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Fast algorithm for finding the eigenvalue distribution of very large matrices

Anthony Hams and Hans De Raedt
Institute for Theoretical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4,

NL-9747 AG Groningen, The Netherlands
~Received 11 April 2000!

A theoretical analysis is given of the equation of motion method, due to Albenet al. @Phys. Rev. B12, 4090
~1975!#, to compute the eigenvalue distribution~density of states! of very large matrices. The salient feature of
this method is that for matrices of the kind encountered in quantum physics the memory and CPU requirements
of this method scale linearly with the dimension of the matrix. We derive a rigorous estimate of the statistical
error, supporting earlier observations that the computational efficiency of this approach increases with the
matrix size. We use this method and an imaginary-time version of it to compute the energy and specific heat
of three different, exactly solvable, spin-1/2 models, and compare with the exact results to study the depen-
dence of the statistical errors on sample and matrix size.

PACS number~s!: 05.10.2a, 05.30.2d, 03.67.Lx
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I. INTRODUCTION

The calculation of the distribution of eigenvalues of ve
large matrices is a central problem in quantum physics. T
distribution determines the thermodynamic properties of
system~see below!. It is directly related to the single-particl
density of states~DOS! or Green’s function. In a one-particl
~e.g., one-electron! description, knowledge of the DOS su
fices to compute the transport properties@1#.

The most direct method to compute the DOS, i.e., all
eigenvalues, is to diagonalize the matrixH representing the
Hamiltonian of the system. This approach has two obvio
limitations: The number of operations increases as the t
power of the dimensionD of H, and, perhaps most impor
tantly, the amount of memory required by state-of-the-
algorithms grows asD2 @2,3#. This scaling behavior limits
the application of this approach to matrices of dimensionD
5O(10000), which is too small for many problems of inte
est. What is needed are methods that scale linearly withD.

There has been considerable interest in developing ‘‘fa
@i.e., O(D)] algorithms to compute the DOS and other sim
lar quantities. One such algorithm and an application of i
electron motion in disordered alloy models was given
Alben et al. @4#. In this approach the DOS is obtained b
solving the time-dependent Schro¨dinger equation~TDSE! of
a particle moving on a lattice, followed by a Fourier tran
form of the retarded Green’s function@4#. Using the uncon-
ditionally stable split-step fast Fourier transform method
solve the TDSE, it was shown that the eigenvalue spect
of a particle moving in continuum space can be compute
the same manner@5#. Fast algorithms of this kind prove
useful to study various aspects of localization of waves@6–8#
and other one-particle problems@9–14#.

Application of these ideas to quantum many-body s
tems triggered further development of flexible and efficie
methods to solve the TDSE. Based on Suzuki’s product
mula approach, an unconditionally stable algorithm was
veloped and used to compute the time-evolution of tw
dimensionalS51/2 Heisenberg-like models@15#. Results for
the DOS of matrices of dimensionD'1000000 were re-
ported @15#. A potentially interesting feature of these fa
PRE 621063-651X/2000/62~3!/4365~13!/$15.00
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algorithms is that they may run very efficiently on a quantu
computer@16,17#.

A common feature of these fast algorithms is that th
solve the TDSE for a sample of randomly chosen init
states. The efficiency of this approach as a whole relies
the hypothesis~suggested by the central limit theorem! that
satisfactory accuracy can be achieved by using a sm
sample of initial states. Experience not only shows that t
hypothesis is correct; it strongly suggests that for a fix
sample size the statistical error on physical quantities suc
the energy and specific heat decreases with the dimensioD
of the Hilbert space@16#.

In view of the general applicability of these fast alg
rithms to a wide variety of quantum problems, it seems w
ranted to analyze in detail their properties and the peculiaD
dependence in particular. In Secs. II and III we recapitul
the essence of the approach. We present a rigorous esti
for the mean square error~variance! on the trace of a matrix.
In Sec. IV we describe the imaginary-time version of t
method. The statistical analysis of the numerical data is
cussed in Sec. V. Section VI describes the model syst
that are used in our numerical experiments. The algorit
used to solve the TDSE is reviewed in Sec. VII. In Sec. V
we derive rigorous bounds on the accuracy with which
eigenvalues can be determined, and demonstrate that thi
curacy decreases linearly with the time over which the TD
is solved. The results of our numerical calculations are p
sented in Sec. IX, and our conclusions are given in Sec.

II. THEORY

The trace of a matrixA acting on aD-dimensional Hilbert
space spanned by an orthonormal set of states$ufn&% is
given by

Tr A5 (
n51

D

^fnuAfn&. ~1!

