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Morphological image analysis of quantum motion in billiards
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Morphological image analysis is applied to the time evolution of the probability distribution of a quantum
particle moving in two- and three-dimensional billiards. It is shown that the time-averaged Euler characteristic
of the probability distribution provides a well defined quantity to distinguish between classically integrable and
nonintegrable billiards. In three dimensions the time-averaged mean breadth of the probability distribution may
also be used for this purpose.
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[. INTRODUCTION all those eigenstates that have non-negligible overlap with
the initial state. This “parallelism,” absent in the stationary-
In the theory of quantum chaos, the connection betweeftate approachl6], reduces the computational work.
the chaotic behavior of classical systems and specific prop- MIA amounts to a characterization of the geometry and

erties of their quantum mechanical counterparts has receivd@P0l0gy of any pattern or series of patterns by means of the

much attention. The most studied issues in this context argo-called Minkowski functionals, known from integral ge-

the statistical properties of nuclear and atomic spefctia ometr_y_[l?—lq These fgnchopals are related to familiar
and of two-(recently three-dimensional billiard§2-5]. In quantities: In two(three dimensions, the.y.correspond to the
the mid, 1980s, a conjectui@vhich became known as the covergd area, perimeter, and connectn(w;ah,!me, surface

Bohigas-Giannoni-SchmidBGS) conjecturd 6]) was made area, lnt_egral mean curvature, and cqnnect)wrﬁ/th_e pat-
that the quantal energy level spacing (efgodio systems tern._ln mtegral geometry th_e calculation of the M_lnkOV\_/skl
whose classical equivalent exhibits a chaotic behavior obeyfémcmm‘ﬁ’“.S Is relatively straightforward, and requires little
Wigner Gaussian orthogonal ensemble statistics, knowﬁompUt""t'on."j‘I effort. MIA has proven to be a powe_rfgl tool
from random matrix theory, whereas for classically inte-N different fields where the description of patterns is impor-

grable systems the Poisson distribution applies. Exceptiontémt.StatIStlcal phyS|cs,_to ‘?'esc“be the morphology of porous
to this conjecture are knowfi7,8], but it is generally be- media "%‘”d_ Comp'ex fluids; cpsmology,_ to analyze t_he large
lieved that these form a set of'm’easure 0 scale distribution of matter in the universe; chemistry, to

Another way to make a connection between the chaoti(gjescribe the m_orphology of patterns in reagtion diffusi_on
behavior of classical systems and specific properties of theﬁystems[ZO], seismology, to describe the spatial complexity

guantum mechanical counterparts is to look at the eigenstat é.rgg'ci.nal se&smlmt)t( re?r?zatlor[ghl];l and aolymer sulencte,

of billiards. Eigenstates of a stadium may exhibit a structur to iaen 'E’l ar;( qua? ity ezrgorpFotohgy 0 me_soifae struc-
that corresponds to classical orbifs-11]. These structures, ures In block copo ymerg22,23. urthermore, in the semi-
called scars, have been directly related to unstable periodﬁlas.s'.Cal limit the sum of exponenualg of elgenfrequenmes of
orbits [12—14. Visual inspection of movies that show the i\/l.blllllardlglsrflapetq drlum fc;\n Eﬁl' W(;'[t;i? in dte:[rhmsv\?f lthe
time evolution of the probability distribution of a quantum INKOWSKI Tunctionais ot the bifliar » an € vvey
particle moving in two- and three-dimensiori@D and 3D hypothesis states that the nur_nb_er of energy levels up to an
billiards of different shapes strongly suggests that these s _ZnSGj‘;gyE can be written in a similar mannésee, e.g., Ref.
guences of images may contain enough information to dis-=~""

tinguish between classically integrable and chaotic system In_Sec. Il we brleﬂy review t_he theory O.f MkaWSk'.
[15]. unctionals, and explain the technique of MIA in more detail.

