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Morphological image analysis of quantum motion in billiards
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Morphological image analysis is applied to the time evolution of the probability distribution of a quantum
particle moving in two- and three-dimensional billiards. It is shown that the time-averaged Euler characteristic
of the probability distribution provides a well defined quantity to distinguish between classically integrable and
nonintegrable billiards. In three dimensions the time-averaged mean breadth of the probability distribution may
also be used for this purpose.
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I. INTRODUCTION

In the theory of quantum chaos, the connection betw
the chaotic behavior of classical systems and specific p
erties of their quantum mechanical counterparts has rece
much attention. The most studied issues in this context
the statistical properties of nuclear and atomic spectra@1#
and of two-~recently three-! dimensional billiards@2–5#. In
the mid, 1980s, a conjecture~which became known as th
Bohigas-Giannoni-Schmidt~BGS! conjecture@6#! was made
that the quantal energy level spacing of~ergodic! systems
whose classical equivalent exhibits a chaotic behavior ob
Wigner Gaussian orthogonal ensemble statistics, kno
from random matrix theory, whereas for classically in
grable systems the Poisson distribution applies. Except
to this conjecture are known@7,8#, but it is generally be-
lieved that these form a set of measure 0.

Another way to make a connection between the cha
behavior of classical systems and specific properties of t
quantum mechanical counterparts is to look at the eigens
of billiards. Eigenstates of a stadium may exhibit a struct
that corresponds to classical orbits@9–11#. These structures
called scars, have been directly related to unstable peri
orbits @12–14#. Visual inspection of movies that show th
time evolution of the probability distribution of a quantu
particle moving in two- and three-dimensional~2D and 3D!
billiards of different shapes strongly suggests that these
quences of images may contain enough information to
tinguish between classically integrable and chaotic syst
@15#.

To our knowledge the morphology of patterns of tim
~in!dependent probability distributions has not been stud
In this paper we propose a method, based on concepts
integral geometry, to perform a morphological image ana
sis ~MIA ! of the probability distribution. We use MIA to
characterize the solutions of the time-dependent Schro¨dinger
equation for various 2D and 3D billiards. We demonstr
that, indeed, one can define geometrical and topological
scriptors that are useful to distinguish between classic
integrable and chaotic billiards. Our motivation to analy
time-dependent instead of stationary probability distributio
is that the former usually provide information about ma
eigenstates simultaneously. By following the system ove
sufficiently long period of time, one collects information o
1063-651X/2000/63~1!/016201~7!/$15.00 63 0162
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all those eigenstates that have non-negligible overlap w
the initial state. This ‘‘parallelism,’’ absent in the stationar
state approach@16#, reduces the computational work.

MIA amounts to a characterization of the geometry a
topology of any pattern or series of patterns by means of
so-called Minkowski functionals, known from integral ge
ometry @17–19#. These functionals are related to familia
quantities: In two~three! dimensions, they correspond to th
covered area, perimeter, and connectivity~volume, surface
area, integral mean curvature, and connectivity! of the pat-
tern. In integral geometry the calculation of the Minkows
functionals is relatively straightforward, and requires litt
computational effort. MIA has proven to be a powerful to
in different fields where the description of patterns is imp
tant: statistical physics, to describe the morphology of por
media and complex fluids; cosmology, to analyze the la
scale distribution of matter in the universe; chemistry,
describe the morphology of patterns in reaction diffusi
systems@20#; seismology, to describe the spatial complex
of regional seismicity realizations@21#; and polymer science
to identify and quantify the morphology of mesoscale stru
tures in block copolymers@22,23#. Furthermore, in the semi
classical limit the sum of exponentials of eigenfrequencies
a billiard-shaped drum can be written in terms of t
Minkowski functionals of the billiard@24#, and the Weyl
hypothesis states that the number of energy levels up to
energyE can be written in a similar manner~see, e.g., Ref.
@25#!.