Note that according to Eq.~1! we have Tr 15D. If D is very
large, one might think of approximating Eq.~1! by sampling
over a subset ofK (K!D)‘‘important’’ basis vectors. The
problem with this approach is that the notion ‘‘importan
4365 ©2000 The American Physical Society
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4366 PRE 62ANTHONY HAMS AND HANS DE RAEDT
may be very model dependent. Therefore, it is better
sample in a different manner. We construct a random ve
uc& by choosing D complex random numbers,cn[ f n
1 ign , with mean 0, forn51 . . .D, so

uc&5 (
n51

D

cnufn&, ~2!

and we calculate

^cuAc&5 (
n,m51

D

cm* cn^fmuAfn&. ~3!

If we now sample overS realizations of the random vector
$c% and calculate the average, we obtain

1

S (
p51

S

^cpuAcp&5
1

S (
p51

S

(
n,m51

D

cm,p* cn,p^fmuAfn&. ~4!

Assuming that there is no correlation between the rand
numbers in different realizations, and that the random nu
bers f n,p and gn,p are drawn from an even and symmetr
~both with respect to each variable! probability distribution
~see Appendix A for more details!, we have

lim
S→`

1

S (
p51

S

cm,p* cn,p5E~ ucu2! dm,n , ~5!

whereE(•) denotes the expectation value with respect to
probability distribution used to generate thecn,p’s. On the
right hand side of Eq.~5! the subscripts ofcn,p have been
dropped to indicate that the expectation value does not
pend onn or p. It follows immediately that

lim
S→`

1

S (
p51

S

^cpuAcp&5E~ ucu2!Tr A5E~ ucu2! (
n51

D

^fnuAfn&,

~6!

showing that we can compute the trace ofA by sampling
over random states$cp%, provided there is an efficient algo
rithm to calculatê cpuAcp& ~see Sec. VII!.

According to the central limit theorem, for a large b
finite S, we have

1

S (
p51

S

cm,p* cn,p5E~ ucu2!dm,n1OS 1

AS
D , ~7!

meaning that the statistical error on the trace vanishes
1/AS, which is not surprising. What is surprising is that o
can prove a much stronger result as follows. Let us fi
normalize thecn,p’s so that, for allp,

(
n51

D

ucn,pu251. ~8!

This innocent looking step has far reaching consequen
First we note that the normalization renders the method e
in the ~rather trivial! case when the matrixA is proportional
to the unit matrix. The price we pay for this is that for fixe
o
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p, thecn,p are now correlated, but that does not cause pr
lems ~see Appendix A!. Second it follows thatE(ucu2)
51/D.

Obviously the error can be written as

Tr A2
D

S (
p51

S

^cpuAcp&5Tr RA, ~9!

where

Rm,n[dm,n2
D

S (
p51

S

cm,p* cn,p ~10!

is a traceless@due to Eq.~8!# Hermitian matrix of random
numbers. We putX5Tr RA, and computeE(uXu2). The re-
sult for the general case can be found in Appendix A. Fo
uniform distribution of thecn,p’s on the hypersphere define
by (n51

D ucn,pu251, the expression simplifies considerab
and we find

E~ uTr RAu2!5
D Tr A†A2uTr Au2

S~D11!
, ~11!

an exact expression for the variance in terms of the sam
sizeS, the dimensionD of the matrixA, and the~unknown!
constants TrA†A, anduTr Au.

Invoking a generalization of Markov’s inequality@18#

P~ uXu2>a!<
E~ uXu2!

a
, ; a.0, ~12!

whereP(Q) denotes the probability for the statementQ to be
true. We find that the probability thatuTr RAu2 exceeds a
fraction a of uTr Au2 is bounded by

PS uTr RAu2

uTr Au2
>aD <

1

a S~D11!

D Tr A†A2uTr Au2

uTr Au2
;

; a.0, ~13!

or, in other words, the relative statistical erroreA on the
estimator of the trace ofA is given by

eA[AD Tr A†A2uTr Au2

S~D11!uTrAu2
~14!

if uTr Au.0. We see thateA50 if A is proportional to a unit
matrix. From Eq.~14! it follows that, in general, we may
expecteA to vanish with the square root ofSD. The prefac-
tor is a measure for the relative spread of the eigenvalue
A, and is obviously model dependent. The dependence oeA
on S, D, and the spectrum ofA is corroborated by the nu
merical results presented below.

It is also of interest to examine the effect ofnot normal-
izing thecn,p’s. A calculation similar to the one that led t
the above results yields

eA5A Tr A†A

SuTr Au2
. ~15!
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Clearly, this bound is less sharp and does not vanish ifA is
proportional to a unit matrix.

III. REAL-TIME METHOD

The distribution of eigenvalues or DOS of a quantum s
tem is defined as

D~e!5 (
n51

D

d~e2En!5
1

2pE2`

`

eit e Tr e2 i tH dt, ~16!

whereH is the Hamiltonian of the system andn runs over all
the eigenvalues ofH. The DOS contains all the physica
information about the equilibrium properties of the syste
For instance the partition function, the energy, and the h
capacity are given by

Z5E
2`

`

de D~e! e2b e, ~17!