We then apply MIA to the motion of a quantum particle in

To our knowledge the morphology of patterns of time "~ . ; -
(in)dependent probability distributions has not been studie jvarious two- and three-dimensional billiards, and show that

In this paper we propose a method, based on concepts frofil® appropriate quantity can be defined to distinguish classi-

integral geometry, to perform a morphological image analy_caIIy integrable and chaotic billiards. Finally, we study the

sis (MIA) of the probability distribution. We use MIA to transition. to chaos for a system whose degree of chaos is
characterize the solutions of the time-dependent Stthger parametrized.

equation for various 2D and 3D billiards. We demonstrate
that, indeed, one can define geometrical and topological de-
scriptors that are useful to distinguish between classically At the heart of MIA lies the computation of Minkowski
integrable and chaotic billiards. Our motivation to analyzefunctionals of an arbitrar{thresholdeglimage. Therefore, in
time-dependent instead of stationary probability distributionghis section we will give some mathematical background on
is that the former usually provide information about manyMinkowski functionals (closely following Ref. [20]),
eigenstates simultaneously. By following the system over and sketch the outline of an algorithm to compute these
sufficiently long period of time, one collects information on functionals.

II. MORPHOLOGICAL IMAGE ANALYSIS
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We first define the Minkowski functionals for compact '
convex sets. The parallel 3§t of a compact convex sét at x(A)=x(UKj)
a distance is the union of all closed balls of radius the =1
centers of which are points iK. The well-known Euclidean

measures oK, , such as the area and volume, can be written = 2 x(Kj)— 2 X(KiNK;)
as polynomials irr. For example, the parallel volume of a ! 1=l
squareS and a cubeC with edge lengths: are given by o (=D (KN NK)), (8
V,(S)=a’+4ar+ mr?, )
and where, for compact convex séis
V,(C)=a3+6a%r +3war’+4mr3/3. 2)
1 if K#0
In general, the volume(? in d dimensions of the parallel set x(K)= 0 if Kep' 9)

K, at distance of K is given by the Steiner formuldl7]

d The Euler characteristic describésin a pure topological
v @(K)=2 (U)W§d>(K)r”, (3  way, i.e., without reference to any kind of metric. It can be
=0 shown that this definition of permits all Minkowski func-
tionals onR to be written in terms ofy and the kinematical
density[17]. The functionaly as defined in integral geom-

etry is the same as the Euler characteristic defined in alge-

whereW(?(K) are the Minkowski functionals. For the first
three dimensions it can be shown tha7]

_1. (D10 — (1) _ braic topology[17]: For d=2, y equals the number of con-
d=1 Wg(K)=1(K),  Wy"=2x(K), @ nected components minus the number of holes, and in three
1 dimensionsy is given by the number of connected compo-
d=2: Wgz)(K)zA(K), W(12)=§U(K), nents minus the number of tunnels plus the number of cavi-

