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We review recent work that employs the framework
of logical inference to establish a bridge between
data gathered through experiments and their objective
description in terms of human-made concepts. It is
shown that logical inference applied to experiments
for which the observed events are independent and
for which the frequency distribution of these events is
robust with respect to small changes of the conditions
under which the experiments are carried out yields,
without introducing any concept of quantum theory,
the quantum theoretical description in terms of the
Schrödinger or the Pauli equation, the Stern–Gerlach
or Einstein–Podolsky–Rosen–Bohm experiments. The
extraordinary descriptive power of quantum theory
then follows from the fact that it is plausible reasoning,
that is common sense, applied to reproducible and
robust experimental data.

1. Introduction
Quantum theory is unsurpassed as a description of the
data produced by many very different experiments in
(sub)-atomic, molecular and condensed matter physics,
quantum optics, etc. A large body of work focuses on
different interpretations of the quantum formalism [1–8]
and its derivations from different sets of axioms [9–20]
but offers no explanation of the success of quantum
theory that goes beyond ‘that is because of the way it is’.

2016 The Author(s) Published by the Royal Society. All rights reserved.
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In this paper, we review recent work that de-mystifies the extraordinary power of quantum
theory [21–23] by formalizing the human thought processes by which relationships between
data gathered through experiments and objective descriptions in terms of human-made concepts
may be established. A basic premise of this approach is that scientific theories are the result of
cognitive processing of the discrete events which are registered by our sensory system, of the
logical and/or cause-and-effect relationships between those events, and the use of metaphors to
make abstractions and construct concepts. This form of cognitive processing may be expressed in
terms of the algebra of logical inference (LI), a mathematical framework that facilitates rational
reasoning when there is uncertainty [24–28]. Statistical mechanics can be given an information-
theoretical justification by viewing the former as a problem of LI, thereby establishing a
relationship between the information-theoretic entropy [29] and the thermodynamic entropy
[30,31]. The resulting maximum-entropy principle [26,28,30,31] has recently been generalized to
a principle of entropic dynamics, a framework in which dynamical laws can be derived [32,33].

The LI approach, being extended logic, is not bound by ‘laws of physics’ and does not
require assumptions such as ‘the observed events are signatures of an underlying objective
reality—which may or may not be mathematical in nature’, ‘all things physical are information-
theoretic in origin’, ‘the universe is participatory’, etc. It yields results that are unambiguous
and independent of the individual subjective judgment, providing a rational explanation for
the extraordinary descriptive power of quantum theory, and it also provides strong support for
Bohr’s statement [34] that ‘The physical content of quantum mechanics is exhausted by its power
to formulate statistical laws governing observations under conditions specified in plain language’.

LI applies to situations where there may or may not be causal relationships between the
events [26,28]. Extracting cause-and-effect relationships from empirical evidence is a highly non-
trivial problem. In general, LI does not establish cause-and-effect relationships [28,35], although
rational reasoning about these relations should comply with the rules of LI. Furthermore,
a derivation of a quantum theoretical description from LI principles does not prohibit the
construction of cause-and-effect mechanisms that create the impression that these mechanisms
produce data that can be described by quantum theory [36,37]. In fact, there is a substantial body
of work demonstrating that it is indeed possible to construct simulation models which reproduce,
on an event-by-event basis, the results of interference/entanglement/uncertainty experiments
with single photons/neutrons [38–42]. This demonstration does not imply the reality of hidden
variables or something like that.

The LI approach which we review here leads to the view that quantum theory is a
phenomenological theory which can be derived from a set of simple general principles, not
axioms, in a way that is independent of any (strictly speaking, unknown) ‘more microscopic’
level of description. Therefore, its power does not depend on whether there exists an underlying
classical world with some hidden variables, or not. In this sense, there is a clear parallel with
Einstein’s view on thermodynamics. Einstein did not regard thermodynamics as a constructive
theory, an attempt to build a picture of complex phenomena out of some relatively simply
propositions, but rather as a theory of principles based on empirically observed properties of
phenomena, independent of a particular underlying model [43].

The paper is structured as follows. Section 2 briefly recapitulates the basic elements of LI
and reviews applications to the Stern–Gerlach (SG) and Einstein–Podolsky–Rosen–Bohm (EPRB)
experiment and a particle in a potential. It shows how the LI approach directly leads to the
probabilities for observing the events without invoking any concept of quantum theory. In §3,
we discuss two methods for transforming the solutions obtained through LI into the equations
that we know from quantum theory. A summary and discussion of more general aspects of the
work presented in this paper are given in §4.

2. Logical inference
The key concept of the LI approach is the plausibility, denoted by P(A | B), which, in general,
expresses the degree of belief of an individual that proposition A is true, given that proposition
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B is true [25,26,28,44]. The plausibility P(A | B) is an intermediate mental construct that serves
to carry out inductive logic, that is rational reasoning, in a mathematically well-defined
manner [26,28].

The algebra of LI can be derived from three so-called ‘desiderata’, namely (i) plausibilities are
represented by real numbers, (ii) plausibilities must exhibit agreement with rationality and (iii) all rules
relating plausibilities must be consistent [25–28]. These three desiderata only describe the essential
features of the plausibilities and are not a set of axioms that plausibilities have to satisfy. It is a
most remarkable fact that these three desiderata suffice to uniquely determine the set of rules
by which plausibilities may be manipulated [25–28]. It can be shown [25–28] that plausibilities
may be chosen to take numerical values in the range [0, 1] and these values are related by
three rules, namely: (1) P(A | Z) + P(Ā | Z) = 1, where Ā denotes the negation of proposition A
and Z is a proposition assumed to be true; (2) the ‘product rule’ P(AB | Z) = P(A | BZ)P(B | Z) =
P(B | AZ)P(A | Z), where the ‘product’ BZ denotes the logical product (conjunction) of the
propositions B and Z; and (3) P(AĀ | Z) = 0 and P(A + Ā | Z) = 1, where the ‘sum’ A + B denotes
the logical sum (inclusive disjunction) of the propositions A and B [25–28]. The algebra of LI, as
defined by the rules (1)–(3), contains Boolean algebra as a special case and is the foundation for
powerful tools such as the maximum entropy method and Bayesian analysis [26,28]. The rules (1)–
(3) are unique [26–28]: any other rule which applies to plausibilities represented by real numbers
and is in conflict with rules (1)–(3) will be at odds with rational reasoning and consistency, as
embodied by the desiderata (i)–(iii). It should be mentioned here that it is not allowed to define a
plausibility for a proposition conditional on the conjunction of mutually exclusive propositions:
reasoning on the basis of two or more contradictory premises is out of the scope of LI.

The applications of LI which we review in the present paper describe phenomena in a manner
which is independent of individual subjective judgment. Therefore, to differentiate between the
‘objective’ and ‘subjective’ mode of application of LI, we will refer to the plausibility as ‘inference-
probability’ or ‘i-prob’ for short. A more extensive discussion and arguments for distinguishing
between plausibility, inference probability and Kolmogorov probability can be found in [22]. For
the purpose of the present review, it is sufficient if the reader does not think of the i-prob as a
frequency or probability in the traditional mathematical sense but merely as a numerical measure
for the fact that proposition A is true, given that proposition B is true.