E5
1

ZE2`

`

de e D~e! e2b e, ~18!

C5b2S 1

ZE2`

`

de e2 D~e! e2b e2E2D , ~19!

respectively. Hereb51/kBT andkB is Boltzmann’s constan
~we putkB51 and\51 from now on!.

As explained above, the trace in integral~16! can be es-
timated by sampling over random vectors. For the statist
error analysis discussed below it is convenient to defin
DOS per sample by

dp~e![
1

2pE2`

`

eit e ^cpue2 i tHcp&dt, ~20!

where the subscriptp labels the particular realization of th
random stateucp&. The DOS is then given by

D~e!5 lim
S→`

1

S (
p51

S

dp~e!. ~21!

Schematically the algorithm to computedp(e) consists of
the following steps:~1! Generate a random stateucp(0)&,
and sett50. ~2! Copy this state toucp(t)&. ~3! Calculate
^cp(0)ucp(t)& and store the result.~4! Solve the TDSE for a
small time stept, replacingucp(t)& by ucp(t1t)& ~see Sec.
VII for model specific details!. ~5! RepeatN times from step
~3!. ~6! Perform a Fourier transform on the tabulated res
and storedp(e).

In practice the Fourier transform in Eq.~16! is performed
by the fast Fourier transform~FFT!. We use a Gaussian win
dow to account for the finite timetN used in the numerica
time integration of the TDSE. The number of time stepN
determines the accuracy with which the eigenvalues can
computed. In Sec. VIII we prove that this systematic error
the eigenvalues vanishes as 1/tN.

Since for any reasonable physical system~or finite matrix!
the smallest eigenvalueE0 is finite, for all practical purposes
dp(e)50 for e,e0,E0. The value ofe0 is easily deter-
-
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mined by examination of the bottom of spectrum. To co
puteZ, E, or C, we simply replace the interval@2`,1`# by
@e0 ,1`#.

IV. IMAGINARY-TIME METHOD

The real-time approach has the advantage that it yie
information on all eigenvalues and can be used to comp
both dynamic and static properties without suffering fro
numerical instabilities. However for the computation of t
thermodynamic properties, the imaginary-time version
more efficient. We will use the imaginary-time method as
independent check on the results obtained by the real-t
algorithm.

Repeating the steps that lead to Eq.~17!, we find

Z5Tr exp~2bH !

5 lim
S→`

1

S (
p51

S

^cpuexp~2bH !cp&, ~22!

with similar expressions forE andC.
Furthermore we have

^cpuHne2bHcp&5^e2bH/2cpuHne2bH/2cp&, ~23!

assumingH is Hermitian. Therefore we only need to prop
gate the random state for an imaginary timeb/2 instead ofb.
Furthermore we do not need to perform a FFT. Disregard
these minor differences, the algorithm is the same as in
real-time case witht replaced by2 i t.

V. ERROR ANALYSIS

Estimating the statistical error on the partition functionZ
is easy because it depends linearly on the trace of the~imagi-
nary! time evolution operator. However, the error onE andC
depends on this trace in a more complicated manner, and
fact has to be taken into account.

First we define

zp[E
e0

`

de dp~e! e2be, ~24!

hp[E
e0

`

de dp~e! e e2be, ~25!

wp[E
e0

`

de dp~e! e2 e2be ~26!

for the real-time method, and

zp[^cpue2bHcp&, ~27!

hp[^cpuHe2bHcp&, ~28!

wp[^cpuH2e2bHcp& ~29!

for the imaginary-time method. For each value ofb we gen-
erate the data$zp%, $hp%, and $wp%, for p51, . . . ,S. For
both cases we have
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Z5 lim
S→`

z̄, ~30!

E5 lim
S→`

h̄

z̄
, ~31!

C5 lim
S→`

b2S w̄

z̄
2

h̄2

z̄2 D , ~32!

wherex̄[S21(p51
S xp . The standard deviations onz̄, h̄, and

w̄ are given by

dz5Avar~z!

S21
, ~33!

dh5Avar~h!

S21
, ~34!

dw5Avar~w!

S21
, ~35!

where var(x)[ x̄ 22 x̄ 2 denotes the variance on the da
$xp%. However, the sets of data$zp%, $hp%, and $wp% are
correlated, since they are calculated from the same
$ucp&%. These correlations in the data are accounted for
calculating the covariance matrixMk,l (k,l 51, . . . ,3), the
elements of which are given byxkxl̄2xk̄ xl̄ , where $x1%,
$x2%, and $x3% are a shorthand for$zp%, $hp%, and $wp%,
respectively. The estimates for the errors inZ, E, andC are
given by

dZ25
1

S21
dz2, ~36!

dE25
1

S21 (
k,l 51

3

Mk,l

dĒ

d xk̄

dĒ

d xl̄

, ~37!

dC25
1

S21 (
k,l 51

3

Mk,l

dC̄

d xk̄

dC̄

d xl̄

, ~38!

whereĒ5h̄/ z̄ and andC̄5b2(w̄/ z̄2h̄2/ z̄2).