ties. For example, for a solid cube=1, for a hollow cube
2) x=2, and for a cube pierced by a tunnek: 0. For multiply
W57 =mx(K), (5 connected structures the Euler characteristic is negative. For
complex structures it is often difficult to identify the number
of connected components, tunnels and cavities. However,
MIA directly yields y, as will be explained below.
In order to calculate the morphological properties of a
2 A particular image, we first convert the image to a black-and-
W5 (K)= 3 mB(K),  W5(3)(K)=—-(K), (6)  white picture using a threshold. Pixelgoxels with an in-
tensity below the threshold are considered to be part of the
wherel(K), A(K), U(K), V(K), S(K), B(K), and x(K) backgrour!d and the othgrs are building up the objects in the
denote the length, area, perimeter, volume, surface areiP (3D) picture. According to integral geometry, the mor-
mean breath, and Euler characteristic or connectivity numbéphological properties of the various objects building up the
of the convex seK, respectively. The mean brea is black-and—vyhlte plgture can be completely described in
closely related to the mean curvatuie= (R, + R,)/2R;R,, terms_of Mmk_owskl _funcﬂo_nalil?]._ln order to calculafte
whereR, andR, are the principal radii of curvaturk26]. the er_1kowsk| funct|onals_ in an efflc_le_nt_ way we_consu_zler
The Euler characteristig is related to the Gaussian curva- f-:-ach_ pixelvoxe) as the union of the disjoint collection of Its
ture G=1/R,R,, and is equal to unity for a convex body interior, faces(for the 3D case only open edges_ and verti-
[26]. The mean curvature and the Gaussian curvature are twd>" The values oﬁ\ U, V, S, B andy for thes_e single open
useful measures of the curvature of a surf§2@|. If the structures can e_a_s!ly be calcula{éﬂ]. By mak|.ng use of the
local surface geometry has an elliptic, Euclidean, or hyperprOperty of addmvny of the Minkowski funct|or_1als and th?
bolic shape, respectively, then the Gaussian curvature is ré@Ct that there is no overlap_ betwe_en open bodies on a lattice,
spectively positive, zero, or negatij26]. we compute the Minkowski funct!ona}ls of the whole. image
Up to now, we have limited the discussion to convex sets.by starting from a comple_te Wh'te image, calculating the
In order to deal with the more general sets one encounters ff/a19€ in the number of interiors, facder the 3D case
characterizing images, we consider the convex fagvhich ~ °NIY), open edges and vertices when one pikaixel) is

is the class of all subsetswhich can be expressed as finite adqe_d to the 2[03.D) image, and this until a}ll pixels./oxelsjl
unions of compact convex ses : building up the picture are added. The Minkowski function-

als can then be computed from

d=3: WH(K)=V(K), \Mf%sm),

A= UK;. @) d=2: A=ng, U=-4ng+2n,, x=ns—Nngt+n,,

(10)
The Euler characteristig is defined as an additive functional
on R, so that, forAe R, d=3: V=n. S=-6n.+2n;, 2B=3n.—2n;+ng,
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Classically Integrable Billiards

A

(A) ®) © D)

Classically Non-integrable Billiards

FIG. 1. Snapshot of the probability distribution at tire 319
(in dimensionless units; see the teit the case of a billiard in the
form of a quarter circldleft) and its thresholded counterpart using
a thresholdd=10% (right). The background is colored white, the @ (b) (c) @

objects black, and the forbidden region for the quantum particle
o D
X=—N¢+ng—ng+n,, (11
© ®

whereng (n;) denote the number of squareubes in two

(three@ dimensionsn; counts the number of facém three FIG. 2. The shapes of the various two-dimensional billiards
dimensions only, n, andn, denote the number of edges and studied: squargA), equilateral triangle(B), quarter circle(C),
vertices, respectively. From Eqg§10) and (11) it follows  semicircle(D), perturbed squarés), perturbed equilateral triangle
directly that the Minkowski functionals contain information (b), perturbed quarter circlée), perturbed semicircled), semicar-
about local four-(eight9 point correlation functions in two diod (e), and triangle with sides which ratio is irrationé). The
(threa dimensions. A more detailed description of the a|go_billiards are colored white, and the forbidden regions for the quan-
rithm and an example of computer code to compute thdum particle are colored black. In most calculations the linear size
Minkowski functionals is given in Ref27]. of the square was taken to bexl3

1 (7 1 (7
Il METHOD X(T,a):~—f (1, 0)dt, B(T,0)=~—f B(t,0)d,
The application of MIA to the time evolution of the prob- AT 70 AT 7O
ability distribution of a quantum particle moving in a billiard (12

is straightforward. We solve the time-dependent Sdimger .

equation for a particle moving in a billiard by a stable and@nd the quantities

accurate numerical methd@8]. For practical purposes the ] )

results obtained are exact. A time series of snapshots display- X(0)=lim X(T,0), B(6)= lim B(T,0), (13
ing the probability distribution can easily be extracted from T T

these data. A collection of digital videos can be found in Ref.
[15]. Each pattern of the time series is converted into a
black-and-white picture by applying a threshold. The result
of applying a threshold of 10% to a representative image of
the probability distribution is shown in Fig. 1.

