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Nontrivial Response of Nanoscale Uniaxial Magnets to an Alternating Field
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The response of nanoscale uniaxial magnets to an alternating field is studied by direct numerical
calculation. A nontrivial oscillation of the magnetization is found and subsequently analyzed in terms
of the nonadiabatic transition due to the time dependent field. A new method to estimate the tunneling
gap of the magnet is proposed. [S0031-9007(98)05296-X]
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The quantum dynamical motion of metastable stateto the speed with which the the field changes [19]. To
has attracted interest recently. If thermal fluctuations alfully describe the experimental situation, the temperature
low for excitations over the energy barrier, the relaxation20,21] and also the effect of random modulations due to
of metastable states is described by Arrhenius’s law. Iihe environment [22] need to be taken into account. How-
this case the nucleation process plays an essential rolever, even without including these effects, we may expect
Various field and temperature dependencies of the relax@ae uncover characteristics of NAT, such as sweeping rate
tion rate have been investigated [1], and also the relaxadependence of the shape of the magnetization process.
tion of the magnetization of a single-domain particle has In this Letter, in order to uncover additional character-
been studied [2]. The relaxation time resulting from thisistics of NAT, we study the quantum mechanical response
mechanism is expected to become very long at low temef the magnetization to an alternating field, adopting a
peratures. However, in many cases it has been found thaimple model of a uniaxial magnet. We will study the
the relaxation time saturates at some temperature. Belotwansverse-field Ising model,
this temperature, quantum fluctuations become important L L
and tunneling phenomena may cause the system to relax. 3 = —J > oioi —T'> of — H@®) > of, (1)
The tunneling rate and the tunneling gap are the quantities (i) i=1 i=1
of interest [3]. The effects of quantum fluctuation on thewhere
nucleation process is an interesting problem. However,
for small paF;ticIes, the total magnet?ze?tion evolves coher- H(r) = HoCoswr . (2)
ently, and the quantum mechanical motion can be studfhroughout this Letter we takd as a unit of energy
ied more explicitly. In fact, such observations have beerand put it equal to one. We will only show results
reported recently [4,5]. Therefore it becomes very in-for a system of four spin§L = 4) subject to periodic
teresting to investigate the various features of quanturboundary conditions anfl = 0.5. For other choices of
dynamics in situations where the quantum mechanicaihodel parameters, the results are qualitatively similar.
motion is directly observed. We have studied the rela- In Fig. 1 we present the eigenvalues of the model of
tionship between the tunneling phenomena and the norieg. (1) as a function of fixed value of the external field
adiabatic transition (NAT), a process of purely quantumH, which can be regarded as the adiabatic potential of
mechanical origin. In particular, making use of thethe present model. Only the eight lowest states, some of
Landau-Zener-Stiickelberg (LZS) [6—8] mechanism, wewhich are degenerate, are shown. When the energy gap
have proposed a method to estimate the energy gaps froat H = 0 is small, the lowest two levels are located far
the change of magnetization when the field is swept fronbelow the other levels. When we take the initial state to
Hy to —H, during a finite time interval [9,10]. This es- be the ground state, the system can be regarded as a two
timate would provide a good check of the value of thelevel system, at least #, is small, and there is no second
energy gap obtained by other methods. scattering to the higher levels. Successive nonadiabatic

Recently experimental observations of quantum dy4iransitions to higher levels have been studied in Ref. [19].
namical phenomena in nanoscale, molecular, magnets If H, is very small, we can use Kubo’s formula to
such as Mip-Ac or Fg have been reported [11-15]. study the linear response, where the Zeeman #tmM/,
Steplike magnetization curves have been found, and treated as a perturbation, and relevant frequencies are
the importance of level crossing has been pointed oubnly those due to the energy gapgat= 0. On the other
[16—18]. We also showed that successive NAT's leachand, in the present paper we are interested in phenomena
to a steplike magnetization curve which is very sensitiveresulting from nonadiabatic transitions in whigh(s)M,
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_ FIG. 2. Time dependence of magnetizatioM (¢) is shown
L by a solid line. H(¢) + 2.5 is shown by a dashed line.
[
-15- we continue the simulation, a sinusoidal motion,
FIG. 1. Energy levels fof’ = 0.5. M(1) ~ codQr), ©6)

o is found, as illustrated by Fig. 3 in which we also include
cannot be treated as a perturbatiéfy is O(1) and not  x(r) andH(z). The frequency) of this sinusoidal motion

small enough to be treated as a perturbation. does not correspond to an eigenfrequency of the system
The probability for the system to remain in the groundor to the period of the external field. Actually, when
state when the field changes sign is given by [10] we change the amplitude of the field,, the period of
7(AE)? the magnetization changes as is shown in Fig. 4 and it
p=1- PEIANE (3)  also depends ow. Although the dependence 61 on

Hy in Fig. 4 seems irregular, we find a rather regular
dependence when we plot the frequertyas a function

where ¢ is the sweep velocitye = | H(s —0 = o
¢ P ye =l HOluo-o of Hy, as in Fig. 5.