VI. EXACTLY SOLVABLE SPIN 1 Õ2 MODELS

The most direct way to assess the validity of the appro
described above is to carry out numerical experiments
exactly solvable models. In this paper we consider three
ferent exactly solvable models, two spin-1/2 chains an
mean-field spin-1/2 model. The former have a complica
spectrum, the latter has a highly degenerate eigenvalue
tribution. These spin models differ from those studied el
where@15,16#, in that they belong to the class of integrab
systems.
et
y

h
n
f-
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-

A. Spin chains

Open spin chains ofL sites described by the Hamiltonia

H52J(
i 51

L21

~s i
xs i 11

x 1Ds i
ys i 11

y !2h(
i 51

L

s i
z ~39!

—wheres i
x , s i

y , ands i
z denote the Pauli matrices, andJ, D,

and h are model parameters—can be solved exactly. T
can be reduced to diagonal form by means of the Jord
Wigner transformation@19#. We have

H5 (
i , j 51

L Fci
†Ai , j cj1

1

2
~ci

†Bi , j cj
†1cjBj ,i* ci !G1hL,

~40!

whereci
† andci are spinless fermion operators and

Ai , j52J~11D!~d i , j 211d i 21,j !22hd i , j , ~41!

Bi , j52J~12D!~d i , j 212d i 21,j ! ~42!

areL3L matrices. By further canonical transformation, th
Hamiltonian can be written as

H5 (
k51

L

LkS nk2
1

2D1
1

2
Tr A1hL, ~43!

wherenk is the number operator of statek, and theLk’s are
given by the solution of the eigenvalue equation

~A2B!~A1B!fk5Lk
2 fk . ~44!

In the general case this eigenvalue problem of theL3L Her-
mitian matrix (A2B)(A1B) is most easily solved numeri
cally. In the present paper we confine ourselves to two l
iting cases: theXY model (D51), and the Ising model in a
transverse field (D50).

B. Mean-field model

The Hamiltonian of the mean-field model reads

H52
J

L (
i . j 51

L

sW i•sW j2h(
i 51

L

s i
z , ~45!

and can be rewritten as

H522
J

L
SW •SW 22hSz1

3

2
J, ~46!

with

SW 5
1

2 (
i 51

L

sW i . ~47!

The single spin-L/2 Hamiltonian has eigenvalues

El ,m522Jl~ l 11!/L22hm1
3

2
J, ~48!

with degeneracy
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nl ,m5
2l 11

L/21 l 11 S L

L/22 l D . ~49!

This rather trivial model serves as a test for the case
highly degenerate eigenvalues.

VII. TIME EVOLUTION

For the approach outlined in Secs. III and IV to be
practical use, it is necessary that the matrix elements of
exponential ofH can be calculated efficiently. The purpo
of this section is to describe how this can be done.

The general form of the Hamiltonians of the models
study is

H52 (
i , j 51

L

(
a5x,y,z

Ji , j
a s i

as j
a2(

i 51

L

(
a5x,y,z

hi
as i

a , ~50!

where the first sum runs over all pairsP of spins,s i
a (a

5x,y,z) denotes theath component of the spin-1/2 operat
representing thei th spin. For both methods, we have
calculate the evolution of a random state, i.e.,U(t)uc&
[exp(2itH)uc& or U(t)uc&[exp(2tH)uc& for the real and
imaginary time methods, respectively. We will discuss
real-time case only; the imaginary-time problem can
solved in the same manner.

Using the semigroup propertyU(t1)U(t2)5U(t11t2),
we can writeU(t)5U(t)m where t5mt. Then the main
step is to replaceU(t) by a symmetrized product-formul
approximation@20#. For the case at hand it is expedient
take

U~t!'Ũ~t![e2 i tHz/2e2 i tHy/2e2 i tHxe2 i tHy/2e2 i tHz/2,

~51!

where

Ha52 (
i , j 51

L

Ji , j
a s i

as j
a2(

i 51

L

hi
as i

a , a5x,y,z. ~52!

Other decompositions@15,21# work equally well, but are
somewhat less efficient for the cases at hand. In the real-
approachŨ(t) is unitary, and hence the method is uncon
tionally stable@20# ~also the imaginary-time method can b
made unconditionally stable!. It can be shown tha
zuU(t)2Ũ(t)uz<st3 (s.0 a constant! @22#, implying that
the algorithm is correct to second order in the time stet
@20#. Usually it is not difficult to chooset so small that for
all practical purposes the results obtained can be consid
as being ‘‘exact.’’ Moreover, if necessary,Ũ(t) can be used
as a building block to construct higher-order algorithms@23–
26#. In Appendix B we will derive bounds on the error in th
eigenvalues when they are calculated using a symme
product formula.