For each black-and-white image in the time series we
compute the Minkowski functionals using the algorithm de-
scribed above, and analyze the behavior of the Minkowski
functionals as a function of control parameters such as the
threshold, the initial conditions of the wave packet, and the
shape of the billiard. We use Gaussian wave packets as ini
tial states, and study a variety of classically integrable and
nonintegrable billiard¢see Figs. 2-%

In our numerical work we express lengths in units of a
fixed wavelength\, and rescale energyand time, setting:
=1) such that a wave packet with average momentuifi 2
has an average kinetic energy of28]. FIG. 3. The shapes of the various three-dimensional billiards

As will become clear from the examples given below, tOstudied: cubgK), sphere(L), cylinder (M), one eighth of a sphere
distinguish between classically integrable and chaotic sysN), perturbed cubek), perturbed spherd), perturbed cylinder
tems it is expedient to define the time-averaged Minkowskim), and perturbed one eighth of a sphémg In most calculations
functionals the sides of the bounding culfeot shown were taken to be 95

L

016201-3



J. S. KOLE, K. MICHIELSEN, AND H. DE RAEDT PHYSICAL REVIEW B3 016201

2.0 T T T
X(T.9)
1.5F =
© © op 7 -
FIG. 4. Two instances of the lemon-shaped billiard, with bound-
aries in thex-y plane defined by (x)=*+(1—1x|%), xe[—1,1]. 05 .
6=1(0), and §=1.50). The billiards are colored white, and the
forbidden regions for the quantum particle are colored black. In 0 L L L
most calculations the linear size of the square was taken to e 13 0 600 1200 1800 T 2400
_ _ FIG. 6. X(T,6) as a function of timeT, using a threshold
m(x) m;lXX( 0), wu(B) m;le( 0), (14 =15%. X(T,6) and T are measured in dimensionless unitee
text). Solid line: billiard (B). Dashed line: billiardb).
A2 A_13 ; ; ; _ .
whereA=A“/A (A=\°/V) in two (threg dimensions. found for the Euler characteristig(6,t). An example is
given in the bottom panel of Fig. 5 for the case of billiards
IV. 2D RESULTS (B) and (b) and 6=15%. Hence, in conclusion, for inte-

grable billiardsU(t, #) and x(t,#) show large fluctuations,

In Fig. 5 we present results that illustrate the typical beypile for nonintegrable billiards these large fluctuations do
havior of the Minkowski functionals as a function of time, ot gceur.

keeping the threshold fixed. The top panel of Fig. 5 Shows  gjnce the Euler characteristigt, ) is a global measure
the perimeteiJ(t, 0) as a function of time for billiards (A)  4f the curvatures of the objects in the black-and-white image,
and (a) using a threshold=5%. Billiard (A) (solid lin®  anq provides direct quantitative information about the topol-
shows a behavior which is manifestly different from that of ogy of the probability distributiotisee Ref[18], pp. 34, 112,
billiard (a) (dashed ling For timest>100 the solid line 5.4 113 we will study the behavior of as a function oft
displays large fluctuations, in contrast to the dashed linegnq gin more detail. For each choice of the threshéldhe
Other pairs of billiardgB) and (b), etc. show very similar, ., myative time average of the Euler characteri®{d, )
characteristic fluctuations in the perimeter as a function OBpproaCheS a constant value which we denotexpg). A
time (results not shown Essentially the same behavior is representative example of the behavior¥dfT, §) is shown

in Fig. 6.
U(te)(/)i ‘ ' ' ' ' In Fig. 7 we plot the results foK(6), for each of the
R i A R S AR A iy e billiards of Fig. 2. As @ approaches zero, the thresholded
black-and-white picture becomes completely filled with
03 black pixels; hence lig1,oX(6)=\?/A for any image. Ob-
viously, for #—0, X(#) does not contain any useful infor-
021 mation, and for reasons of clarity we therefore omit data for
o1k N <1 in Fig. 7.
0 ] | | L5
0 300 600 90 , 1200
2.5 T T T
x(LO/A 1.0
20F _
15+ sl fld ol L it oo o5 X(8)
el ol it fgd i
L0+ ' 0.5
05
oL 1 1 1
0 300 600 900 1200 0.0
FIG. 5. Top: perimetetJ(t,6) (in pixels), normalized to the
areaA of the billiard (in pixels), as a function of time using a
thresholdd=5%. Solid line: billiard(A). Dashed line: Billiarda).

