectors, element-
by-element. The QCE carries outO(P2L) operations to perform this calculation but a real QC operates on all
qubits simultaneously and would therefore only needO(P ) operations.

Still working in the same representation, the action of e−iδHy(t+(n+1/2)δ)/2 can be written in a similar manner
but the matrices that contain the interaction-controlled phase-shift have to be replaced by non-diagonal matrices.
Although this does not present a real problem it is more efficient and systematic to proceed as follows. Let us
denote byX (Y) the rotation byπ/2 of all spins about thex (y)-axis. As

e−iδHy(t+(n+1/2)δ)/2=XX †e−iδHy(t+(n+1/2)δ)/2XX †

=Xe−iδH ′z(t+(n+1/2)δ)/2X †, (7)

it is clear that the action of e−iwδHy(t+(n+1/2)δ)/2 can be computed by applying to each qubit, the inverse ofX
followed by an interaction-controlled phase-shift andX . The prime in (7) indicates thatJi,j,z, hi,z,0, hi,z,1 and
fi,z in Hz(t + (n+ 1/2)δ) have to be replaced byJi,j,y , hi,y,0, hi,y,1 andfi,y , respectively. A similar procedure
is used to compute the action of e−iδHx(t+(n+1/2)δ): We only have to replaceX by Y . The operation counts for
e−iδHx(t+(n+1/2)δ) (or e−iδHy(t+(n+1/2)δ)/2) areO((P + 2)2L) andO(P + 2) for the QCE and QC, respectively.
On a QC the total operation count per time-step isO(3P + 4).

The operation count of the algorithm described above (and variations of it, see, e.g., [27]) increases linearly
with the dimensionD of the Hilbert space, and cannot be improved in that sense (although there may be room for
reducing the prefactor by more clever programming). On the other hand one might be tempted to think that for
smallD the cost of an exact diagonalization of the time-dependent Hamiltonian (3) at each time-stepτ may be
compensated for by absence of intermediate time-stepsδ. For the problem at hand this is unlikely to be the case:
The sinusoidal terms in (3) require the use of a time-step that is much smaller than the time-step that guarantees a
high accuracy of the Suzuki product formula. Therefore in practice for time-dependent Hamiltonian (3),δ = τ so
that disregarding implementation issues, the running time of the algorithm is very close to the theoretical limit.

3. Graphical user interface

The QCE consists of a QC simulator, described above, and a graphical user interface (GUI) that controls the
former. The GUI considerably simplifies the task of specifying the MIs (i.e. to model the hardware) and to execute
quantum programs (QPs). The QCE runs in a Windows 98/NT environment. Using the GUI is very much like
working with any other standard MS-Windows application. The maximum number of qubits in the version of the
QCE that is available for distribution is limited to eight. The QCE is distributed as a self-installing executable,
containing the program, documentation, and all the QPs discussed in this paper. These QPs also illustrate the use
of the GUI itself.

Some of the salient features of the GUI of the QCE are shown in Figs. 1–4. The main window contains a window
that shows the set of MIs that is currently active and several other windows (limited to 10) that contain QPs. Help
on a button appears when the mouse moves over the button, a standard Windows feature.

Writing a QA on the QCE from scratch is a two-step process. First one has to specify the MIs, taking into account
the particular physical realization of the QC that one wants to emulate. The “MI” window offers all necessary tools
to edit (see Fig. 2) and manipulate (groups of) MIs. The second step, writing a QP, consists of dragging and
dropping MIs onto a “QP” window.

Each MI set has two reserved MIs: A break point (allowing the QP to pause at a specified point) and a MI to
initialize the QC. Normally the latter is the first instruction in a QP. Each QP window has a few buttons to control
the operation of the QC.

The results of executing a QP appear in color-coded form at the bottom of the corresponding program window.
For each qubit the expectation value of the three spin components are shown:Qαj ≡ 1/2−〈Sαj 〉 (α = x, y, z), green
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corresponds to 0, red to 1. Usually only one row of values (thez-component) will be of interest. Optionally the
QCE will generate text files with the numerical results for further processing.

The QCE supports the use of QPs as MIs (see Figs. 3, 4). QPs can be added to a particular MI set through
the button labeled “QP”. During execution, a QP that is called from another QP will call either another QP or a
genuine MI from the currently loaded set of MIs. The QCE will skip all initialization MIs except for the first one.
This facilitates the testing of QPs that are used as sub-QPs. A QP calling a MI that cannot be found in the current
MI set will generate an error message and stop.

4. Applications

Our aim is to illustrate how to use the QCE to simulate the QC implemented using NMR techniques [1–4].
A classical coin has been used to decide which of the two realizations (i.e. [1,2] or [3,4]) to take as an example.
In the NMR experiments [3,4] the two nuclear spins of the (1H and13C atoms in a carbon-13 labeled chloroform)
molecule are placed in a strong static magnetic field in the+z direction. In the absence of interactions with other
degrees of freedom this spin-1/2 system can be modeled by the Hamiltonian

H =−J1,2,zS
z
1S
z
2− h1,z,0S

z
1 − h2,z,0S

z
2, (8)

whereh1,z,0/2π ≈ 500 MHz,h2,z,0/2π ≈ 125 MHz, andJ1,2,z/2π ≈−215 Hz [3]. It is amusing to note that the
most simple spin-1/2 system, i.e. the Ising model, can be used for quantum computing [34–38].