As basis states$ufn&% we take the direct product of th
eigenvectors of theSi

z ~i.e., spin-upu↑ i& and spin-downu↓ i&).
In this basis,e2 i tHz/2 changes the input state by altering t
phase of each of the basis vectors. AsHz is a sum of pair
interactions, it is trivial to rewrite this operation as a dire
product of 434 diagonal matrices ~containing the
f

f
e

e
e

e
-

ed

ic

t

interaction-controlled phase shifts! and 434 unit matrices.
Still working in the same representation, the action
e2 i tHy/2 can be written in a similar manner, but the matric
that contain the interaction-controlled phase-shift have to
replaced by nondiagonal matrices. Although this does
present a real problem, it is more efficient and systemati
proceed as follows. Let us denote byX(Y) the rotation by
p/2 of each spin about thex(y) axis. As

e2 i tHy/25XX†e2 i tHy/2XX†5Xe2 i tHz8/2X†, ~53!

it is clear that the action ofe2 i tHy/2 can be computed by
applying to each spin, the inverse ofX followed by an
interaction-controlled phase-shift andX itself. The prime in
Eq. ~53! indicates thatJi , j

z andhi
z in Hz have to be replaced

by Ji , j
y and hi

y respectively. A similar procedure is used
compute the action ofe2 i tHx. We only have to replaceX by
Y.

VIII. ACCURACY OF THE COMPUTED EIGENVALUES

First we consider the problem of how to choose the nu
ber of time stepsN to obtain the DOS with acceptable acc
racy. According to the Nyquist sampling theorem employi
a sampling intervalDt5p/maxi uEiu is sufficient to cover the
full range of eigenvalues. On the other hand, the time s
also determines the accuracy of the approximationŨ(t). Let
us call the maximum value oft which gives satisfactory
accuracyt0 ~for the imaginary-time method, this is the on
parameter!. For the examples treated heret0,Dt), implying
that we have to use more steps to solve the TDSE than
actually use to compute the FFT. Eigenvalues that differ l
than De5p/NDt cannot be identified properly. Howeve
since De}N21 we only have to extend the length of th
calculation by a factor of 2 to increase the resolution by
same factor.

At first glance the above reasoning may seem to be a l
optimistic. It apparently overlooks the fact that if we int
grate the TDSE over longer and longer times the error on
wave function also increases~although it remains bounde
because of the unconditional stability of the product form
algorithm!. In fact it has been shown that, in general@20#,

zue2 i tH uc~0!&2Ũm~t!uc~0!&uz<ct2t, ~54!

where t5mt, suggesting that the loss in accuracy on t
wave function may well compensate for the gain in reso
tion that we obtain by using more data in the Fourier tra
form. Fortunately this argument does not apply when
want to determine the eigenvalues as we now show. As
fore, we will discuss the real-time algorithm only becau
the same reasoning~but different mathematical proofs! holds
for the imaginary-time case.

Consider the time-step operator~52!. Using the fact that
any unitary matrix can be written as the matrix exponen
of a Hermitian matrix, we can write

Ũ~t!5e2 i tHz/2e2 i tHy/2e2 i tHxe2 i tHy/2e2 i tHz/2[e2 i tH̃(t).

~55!
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FIG. 1. The density of states~DOS! as obtained from the real-time algorithm for spin chains of lengthL515 and forS520 random initial
states. Left:XY model; middle: Ising model in a transverse field; right: mean-field model. For the mean-field model a logarithmic sca
used to show the highly degenerate spectrum more clearly.
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It is clear that in practice the real-time method yields t
spectrum ofH̃(t), not the one ofH. Therefore the relevan
question is: How much do the spectra ofH̃(t) andH differ?
In Appendix B we give a rigorous proof that the differen
between the eigenvalues ofH̃(t) and H vanishes ast2. In
other words the value ofm ~or t5mt) has no effect what-
soever on the accuracy with which the spectrum can be
termined. Therefore, the final conclusion is that the erro
the eigenvalues vanishes ast2/N whereN is the number of
data points used in the Fourier transform of Tre2 i tH̃ (t).

IX. RESULTS

We write our results in units ofJ and takeh50, except
for the Ising model in a transverse field, where we takeh
50.75J. The random numberscn,p are generated such tha
the Eqs.~A3! and ~A4! are satisfied. We use two differen
techniques to generate these random numbers.

~1! A uniform random number generator produces$ f n,p%
and $gn,p% with 21< f n,p ,gn,p<1. We then normalize the
vector @see Eq.~8!#.

~2! cn,p’s are obtained from a two-variable~real and
imaginary part! Gaussian random number generator and
resulting vector is normalized.