In real experiments, there is always uncertainty about some factors which may or may
not influence the outcome of the measurements: it is presumptuous to assume that we know
‘everything’ about these factors. In particular, if experiment shows that (a) there is uncertainty
about each individual event and (b) the conditions under which the experiment is carried out are
also subject to uncertainties, then the data collected in such an experiment cannot be described
by the traditional theories of classical physics, the reason being that the theoretical description of
‘classical physics’ assumes that there is absolute certainty about the outcome of each individual
experiment on each individual object. By contrast, the LI approach is well suited to deal with
uncertainties but, as will be explicitly shown later, to render the resulting description free of
individual subjective judgement, it is necessary to assume that (c) the frequencies with which
events are observed are reproducible and robust (to be discussed later) against small changes
in the conditions. Furthermore, the LI approach only yields a quantum theoretical description if
in addition we assume that (d) individual events are independent, meaning that knowing any
(necessarily finite) set of events does not help to increase the certainty by which we can predict
another (past or future) event that does not belong to the set.

If the experimental data comply with requirements (a)–(d), application of LI rather
straightforwardly yields basic equations of quantum theory. The LI derivation of these equations
has a generic structure. The first step is to list the features of the experiment that are deemed to
be relevant and to introduce the i-probs of the individual events. The second step is to impose the
condition that the experiment yields robust, reproducible results, not on the level of individual
events, but on the level of the frequencies of observing many events and, depending on the
problem, to impose other constraints about, for example, the fact that the particle moves, etc.
As an example of such a constraint, we will use a natural requirement that the equations of
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Figure 1. Diagram of the SG experiment. The source S, activated at times labelled by i = 1, 2, . . . , N, sends a particle carrying
amagnetic momentM to themagnet Bwith its (inhomogeneous) magnetic field oriented along the direction a. Depending on
the relative directions of a andM, the particle is detected with 100% certainty by either D+1 or D−1. (Online version in colour.)

classical mechanics should be as accurate as possible for the average results of many quantum
experiments. The result of the second step is a functional of the i-prob. The third step is to solve
the robust optimization problem defined in terms of this functional and, optionally, to transform
the formal solution in terms of i-probs into linear equations which we recognize as basic equations
of quantum theory.

(a) Application: Stern–Gerlach experiment
The application of LI to event-based phenomena follows a particular pattern which is best
illustrated by considering the simplest case, namely the SG experiment of which the schematic
is shown in figure 1. In the SG experiment, there are two different outcomes which we label by
the variable x taking the values x = +1 or x = −1. In an SG experiment, the source is activated
at discrete times labelled by i = 1, . . . , N, resulting in time series of detection events xi = ±1. The
first step in the LI treatment is to assign to an individual event x = ±1, an i-prob P(x | a, M, Z) to
observe that event. Here, a and M are shorthands for the proposition that (within a small range)
the directions of the magnet and of the magnetic moment of the particle are indeed a and M,
respectively, and that the proposition Z, representing all the other conditions under which the
experiment is performed, is true. It is assumed that the conditions represented by Z are fixed and
identical for all experiments.

Assuming that the observed counts do not depend on the orientation of the chosen reference
frame, P(x | a, M, Z) can only depend on a · M (by construction |a| = 1 and |M| = 1). Hence,
we must have P(x | a, M, Z) = P(x | a · M, Z) = P(x | θ , Z), where cos θ = a · M. This assumption is
necessary to consider M as the direction of the magnetic moment of the particle, whereas only a is
known from experiment. Such symmetry requirements are very important for our construction,
as they establish relationships between what is measured (position of detector) and what is
supposed to be measured (characteristics of a particle). It is expedient to write P(x | θ , Z) as

P(x | θ , Z) = 1 + xE(θ )
2

, E(θ ) =
∑

x=±1

xP(x | θ , Z). (2.1)

According to assumption (d), there is no relationship between the actual values of xn and xn′ if
n �= n′. With this assumption, repeated application of the product rule yields

P(x1, . . . , xN | θ , Z) =
N∏

i=1

P(xi | θ , Z). (2.2)

Repeating the experiment N times yields nx events of the type {x} (n+1 + n−1 = N) and the i-prob
to observe the compound event {n+1, n−1} is given by [22]

P(n+1, n−1 | θ , N, Z) = N!
∏

x=±1

P(x | θ , Z)nx

nx!
. (2.3)
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Although the individual events may be expected to change from run to run, for sufficiently large
N the numbers {n+1, n−1} should exhibit some kind of robustness with respect to small changes
of θ . Otherwise, the {n+1, n−1} would vary erratically with θ and these ‘irreproducible’
experiments would be discarded. Obviously, the expected robustness with respect to small
variations should be reflected in the expression of the i-prob to observe the data (within the usual
statistical fluctuations).

If the outcome of the experiment is indeed described by the i-prob equation (2.3) and the
experiment is supposed to yield reproducible, robust results, small changes of θ should not have
a drastic effect on the outcome. Let H0 and H1 be the hypotheses that the data {n+1, n−1} are
observed if the angle between the unit vector a is θ and θ + ε, respectively. The evidence Ev of
hypothesis H1, relative to hypothesis H0, is defined by [26,28]

Ev = ln
P(n+1, n−1 | θ + ε, N, Z)

P(n+1, n−1 | θ , N, Z)
, (2.4)

where the logarithm serves to facilitate the algebraic manipulations. If H1 is more (less) plausible
than H0 then Ev> 0 (Ev< 0). The absolute value of the evidence, |Ev| is a measure for the
robustness of the description (the sign of Ev is arbitrary, hence irrelevant): the smaller |Ev| the
more robust the experiment is for small changes of θ .

The problem of determining the most robust description of the experimental data may now
be formulated as follows: search for the i-probs P(n+1, n−1 | θ , N, Z) which minimize |Ev| for
all possible ε (ε small) and for all possible θ . The clauses ‘for all possible ε and θ ’ render the
minimization problem an instance of a robust optimization problem. The robust optimization
problem has a trivial solution, namely P(n+1, n−1 | θ , N, Z) = P(n+1, n−1 | N, Z), which can only
describe experiments for which {n+1, n−1} show no dependence on θ . Experiments which produce
results that do not depend on the conditions seem fairly pointless and therefore we explicitly
exclude i-probs that are constant with respect to changes of the conditions. It is not difficult to
show [22] that our concept of a robust experiment implies that the i-probs which describe such
an experiment can be found by minimizing |Ev|, subject to the constraints that (C1) ε is small
but arbitrary, (C2) not all i-probs are independent of θ and (C3) |Ev| is independent of θ [21–23].
Omitting terms of O(ε3), minimizing |Ev| while taking into account the constraints (C2) and (C3)
amounts to finding the i-probs P(x | θ , Z) which minimize [22],

IF =
∑
x±1

1
P(x | θ , Z)

(
∂P(x | θ , Z)

∂θ

)2
, (2.5)

subject to the constraint that ∂P(x | θ , Z)/∂θ �= 0.1 The r.h.s. of equation (2.5) is the Fisher
information for the problem at hand and, because of the constraint (C3), should not depend on θ .