In the chloroform molecule the antiferromagnetic interaction between the spins is much weaker than the coupling
to the external field and (8) is a diagonal matrix with respect to the basis states chosen, the ground state of (8) is
the state with the two spins up. Following [3] we denote this state by|00〉 = |0〉⊗ |0〉 =|↑↑〉, i.e. the state with spin
up corresponds to a qubit|0〉. A state of theN -qubit QC will be denoted by|x1x2 . . . xN 〉 = |x1〉 ⊗ |x2〉 . . . |xN 〉.

It is expedient to write the TDSE for this problem in frames of reference rotating with the nuclear spin. Formally
this is accomplished by substituting in (1)∣∣Φ(t)〉= eit (h1,z,0S

z
1+h2,z,0S

z
2)
∣∣Ψ (t)〉, (9)

so that in the absence of RF-fields the time evolution ofΨ (t) is governed by the HamiltonianH =−J1,2,zS
z
1S
z
2.

This transformation removes from the sequence of elementary operations, phase factors that are irrelevant for the
value of the qubits. Indeed, as the expectation value of a qubit is related to the expectation value of thez component
of the spin:

Qj ≡Qzj = 1
2 −

〈
Φ(t)

∣∣Szi ∣∣Φ(t)〉, (10a)

and 〈
Φ(t)

∣∣Szj ∣∣Φ(t)〉= 〈Ψ (t)∣∣e−it (h1,z,0S
z
1+h2,z,0S

z
2)Szje

it (h1,z,0S
z
1+h2,z,0S

z
2)
∣∣Ψ (t)〉

= 〈Ψ (t)∣∣Szj ∣∣Ψ (t)〉. (10b)

From (10) it is clear that transformation (9) has no net effect. This is not the case for the expectation values of the
x or y component of the spins: The phase factors induce an oscillatory behavior, reflecting the fact that the spins
are rotating about thez-axis (see (A.17) for an example). In the following it is implicitly assumed that the basis
states of the spins refer to states in the corresponding rotating frame.

We now discuss the implementation on the QCE of two QA’s that have been tested on an NMR QC [1–4].

4.1. Deutsch–Jozsa algorithm

This QA [20,39] and its refinement [21] provide illustrative examples of how the intrinsic parallelism of a QC
can be exploited to solve certain decision problems.
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Table 1
Input and output values ofconstant(f1(x), f2(x)) andbalancedfunctions (f3(x), f4(x)) of one input bitx

x f1(x) f2(x) f3(x) f4(x)

0 0 1 0 1

1 0 1 1 0

Table 2
Input and output values ofconstant(f1(x), f2(x)) andbalancedfunctions (f3(x), f4(x), f5(x)) of three input bitsx = {x1, x2, x3}. Note that
f4(x) only depends onx2 and is therefore rather triviallybalanced

x1 x2 x3 f1(x1, x2, x3) f2(x1, x2, x3) f3(x1, x2, x3) f4(x1, x2, x3) f5(x1, x2, x3)

0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 1

0 1 0 0 1 0 1 1

1 1 0 0 1 1 1 0

0 0 1 0 1 0 0 1

1 0 1 0 1 1 0 0

0 1 1 0 1 1 1 0

1 1 1 0 1 1 1 1

Consider a functionf = f (x1, x2, . . . , xN)= 0,1 that transforms theN bits {xn = 0,1} to one output bit. There
are three classes of functionsf : Constantfunctions, returning 0 or 1 independent of the input{xn}, balanced
functions that givef = 0 for exactly half of the 2N possible inputs andf = 1 for the remaining inputs, andother
functions that do not belong to one of the two other classes. Some examples ofconstantandbalancedfunctions
are given in Tables 1 and 2.

The Deutsch–Jozsa (D-J) algorithm allows a QC to decide whether a function isconstantor balanced, given the
additional piece of information that functions of the typeotherwill not be fed into the QC. For a function of one
input variable the D-J problem is equivalent to the problem of deciding if a coin is fair (has head and tail) or fake
(e.g., two heads). In the case of the coin we would have to look at both sides to see if it is fair. A QC can make a
decision by looking only once (at the two sides simultaneously).

In the NMR experiment the two qubits of the QC (i.e. the two nuclear spins of the chloroform molecule) are
used during the execution of the D-J algorithm although in principle only one qubit would do [21]. However our
aim is to simulate the NMR-QC experiment and therefore we will closely follow Ref. [3]. Accordingly the first
qubit is considered as the input variable, the other one serves as work space.