Both methods satisfy the basic requirements Eqs.~A3!
and ~A4! but because the first samples points out of
2D-dimensional hypercube and subsequently projects
vector onto a sphere, the points are not distributed unifor
over the surface of the unit hypersphere. The second me
is known to generate numbers which are distributed u
e-
n

e

a
e

ly
od
i-

formly over the hypersurface. Although the first method do
not satisfy all the mathematical conditions that lead to er
~14!, our numerical experiments with both generators g
identical results, within statistical errors of course. Als
within the statistical errors, the results from the imagina
and real-time algorithm are the same. Therefore, we o
show some representative results as obtained from the
time algorithm.

In Fig. 1 we show a typical result for the DOSD(e) of
the XY model, the Ising model in a transverse field, and
mean-field model, all withL515 spins and usingS520
samples. Because of the very high degeneracy we plotted
DOS for the mean-field model on a logarithmic scale.

In Fig. 2 we show the relative errordZ/Z based on Eq.
~36! for the three models of various size, as obtained fr
the simulation ~symbols!. For these figures we used th
imaginary-time algorithm, because then the statistical e
can be related toeA directly @see Eq. ~14!, with A
5exp(2bH)]. The theoretical results~lines! for the error es-
timate, obtained by a direct exact numerical evaluation
Eq. ~14! are shown as well. We conclude that for all system
lattice sizes, and temperatures there is very good agreem
between numerical experiment and theory.

Results for the energyE and specific heatC are presented
in Fig. 3 the (XY model!, 4 ~the Ising model in a transvers
field!, and 5~the mean-field model!. The solid lines represen
the exact result for the case shown. Simulation data as
tained fromS55 and 20 samples are represented by sy
bols, and the estimates of the statistical error by error b
We see that the data are in excellent agreement with
.

r

FIG. 2. The relative errordZ/Z @see Eq.~36!# on a logarithmic scale as a function of temperatureT[1/b and for various system sizes
Left: XY model; middle: Ising model in a transverse field; right: mean-field model. Solid lines:eA @with A5e2bH; see Eq.~14!# for L
56; dashed lines:eA for L510; dash-dotted line:eA for L515. Crosses: simulation data forS520 andL56; squares: simulation data fo
S520 andL510; circles: simulation data forS520 andL515.
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FIG. 3. Energy~top! and specific heat~bottom! of theXY model@see Eq.~39!#, with D51 andh50. Left: L56; middle:L510; right:
L515. Solid lines: exact result; crosses: simulation data usingS55 samples; squares: simulation data usingS520 samples. Error bars: On
standard deviation.
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exact results and, equally important, the estimate for the
ror captures the deviation from the exact result very well. W
also see that in general the error decreases with the sy
size. Both the imaginary- and real-time methods seem
work very well, yielding accurate results for the energy a
specific heat of quantum spin systems with modest amo
of computational effort.

X. CONCLUSIONS

The theoretical analysis presented in this paper give
solid justification of the remarkable efficiency of the rea
r-
e
em
to
d
ts

a

time equation-of-motion method for computing the distrib
tion of all eigenvalues of very large matrices. The real-tim
method can be used whenever the more conventio
Lanczos-like, sparse-matrix techniques can be appl
Memory and CPU requirements for each iteration~time-step!
are roughly the same~depending on the actual implement
tion! for both approaches.

We do not recommend using the real-time method if o
is interested in the smallest~or largest! eigenvalue only.
Then the Lanczos method is computationally more effici
because it needs less iterations~time steps! than the real-time
approach. However, if one needs information about all
ng

FIG. 4. Energy~top! and specific heat~bottom! of the Ising model in a transverse field@see Eq.~39!# with D50 andh50.75J. Left:

L56; middle:L510; right: L515. Solid lines; exact result; crosses: simulation data usingS55 samples; squares: simulation data usi
S520 samples. Error bars: one standard deviation.
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FIG. 5. Energy~top! and specific heat~bottom! of the mean-field model@see Eq.~45!# with h50. Left: L56; middle: L510; right:
L515. Solid lines: exact result; crosses: simulation data usingS55 samples; squares: simulation data usingS520 samples. Error bars: on
standard deviation.
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genvalues and direct diagonalization is not possible~because
of memory/CPU time! there is as yet no alternative to th
real-time method. The matrices used in this example~up to
32768332768) are not representative in this respect: T
real-time method has been used to compute the distribu
of eigenvalues for matrices of dimension 167772
316777216@15#.