In Sec. II we briefly review the theory of Minkowsk
functionals, and explain the technique of MIA in more deta
We then apply MIA to the motion of a quantum particle
various two- and three-dimensional billiards, and show t
an appropriate quantity can be defined to distinguish cla
cally integrable and chaotic billiards. Finally, we study t
transition to chaos for a system whose degree of chao
parametrized.

II. MORPHOLOGICAL IMAGE ANALYSIS

At the heart of MIA lies the computation of Minkowsk
functionals of an arbitrary~thresholded! image. Therefore, in
this section we will give some mathematical background
Minkowski functionals ~closely following Ref. @20#!,
and sketch the outline of an algorithm to compute the
functionals.
©2000 The American Physical Society01-1
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We first define the Minkowski functionals for compa
convex sets. The parallel setKr of a compact convex setK at
a distancer is the union of all closed balls of radiusr, the
centers of which are points inK. The well-known Euclidean
measures ofKr , such as the area and volume, can be writ
as polynomials inr. For example, the parallel volume of
squareS and a cubeC with edge lengthsa are given by

Vr~S!5a214ar1pr 2, ~1!

Vr~C!5a316a2r 13par214pr 3/3. ~2!

In general, the volumev (d) in d dimensions of the parallel se
Kr at distancer of K is given by the Steiner formula@17#

v ~d!~Kr !5 (
v50

d S d
v DWv

~d!~K !r v, ~3!

whereWv
(d)(K) are the Minkowski functionals. For the firs

three dimensions it can be shown that@17#

d51: W0
~1!~K !5 l ~K !, W1

~1!52x~K !, ~4!

d52: W0
~2!~K !5A~K !, W1

~2!5
1

2
U~K !,

W2
~2!5px~K !, ~5!

d53: W0
~3!~K !5V~K !, W1

~3!5
1

3
S~K !,

W2
~3!~K !5

2

3
pB~K !, W3~3!~K !5

4p

3
~K !, ~6!

where l (K), A(K), U(K), V(K), S(K), B(K), and x(K)
denote the length, area, perimeter, volume, surface a
mean breath, and Euler characteristic or connectivity num
of the convex setK, respectively. The mean breathB is
closely related to the mean curvatureH5(R11R2)/2R1R2 ,
whereR1 and R2 are the principal radii of curvature@26#.
The Euler characteristicx is related to the Gaussian curv
ture G51/R1R2 , and is equal to unity for a convex bod
@26#. The mean curvature and the Gaussian curvature are
useful measures of the curvature of a surface@26#. If the
local surface geometry has an elliptic, Euclidean, or hyp
bolic shape, respectively, then the Gaussian curvature is
spectively positive, zero, or negative@26#.

Up to now, we have limited the discussion to convex se
In order to deal with the more general sets one encounte
characterizing images, we consider the convex ringR, which
is the class of all subsetsA which can be expressed as fini
unions of compact convex setsKi :

A5 ø
i 51

l

Ki . ~7!

The Euler characteristicx is defined as an additive functiona
on R, so that, forAPR,
01620
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x~A!5x~ ø
i 51

l

Ki !

5(
i

x~Ki !2(
i , j

x~KiùK j !

1¯1~21! l 11x~K1ù¯ùKl !, ~8!

and where, for compact convex setsK,

x~K !5H 1 if KÞ0”

0 if K50”
. ~9!

The Euler characteristic describesA in a pure topological
way, i.e., without reference to any kind of metric. It can
shown that this definition ofx permits all Minkowski func-
tionals onR to be written in terms ofx and the kinematical
density @17#. The functionalx as defined in integral geom
etry is the same as the Euler characteristic defined in a
braic topology@17#: For d52, x equals the number of con
nected components minus the number of holes, and in th
dimensionsx is given by the number of connected comp
nents minus the number of tunnels plus the number of c
ties. For example, for a solid cubex51, for a hollow cube
x52, and for a cube pierced by a tunnelx50. For multiply
connected structures the Euler characteristic is negative.
complex structures it is often difficult to identify the numb
of connected components, tunnels and cavities. Howe
MIA directly yields x, as will be explained below.