Using equation (2.1), we can rewrite equation (2.5) as IF = (∂E(θ )/∂θ )2/((1 − E2(θ )), yielding
E(θ ) = cos(θ

√
IF + φ), where φ is an integration constant. As E(θ ) is a periodic function of θ we

must have
√

IF = K, where K is an integer and hence E(θ ) = cos(Kθ + φ). The solution K = IF = 0 is
excluded from further consideration because it describes an experiment in which the frequency
distribution of the observed data does not depend on θ (see constraint (C2)). Therefore, the
physically relevant, non-trivial solution with minimum Fisher information corresponds to K = 1.
Furthermore, as E(θ ) is a function of a · M = cos θ only, we must have φ = 0, π . Therefore, for the
SG experiment, the solution of the robust optimization problem reads

P(x | a · M, Z) = P(x | θ , Z) = 1 ± xa · M
2

. (2.6)

The ± sign in equation (2.6) reflects the fact that the mapping between x = ±1 and the two
different directions is only determined up to a sign.

1In the course of deriving equation (2.5), our criterion of robustness enforces the intuitively obvious assignment P(x | θ , Z) =
nx/N, establishing the relationship between the epistemological concept (i-prob) and the physically measurable quantity
(frequency of outcomes). It is at this point that the possibility to view the i-prob as a ‘subjective’ assignment is eliminated [22].
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Figure 2. Diagram of the EPRB thought experiment. The source S, activated at times labelled by i = 1, 2, . . . , N, sends a
particle with magnetic moment, represented by the unit vectorM1, to the SG magnet B1 and another particle with magnetic
moment, represented by the unit vectorM2, to the SG magnet B2. The orientations of the magnets, represented by unit vectors
a1 and a2, affect the deflection of the particles by the magnets. Each particle going to the left (right) is detected with 100%
certainty by either D+1,1 or D−1,1 (D+1,2 or D−1,2). (Online version in colour.)

Comparing equation (2.6) with the quantum theoretical expression (which is exactly the same)
demonstrates that Born’s rule, one of the postulates of quantum theory, appears as a consequence
of LI applied to robust experiments [22,23]. In the LI approach, equation (2.6) is not postulated
but follows from the assumption that the (thought) experiment that is being performed yields the
most reproducible results, revealing the conditions for an experiment to produce data which are
described by quantum theory.

(b) Application: Einstein–Podolsky–Rosen–Bohm experiment
The LI treatment of the EPRB experiment is, in essence, the same as that of the SG experiment.
Therefore, we only discuss the main assumptions and present the results. Technical details can be
found elsewhere [22].

Referring to the schematic shown in figure 2, the i-prob to observe a pair {x, y} is denoted by
P(x, y | a1, a2, Z), where Z represents all the conditions under which the experiment is performed,
with the exception of the directions a1 and a2 of the SG magnets B1 and B2, respectively. It
is important to note that P(x, y | a1, a2, Z) does not depend on M1 and M2. In concert with the
general assumption (d), it is assumed that there is no relationship between the actual values of
the pairs {xi, yi} and {xi′ , yi′ } if i �= i′, meaning that each repetition of the experiment represents an
identical event of which the outcome is logically independent of any other such event. Invoking
the product rule, the logical consequence of this assumption is that P(x1, y1, . . . , xN , yN | a1, a2, Z) =∏N

i=1 P(xi, yi | a1, a2, Z) meaning that the i-prob P(x1, y1, . . . , xN , yN | a1, a2, Z) to observe the
compound event {{x1, y1}, . . . , {xN , yN}} is completely determined by the i-prob P(x, y | a1, a2, Z)
to observe the pair {x, y}.

We also assume that the i-prob P(x, y | a1, a2, Z) to observe a pair {x, y} does not change if we
apply the same rotation to both magnets B1 and B2. Expressing this invariance with respect
to rotations of the coordinate system (Euclidean space and Cartesian coordinates are used
throughout this paper) in terms of i-probs yields P(x, y | a1, a2, Z) = P(x, y | Ra1, Ra2, Z), where R

denotes an arbitrary rotation in three-dimensional space which is applied to both magnets B1
and B2, implying that P(x, y | a1, a2, Z) is a function of the inner product a1 · a2 only. Therefore,
we must have P(x, y | a1, a2, Z) = P(x, y | a1 · a2, Z) = P(x, y | θ , Z), where θ = arccos(a1 · a2) denotes
the angle between the unit vectors a1 and a2. Note that for any integer value of K, θ + 2πK
represents the same physical arrangement of the magnets M1 and M2. From the algebra of
LI, it follows that the i-prob to observe x, irrespective of the observed value of y, is given
by P(x | a1, a2, Z) = ∑

y=±1 P(x, y | a1, a2, Z). In the context of the EPRB experiment, it is assumed
that observing x = +1 is as likely as observing x = −1, independent of the observed value of
y. This implies that we must have P(x = +1 | a1, a2, Z) = P(x = −1 | a1, a2, Z) which, in view of
the fact that P(x = +1 | a1, a2, Z) + P(x = −1 | a1, a2, Z) = 1 implies that P(x = +1 | a1, a2, Z) = P(x =
−1 | a1, a2, Z) = 1

2 . Applying the same reasoning to the assumption that, independent of the
observed values of x, observing y = +1 is as likely as observing y = −1 yields P(y | a1, a2, Z) =
P(x = +1, y | a1, a2, Z) + P(x = −1, y | a1, a2, Z) = 1

2 . Note that we did not assign any prior i-prob
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nor did we make any reference to concepts such as the singlet state. Although the symmetry
properties which have been assumed are reminiscent of those of the singlet state, this is deceptive:
without altering the assumptions, the LI approach also yields the correlations for the triplet
states [22].

Adopting the same reasoning as in §2b, it follows directly from assumptions (a)–(d) that the
i-prob to observe a pair {x, y} takes the form [22] P(x, y | θ , Z) = [1 + xyE12(θ )]/4, where E12(θ ) =
E12(a1, a2, Z) is a periodic function of θ . Minimization of the corresponding expression of |Ev|
while taking into account the constraints (C2) and (C3) (see §2a) is tantamount to finding the
i-probs P(x, y | θ , Z) which minimize [22]

IF =
∑

x,y=±1

1
P(x, y | θ , Z)

(
∂P(x, y | θ , Z)

∂θ

)2
= 1

1 − E2
12(θ )

(
∂E12(θ )
∂θ

)2
, (2.7)

subject to the constraint that ∂P(x, y | θ , Z)/∂θ �= 0 for some pairs (x, y). Equation (2.7) is
readily integrated to yield E12(θ ) = cos(θ

√
IF + φ), where φ is an integration constant. As

E12(θ ) is a periodic function of θ , we must have
√

IF = K, where K is an integer and
hence E12(θ ) = cos(Kθ + φ). Because of constraint (C2), we exclude the case K = IF = 0 from
further consideration. Hence the physically relevant, non-trivial solution corresponds to K = 1.
Furthermore, as E12(θ ) is a function of a1 · a2 = cos θ only, we must have φ = 0,π , reflecting an
ambiguity in the definition of the direction of B1 relative to the direction of B2. Choosing the
solution with φ = π , we find

P(x, y | a1, a2, Z) = 1 − xya1 · a2

4
, 〈xy〉 =

∑
x,y=±1

xyP(x, y | a1, a2, Z) = −a1 · a2, (2.8)

〈x〉 = ∑
x,y=±1 xP(x, y | a1, a2, Z) = 0 and 〈y〉 = ∑

x,y=±1 yP(x, y | a1, a2, Z) = 0, all in complete

agreement with the quantum theoretical description of two S = 1
2 particles in the singlet state

[45,46]. As the LI treatment of a robust EPRB experiment directly yields the probabilistic
description that we know from quantum theory without invoking the notions of the latter, it
follows that the concept of quantum entanglement cannot be essential for describing the data
produced by EPRB experiments.

