
VOLUME 80, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 16 FEBRUARY 1998

a 560

h 4,

erical
rms
eling
Nontrivial Response of Nanoscale Uniaxial Magnets to an Alternating Field
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The response of nanoscale uniaxial magnets to an alternating field is studied by direct num
calculation. A nontrivial oscillation of the magnetization is found and subsequently analyzed in te
of the nonadiabatic transition due to the time dependent field. A new method to estimate the tunn
gap of the magnet is proposed. [S0031-9007(98)05296-X]
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The quantum dynamical motion of metastable stat
has attracted interest recently. If thermal fluctuations a
low for excitations over the energy barrier, the relaxatio
of metastable states is described by Arrhenius’s law.
this case the nucleation process plays an essential ro
Various field and temperature dependencies of the relax
tion rate have been investigated [1], and also the relax
tion of the magnetization of a single-domain particle ha
been studied [2]. The relaxation time resulting from thi
mechanism is expected to become very long at low tem
peratures. However, in many cases it has been found t
the relaxation time saturates at some temperature. Bel
this temperature, quantum fluctuations become importa
and tunneling phenomena may cause the system to rel
The tunneling rate and the tunneling gap are the quantit
of interest [3]. The effects of quantum fluctuation on th
nucleation process is an interesting problem. Howeve
for small particles, the total magnetization evolves cohe
ently, and the quantum mechanical motion can be stu
ied more explicitly. In fact, such observations have bee
reported recently [4,5]. Therefore it becomes very in
teresting to investigate the various features of quantu
dynamics in situations where the quantum mechanic
motion is directly observed. We have studied the rela
tionship between the tunneling phenomena and the no
adiabatic transition (NAT), a process of purely quantum
mechanical origin. In particular, making use of the
Landau-Zener-Stückelberg (LZS) [6–8] mechanism, w
have proposed a method to estimate the energy gaps fr
the change of magnetization when the field is swept fro
H0 to 2H0 during a finite time interval [9,10]. This es-
timate would provide a good check of the value of th
energy gap obtained by other methods.

Recently experimental observations of quantum d
namical phenomena in nanoscale, molecular, magn
such as Mn12-Ac or Fe8 have been reported [11–15].
Steplike magnetization curves have been found, a
the importance of level crossing has been pointed o
[16–18]. We also showed that successive NAT’s lea
to a steplike magnetization curve which is very sensitiv
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to the speed with which the the field changes [19]. T
fully describe the experimental situation, the temperatu
[20,21] and also the effect of random modulations due
the environment [22] need to be taken into account. Ho
ever, even without including these effects, we may exp
to uncover characteristics of NAT, such as sweeping r
dependence of the shape of the magnetization process

In this Letter, in order to uncover additional characte
istics of NAT, we study the quantum mechanical respon
of the magnetization to an alternating field, adopting
simple model of a uniaxial magnet. We will study th
transverse-field Ising model,

H  2J
X
ki,jl

sz
i sz

j 2 G

LX
i1

sx
i 2 Hstd

LX
i1

sz
i , (1)

where

Hstd  H0 cosvt . (2)

Throughout this Letter we takeJ as a unit of energy
and put it equal to one. We will only show result
for a system of four spinssL  4d subject to periodic
boundary conditions andG  0.5. For other choices of
model parameters, the results are qualitatively similar.

In Fig. 1 we present the eigenvalues of the model
Eq. (1) as a function of fixed value of the external fie
H, which can be regarded as the adiabatic potential
the present model. Only the eight lowest states, some
which are degenerate, are shown. When the energy
at H  0 is small, the lowest two levels are located fa
below the other levels. When we take the initial state
be the ground state, the system can be regarded as a
level system, at least ifH0 is small, and there is no secon
scattering to the higher levels. Successive nonadiab
transitions to higher levels have been studied in Ref. [1

If H0 is very small, we can use Kubo’s formula to
study the linear response, where the Zeeman termHstdMz

is treated as a perturbation, and relevant frequencies
only those due to the energy gaps atH  0. On the other
hand, in the present paper we are interested in phenom
resulting from nonadiabatic transitions in whichHstdMz
© 1998 The American Physical Society 1525



VOLUME 80, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 16 FEBRUARY 1998

m

it

r

ve
t
e

FIG. 1. Energy levels forG  0.5.

cannot be treated as a perturbation:H0 is Os1d and not
small enough to be treated as a perturbation.