-0.5

Bottom: Euler characteristig(t, ), normalized to the area of the
billiard (in pixels), as a function of timet using a thresholdd
=15%. Solid line: billiard(B). Dashed line: billiardb). The time FIG. 7. X(#) as function of the threshold (in perceny, for all
is measured in dimensionless unisee the text billiards shown in Fig. 2.
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1.5 T T T T T TABLE I. w(x) and the corresponding for all billiards shown
in Fig. 2.
Billiard 0 m(x)
X(®

© (A) 10 1.00
(B) 13 1.10
© 13 1.09
(D) 13 0.97
PEE (@ 15 1.38
o i (b) 17 1.38
i (o) 16 1.33
j (d) 17 1.29
-1.0 [ G 18 1.36
i (f) 17 1.34

_15 Pid ] ] ] ] 1

0 10 20 30 40 50 (%) 60

FIG. 8. X(#) as a function of the threshol@l(in percent, for all
billiards shown in Fig. 3.

From Fig. 7 it is clear that th&(#) curves form two
clusters, depending on whether the system is classically in- TABLEIl. x(x) and the correspondingfor all billiards shown
tegrable or not. In faciu(y), can be used to classify billiards in Fig. 3.
according to their classicdhon)integrability, as shown in

Table I. The maxima for the classically integrable systems Billiard 4 ©(x)
all lie in the rangd0.97, 1.1Q0, whereas the maxima for the

. . o (K) 3 0.59
classically nonintegrable systems lie in the rarfde29, (L) 1 0.41

1.38]. Further analysis indicates that the maximumXg¢®)

. g (M) 8 0.53
changes linearly with the energy of the wave padkesults (N) 12 037
not shown. This scaling behavior could be trivially incorpo- '
rated into the definition oX(#). Calculations(results not (k) 20 1.34
shown for systems up to 20X 19\ suggest that the system 0 15 0.80
size dependence of(6) is very weak. Therefore, we con- (m) 21 1.31
clude that the scaling properties @fy) can be employed to (n) 16 0.82

test for the(non)integrability of billiards. In contrast to what
Fig. 5 (top) might suggest, the cumulative time average and

35
3.0
2.5
B(9) . -
TABLE 1ll. w(B) and the corresponding for all billiards
20 shown in Fig. 3.

1.5 Billiard 0 w(B)

' (K) 1 1.60

Loy (L) 4 1.92

(M) 3 1.77

05 (N) 4 1.87

i (k) 11 3.10

0] 7 2.49

(m) 11 3.08

FIG. 9. B(#) as a function of the thresholéi(in percen}, for all () 7 2.47

billiards shown in Fig. 3.
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T T T T T T T
14 .
12 F -
109
10 -
08| . Ly
oy
06 — . Aglh
| | | | | | | o St o e e I A0 4
04 06 08 10 12 14 16 18 <2 A b by
FIG. 10. u(x) as function of the shape paramet&rfor the FIG. 11. Snapshot at timte=8 of the probability distribution of
lemon-shaped billiard. Fof=1, the billiard is integrable. a quantum particle moving in billiard®) (left) and (b) (right).

its infinite time limit of the perimetet) (and also the area)
do not have the same propertiesXdd, #) andX(6) (results
not shown. Hence in two dimensions onjy(y) can be used
to test for the(non)integrability of billiards.

very sensitive to the presence of classically unstable trajec-
tories. If there are any unstable trajectories in the classical
system, the value ofu(y) for the quantum mechanical
equivalent can be classified as chaotic. Thus the curve in Fig.
10 clearly shows the transition from chaotic to integrable
V. 3D RESULTS behavior, and vice versa.