It may be of interest to mention here that, in spite of the widely spread claims that
real EPRB experiments have proved quantum theory correct, none of the three different
experiments for which data have been made available [47–49] survives the confrontation with
the five-standard-deviation-criterion hypothesis test that the data comply with the quantum
theoretical description given by equation (2.8) [50,51]. It seems that, for the time being, only
computer experiments are able to generate data that are not in conflict with the quantum
theoretical description of the EPRB thought experiment [39,50].

(c) Application: particle in a potential
For simplicity of notation and presentation, in the present review, we only discuss the problem
of inferring the plausibility that the particle is at a certain position X on a line and produces a
click on a detector at position x, also on a line. The fully fledged three-dimensional derivation
including electromagnetic potentials and/or spin can be found elsewhere [22,23].

The measurement scenario is as follows. We imagine N repetitions (n = 1, . . . , N) of an
experiment performed on a particle moving on a line of linear extent [−L, L]. Nothing is known
about the direction of motion of the particle. In each such experiment, a source emits a signal
at discrete times labelled by the integer τ = 1, . . . , M. It is assumed that for each repetition, the
particle is at the unknown position −L ≤ Xτ ≤ L. The signal solicits a response of the particle,
generating a click of the detector at discrete position jn,τ with −K ≤ jn,τ ≤ K. The detectors
−K, . . . , K have spatial extent �= L/K and are placed next to each other, completely covering
the line segment [−L, L]. It is assumed that for each signal emitted by the source, one and only
one of the 2K + 1 detectors fires.
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The result of N repetitions of the experiment yields the dataset

Υ = {jn,τ | −K ≤ jn,τ ≤ K; n = 1, . . . , N; τ = 1, . . . , M}, (2.9)

or, denoting the total count of clicks of detector j at time τ by 0 ≤ kj,τ ≤ N, we have

D =
⎧⎨
⎩kj,τ

∣∣∣∣∣∣ N =
K∑

j=−K

kj,τ ; τ = 1, . . . , M

⎫⎬
⎭ . (2.10)

Following the general procedure, the next step is to introduce the i-prob P(j | Xτ , τ , Z), expressing
the relation between a particle at unknown location Xτ at discrete time τ and the click of the
detector at position j. The conditions represented by Z are fixed and identical for all experiments.
Note that we will not try to estimate the unknown position X but rather determine the i-prob
P( j | Xτ , τ , Z) which yields the most robust set of data, robust with respect to small changes of Xτ
for all τ . According to basic assumption (d), there is no relation between the actual values of jn,τ

and jn′,τ ′ if n �= n′ or τ �= τ ′. Hence, for fixed positions Xτ , the i-prob to observe all the data D is
given by

P(D | X1, . . . , XN , N, Z) = N!
M∏
τ=1

K∏
j=−K

P( j | Xτ , τ , Z)kj,τ

kj,τ !
. (2.11)

It is now straightforward to repeat the steps that led to equation (2.4) to find that the measure of
a robust experiment is given by

Ev = −Nε2

2

K∑
j=−K

M∑
τ=1

1
P(j | Xτ , τ , Z)

(
∂P(j | Xτ , τ , Z)

∂Xτ

)2
+ O(ε3), (2.12)

and that the most non-trivial robust experiment is described by the i-prob P(j | Xτ , τ , Z) which
minimizes the Fisher information

IF =
K∑

j=−K

M∑
τ=1

1
P(j | Xτ , τ , Z)

(
∂P(j | Xτ , τ , Z)

∂Xτ

)2
, (2.13)

subject to the constraint that not all ∂P( j | Xτ , τ , Z)/∂Xτ are zero and the additional constraints to
be discussed below.

As the Schrödinger equation is formulated in continuum space, it is necessary to replace
equation (2.13) by its continuum limit,

IF =
∫

dx
∫

dt
1

P(x | X(t), t, Z)

(
∂P(x | X(t), t, Z)

∂X(t)

)2

=
∫

dx
∫

dt
1

P(x | X(t), t, Z)

(
∂P(x | X(t), t, Z)

∂x

)2
, (2.14)

where we assumed that it does not matter where in space we perform the experiment
(homogeneity of space), implying that P(x | X(τ ), τ , Z) = P(x + ζ | X(τ ) + ζ , τ , Z), where ζ is an
arbitrary real number. As before, it is a symmetry requirement which allows us to regard the
unknown quantity X as the ‘coordinate of a particle’ based on measurement of the coordinate of
the detector that clicks. Technically speaking, after passing to the continuum limit, P(x | X(t), t, Z)
denotes the probability density, not the probability itself, but as there can be no confusion about
which case, discrete or continuum, we are considering, we use the same symbol for the probability
density and the probability.

In general, if there is no uncertainty about individual events, we expect the description to
agree with classical theoretical mechanics. We use this ‘correspondence principle’ to incorporate
classical theoretical mechanics into the LI approach [22,23]. In the absence of uncertainty and
in line with the basic ideas of classical mechanics, the observed detector clicks form smooth
trajectories. One such trajectory can always be represented by dx(t)/dt = U(x(t), t) but the function
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U(., .) may not be ‘universal’ in the sense that it may change from experiment to experiment,
e.g. with the initial conditions. However, if U(., .) is universal and sufficiently ‘nice’ (we ignore
technical details related to differentiability, etc.) we may write [52]

dx(t)
dt

= U(x(t), t) = ∂S(x, t)
∂x

, (2.15)

where S(x, t) ≡ S(x(t), t) and it follows that

d2x(t)
dt2 = ∂

∂x

[
∂S(x, t)
∂t

+ 1
2

(
∂S(x, t)
∂x

)2
]

≡ −∂V(x, t)
∂x

, (2.16)

showing that if there exists a universal function U(x(t), t) which describes the data according to
equation (2.15), then there exists a potential V(x, t) such that the Hamilton–Jacobi equation,

∂S(x, t)
∂t

+ 1
2

(
∂S(x, t)
∂x

)2
+ V(x, t) = 0, (2.17)

holds [52]. Thus, the assumption that in the absence of uncertainty, all the possible trajectories x(t)
can be described by one function U(., .) quite straightforwardly yields equation (2.17), that is one
of the formulations of classical theoretical mechanics.