Before the actual calculation starts the QC has to be initialized. This amounts to setting each of the two qubits to
|0〉. On the QCE this is accomplished by the MI “Initialize”, a reserved MI name in the QCE (see above). The first
step in the D-J algorithm is to prepare the QC by putting the first qubit in the state(|0〉 + |1〉)/√2 and the second
one in(|0〉 − |1〉)/√2 [3]. This can be done by performing two rotations:

Prepare⇔ Y 2Y1, (11)

whereYj represents the operation of rotatingclock-wise the spinj by π/2 along they-axis, andYj its inverse
(see Appendix A). In this paper we adopt the convention that all expressions like (11) have to be read fromright
to left.

The next step is to compute the functionf (x). Following [3] the twoconstantand twobalancedfunctions listed
in Table 1 can be implemented by the sequences
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f1(x)⇔ F1=X2X2I (π/2)X2X2I (π/2), (12a)

f2(x)⇔ F2= I (π/2)X2X2I (π/2), (12b)

f3(x)⇔ F3= Y1X1Y 1X2Y 2I (π)Y2, (12c)

f4(x)⇔ F4= Y1X1Y 1X2Y 2I (π)Y2, (12d)

whereXj denotes theclock-wise rotation of spinj by π/2 along thex-axis,Xj the inverse operation and
I (a)≡ e−iaS

z
1S
z
2 represents the time evolution due toH itself. In Table 3 we show the result of letting the sequences

(12) act on the basis states. It is clear that they have the desired properties. Note that prefactors have no physical
relevance (they drop out when we compute expectation values) and thatF1 is a rather complicated version of the
identity operation.

Finally there is a read-out operation which corresponds to the inverse of the “Prepare”:

ReadOut⇔ Y 1Y2. (13)

Note that there is some flexibility in the choice of these sequences. For instance to “Prepare” we could have used
Walsh–Hadamard (WH) transformationsW1W2 as well.

Upto this point the D-J algorithm has been written as a sequence of unitary operations that perform specific tasks.
Now we consider two different implementations of these unitary transformations: The first one will be physical,
i.e. we will use the QCE to simulate the NMR-QC experiment itself. The second will be “computer-science” like,
i.e. we will use highly idealized, nonrealizable rotations.

NMR uses radiofrequency electromagnetic pulses to rotate the spins [40,41]. By tuning the frequency of the RF-
field to the precession frequency of a particular spin, the power of the applied pulse (= intensity times duration)
controls how much the spin will rotate. The axis of the rotation is determined by the direction of the applied
RF-field (see [40,41] or Appendix A). A possible choice of the model parameters, corresponding to the actual
experimental values of these parameters, is given in Table 4. For simplicity all frequencies have been normalized
with respect to the largest one (i.e. 500 MHz in the experiments [3,4]). Also note that it is convenient to express
execution times in units of 2π , the default setting in the QCE.

The results of running the QCE with the MIs simulating the NMR experiment are summarized in Fig. 1. The first
qubit (Qj = 1/2−〈Szj 〉) unambiguously tells us that the functionsf1(x) andf2(x) are constant and thatf3(x) and
f4(x) are balanced. Clearly the QCE qualitatively reproduces the experimental results. In the D-J algorithm the
final state of the second qubit is irrelevant. In the final state the numerical value of qubit 1, is only approximately
zero or one (see Table 5). This is a direct consequence of the fact that we are simulating a genuine physical system.

In an NMR experiment, application of a RF-pulse affects all spins in the sample. Although the response of a spin
to the RF-field will only be large when this spin is at resonance, the state of the spins that are not in resonance will
also change. These unitary transformations not necessarily commute with the sequence of unitary transformations
that follow and may therefore affect the final outcome of the whole computation. Furthermore the use of a time-
dependent external field to rotate spins is only an approximation to the simple rotations envisaged in theoretical
work (see Appendix A). This definitely has an effect on the expectation values of the spin operators.

Table 3
Results of letting the sequencesF1, . . . ,F3 (see(12)) transform the four basis states. Inspection of the outputs demonstrated that these sequences
implement theconstantor balancedfunctions of Table 1

x |Ψ 〉 F1|Ψ 〉 F2|Ψ 〉 F3|Ψ 〉 F4|Ψ 〉
0 |00〉 −|00〉 i|01〉 e−iπ/4|00〉 −e+iπ/4|01〉
1 |10〉 −|10〉 i|11〉 −e−iπ/4|11〉 e+iπ/4|10〉
2 |01〉 −|01〉 i|00〉 e−iπ/4|01〉 −e+iπ/4|00〉
3 |11〉 −|11〉 i|10〉 −e−iπ/4|10〉 e+iπ/4|11〉
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Table 4
Specification of the micro instructions implementing the two-qubit NMR QC on the QCE. Frequencies have been rescaled such thathj,α,0= 1

corresponds to 500 MHz. The execution time of each micro instruction is given by the second row (τ/2π ). The inverse of, e.g.,X1 is found
by reversing the sign ofh1,x,1. Note that the QCE is constructed such that a rotation about thex (y) axis requires a RF-pulse along they
(x)-direction (see Appendix A)

Parameter X1 X2 Y1 Y 2 I (π/2) I (π)