In order to calculate the morphological properties of
particular image, we first convert the image to a black-a
white picture using a threshold. Pixels~voxels! with an in-
tensity below the threshold are considered to be part of
background and the others are building up the objects in
2D ~3D! picture. According to integral geometry, the mo
phological properties of the various objects building up t
black-and-white picture can be completely described
terms of Minkowski functionals@17#. In order to calculate
the Minkowski functionals in an efficient way we consid
each pixel~voxel! as the union of the disjoint collection of it
interior, faces~for the 3D case only!, open edges and verti
ces. The values ofA, U, V, S, B, andx for these single open
structures can easily be calculated@27#. By making use of the
property of additivity of the Minkowski functionals and th
fact that there is no overlap between open bodies on a lat
we compute the Minkowski functionals of the whole ima
by starting from a complete white image, calculating t
change in the number of interiors, faces~for the 3D case
only!, open edges and vertices when one pixel~voxel! is
added to the 2D~3D! image, and this until all pixels~voxels!
building up the picture are added. The Minkowski functio
als can then be computed from

d52: A5ns , U524ns12ne , x5ns2ne1nv ,
~10!

d53: V5nc S526nc12nf , 2B53nc22nf1ne ,
1-2
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MORPHOLOGICAL IMAGE ANALYSIS OF QUANTUM . . . PHYSICAL REVIEW E63 016201
x52nc1nf2ne1nv, ~11!

wherens (nc) denote the number of squares~cubes! in two
~three! dimensions,nf counts the number of faces~in three
dimensions only!, ne andnv denote the number of edges an
vertices, respectively. From Eqs.~10! and ~11! it follows
directly that the Minkowski functionals contain informatio
about local four-~eight-! point correlation functions in two
~three! dimensions. A more detailed description of the alg
rithm and an example of computer code to compute
Minkowski functionals is given in Ref.@27#.

III. METHOD

The application of MIA to the time evolution of the prob
ability distribution of a quantum particle moving in a billiar
is straightforward. We solve the time-dependent Schro¨dinger
equation for a particle moving in a billiard by a stable a
accurate numerical method@28#. For practical purposes th
results obtained are exact. A time series of snapshots disp
ing the probability distribution can easily be extracted fro
these data. A collection of digital videos can be found in R
@15#. Each pattern of the time series is converted into
black-and-white picture by applying a threshold. The res
of applying a threshold of 10% to a representative image
the probability distribution is shown in Fig. 1.

For each black-and-white image in the time series
compute the Minkowski functionals using the algorithm d
scribed above, and analyze the behavior of the Minkow
functionals as a function of control parameters such as
threshold, the initial conditions of the wave packet, and
shape of the billiard. We use Gaussian wave packets as
tial states, and study a variety of classically integrable a
nonintegrable billiards~see Figs. 2–4!.

In our numerical work we express lengths in units of
fixed wavelengthl, and rescale energy~and time, setting\
51! such that a wave packet with average momentum 2p/l
has an average kinetic energy of 1@28#.

As will become clear from the examples given below,
distinguish between classically integrable and chaotic s
tems it is expedient to define the time-averaged Minkow
functionals

FIG. 1. Snapshot of the probability distribution at timet5319
~in dimensionless units; see the text! in the case of a billiard in the
form of a quarter circle~left! and its thresholded counterpart usin
a thresholdu510% ~right!. The background is colored white, th
objects black, and the forbidden region for the quantum part
gray.
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X~T,u!5
1

ÃT
E

0

T

x~ t,u!dt, B~T,u!5
1

ÃT
E

0

T

B~ t,u!dt,

~12!

and the quantities

X~u!5 lim
T→`

X~T,u!, B~u!5 lim
T→`

B~T,u!, ~13!

e

FIG. 2. The shapes of the various two-dimensional billiar
studied: square~A!, equilateral triangle~B!, quarter circle~C!,
semicircle~D!, perturbed square~a!, perturbed equilateral triangle
~b!, perturbed quarter circle~c!, perturbed semicircle~d!, semicar-
diod ~e!, and triangle with sides which ratio is irrational~f!. The
billiards are colored white, and the forbidden regions for the qu
tum particle are colored black. In most calculations the linear s
of the square was taken to be 13l.