For three-dimensional billiards not much research has
been done on the issue of characterizing classical chaos on
basis of some quantum mechanical property. Very recently,
results of numerical work on the stability of classical trajec- \ye have described a method, based on concepts of inte-
tories[29], and on 3D Sinai billiard$5], was reported, but  gra| geometry, to analyze the time evolution of the probabil-
much of the field is unexplored. _ ity distribution of a quantum particle moving in two- and

_In order to look for a quantum signature of chaos in 3Dpree-dimensional billiards. We have demonstrated that the
billiards (sge Fig. 3, we apply an a}nalogous approa_ch to _thetime-averaged Euler characteristic can be used to classify
one described above for the 2D billiards. In three dimensiongjjliards as integrable or not. A qualitative explanation for
both the mean breadi and the Euler characteristemay  this may be the following: The eigenstates of a billiard con-
be used to distinguish integrable and nonintegrable billiards;ain information about the chaotic behavior. Since the time-
From Figs. 8 and 9 it is clear that the 6) andB(0) curves  gependent probability distribution of a quantum particle
form two groups depending on whether the billiards are inmoving in a billiard contains information about many eigen-
tegrable or not. As was the case for the 2D billiards, we carytates simultaneously, it also contains information about the
again use the maximum values of these curves to classify thgorjchaotic behavior of the billiard. The time evolution of
billiards according to their classicdhon) integrability, as  the probability distribution of a quantum particle moving in
shown in Tables Il and lIl. For classically integrable systemsgassically integrable and nonintegrable billiards looks very
n(B) lies in the range{1.60,1.9,3, whereas for noninte- gjfferent. A clear example is given in Fig. 11 for the case of
grable systemg.(B) lies in the range2.47,3.10, a signifi-  pjlliards (B) and (b). While the time-dependent probability
cant dlfference._ For the Euler characteristic, these ranges aggstribution for billiard (B) is rather symmetric and periodic,
[0.37-0.59 for integrable systems ar{@.80,1.34 for non-  the one for billiard(b) looks rather “chaotic.” This differ-
integrable ones. Here the separation is less in magnitude behce in behavior is reflected in the time-averaged Euler char-
still present. acteristic, which characterizes the topology of the patterns.

For three-dimensional billiards, the time-averaged mean

VI. TRANSITION TO CHAOS breadth(or integral mean curvaturef the probability distri-

bution can also be employed for this purpose. For lemon-
detect a transition from integrable to chaotic behavior is th shaped billiards we have shown that the tran;ition from in-
lemon-shaped billiard4]. Two instances of the lemon- %egrable to chaotic .behaV|or can be determlned_ fr'om the
shaped billiard are shoWn in Fig. 4. The boundaries in thedependence of the time-averaged Euler chgracterlstlc on the
x-y plane are defined by(x)= +.(1.— X%, xe[-11] parameter that controls the shape of the billiard. We believe
The integrability of the Iemon-sh;ped biIIiara depend’s dn th%th_may alsot b;ahoftlmter.ezt to agplyt th? TethOd described in
shape parametef. For §=1 and 6=« the billiard is inte- 'S paper fo the time-independent Solutions.
grable; otherwise it is not. I8 slightly deviates from 1, the

VII. CONCLUSION

An interesting case to confirm that(y) can be used to

biIIiarc_j is (_:Iassic_:ally partially chaoti¢periodic orbits and ACKNOWLEDGMENTS

chaotic trajectories coexjstFigure 10 showsu(y) for the

lemon-shaped billiard, for a shape paramefararying be- We would like to thank the Dutch “Stichting Nationale
tween 0.5 and 2.0. Computer Faciliteiten” (NCF) for their support, and A.

The sharp peak centered aroufig 1 shows thafu(y) is  Lande for his critical reading of the manuscript.
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