τ/2π 10 40 10 40 25× 104 50× 104

J1,2,z −10−6 −10−6 −10−6 −10−6 −10−6 −10−6

h1,x,0 0 0 0 0 0 0

h2,x,0 0 0 0 0 0 0

h1,y,0 0 0 0 0 0 0

h2,y,0 0 0 0 0 0 0

h1,z,0 1 1 1 1 1 1

h2,z,0 0.25 0.25 0.25 0.25 0.25 0.25

h1,x,1 0 0 0.05 −0.05 0 0

h2,x,1 0 0 0.0125 −0.0125 0 0

f1,x 0 0 1 0.25 0 0

f2,x 0 0 1 0.25 0 0

ϕ1,x 0 0 0 0 0 0

ϕ2,x 0 0 0 0 0 0

h1,y,1 −0.05 0.05 0 0 0 0

h2,y,1 −0.0125 0.0125 0 0 0 0

f1,y 1 0.25 0 0 0 0

f2,y 1 0.25 0 0 0 0

ϕ1,y 0 0 0 0 0 0

ϕ2,y 0 0 0 0 0 0

h1,z,1 0 0 0 0 0 0

h2,z,1 0 0 0 0 0 0

f1,z 0 0 0 0 0 0

f2,z 0 0 0 0 0 0

ϕ1,z 0 0 0 0 0 0

ϕ2,z 0 0 0 0 0 0

With the QCE it is very easy to make a detailed comparison between physical and idealized implementations of
QCs: We simply replace the set of MIs (“NMR”) by another one (“Ideal”, or “NMR-Ideal”) and rerun the QPs by
simply clicking on the execute buttons. The model parameters we have chosen to implement the “ideal” operations
are listed in Table 6. The set “NMR-Ideal” is a copy of “NMR” (see Table 4) except that the RF-pulses only affect
the spin that is in resonance, i.e. all operations on qubitj haveh2,x,j = h2,y,j = 0.

The results of executing the QAs for the “Ideal” case are shown in Fig. 2. In the final state the qubits are exactly
|0〉 or |1〉, as expected. The state of the second qubit not always matches the corresponding state of Fig. 1. As
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Fig. 1. Picture of the Quantum Computer Emulator showing a window with a set of micro instructions implementing an NMR quantum computer
and windows with four Deutsch–Jozsa programs (d-j1,. . . , d-j4), one for each function(f1(x), . . . , f4(x)) listed in Table 1. The final state of
the QC, i.e. the expectation value of the qubits (spin operators), is shown at the bottom of each program window(green= |0〉, red= |1〉). The
numerical values appear if the cursor moves over the qubit area.

Table 5
Final state of the QC after running the D-J algorithm for the case of the ideal QC (Q1,Q2, see Table 5) and the NMR-QC (̂Q1, Q̂2, see Table 4).
The results (̃Q1, Q̃2) have been obtained by modifying the NMR MI’s such that the RF-pulses only affect the spin that is in resonance. The last
two rows show the results of running the refined version [21] of the D-J algorithm.Q1: Ideal operationŝQ1: NMR implementation

f1(x) f2(x) f3(x) f4(x)

Q1 0.000 0.000 1.000 1.000

Q2 0.000 0.000 0.000 0.000

Q̂1 0.169 0.064 0.867 0.867

Q̂2 0.999 1.000 0.001 0.002

Q̃1 0.000 0.000 0.998 0.998

Q̃2 1.000 1.000 0.001 0.001

Q̂1 0.000 0.000 1.000 1.000

Q1 0.000 0.000 0.995 0.996

mentioned above this is due to the approximate nature of the operations used in the NMR case, but as the final
state of the second qubit is irrelevant for the D-J algorithm there is no problem. In Table 5 we collect the numerical
values of the qubits as obtained by running the D-J algorithm on the NMR and ideal QC. It is clear in that all cases
the D-J algorithm gives the correct answer.
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Table 6
Specification of the micro instructions implementing a mathematically perfect two-qubit QC on the QCE. The execution time of each micro
instruction is given by the second row (τ/2π ). The inverse of, e.g.,X1 is found by reversing the sign ofh1,x,0. Model parameters omitted are
zero for all micro instructions

Parameter X1 X2 Y1 Y 2 I (π/2) I (π)

τ/2π 0.25 0.25 0.25 0.25 25× 104 50× 104

J1,2,z 0 0 0 0 −10−6 −10−6

h1,x,0 +1 0 0 0 0 0

h2,x,0 0 −1 0 0 0 0

h1,y,0 0 0 +1 0 0 0

h2,y,0 0 0 0 −1 0 0

Fig. 2. Picture of the Quantum Computer Emulator showing a window with a set of micro instructions implementing an ideal quantum computer
and windows with four Deutsch–Jozsa programs (d-j1,. . . , d-j4), one for each function (f1(x), . . . , f4(x)) listed in Table 1. Also shown is a
window for editing micro instructions, which appears by double-clicking on a micro instruction(X2 in this example). The final state of the
quantum computer, i.e. the expectation value of the qubits (spin operators), is shown at the bottom of each program window(green= |0〉,
red= |1〉). In this ideal case the expectation values are either zero or one.