FIG. 3. The shapes of the various three-dimensional billia
studied: cube~K!, sphere~L!, cylinder ~M!, one eighth of a sphere
~N!, perturbed cube~k!, perturbed sphere~l!, perturbed cylinder
~m!, and perturbed one eighth of a sphere~n!. In most calculations
the sides of the bounding cube~not shown! were taken to be 9.5l.
1-3
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m~x!5max
u

X~u!, m~B!5max
u

B~u!, ~14!

whereÃ5l2/A (Ã5l3/V) in two ~three! dimensions.

IV. 2D RESULTS

In Fig. 5 we present results that illustrate the typical b
havior of the Minkowski functionals as a function of tim
keeping the threshold fixed. The top panel of Fig. 5 sho
the perimeterU(t,u) as a function of timet for billiards ~A!
and ~a! using a thresholdu55%. Billiard ~A! ~solid line!
shows a behavior which is manifestly different from that
billiard ~a! ~dashed line!: For times t.100 the solid line
displays large fluctuations, in contrast to the dashed l
Other pairs of billiards~B! and ~b!, etc. show very similar,
characteristic fluctuations in the perimeter as a function
time ~results not shown!. Essentially the same behavior

FIG. 4. Two instances of the lemon-shaped billiard, with boun
aries in thex-y plane defined byy(x)56(12uxud), xP@21,1#.
d51~O!, and d51.5~o!. The billiards are colored white, and th
forbidden regions for the quantum particle are colored black.
most calculations the linear size of the square was taken to bel.

FIG. 5. Top: perimeterU(t,u) ~in pixels!, normalized to the
areaA of the billiard ~in pixels!, as a function of timet using a
thresholdu55%. Solid line: billiard~A!. Dashed line: Billiard~a!.
Bottom: Euler characteristicx(t,u), normalized to the area of th
billiard ~in pixels!, as a function of timet using a thresholdu
515%. Solid line: billiard~B!. Dashed line: billiard~b!. The time
is measured in dimensionless units~see the text!.
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found for the Euler characteristicx(u,t). An example is
given in the bottom panel of Fig. 5 for the case of billiar
~B! and ~b! and u515%. Hence, in conclusion, for inte
grable billiardsU(t,u) and x(t,u) show large fluctuations
while for nonintegrable billiards these large fluctuations
not occur.

Since the Euler characteristicx(t,u) is a global measure
of the curvatures of the objects in the black-and-white ima
and provides direct quantitative information about the top
ogy of the probability distribution~see Ref.@18#, pp. 34, 112,
and 113! we will study the behavior ofx as a function oft
andu in more detail. For each choice of the thresholdu, the
cumulative time average of the Euler characteristicX(T,u)
approaches a constant value which we denote byX(u). A
representative example of the behavior ofX(T,u) is shown
in Fig. 6.

In Fig. 7 we plot the results forX(u), for each of the
billiards of Fig. 2. Asu approaches zero, the threshold
black-and-white picture becomes completely filled w
black pixels; hence limu→0X(u)5l2/A for any image. Ob-
viously, for u→0, X(u) does not contain any useful infor
mation, and for reasons of clarity we therefore omit data
u,1 in Fig. 7.

-

n

FIG. 6. X(T,u) as a function of timeT, using a thresholdu
515%. X(T,u) and T are measured in dimensionless units~see
text!. Solid line: billiard ~B!. Dashed line: billiard~b!.