In the presence of uncertainty about individual events, we can combine the notion of a robust
experiment and the desire to recover equations of classical mechanics as a limiting case by
searching for the robust (i.e. for all X(t)) minima of the functional [22,23]

F =
∫

dx
∫

dt

{
1

P(x | X(t), t, Z)

(
∂P(x | X(t), t, Z)

∂x

)2

+ 2mλ

[
∂S(x, t)
∂t

+ 1
2m

(
∂S(x, t)
∂x

)2
+ V(x, t)

]
P(x | X(t), t, Z)

}
, (2.18)

where λ is a parameter having dimension s2/kg m4 and, for convenience of comparing with
quantum theory, we introduced the mass m of the particle by substituting S(x, t) → S(x, t)/m and
V(x, t) → V(x, t)/m.

Standard variational calculus yields the extrema of equation (2.18) in terms of two
coupled nonlinear first-order differential equations of the functions P(x | X(t), t, Z) and S(x, t)
which are identical to the (one-dimensional version of the) equations that appear in
Madelung’s hydrodynamical form [53] or Bohm’s interpretation [1] of quantum theory. However,
equation (2.18) was not derived from quantum theory but was obtained through logical inference
from data produced by robust experiments and a correspondence principle, without invoking
concepts of quantum theory. Therefore, in principle we do not need the latter to describe these
experiments but we can use the equivalence of equation (2.18) and the mathematical framework
of quantum theory to great advantage for turning the nonlinear equations into linear ones which
can be solved by the powerful machinery of linear algebra. Technical details of the derivation of
the functionals analogous to F for the multidimensional Schrödinger equation and Pauli equation
for a particle with spin can be found in the original papers [22] and [23], respectively.

3. Connecting with quantum theory
The LI approach yields descriptions of robust experiments in terms of i-probs. In this section,
we discuss two different methods of transforming these i-probs into the wavefunction formalism
of quantum theory.

The first method is based on the general observation that in scientific reasoning it is good
practice to reduce the complexity of the description of the whole by separating the description
of data into several parts. We consider different ways of organizing the observed data and
scrutinize the conditions under which a description of the various parts of the experiment can
be separated (as much as possible). Then we show, in the case of the SG and EPRB experiments,
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how the wavefunction description naturally emerges as a result of this separation procedure.
It automatically follows that the wavefunction (or density matrix) description is less general
than the one in terms of conditional probabilities in the sense that the former can only describe
situations in which the separation procedure can actually be carried out.

The second method employs a polar representation of the i-prob to bring the nonlinear robust
optimization problem into a linear form and is most useful for cases that involve dynamics,
yielding Schrödinger-like equations.

(a) Separation procedure [54]
Consider again the SG experiment (figure 1) yielding the dataset

D = {x1, . . . , xN | xi = ±1, i = 1, . . . , N}, (3.1)

where N is the total number of recorded events. Suppose that the analysis of correlations among
the observed xi indicates that the xi are independent events, in line with assumption (d) (see §2).
Then the counts N(±1 | a, M, Z) of outcomes with x = ±1 (N = N(+1 | a, M, Z) + N(−1 | a, M, Z))
give a complete characterization of the data. In essence, all datasets having the same average

〈x〉 = 1
N

∑
x=±1

xN(x | a, M, Z) ≡
∑

x=±1

xf (x | a, M, Z) (3.2)

are equivalent. Assuming (as in §2a) that the observed counts do not depend on the orientation
of the chosen reference frame, f (x | a, M, Z) can only depend on a · M (by construction |a| = 1 and
|M| = 1). Hence, we must have f (x | a, M, Z) = f (x | a · M, Z).

Equation (3.2) is a holistic description of the data in terms of a · M and it is by no means
obvious how to construct, if possible at all, a description in terms of a part that refers to the
object (represented by M) and another part that refers to the magnet (represented by a). To
explore the possibilities of separating in parts, it is expedient to consider alternative ways of
writing equation (3.2). Let us first organize the data and frequencies in vectors x = (+1, −1)T and
f = ( f (+1 | a, M, Z), f (−1 | a, M, Z))T, respectively. Then, we trivially have

〈x〉 = xT · f = Tr xTf = Tr fxT, (3.3)

where fxT is a 2 × 2 matrix and Tr A denotes the trace of the matrix A. Now note that any rewriting
of x and f in terms of vectors, matrices, . . ., x̃ and f̃ such that Tr f̃ = 1 and Tr f̃x̃ = 〈x〉 does not change
〈x〉; that is, it yields the same complete description of the data. Therefore, with this in mind, we
consider the rearrangement of the data into 2 × 2 (diagonal, hermitian) matrices X and F with
elements X(x, x′) = xδx,x′ and F(x, x′) = f (x | a, M, Z)δx,x′ , respectively, and rewrite equation (3.3) as

〈x〉 = Tr FX = Tr ρ̂X̂, (3.4)

where ρ̂ and X̂ can be any pair of 2 × 2 matrices that satisfies equation (3.4). Clearly, a formal
rewriting of equation (3.3) such as equation (3.4) cannot, by itself, bring anything new but
representation (3.4) offers the flexibility that allows us to perform the separation by using some
elementary linear algebra, as we now show.

We know from linear algebra that any hermitian 2 × 2 matrix can be written as a linear
combination of four hermitian 2 × 2 matrices. Without loss of generality, we may choose the
Pauli-spin matrices σ = (σ x, σ y, σ z) and the unit matrix 1 as the orthonormal basis set for the
vector space of 2 × 2 matrices with an inner product defined by (A, B) = Tr A†B. Without loss of
generality, we may write

ρ̂ = 1 + ρ · σ

2
and X̂ = u01 + u · σ , (3.5)

where ρ = (ρx, ρy, ρz), u0 and u = (ux, uy, uz) are all real-valued. It is now straightforward to
show [23] that the desired separation can be realized by requiring that u0 = u0(a, Z), ux =
ux(a, Z), uy = uy(a, Z), uz = uz(a, Z), ρx = ρx(M, Z), ρy = ρy(M, Z) and ρz = ρz(M, Z) (recall that Z is
considered to represent all fixed conditions which are important to the actual experiment but are

 on April 18, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


11

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150233

.........................................................

not of immediate interest). Assuming that the observed counts do not depend on the orientation
of the reference frame (see earlier), 〈x〉 is a function of a · M only. This requirement enforces ρ = M
and u = a. Hence, we have 〈x〉 = u0 + M · a and as |〈x〉| ≤ 1 it follows that −1 ≤ u0 + M · a ≤ 1; for
a = M and a = −M we have u0 ≤ 0 and 0 ≥ u0, respectively, hence u0 = 0. Note that we could
equally well have made the choice ρ = a and u = M instead of ρ = M and u = a. However, the
former choice leads to inconsistencies for instance when we consider an experiment in which we
place several SG magnets in succession or consider the EPRB experiment.