4.2. Collins–Kim–Holton algorithm

From the description of the D-J algorithm of one variable [3, Fig. 1] it is evident that the second qubit is
redundant because the function call (step T2 in [3]) leaves the state of the second qubit, i.e. the work space,
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untouched. A refined version of the D-J algorithm (for an arbitrary number of qubits) that does not require a bit for
the evaluation of the function is given in [21]. For one variable, the QC has to compute the function

fj ⇔
1∑
x=0

(−1)fj (x)|x〉. (14)

Following [21] this may be accomplished via anf controlled gate defined by

Uf |x〉 = (−1)f (x)|x〉. (15)

Accordingly, once choice (there are several) of the set of sequences that implements the refined version of the D-J
algorithm reads:

Prepare⇔ Y 1, (16a)

f1(x)⇔ F1=W1W1, (16b)

f2(x)⇔ F2=X1X1, (16c)

f3(x)⇔ F3= Y 1X1Y1Y 1X1Y1, (16d)

f4(x)⇔ F4= Y1X1Y 1Y1X1Y 1, (16e)

ReadOut⇔ Y 1. (16f)

The results of running these QPs on the QCE are given in Table 6. It is clear that the refined version performs as
expected.

4.3. Grover’s database search algorithm

On a conventional computer finding a particular entry in an unsorted list ofN elements requires of the order
of N operations. Grover has shown that a QC can find the item using onlyO

√
N attempts [11,12]. Consider the

extremely simple case of a database containing four items and functionsgj (x), j = 0, . . . ,3, that upon query of
the database return minus one ifx = j and plus one ifx 6= j . Assuming a uniform probability distribution for the
item to be in one of the four locations, the average number of queries required by a conventional algorithm is 9/4.
With Grover’s QA the correct answer can be found in a single query (this result only holds for a database with 4
items). Grover’s algorithm for the four-item database can be implemented on a two-qubit QC.

The key ingredient of Grover’s algorithm is an operation that replaces each amplitude of the basis states in the
superposition by two times the average amplitude minus the amplitude itself. This operation is called “inversion
about the mean” and amplifies the amplitude of the basis state that represents the searched-for item. To see how this
works it is useful to consider an example. Let us assume that the item to search for corresponds to, e.g., number 2
(g2(0)= g2(1)= g2(3)= 1 andg2(2)=−1). Using the binary representation of integers with the order of the bits
reversed, the QC is in the state (up to an irrelevant phase factor as usual)

|Ψ 〉 = 1
2

(|00〉 + |10〉 − |01〉 + |11〉). (17)

We return to the question of how to prepare this state below. The operatorD that inverts states like (17) about
their mean reads

D = 1

2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 ;
|00〉
|10〉
|01〉
|11〉

(18)

The mean amplitude of (17) is 1/4 and we find that

D|Ψ 〉 = |01〉, (19a)
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i.e. the correct answer, and

D2|Ψ 〉 = 1
2

(|00〉 + |10〉 + |01〉 + |11〉), (19b)

D3|Ψ 〉 =−1
2

(|00〉 + |10〉 − |01〉 + |11〉)=−|Ψ 〉, (19c)

showing that (in the case of 2 qubits) the correct answer (i.e. the absolute value of the amplitude of|10〉 equal to
one) is obtained after 1,4,7, . . . iterations. In general, for more than two qubits, more than one application ofD is
required to get the correct answer. In this sense the 2-qubit case is somewhat special.

The next task is to express the preparation and query steps in terms of elementary rotations. For illustrative
purposes we stick to the example used above. Initially we set the QC in the state|00〉, i.e. the state with both spins
up [42] and then transform|00〉 to the linear superposition (17) by a two-step process. First we set the QC in the
uniform superposition state|U〉:

Prepare⇔ |U〉 ≡W2W1|00〉 = −1
2

(|00〉 + |10〉 + |01〉 + |11〉), (20)

where

Wj =XjXjY j =−XjXjY j = i√
2

(
1 1
1 −1

)
j

, (21)

is the WH transform on qubitj which transforms|0〉 to i(|0〉 + |1〉)/√2 (see Appendix A). The transformation
that corresponds to the application ofg2(x) to the uniform superposition state is

F2=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 ;
|00〉
|10〉
|01〉
|11〉

(22)

This transformation can be implemented by first letting the system evolve in time:

I (π)|U〉 = e−iπS
z
1S
z
2
[1

2(|00〉 + |10〉 + |01〉 + |11〉)]
= 1

2

(
e−iπ/4|00〉 + e+iπ/4|10〉 + e+iπ/4|01〉 + e−iπ/4|11〉). (23)

For the NMR-QC based on Hamiltonian (8) this means letting the system evolve in time (without applying pulses)
for a time τ0 = −π/J1,2,z (recall J1,2,z < 0). Next we apply a sequence of single-spin rotations to change the
four phase factors such that we get the desired state. The two sequencesYXY andYXY (see Appendix B) are
particularly useful for this purpose. We find