FIG. 7. X(u) as function of the thresholdu ~in percent!, for all
billiards shown in Fig. 2.
1-4
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From Fig. 7 it is clear that theX(u) curves form two
clusters, depending on whether the system is classically
tegrable or not. In fact,m~x!, can be used to classify billiard
according to their classical~non!integrability, as shown in
Table I. The maxima for the classically integrable syste
all lie in the range@0.97, 1.10#, whereas the maxima for th
classically nonintegrable systems lie in the range@1.29,
1.38#. Further analysis indicates that the maximum ofX(u)
changes linearly with the energy of the wave packet~results
not shown!. This scaling behavior could be trivially incorpo
rated into the definition ofX(u). Calculations~results not
shown! for systems up to 19l319l suggest that the system
size dependence ofX(u) is very weak. Therefore, we con
clude that the scaling properties ofm~x! can be employed to
test for the~non!integrability of billiards. In contrast to wha
Fig. 5 ~top! might suggest, the cumulative time average a

FIG. 8. X(u) as a function of the thresholdu ~in percent!, for all
billiards shown in Fig. 3.

FIG. 9. B(u) as a function of the thresholdu ~in percent!, for all
billiards shown in Fig. 3.
01620
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TABLE I. m~x! and the correspondingu for all billiards shown
in Fig. 2.

Billiard u m~x!

~A! 10 1.00
~B! 13 1.10
~C! 13 1.09
~D! 13 0.97

~a! 15 1.38
~b! 17 1.38
~c! 16 1.33
~d! 17 1.29
~e! 18 1.36
~f! 17 1.34

TABLE II. m(x) and the correspondingu for all billiards shown
in Fig. 3.

Billiard u m(x)

~K! 3 0.59
~L! 11 0.41
~M! 8 0.53
~N! 12 0.37

~k! 20 1.34
~l! 15 0.80
~m! 21 1.31
~n! 16 0.82

TABLE III. m(B) and the correspondingu for all billiards
shown in Fig. 3.

Billiard u m(B)

~K! 1 1.60
~L! 4 1.92
~M! 3 1.77
~N! 4 1.87

~k! 11 3.10
~l! 7 2.49
~m! 11 3.08
~n! 7 2.47
1-5
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its infinite time limit of the perimeterU ~and also the areaA!
do not have the same properties asX(T,u) andX(u) ~results
not shown!. Hence in two dimensions onlym~x! can be used
to test for the~non!integrability of billiards.

V. 3D RESULTS

For three-dimensional billiards not much research
been done on the issue of characterizing classical chao
basis of some quantum mechanical property. Very recen
results of numerical work on the stability of classical traje
tories @29#, and on 3D Sinai billiards@5#, was reported, bu
much of the field is unexplored.

In order to look for a quantum signature of chaos in 3
billiards ~see Fig. 3!, we apply an analogous approach to t
one described above for the 2D billiards. In three dimensi
both the mean breadthB and the Euler characteristicx may
be used to distinguish integrable and nonintegrable billia
From Figs. 8 and 9 it is clear that theX(u) andB(u) curves
form two groups depending on whether the billiards are
tegrable or not. As was the case for the 2D billiards, we
again use the maximum values of these curves to classify
billiards according to their classical~non! integrability, as
shown in Tables II and III. For classically integrable syste
m(B) lies in the range@1.60,1.9,2#, whereas for noninte-
grable systemsm(B) lies in the range@2.47,3.10#, a signifi-
cant difference. For the Euler characteristic, these ranges
@0.37–0.59# for integrable systems and@0.80,1.34# for non-
integrable ones. Here the separation is less in magnitude
still present.

VI. TRANSITION TO CHAOS

An interesting case to confirm thatm~x! can be used to
detect a transition from integrable to chaotic behavior is
lemon-shaped billiard@4#. Two instances of the lemon
shaped billiard are shown in Fig. 4. The boundaries in
x-y plane are defined byy(x)56(12uxud), xP@21,1#.
The integrability of the lemon-shaped billiard depends on
shape parameterd: For d51 andd5` the billiard is inte-
grable; otherwise it is not. Ifd slightly deviates from 1, the
billiard is classically partially chaotic~periodic orbits and
chaotic trajectories coexist!. Figure 10 showsm~x! for the
lemon-shaped billiard, for a shape parameterd varying be-
tween 0.5 and 2.0.