Thus, we have shown that only the desire to represent the data equation (3.1) such that
the description of the whole experiment separates into a description of the ‘source’ (M) and a
description of the ‘measurement device’ (a) together with some elementary linear algebra leads
to the unique description of the SG experiment in terms of 2 × 2 matrices,

ρ̂ = (1 + M · σ )
2

and X̂ = a · σ , (3.6)

conditional on the assumptions that the individual outcomes of an SG experiment are
independent and that the frequency distribution of these outcomes does not depend on the
orientation of the reference frame. From equation (3.6), it follows immediately that ρ̂2 = ρ̂, that
is ρ̂ is a projection. This implies that we can write [46]

ρ̂ = |Ψ 〉〈Ψ |, |Ψ 〉 = a↑| ↑〉 + a↓| ↓〉, (3.7)

where the vector |Ψ 〉 is expressed in the basis of the eigenstates (| ↑〉, | ↓〉) of the σ z matrix.
Summarizing: changing the representation of the data in combination with the desire

to separate as much as possible the description of the source and measurement devices
automatically enforces the Hilbert space structure that is a characteristic signature of quantum
theory [23]. No postulates of quantum theory are required to derive (or postulate) equations (3.6)
or (3.7). Furthermore, it is straightforward to extend the description to include mixed states [23].

There is nothing that forbids an experiment to yield for instance f (x | a · 〈M〉), Z) = (1 + x(a ·
M)k)/2 with k = 2 (we certainly can generate such data using a digital computer, a metaphor of
a physical device on which we carry out experiments). However, the data produced by such an
experiment cannot be represented by equation (3.6). In other words, the class of conceivable SG
experiments is significantly larger than the class of experiments that allows for the separation: the
class of realizable SG experiments is (much) larger than the class of SG experiments describable
by quantum theory.

The fact that the separation procedure leads, in such a simple manner, to the quantum
theoretical description (3.6) of the SG experiment provokes the question: ‘What is so special
about the case in which the separation procedure can be carried out?’ The answer is given in
§2. Using equation (3.6), according to the postulate of quantum theory [46], the probability to
observe an event x is given by P(x) = Tr ρ̂(1 + xa · σ )/2 = (1 + xa · M)/2, which is exactly the same
expression as the one obtained by LI treatment of a robust SG experiment. In other words, if the
SG experiment is robust, it may be equally well described by quantum theory.

The application of the separation procedure to the EPRB experiment is an almost trivial
extension of the application to the SG experiment. We start by writing the observations xy =
(+1, −1, +1, −1) and frequencies ( f (+1, +1 | θ , Z), f (−1, +1 | θ , Z), f (+1, −1 | θ , Z), f (−1, −1 | θ , Z))
as 4 × 4 matrices X, Y and F with elements X([x, y], [x′, y′]) = xδx,x′δy,y′ , Y([x, y], [x′, y′]) =
yδx,x′δy,y′ and F([x, y], [x′, y′]) = f (xy | a, M, Z)δx,x′δy,y′ , respectively. Here we use the notation [x, y] =
(1 − x)/2 + (1 − y) to indicate that the pairs (x, y) and (x′, y′) specify the row, respectively, the
column index (running from 0 to 3) of the matrices X and F. We search for 4 × 4 matrices ρ̂, X̂
and Ŷ which satisfy

Tr ρ̂ = 1, Tr ρ̂X̂ = 〈x〉, Tr ρ̂Ŷ = 〈y〉 and Tr ρ̂X̂Ŷ = 〈xy〉, (3.8)

and allow for the desired separation. Using the direct product of the Pauli-spin matrices σ j =
(σ x

j , σ y
j , σ z

j ) for j = 1, 2 and the unit matrix 1 as the orthonormal basis set for the vector space of
4 × 4 matrices, we may write (without loss of generality) ρ̂ = ρ01 + ρ1 · σ 1 ⊗ 12 + 11 ⊗ ρ2 · σ 2 +
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σ 1 · ρ12 · σ 2, where the number ρ0, the vectors ρj and the matrix ρ12 are all real-valued. As each
of the two sides of the EPRB experiment contains an SG magnet, consistency with the separated
description of the SG experiment demands that we choose X̂ = a1 · σ 1 ⊗ 12 and Y =11 ⊗ a2 · σ 2.
We find the explicit expression of ρ̂ by requiring that equation (3.8) holds. Focusing on the case
of the EPRB experiment for which 〈x〉 = 〈y〉 = 0 and 〈xy〉 = −a1 · a2, it follows that ρ0 = 1

4 , ρ1 =
ρ2 = 0 and that ρ̂ takes the form [23]

ρ̂ = 1 − σ 1 · σ 2

4
. (3.9)

It is not difficult to verify that ρ̂2 = ρ̂, hence equation (3.9) is the density matrix of a pure quantum
state [46]. Computing the matrix elements of ρ̂ in the spin-up, spin-down basis of both spins,
we find

ρ̂ =
( | ↑↓〉 − | ↓↑〉√

2

) ( 〈↑↓ | − 〈↓↑ |√
2

)
(3.10)

and
〈xy〉 = Tr ρ̂X̂Ŷ = Tr ρ̂a1 · σ 1a2 · σ 2 = −a1 · a2, (3.11)

which we recognize as the quantum theoretical description of two spin- 1
2 objects in the singlet

state. Therefore, we have shown that rewriting the data gathered in an ideal EPRB thought
experiment in a manner that allows for the envisaged separation naturally leads, without
invoking postulates of quantum theory and/or probability theory, to the quantum theoretical
description of two S = 1

2 spins in the singlet state.
As in the case of the ideal SG experiment, the representation in parts puts a severe restriction

on the kind of data that we can describe, again provoking the question: ‘What is so special about
the case in which the separation procedure can be carried out?’ The answer is the same as in the
case of the SG experiment: it is precisely for the special case of the robust EPRB experiment.

(b) Equivalence with quadratic forms
In the case of SG or EPRB experiment, the LI approach yields equations for the i-probs which
are easy to solve directly. As the i-probs describe the data produced by robust experiments, the
connection to the quantum formalism is mainly of pedagogical interest. However, if the equations
for the i-probs are nonlinear, as in the case of a particle in a potential discussed in §2c, and not
easy to solve, it is expedient to search for alternative equations that are much easier to solve.
Fortunately, in the case at hand, we can make good use of the large body of work that explores
mathematically equivalent forms of quantum theory.

Consider the quadratic functional

Q =
∫

dx
∫

dt
[

2im
√
λ

(
ψ
∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
+ 4

∂ψ∗

∂x
∂ψ

∂x
+ 2mλV(x, t)ψ∗ψ

]
, (3.12)

with the shorthand notation ψ ≡ψ(x | X(t), t, Z). Substitute ψ = √
P(x | X(t), t, Z) eiS(x,t)

√
λ/2 to

obtain equation (2.18), demonstrating that equation (2.18) and equation (3.12) are equivalent
(the ambiguity in the phase of ψ can be shown to be irrelevant [22]). On the other hand, the
extrema of equation (3.12) are given by the solution of the linear partial differential equation

2i√
λ

∂ψ

∂t
= − 2

mλ
∂2ψ

∂x2 + V(x, t)ψ , (3.13)

which turns into the time-dependent Schrödinger equation if we set λ= 4/h̄2.
From our derivation of equation (3.13) from LI principles, it is clear that (i) the actual value

of λ can only be determined by comparing the outcome of calculations based on equation (2.18)
or equation (3.13) with experimental data and that (ii) the wavefunction ψ(x | X(t), t, Z) is just a
mathematical concept, a vehicle to solve a class of complicated nonlinear minimization problems
through the minimization of quadratic forms. As a product of human imagination, this concept is
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an extraordinarily useful tool that serves no purpose other than transforming nonlinear equations
into linear ones.