The probability for the system to remain in the groun
state when the field changes sign is given by [10]

p  1 2 exp

√
2

psDEd2

4cjM0j

!
, (3)

where c is the sweep velocity,c  j
d
dt HstdjHstd0 

H0v, and M0 is the ground-state magnetization ne
H  0. For G  0.5, the energy gap atH  0 between
the ground state and the first excited stateDE , 0.035 49
andjM0j , L  4.

The time evolution of the system is given by

jtl  e
2i

Rt

0
H ssd dsy h̄

j0l , (4)

where j0l is an initial state which is chosen to be th
ground state of the model forH  Hs0d and the expo-
nential denotes the time-ordered exponential. We so
Eq. (4) making use of the fourth order decomposition pr
posed by Suzuki [23,24]. Hereafter we puth̄  1 for
simplicity.

As in our previous studies, the validity of Eq. (3) i
confirmed by the simulation results. From Eq. (3),p 
0.0062 for v  0.2 andH0  0.2. In the simulation we
calculate the overlap between the ground state and
time dependent state [9]

xstd  jkGstdjtlj2, (5)

where jGstdl is the ground state forH  Hstd. Af-
ter a half period,t  pyv, we find xst  pyvd 
jkGstdjtlj2  0.0063, which confirms the LZS prediction.

In Fig. 2 we show the time dependence of the magne
zation,Mstd  ktj

P
i s

z
i jtl, and observe a gradual relax

ation due to successive nonadiabatic transitions. Wh
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FIG. 2. Time dependence of magnetization.Mstd is shown
by a solid line. Hstd 1 2.5 is shown by a dashed line.

we continue the simulation, a sinusoidal motion,

Mstd , cossVtd , (6)

is found, as illustrated by Fig. 3 in which we also include
xstd andHstd. The frequencyV of this sinusoidal motion
does not correspond to an eigenfrequency of the syste
or to the period of the external field. Actually, when
we change the amplitude of the fieldH0, the period of
the magnetization changes as is shown in Fig. 4 and
also depends onv. Although the dependence ofV on
H0 in Fig. 4 seems irregular, we find a rather regula
dependence when we plot the frequencyV as a function
of H0, as in Fig. 5.

The nontrivial resonance phenomenon discussed abo
can be analyzed from the viewpoint of the Floque
theorem: In the presence of a periodic external field th
state jtl takes the formjtl  Ustd jtl0, where Ustd is a
matrix of periodic functions of period2pyv. The time
evolution of jtl0 does not explicitly depend on time. In
order to study the dependence ofV on H0 andv, let us

FIG. 3. Nontrivial oscillation of magnetizationMstd. xstd and
Hstd are also shown.
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FIG. 4. Time dependences of magnetization for various a
plitudes,H0.

consider the state att  2pmyv, m  0, 1, 2, . . . , where
Hstd  H0. First, let us consider the time evolution fo
the half period, namely, during the field changes fromH0

to 2H0: X  expf2i
Rpyv

0 H ssd dsg. As far asH0 is
small and only the lowest two states play an importa
role, X is expressed by a2 3 2 unitary matrix. Here we
take the ground statejGl and the first excited statej1l at
t  0 as the basis. After a half period the time evolutio
is expressed as

XjGl  t11jG
0l 1 t21j1

0l ,

Xj1l  t12jG
0 l 1 t22j1

0l ,
(7)

where jG0l and j10l denote the ground state and the firs
excited state att  pyv, respectively. They can be
expressed as a linear combination ofjGl and j1l: jG0l 
Q11jGl 1 Q21j1l and j10l  Q12jGl 1 Q22j1l. Let the
transformation matrix beQ. The most general form of
the unitary matrix for the time evolution which yields the
transition probability Eq. (3) must be of the form

T 

µ
t11, t12

t21, t22

∂


√
eiup

p, eif
p

1 2 p
p

1 2 p , 2eis2u1fdpp

!
, (8)
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FIG. 5. H0 dependence ofV. Vmax is shown by a dot-
ted line.