Y1X1Y 1Y2X2Y 2
[1

2

(
e−iπ/4|00〉 + e+iπ/4|10〉 + e+iπ/4|01〉 + e−iπ/4|11〉)]

= 1
2

(
e−iπ/4|00〉 + e−iπ/4|10〉 + e+3iπ/4|01〉 + e−iπ/4|11〉)

= e−iπ/4

2

(|00〉 + |10〉 − |01〉 + |11〉). (24)

Combining (23) and (24) we can construct the sequenceGj that transforms the uniform superposition|U〉 to the
state that corresponds togj (x):

F0= Y1X1Y 1Y2X2Y 2I (π), (25a)

F1= Y1X1Y 1Y2X2Y 2I (π), (25b)

F2= Y1X1Y 1Y2X2Y 2I (π), (25c)

F3= Y1X1Y 1Y2X2Y 2I (π). (25d)
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The remaining task is to express the operation of inversion about the mean, i.e. the matrixD (see (18)), by a
sequence of elementary operations. It is not difficult to see thatD can be written as the product of a WH transform,
a conditional phase shiftP and another WH transform:

D =W1W2PW1W2

=W1W2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

W1W2. (26a)

The same approach that was used to implementg2(x) also works for the conditional phase shiftP (=−F0) and
yields

P = Y1X1Y 1Y2X2Y 2I (π). (27)

The complete sequenceUj reads

Uj =W1W2PW1W2Fj . (28)

Fig. 3. Picture of the Quantum Computer Emulator showing a window with a set of micro instructions for a two-qubit NMR quantum computer
and windows with quantum programs implementing Grover’s database search for the four different casesg0(x) (g0), . . . , g3(x) (g3). This
example also shows the use of quantum programs as micro instructions in other quantum programs. The final state of the QC, i.e. two qubits
shown at the bottom of each program, gives the location (in binary representation) of the item in the database. Note that for the case g1 we were
using single-step mode to execute the program and stopped at f1.
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Fig. 4. Picture of the Quantum Computer Emulator showing a window with a set of micro instructions for the two-qubit NMR quantum computer
and windows with quantum programs implementing Grover’s database search for the four different casesg0(x), . . . , g3(x), using the basic MI’s
(grov0, . . . , grov3) and calls to other quantum programs (g0,. . . , g3). The final state of the quantum computer, i.e. two qubits shown at the
bottom of each program, gives the location (in binary representation) of the item in the database. This final state is no longer a pure basis state
but as the weight of the basis state corresponding to the location of the item is by far the largest the correct answer is easy to infer.

Each sequenceUj can be shortened by observing that in some cases a rotation is followed by its inverse. Making
use of the alternative representations of the WH transformWi (see Appendix B), the sequence for, e.g.,j = 1 can
be written as

W1W2F1=−X1X1Y 1X2X2Y 2Y1X1Y 1Y2X2Y 2I (π)

=−X1Y 1X2Y 2I (π). (29)

The sequences for the other cases can be shortened as well, yielding

U0=X1Y 1X2Y 2I (π)X1Y 1X2Y 2I (π), (30a)

U1=X1Y 1X2Y 2I (π)X1Y 1X2Y 2I (π), (30b)

U2=X1Y 1X2Y 2I (π)X1Y 1X2Y 2I (π), (30c)

U3=X1Y 1X2Y 2I (π)X1Y 1X2Y 2I (π), (30d)

where inU1 andU2 a physically irrelevant sign has been dropped. Note that the binary representation ofx translates
into the presence (0) or absence (1) in (30) of a bar on the rightmostX1 andX2.
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Table 7
Final state of the QC after running the Grover’s database search algorithm for the case of the ideal QC (Q1,Q2, see Table 5) and the NMR-QC
(Q̂1, Q̂2, see Table 4)

g0(x) g1(x) g2(x) g3(x)

Q1 0 1 0 1

Q2 0 0 1 1

Q̂1 0.028 0.966 0.037 0.955

Q̂2 0.163 0.171 0.836 0.830

As before, our aim is to use the QCE to simulate the NMR-QC experiment [4]. For the D-J algorithm we already
specified the physical parameters for the elementary operations and we will make use of the same set of MI’s here.
In Figs. 3 and 4 we show the QCE after running the four casesg0(x), . . . , g3(x) using the NMR (Fig. 4) MI’s. The
numerical values of the qubits in the final state are given in Table 7, for the ideal and NMR QC. In both cases the
QA performs as it should. In the ideal case, the final state of the QC is exactly equal to|x〉 (binary representation of
integers). Using RF-pulses instead of ideal transformations to performπ/2 rotations leads to less certain answers:
The final state is no longer a pure basis state but some linear superposition of the four basis states. What is beyond
doubt though is that in all cases the weight of|x〉 is by far the largest. Hence the QC returns the correct answer.