4. Conclusion
Using the simplest, non-trivial examples, it was shown how the application of LI to experiments
for which the observed events are independent and for which the frequency distribution of these
events is robust with respect to small changes of the conditions under which the experiments
are carried out yields, without introducing any concept of quantum theory, some of the most
basic equations of quantum theory. More extensive discussions of applications to the time-
(in)dependent phenomena with or without spin can be found elsewhere [21,22,41]. Work to
include relativistic effects is in progress [55].

The key point of an LI application to quantum physics experiments is to express precisely and
unambiguously, using the mathematical framework of plausible reasoning [24–28], the conditions
of a robust experiment; see §2. This translates into a global optimization problem for the i-prob,
the solution of which may be very simple as in the case of the SG and EPRB experiment or may
yield a fairly complicated nonlinear set of equations. The mathematical machinery of quantum
theory appears as a result of transforming a set of nonlinear equations into a set of linear ones or
emerges from the desire to separate the description into various parts.

It will not have escaped the reader that the LI approach reviewed in the present paper
is void of postulates regarding ‘wavefunctions’, ‘observables’, ‘quantization rules’, ‘quantum
measurements’ [56], ‘Born’s rule’, etc., nor that there are ‘interpretational’ issues. This is a direct
consequence of the basic premise of the LI approach, namely that current scientific knowledge
derives, through cognitive processes in the human brain, from the discrete events which are
observed in laboratory experiments and from relationships between those events that we,
humans, discover. These discrete events are not ‘generated’ according to certain quantum laws:
instead these laws appear as the result of (the best) LI from the data.

This viewpoint seems completely in line with Bohr’s view [34]: ‘Physics is to be regarded not
so much as the study of something a priori given, but rather as the development of methods of
ordering and surveying human experience. In this respect, our task must be to account for such
experience in a manner independent of individual subjective judgment and therefore objective in
the sense that it can be unambiguously communicated in ordinary human language.’ This, in our
opinion, is exactly what the LI approach allows us to do. The extraordinary descriptive power of
quantum theory then follows from the fact that it is plausible reasoning, that is common sense,
applied to robust experiments.

From our LI derivations of some of the most basic equations of quantum theory, it follows
that the latter describes only robust experiments. This is best illustrated by comparing the (high)
accuracy by which quantum theory predicts, say, the ratios of the wavelengths of the Balmer
absorption/emission lines of hydrogen [57] with the comparably low accuracy of say EPRB
experiments that purport to provide evidence for the singlet state of two spin- 1

2 particles [39,50].
In the former case, the high accuracy originates from doing a massive amount of experiments
on a very large collection of identical atoms and, as in any statistical experiment, what we
observe most of the time is the most robust response. Thus, the solution of the LI problem (e.g.
the Schrödinger equation in the case at hand) is the one that is ‘observed’ most frequently. By
contrast, in experiments that provide data on an event-by-event basis, the statistical samples
are much smaller and the external conditions may vary significantly from one experiment to
the next. In other words, these experiments are not as robust as the spectroscopic experiments.
From the LI viewpoint, it is therefore natural that these experiments produce data that show
(much) larger deviations from the quantum-theoretical prediction than spectroscopic data. By the
same argument, the LI approach offers a rational explanation for the observation that it seems
to take considerable effort to engineer nanoscale devices that operate in a regime such that the
experimental data comply with quantum theory.
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17. Oreshkov O, Costa F, Brukner Č. 2012 Quantum correlations with no causal order. Nat.

Commun. 3, 1–8. (doi:10.1038/ncomms2076)
18. Klein U. 2010 The statistical origins of quantum mechanics. Phys. Res. Int. 2010, 808424.

(doi:10.1155/2010/808424)
19. Kapustin A. 2013 Is quantum mechanics exact? J. Math. Phys 54, 062017. (doi:10.1063/

1.4811217)
20. de la Peña L, Cetto AM, Valdes-Hernandes A. 2015 The emerging quantum: the physics behind

quantum mechanics. Cham, Switzerland: Springer International.
21. De Raedt H, Katsnelson MI, Michielsen K. 2013 Quantum theory as the most robust

description of reproducible experiments: application to a rigid linear rotator. Proc. SPIE 8832,
883212–1–11. (doi:10.1117/12.2026998)

22. De Raedt H, Katsnelson MI, Michielsen K. 2014 Quantum theory as the most robust
description of reproducible experiments. Ann. Phys. 347, 45–73. (doi:10.1016/j.aop.
2014.04.021)

23. De Raedt H, Katsnelson MI, Donker HC, Michielsen K. 2015 Quantum theory as a
description of robust experiments: derivation of the Pauli equation. Ann. Phys. 359, 166–186.
(doi:10.1016/j.aop.2015.04.017)

24. Cox RT. 1946 Probability, frequency and reasonable expectation. Am. J. Phys. 14, 1–13.
(doi:10.1119/1.1990764)

 on April 18, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1103/PhysRev.85.166
http://dx.doi.org/doi:10.1103/RevModPhys.42.358
http://dx.doi.org/doi:10.1016/j.shpsb.2006.10.007
http://dx.doi.org/doi:10.1016/j.shpsb.2006.09.002
http://dx.doi.org/doi:10.1103/RevModPhys.85.1693
http://dx.doi.org/doi:10.1393/ncb/i2004-10142-6
http://dx.doi.org/doi:10.1088/1751-8113/40/12/S12
http://dx.doi.org/doi:10.1088/1751-8113/40/12/S12
http://dx.doi.org/doi:10.1103/PhysRevA.81.062348
http://dx.doi.org/doi:10.1103/PhysRevA.84.012311
http://dx.doi.org/doi:10.1103/Physics.4.55
http://dx.doi.org/doi:10.1088/1367-2630/13/6/063001
http://dx.doi.org/doi:10.1038/ncomms2076
http://dx.doi.org/doi:10.1155/2010/808424
http://dx.doi.org/doi:10.1063/1.4811217
http://dx.doi.org/doi:10.1063/1.4811217
http://dx.doi.org/doi:10.1117/12.2026998
http://dx.doi.org/doi:10.1016/j.aop.2014.04.021
http://dx.doi.org/doi:10.1016/j.aop.2014.04.021
http://dx.doi.org/doi:10.1016/j.aop.2015.04.017
http://dx.doi.org/doi:10.1119/1.1990764
http://rsta.royalsocietypublishing.org/


15

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150233

.........................................................

25. Cox RT. 1961 The algebra of probable inference. Baltimore, MD: Johns Hopkins University
Press.

26. Tribus M. 1999 Rational descriptions, decisions and designs. Stockholm, Sweden: Expira Press.
27. Smith CR, Erickson G. 1989 From rationality and consistency to Bayesian probability.

In Maximum entropy and Bayesian methods (ed. J Skilling), pp. 29–44. Dordrecht, The
Netherlands: Kluwer Academic.