The sharp peak centered aroundd51 shows thatm~x! is

FIG. 10. m~x! as function of the shape parameterd for the
lemon-shaped billiard. Ford51, the billiard is integrable.
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very sensitive to the presence of classically unstable tra
tories. If there are any unstable trajectories in the class
system, the value ofm~x! for the quantum mechanica
equivalent can be classified as chaotic. Thus the curve in
10 clearly shows the transition from chaotic to integrab
behavior, and vice versa.

VII. CONCLUSION

We have described a method, based on concepts of
gral geometry, to analyze the time evolution of the probab
ity distribution of a quantum particle moving in two- an
three-dimensional billiards. We have demonstrated that
time-averaged Euler characteristic can be used to clas
billiards as integrable or not. A qualitative explanation f
this may be the following: The eigenstates of a billiard co
tain information about the chaotic behavior. Since the tim
dependent probability distribution of a quantum partic
moving in a billiard contains information about many eige
states simultaneously, it also contains information about
~non!chaotic behavior of the billiard. The time evolution o
the probability distribution of a quantum particle moving
classically integrable and nonintegrable billiards looks ve
different. A clear example is given in Fig. 11 for the case
billiards ~B! and ~b!. While the time-dependent probabilit
distribution for billiard~B! is rather symmetric and periodic
the one for billiard~b! looks rather ‘‘chaotic.’’ This differ-
ence in behavior is reflected in the time-averaged Euler c
acteristic, which characterizes the topology of the pattern

For three-dimensional billiards, the time-averaged me
breadth~or integral mean curvature! of the probability distri-
bution can also be employed for this purpose. For lem
shaped billiards we have shown that the transition from
tegrable to chaotic behavior can be determined from
dependence of the time-averaged Euler characteristic on
parameter that controls the shape of the billiard. We beli
it may also be of interest to apply the method described
this paper to the time-independent solutions.
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FIG. 11. Snapshot at timet58 of the probability distribution of
a quantum particle moving in billiards~B! ~left! and ~b! ~right!.
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@18# L. A. Santaló, Integral Geometry and Geometric Probabilit
~Addison-Wesley, Reading, MA, 1976!.

@19# D. Stoyan, W. S. Kendall, and J. Mecke,Stochastic Geometry
and its Applications~Akademie Verlag, Berlin, 1989!.

@20# K. R. Mecke, Int. J. Mod. Phys. B12, 861 ~1998!.
@21# N. G. Makarenko, L. M. Karimova, A. G. Terekhov, and A. V

Kardashev, Phys. Solid Earth36, 305 ~2000!.
@22# K. Michielsen, H. De Raedt, and T. Kawakatsu, inComputer

Simulation Studies in Condensed Matter Physics XIII, edited
by D. P. Landau, K. K. Mon, and H. D. Schu¨tler ~Springer-
Verlag, Berlin, in press!.

@23# K. Michielsen, H. De Raedt, and J. G. E. M. Fraaije, Pro
Theor. Phys. Suppl.138, 543 ~2000!.

@24# M. Kac, Am. Math. Monthly73, 1 ~1966!.
@25# H. P. Baltes and E. R. Hilf,Spectra of Finite Systems~Bibliog-

raphisches Institut, Mannheim, 1976!.
@26# S. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh,

Lidin, and B. W. Ninham,The Language of Shape; The Ro
of Curvature in Condensed Matter: Physics, Chemistry a
Biology ~Elsevier, Amsterdam, 1997!.

@27# K. Michielsen and H. De Raedt, Comput. Phys. Commun.132,
94 ~2000!.

@28# H. De Raedt and K. Michielsen, Comput. Phys.8, 600~1994!.
@29# T. Papenbrock, Phys. Rev. E61, 4626~2000!.
1-7