Once the eigenvalue distribution is known the thermo
namic quantities directly follow. However, if one is inte
ested in the accurate determination of the temperature de
dence of thermodynamic~and static correlation functions!
properties but not in the eigenvalue distribution itself, t
imaginary-time method is by far the most efficient method
compute these quantities. For instance the calculation of
thermodynamic properties forbJ50, . . . ,10 of a15-site
spin-1/2 system~i.e. implicitly solving the full 32768
332768 eigenvalue problem! takes 1410 sec per sample on
Mobile Pentium III 500 MHz system.
e
n

-

en-

he

Finally we remark that although we used quantum-s
models to illustrate various aspects, there is nothing in
real or imaginary-time method that is specific to the mod
used. The only requirement for these methods to be usefu
practice is that the matrix is sparse and~very! large.
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APPENDIX A: EXPECTATION VALUE CALCULATION

In this Appendix we calculate the expectation value of t
error squared, as defined in Sec. II. By definition we hav
variable,
E~ uTr RAu2!5ES U1S (
p51

S

(
m,n51

D

~dm,n2D cm,p* cn,p!Am,nU2D
5

1

S2 (
p,p851

S

(
k,l ,m,n51

D

„dk,ldm,n2D dk,l E~cm,p* cn,p!2D dm,n E~ck,p8cl ,p8
* !

1D2 E~cm,p* cn,p ck,p8 cl ,p8
* !…Ak,l* Am,n , ~A1!

wherep andp8 label the realization of the random numberscn,p[ f n,p1 ign,p .
First we assume that different realizationspÞp8 are independent implying that

E~cm,p* cn,p ck,p8 cl ,p8
* !pÞp85E~cm,p* cn,p!E~ck,p8 cl ,p8

* !. ~A2!

Second we assume that the random numbers are drawn from a probability distribution that is an even function of each
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P~ f 1,p ,g1,p , f 2,p ,g2,p , . . . ,f k,p ,gk,p , . . . ,f D,p ,gD,p!5P~ f 1,p ,g1,p , f 2,p ,g2,p , . . . ,2 f k,p ,gk,p , . . . ,f D,p ,gD,p!

5P~ f 1,p ,g1,p , f 2,p ,g2,p , . . . ,f k,p ,2gk,p , . . . ,f D,p ,gD,p!, ~A3!

and symmetric under interchange of any two variables,

P~ f 1,p ,g1,p , . . . ,f i ,p ,gi ,p , . . . ,f j ,p ,gj ,p , . . . ,f D,p ,gD,p!5P~ f 1,p ,g1,p , . . . ,f j ,p ,gi ,p , . . . ,f i ,p ,gj ,p , . . . ,f D,p ,gD,p!

5P~ f 1,p ,g1,p , . . . ,gi ,p , f i ,p , . . . ,f j ,p ,gj ,p , . . . ,f D,p ,gD,p!,

~A4!

for all i , j ,k51, . . . ,D. This is most easily done by drawing individual numbers from the same even probability distrib
i.e.,

P~ f 1,p ,g1,p , . . . ,f j ,p ,gi ,p , . . . ,f i ,p ,gj ,p , . . . ,f D,p ,gD,p!5 )
n,m51

D

P~ f n,p!P~gn,p!, ~A5!

whereP(x)5P(2x). Normalizing the vector (f 1,p ,g1,p , . . . ,f D,p ,gD,p) such that( i 51
D ucn,pu251 ~for p51, . . . ,S), does not

affect the basic requirements~A3! and ~A4!.
Making use of the above properties ofP( f 1 ,g1 , . . . ,f D ,gD), we find that

E~cm,p* cn,p!5dm,nE~ ucm,pu2!5dm,nE~ ucu2!, ~A6!

where in the last equality we omitted the subscripts ofcm,p to indicate that the expectation value does not depend onm or p.
An expectation value of a product of twoc* ’s and twoc’s can be written as

E~cm,p* cn,p ck,p8 cl ,p8
* !5~12dp,p8!dm,ndk,lE~ ucm,pu2!E~ ucm,p8u

2!1dp,p8dm,ndk,l~12dmk!E~cm* cm ck ck* !

1dp,p8dm,kdn,l~12dm,n!E~cm* cn cm cn* !1dp,p8dm,ldn,k~12dm,n!E~cm* cn cn cm* !

1dp,p8dm,ldn,kdm,nE~cm* cm cm cm* !

5~12dp,p8!dm,ndk,lE~ ucu2!21dp,p8dm,ndk,l~12dm,k!E~ ucm,pu2 uck,pu2!

1dp,p8dm,kdn,l~12dm,n!E~ ucm,pu2 ucn,pu2!1dp,p8dm,ldn,k~12dm,n!E~cm,p* cn,p cn,p cm,p* !

1dp,p8dm,ldn,kdm,nE~ ucm,pu4!. ~A7!

Furthermore, formÞn we have

E~cm,p* cn,p cn,p cm,p* !5E„~ f m,p
2 22i f m,pgm,p2gm,p

2 !~ f n,p
2 12i f n,pgn,p2gn,p

2 !…

5E~ f m,p
2 f n,p

2 !12iE~ f m,p
2 f n,pgn,p!2E~ f m,p

2 gn,p
2 !22iE~ f m,pgm,pf n,p

2 !14E~ f m,pf n,pgm,pgn,p!