5. Summary

We have described the internal operation of QCE, a software tool for simulating hardware realizations of
quantum computers. The QCE simulates the physical (quantum) processes that govern the operation of the
hardware quantum processor by solving the time-dependent Schrödinger equation. The use of the QCE has been
illustrated by several implementations of the Deutsch–Jozsa and Grover’s database search algorithm, on QCs using
ideal and more realistic units, such as those of 2-qubit NMR-QCs. Currently the QCE is used to study the stability
of quantum computers in relation to the non-idealness of realizable elementary operations [43].
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Appendix A. Spin-1/2 algebra

Here we present a collection of standard results on spin-1/2 systems which are used in the paper and are taken
from [41]. We begin with some notation.

The two basis states spanning the Hilbert space of a two-state quantum system are usually denoted by

|↑〉 ≡
(

1
0

)
, |↓〉 ≡

(
0
1

)
. (A.1)

The three components of the spin-1/2 operatorES acting on this Hilbert space are defined by

Sx = h̄
2

(
0 1
1 0

)
, Sy = h̄

2

(
0 −i
i 0

)
, Sz = h̄

2

(
1 0
0 −1

)
. (A.2)
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By convention the representation (A.2) is chosen such that|↑〉 and|↓〉 are eigenstates ofSz with eigenvalues+h̄/2
and−h̄/2, respectively.

From (A.2) it is clear that(Sx)2= (Sy)2= (Sz)2= h̄2/4 so that

cos

(
ϕSα

h̄

)
= cos

(
ϕ

2

)(
1 0
0 1

)
, (A.3a)

and

sin

(
ϕSα

h̄

)
= 2

h̄
sin

(
ϕ

2

)
Sα. (A.3b)

The commutation relations between the three spin-components read

[Sα,Sβ ] = ih̄εαβγ Sγ , (A.4)

where[A,B] ≡AB −BA, εαβγ is the totally antisymmetric unit tensor (εxyz = εyzx = εzxy = 1, εαβγ =−εβαγ =
−εγβα =−εαγβ , εααγ = 0) and the summation convention is assumed.

Rotation of the spin about an angleϕ around the axisβ gives

Sα(ϕ,β)≡ eiϕS
β/h̄Sαe−iϕSβ /h̄ = Sα cosϕ + εαβγ Sγ sinϕ. (A.5)

Of particular interest to quantum computing are rotations aboutπ/2 around thex- andy-axis defined by

X ≡ eiπS
x/2h̄ = 1√

2

(
1 i

i 1

)
, (A.6a)

and

Y ≡ eiπS
y/2h̄ = 1√

2

(
1 1
−1 1

)
. (A.6b)

The inverse of a rotationZ will be denoted asZ and if more than one spin is involved a subscript will be
attached. With our convention〈↑|YSxY |↑〉 = −1/2 so that a positive angle corresponds to a rotation in the clock-
wise direction.

Another basic operation is the Walsh–Hadamard transformW which rotates the state|↑〉 into (|↓〉 + |↑〉)/√2
(up to an irrelevant phase factor), i.e. the uniform superposition state. In terms of elementary rotations the Walsh–
Hadamard transform reads

W =X2Y = YX2=−X2
Y =−YX2= i√

2

(
1 1
1 −1

)
. (A.7)

For example,

W |↑〉 =W
(

1
0

)
= i√

2

(
1
1

)
. (A.8)

We now consider the time evolution of a single spin subject to a constant magnetic field along thez-axis and a
RF-field along thex-axis, i.e. the elementary model of NMR. The TDSE reads

ih̄
∂

∂t

∣∣Φ(t)〉=−[H0S
z +H1S

x sinωt
]∣∣Φ(t)〉, (A.9)

where|Φ(t = 0)〉 is the initial state of the two-state system and we have set the phase in (3) to zero for notational
convenience. Substituting|Φ(t)〉 = eitω0S

z/h̄|Ψ (t)〉 yields

ih̄
∂

∂t

∣∣Ψ (t)〉=−[(H0−ω0)S
z +H1S

x sinωt cosω0t +H1S
y sinωt sinω0t

]∣∣Ψ (t)〉, (A.10)
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which upon choosingω0=H0 can be written as

ih̄
∂

∂t

∣∣Ψ (t)〉=−H1
[
Sx sinωt cosH0t + Sy sinωt sinH0t

]∣∣Ψ (t)〉. (A.11)

At resonance, i.e.ω =H0, we find

ih̄
∂

∂t

∣∣Ψ (t)〉=−H1

2

[
Sy + Sx sin2H0t − Sy cos2H0t

]∣∣Ψ (t)〉. (A.12)

Assuming that the effects of the higher harmonic terms (i.e. the terms in sin2H0t and cos2H0t) are small [41] we
obtain

ih̄
∂

∂t

∣∣Ψ (t)〉≈−H1

2
Sy
∣∣Ψ (t)〉, (A.13)

which is easily solved to give∣∣Ψ (t)〉≈ eitH1S
y/2h̄

∣∣Ψ (t = 0)
〉
, (A.14)

so that the overall action of an RF-pulse of durationτ can be written as∣∣Φ(t + τ )〉≈ eiτH0S
z/h̄eiτH1S

y/2h̄
∣∣Φ(t)〉. (A.15)