where u and f are unknown phases which depen
on H0 and v. Thus X is expressed byQ21T . To
obtain the time evolution forpyv # t # 2pyv we
change the sign of thez component of the spins [for
this change we can use the unitary transformatio
ssx , sy , szd ! ssx , 2sy , 2szd for all sites], and ob-
serve that the time evolution during which the field
changes from2H0 to H0 is identical to X (i.e., the
Hamiltonian is identical). Therefore, in the second ha
of the period2pyv, the time evolutionX 0 can be written
as X 0  expf2i

R2pyv

pyv H ssd dsg, Q21XQ. The time-
evolution operator for one period reads

L  Q21XQX . (9)

When the scattering region ofHstd is very narrow, which
is the present case as is clear from Fig. 1, we may take

Q 

µ
0 1
1 0

∂
. (10)

Combining Eqs. (7), (8), and (10),L is given by the
matrix
√

e2iup 1 s1 2 pdeif, seiu1if 2 e2iu12ifd
p

ps1 2 pd
seiu 2 e2iu1ifd

p
ps1 2 pd , e22isu2fdp 1 s1 2 pdeif

!
. (11)
r

te
The eigenvalues,l6, of L are given by

l6  sq 6 i
p

1 2 q2 deif , (12)

where q  1 2 p 1 p cossad, a  2u 2 f. In terms
of these eigenvalues the frequencyV readsl6 ; exp
f6is 2p

v d s V

2 d 1 ifg. Thus the frequencyV is given by

tan

µ
pV

v

∂


p
1 2 q2

q



p
2ps1 2 cosad 2 p2s1 2 cosad2

1 2 ps1 2 cosad
,

(13)
and forp ø 1 we have

pV

v
.

q
2ps1 2 cosad . (14)

The probability of remaining in the ground state afte
n periods is given byxs2pnyvd  a 1 b coss2pVny
v 1 gd, wherea, b, and g are constants depending on
the initial state. When the initial state is the ground sta
and p ø 1, a . b . 1y2 and g ø 1, in concert with
the data shown in Fig. 4.

The unknown phase factor1 2 cossad can be esti-
mated from an observation within a single period. From
1527
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Eqs. (8) and (11), we havexs p

v d  p and xs 2p

v d 
1 2 2ps1 2 cosad 1 Osp2d. Hence the phase factor is

given by the ratioR 
12xs2pyvd

xspyvd  2s1 2 cosad. We
found thatR estimated from numerical calculations we
coincides withVyVmax whereVmax  2v

p
pyp which

gives the envelope ofVsH0d.
In general, we know neithera nor p but even in such

a situation, we can estimateVmax by studying V as a
function of H0 andv. Alternatively, knowingVmax, we
can estimatep from Vmax and therefore alsoDE by
making use of the relation given by Eq. (3). Here w
would like to emphasize that

p
p is much larger thanp

since p is assumed to be very small. Therefore eve
in cases wherep is very small Eq. (14) can be used to
estimatep.

Effects of an oscillating field on the LZS transition hav
been studied in different contexts [25–31]. Grossm
et al. have discovered the coherent destruction
tunneling in a periodically driven two-level system
[26–30]. Their results are essentially the same
Eq. (13) for p ø 1. The complete destruction poin
corresponds to the caseR  0. The analysis presented
above can be used for any periodic function ofHstd, not
necessarilyHstd  H0 cosvt. For instance, a piecewise
linear, periodic (i.e., a zigzaglike dependence)Hstd
yields results (not shown) which are similar to thos
presented in this paper. The nontrivial oscillation o
Mstd is due to nonadiabatic transitions and is a peculi
property of quantum dynamics with a time depende
field. As Kayanuma has pointed out, an oscillation o
the transverse field also yields interesting phenome
[31]. It would be of interest to study the response o
the magnetization to periodic fields in a more gener
framework, going beyond the usual perturbative trea
ment. Evidently a study of the effect on this resonance
a nonzero temperature is a challenging problem for futu
research.

Nonadiabatic transitions may occur whenever syste
become metastable. The nontrivial resonance discus
in this paper is so generic that it should appear if som
kind of metastable state is present. We suggest su
nontrivial oscillation might be searched for in experimen
on nanoscale magnetic systems.

The authors thank Professor Y. Kayanuma for valuab
discussions and also appreciate Professor K. M. Slevin
his encouraging discussion and kind critical reading of t
manuscript. The present study is partially supported
the Grant-in-Aid for Scientific Research from the Ministr
of Education, Science and Culture.
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