Hyw, and M, is the ground-state magnetization near L .

H=0. ForT' = 0.5, the energy gap & = 0 between The nontrivial resonance phenomenon discussed above

the ground state and the first excited stage ~ 0.03549 &N be analyzed from the viewpoint of the Floguet

and|My| ~ L = 4 theorem: In the presence of a periodic external field the
0 ; state|r) takes the form|t) = U(z)|t), where U(z) is a

matrix of periodic functions of perio@7/w. The time

|0), (4)  evolution of |r)’ does not explicitly depend on time. In

] o o order to study the dependence @fon Hy and w, let us
where |0} is an initial state which is chosen to be the

ground state of the model fa# = H(0) and the expo-

The time evolution of the system is given by

|t> _ e—if;}[(s)ds/ﬁ

nential denotes the time-ordered exponential. We solve M(t) T'=0.5, ©=0.2, Hy=0.2
Eqg. (4) making use of the fourth order decomposition pro-
posed by Suzuki [23,24]. Hereafter we plut= 1 for M()
simplicity. -
As in our previous studies, the validity of Eq. (3) is L
confirmed by the simulation results. From Eq. (8)= 2.5[v

0.0062 for @ = 0.2 andH, = 0.2. In the simulation we
calculate the overlap between the ground state and the
time dependent state [9]

M(t), Ho(®), x(t)
o

x(1) = KGO0, (5) .
where |G(¢)) is the ground state folH = H(r). Af- :
ter a half period,r = 7/w, we find x(r = 7/w) = -2.5/

(G (1)|£)]*> = 0.0063, which confirms the LZS prediction.
In Fig. 2 we show the time dependence of the magneti-

zqtion,M(t) =1l >; 0'_1‘Z|l>1 and qbserye a gra_ujual relax- FIG. 3. Nontrivial oscillation of magnetizatiah (r). x(¢) and
ation due to successive nonadiabatic transitions. WheH(¢) are also shown.
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FIG. 4. Time dependences of magnetization for various am-

plitudes,H,. Ho

consider the state at= 27m/w, m = 0,1,2, ..., where ;Igiir?é. Ho dependence of).  {n, is shown by a dot
H(t) = Hy. First, let us consider the time evolution for
the half period, namely, during the field changes frn  where ¢ and ¢ are unknown phases which depend
to —Hp: X = exd —i fg/“’ H(s)ds]. As far asHy is on Hy and w. Thus X is expressed by !T. To
small and only the lowest two states play an importanpbtain the time evolution forr/w <t =27 /0w we
role, X is expressed by 2 X 2 unitary matrix. Here we change the sign of the component of the spins [for
take the ground states) and the first excited stafg¢) at  this change we can use the unitary transformation
t = 0 as the basis. After a half period the time evolution(oy, oy, o) — (0, —0y, —0;) for all sites], and ob-
is expressed as serve that the time evolution during which the field
changes from—H, to H, is identical toX (i.e., the
XIG) = milG') + mall). (7y  Hamiltonian is identical). Therefore, in the second half
X|1y = t15|G") + 1|1, of the period27/w, the time evolutionX’ can be written

_ o 27T/a) _ —1 .
where|G') and|1’) denote the ground state and the firstS X' =exd—i [, H(s)dsl.=0"'XQ. The time-

excited state at = 7/w, respectively. They can be evolution operator for one period reads

expressed as a linear combination|6% and|1): |G) = L =07'X0x. 9)
011lG) + 0x1l1) and [1') = Q12|G) + Ox|1). Let the  When the scattering region &f(r) is very narrow, which
transformation matrix b&. The most general form of s the present case as is clear from Fig. 1, we may take

the unitary matrix for the time evolution which yields the 0 1
transition probability Eq. (3) must be of the form 0= <1 0) (20)
T <t11, t12> _( ¢y, ei‘_”\/l - p (8) Combining Egs. (7), (8), and (10){ is given by the
i, JT=p, =0 5 )° | matrix

| 20 p + ('1 — plei?, (el'0+i(/7' — 71024 51 - p) (11)
(e — e i) p(l = p), e 2 ¥p+ (1= ple? )

The eigenvalues)-, of £ are given by | and forp < 1 we have

A =(q = iVl = g*)e'?, (12) 7 \/—
whereg =1 — p + pcoda),a =260 — ¢. In terms 0 2p(1 — cosa). (14)
of thse szlgenyalues the frequenty rea‘?'“,r = &xp The probability of remaining in the ground state after
[+i(57)(3) + i¢]. Thus the frequencf) is givenby , periods is given byx(2mn/w) = a + b cod2mQn/
7Q\ 1 — ¢? o + vy), wherea, b, andy are constants depending on
tar<—> N q the initial state. When the initial state is the ground state
o > andp <1,a=5b =1/2 andy < 1, in concert with
_ ¥2p(1 — cosa) — p*(l — cosa) the data shown in Fig. 4.
1 — p(1 — cosa) ' The unknown phase factor — coga) can be esti-
(13) mated from an observation within a single period. From

@
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