From (A.15) it follows that application of an RF-pulse of “power”τH1= π will have the effect of rotating the spin
by an angle ofπ/2 about they-axis. For example,

eiτH0S
z/h̄eiπS

y/2h̄|↑〉 = eiτH0S
z/h̄

[
cos

π

4

(
1 0
0 1

)
+ i sin

π

4

(
0 −i
i 0

)](
1
0

)
= 1√

2
eiτH0S

z/h̄

(
1
−1

)
= 1√

2

(
eiτH0/2

−e−iτH0/2

)
. (A.16)

In this rotated state the expectation values of the spin components are given by

〈↑|e−iπSy/2h̄e−iτH0S
z/h̄SxeiτH0S

z/h̄eiπS
y/2h̄|↑ =−h̄cosτH0, (A.17a)

〈↑|e−iπSy/2h̄e−iτH0S
z/h̄SyeiτH0S

z/h̄eiπS
y/2h̄|↑ =−h̄sinτH0, (A.17b)

〈↑|e−iπSy/2h̄e−iτH0S
z/h̄SzeiτH0S

z/h̄eiπS
y/2h̄|↑ = 0, (A.17c)

showing that the time of the RF-pulse also affects the projection of the spin on thex- andy-axis.
It is instructive to derive the TDSE that corresponds to approximation (A.15). Taking the derivative of (A.15)

with respect tot we obtain

ih̄
∂

∂t

∣∣Φ(t)〉=−H0S
z − H1

2

[
Sx sinH0t + Sy cosH0t

]∣∣Φ(t)〉, (A.18)

telling us that the approximate solution (A.15) is the exact solution for an RF-field rotating in space [41]. The fact
that the application of an RF-pulse does notexactlycorrespond to a simple rotation in spin space may well be
important for applications of NMR techniques to QC’s.

Finally we note that our choice of using “sinωt” instead of “cosωt” [41] to couple the spin to the RF-field
merely leads to a phase shift. In the former case rotating the spin around thex-axis requires a pulse along the
y-axis, whereas in the latter the pulse should be applied along thex-axis [41].
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Appendix B. Basic operations

Below we list a number of identities that are useful to compute by hand the action of the sequences appearing
above. The convention adopted in this paper is that

|0〉 = |↑〉 =
(

1
0

)
; |1〉 = |↓〉 =

(
0
1

)
. (B.1)

A straightforward calculation yields:

X|0〉 = 1√
2

(|0〉 + i|1〉), X|1〉 = 1√
2

(
i|0〉 + |1〉), (B.2a)

X|0〉 = 1√
2

(|0〉 − i|1〉), X|1〉 = 1√
2

(−i|0〉 + |1〉), (B.2b)

Y |0〉 = 1√
2

(|0〉 − |1〉), Y |1〉 = 1√
2

(|0〉 + |1〉), (B.3a)

Y |0〉 = 1√
2

(|0〉 + |1〉), Y |1〉 = 1√
2

(−|0〉 + |1〉), (B.3b)

Y

[
1√
2
(|0〉 − |1〉)

]
=−|1〉, Y

[
1√
2
(|0〉 + |1〉)

]
= |0〉, (B.4a)

Y

[
1√
2
(|0〉 − |1〉)

]
= |0〉, Y

[
1√
2
(|0〉 + |1〉)

]
= |1〉, (B.4b)

XX|0〉 = i|1〉, XX|1〉 = i|0〉, (B.5a)

YY |0〉 = −|1〉, YY |1〉 = |0〉, (B.5b)

XY |0〉 = e−iπ/4√
2

(|0〉 − |1〉), XY |1〉 = e+iπ/4√
2

(|0〉 + |1〉), (B.6a)

XY |0〉 = e+iπ/4√
2

(|0〉 − |1〉), XY |1〉 = e−iπ/4√
2

(|0〉 + |1〉), (B.6b)

XY |0〉 = e+iπ/4√
2

(|0〉 + |1〉), XY |1〉 = e−iπ/4√
2

(−|0〉 + |1〉), (B.6c)

X Y |0〉 = e−iπ/4√
2

(|0〉 + |1〉), X Y |1〉 = e+iπ/4√
2

(−|0〉 + |1〉), (B.6d)

YXY |0〉 = e+iπ/4|0〉, YXY |1〉 = e−iπ/4|1〉, (B.7a)

YXY |0〉 = e−iπ/4|0〉, YXY |1〉 = e+iπ/4|1〉, (B.7b)

YXY |0〉 = e+iπ/4|1〉, YXY |1〉 = −e−iπ/4|0〉, (B.7c)

YX Y |0〉 = e−iπ/4|0〉, YX Y |1〉 = e+iπ/4|1〉, (B.7d)

W =X2Y = YX2=−X2
Y =−YX2

, (B.8a)

W |0〉 = i√
2

(|0〉 + |1〉), W |1〉 = i√
2

(|0〉 − |1〉), (B.8b)

W2|0〉 = −|0〉, W2|1〉 = −|1〉. (B.8c)
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