28. Jaynes ET. 2003 Probability theory: the logic of science. Cambridge, UK: Cambridge University
Press.

29. Shannon CE, Weaver W. 1949 The mathematical theory of communication. Urbana, IL: University
of llinois Press.

30. Jaynes ET. 1957 Information theory and statistical mechanics. Phys. Rev. 106, 620–640.
(doi:10.1103/PhysRev.106.620)

31. Jaynes ET. 1957 Information theory and statistical mechanics. II. Phys. Rev. 108, 171–190.
(doi:10.1103/PhysRev.108.171)

32. Caticha A. 2014 Entropic dynamics: an inference approach to quantum theory, time and
measurement. J. Phys.: Conf. Series 504, 012009. (doi:10.1088/1742-6596/504/1/012009)

33. Caticha A. 2015 Entropic dynamics. Entropy 17, 6110–6128. (doi:10.3390/e17096110)
34. Bohr N. 1961 [1999] XV. The unity of human knowledge. In Niels Bohr collected works, vol. 10,

Complementarity beyond physics (1928–1962) (ed. D Favrholdt), pp. 155–160. Amsterdam,
The Netherlands: Elsevier [reprint 1999]. (doi:10.1016/S1876-0503(08)70208-1)

35. Pearl J. 2000 Causality: models, reasoning, and inference. Cambridge, UK: Cambridge University
Press.

36. ’t Hooft G. 2007 The mathematical basis for deterministic quantum mechanics. In Beyond
the quantum (eds TM Nieuwenhuizen, B Mehmani, V S̆pic̆ka, MJ Aghdami, AY Khrennikov),
pp. 3–19. Singapore: World Scientific.

37. De Raedt K, De Raedt H, Michielsen K. 2005 Deterministic event-based simulation of quantum
interference. Comput. Phys. Commun. 171, 19–39. (doi:10.1016/j.cpc.2005.04.012)

38. Michielsen K, Jin F, De Raedt H. 2011 Event-based corpuscular model for quantum optics
experiments. J. Comput. Theor. Nanosci. 8, 1052–1080. (doi:10.1166/jctn.2011.1783)

39. De Raedt H, Michielsen K. 2012 Event-by-event simulation of quantum phenomena. Ann.
Phys. (Berlin) 524, 393–410. (doi:10.1002/andp.201100299)

40. De Raedt H, Jin F, Michielsen K. 2012 Event-based simulation of neutron interferometry
experiments. Quantum Matter 1, 1–21. (doi:10.1166/qm.2012.1001)

41. De Raedt H, Michielsen K. 2014 Discrete-event simulation of uncertainty in single-neutron
experiments. Front. Phys. 2, 14.1–14.12. (doi:10.3389/fphy.2014.00014)

42. Michielsen K, De Raedt H. 2014 Event-based simulation of quantum physics experiments. Int.
J. Mod. Phys. C 25, 01430003. (doi:10.1142/S0129183114300036)

43. Klein MJ. 1967 Thermodynamics in Einstein’s thought. Science 157, 509–516. (doi:10.1126/
science.157.3788.509)

44. Pólya G 1954 Mathematics and plausible reasoning. Princeton, NJ: Princeton University Press.
45. Bohm D. 1951 Quantum theory. New York, NY: Prentice-Hall.
46. Ballentine LE. 2003 Quantum mechanics: a modern development. Singapore: World Scientific.
47. Weihs G. 2000 Ein Experiment zum Test der Bellschen Ungleichung unter Einsteinscher

Lokalität. PhD thesis, University of Vienna. See http://www.uibk.ac.at/exphys/photonik/
people/gwdiss.pdf.

48. Shih Y. 2011 An introduction to quantum optics: photon and biphoton physics. Boca Raton, FL: CRC
Press.

49. Vistnes A, Adenier G. 2012 There may be more to entangled photon experiments than we have
appreciated so far. AIP Conf. Proc. 1508, 326–333. (doi:10.1063/1.4773143)

50. De Raedt H, Jin F, Michielsen K. 2013 Data analysis of Einstein–Podolsky–Rosen–Bohm
laboratory experiments. Proc. SPIE 8832, 88321N. (doi:10.1117/12.2021860)

51. Hess K. 2015 Einstein was right! Singapore: Pan Stanford.
52. Ralston JP. 2013 Emergent mechanics, quantum and un-quantum. Proc. SPIE 8832, 88320W.

(doi:10.1117/12.2025000)
53. Madelung E. 1927 Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322–326. (doi:10.

1007/BF01400372)

 on April 18, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1103/PhysRev.106.620
http://dx.doi.org/doi:10.1103/PhysRev.108.171
http://dx.doi.org/doi:10.1088/1742-6596/504/1/012009
http://dx.doi.org/doi:10.3390/e17096110
http://dx.doi.org/doi:10.1016/S1876-0503(08)70208-1
http://dx.doi.org/doi:10.1016/j.cpc.2005.04.012
http://dx.doi.org/doi:10.1166/jctn.2011.1783
http://dx.doi.org/doi:10.1002/andp.201100299
http://dx.doi.org/doi:10.1166/qm.2012.1001
http://dx.doi.org/doi:10.3389/fphy.2014.00014
http://dx.doi.org/doi:10.1142/S0129183114300036
http://dx.doi.org/doi:10.1126/science.157.3788.509
http://dx.doi.org/doi:10.1126/science.157.3788.509
http://www.uibk.ac.at/exphys/photonik/people/gwdiss.pdf
http://www.uibk.ac.at/exphys/photonik/people/gwdiss.pdf
http://dx.doi.org/doi:10.1063/1.4773143
http://dx.doi.org/doi:10.1117/12.2021860
http://dx.doi.org/doi:10.1117/12.2025000
http://dx.doi.org/doi:10.1007/BF01400372
http://dx.doi.org/doi:10.1007/BF01400372
http://rsta.royalsocietypublishing.org/


16

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150233

.........................................................

54. De Raedt H, Katsnelson MI, Donker HC, Michielsen K. 2015 Quantum theory as a description
of robust experiments: application to Stern–Gerlach and Einstein–Podolsky–Rosen–Bohm
experiments. Proc. SPIE 9570, 957002. (doi:10.1117/12.2185704)

55. Donker H, Katsnelson M, De Raedt H, Michielsen K. In preparation. Logical inference
approach to relativistic quantum mechanics: derivation of the Klein–Gordon equation.

56. Allahverdyan AE, Balian R, Nieuwenhuizen TM. 2013 Understanding quantum
measurement from the solution of dynamical models. Phys. Rep. 525, 1–166. (doi:10.1016/j.
physrep.2012.11.001)

57. Mohr PJ, Taylor BN, Newell DB. 2012 Codata recommended values of the fundamental
physical constants: 2010*. Rev. Mod. Phys. 84, 1527–1605. (doi:10.1103/RevModPhys.84.1527)

 on April 18, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1117/12.2185704
http://dx.doi.org/doi:10.1016/j.physrep.2012.11.001
http://dx.doi.org/doi:10.1016/j.physrep.2012.11.001
http://dx.doi.org/doi:10.1103/RevModPhys.84.1527
http://rsta.royalsocietypublishing.org/

	Introduction
	Logical inference
	Application: Stern--Gerlach experiment
	Application: Einstein--Podolsky--Rosen--Bohm experiment
	Application: particle in a potential

	Connecting with quantum theory
	Separation procedure [54]
	Equivalence with quadratic forms

	Conclusion
	References