12iE~ f m,pgm,pgn,p
2 !2E~gm,p

2 f n,p
2 !22iE~gm,p

2 f n,pgn,p!1E~gm,p
2 gn,p

2 !

5E~ f m,p
2 f n,p

2 !2E~gm,p
2 f n,p

2 !2E~ f m,p
2 gn,p

2 !1E~gm,p
2 gn,p

2 !

50. ~A8!
By symmetryE(ucm,pu2 ucn,pu2) does not depend onm, n, or
p, and the same holds forE(ucm,pu4).

The fact that the vector (c1,p , . . . ,cD,p) is normalized
yields the identities

ES (
n51

D

ucn,pu2D
5 (

n51

D

E~ ucn,pu2!5DE~ ucu2!5E~1!51 ~A9!

and
ES S (
n51

D

ucn,pu2D 2D
5 (

m,n51

D

E~ ucn,pu2ucm,pu2!

5 (
n51

D

E~ ucn,pu4!1 (
m,n51

D

~12dm,n!E~ ucnu2ucmu2!

5DE~ ucu4!1D~D21!E~ ucu2uc8u2!5E~1!51,

~A10!
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wherec andc8 refer to two different complex random var
ables. Therefore, we have

E~ ucu2!51/D ~A11!

and

E~ ucu2uc8u2!5
12DE~ ucu4!

D~D21!
. ~A12!

Substitution into Eq.~A7! yields

E~cm,p* cn,p ck,p8 cl ,p8
* !

5~12dp,p8!dm,ndk,lD
22

1dp,p8

12DE~ ucu4!

D~D21!
„dm,ndk,l~12dm,k!

1dm,kdn,l~12dm,n!…1dp,p8dm,ldn,kdm,nE~ ucu4!,

~A13!

and the final result for the variance reads
f

E~ uTr RAu2!5
1

SS D2D2E~ ucu4!

D21
Tr A†A

1
12D2E~ ucu4!

D21
uTr Au2

1
~D11!D2E~ ucu4!22D

D21 (
n51

D

uAn,nu2D .

~A14!

An expression for the fourth momentE(ucu4) cannot be
derived from general properties of the probability distrib
tion or normalization of random vector. We can only ma
progress by specifying the former explicitly. As an examp
we take a probability distribution such that for each realiz
tion p the random numbersf n,p andgn,p are distributed uni-
formly over the surface of a 2D-dimensional sphere of ra
dius 1. This probability distribution can be written as

P~ f 1 ,g1 , f 2 ,g2 , . . . ,f D ,gD!

}d~ f 1
21g1

21 f 2
21g2

21•••1 f D
2 1gD

2 21!,

~A15!

where we omitted the subscriptp because it is irrelevant fo
what follows. The even moments ofucnu5( f n

21gn
2)1/2 are

defined by
E~ ucu2M !5

E
2`

`

~ f 1
21g1

2!Md~ f 1
21g1

21 f 2
21g2

21•••1 f D
2 1gD

2 21!d f1dg1d f2dg2•••d fDdgD

E
2`

`

d~ f 1
21g1

21•••1 f D
2 1gD

2 21!d f1dg1•••d fDdgD

. ~A16!

It is expedient to introduce an auxiliary integration variableX by

E~ ucu2M !5

E
2`

`

XMd~ f 1
21g1

22X!d„f 2
21g2

21•••1 f D
2 1gD

2 2~12X!…dXd f1dg1d f2dg2•••d fDdgD

E
2`

`

d~ f 1
21g1

21•••1 f D
2 1gD

2 21!d f1dg1•••d fDdgD

. ~A17!

We can perform the integration overX last and regard Eq.~A17! as theM th moment of the variableX with respect to the
probability distribution:

P~X!5

E
2`

`

d~ f 1
21g1

22X!d„f 2
21g2

21•••1 f D
2 1gD

2 2~12X!…d f1dg1d f2dg2•••d fDdgD

E
2`

`

d~ f 1
21g1

21•••1 f D
2 1gD

2 21!d f1dg1•••d fDdgD

. ~A18!
The calculation ofP(X) amounts to computing integrals o
the form

I N~X!5E
2`

`

dS (
n51

N

xn
22XD dx1dx2•••dxN . ~A19!

Changing to spherical coordinates, we have
I N~X!5
2pN/2

G~N/2!
E

0

`

r N21d~r 22X!dr

5
pN/2

G~N/2!
XN/221u~X!, ~A20!

yielding
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P~X!5
I 2~X!I 2D22~12X!

I 2D~1!

5~D21!~12X!D22u~X! u~12X!. ~A21!

The momentsE(ucu2M) are given by

E~ ucu2M !5E
2`

`

XMP~X!dX

5~D21!E
0

1

XM~12X!D22dX5
G~D !G~11M !

G~D1M !
,

~A22!

and the values of interest to us are

E~ ucu0!51, E~ ucu2!5
1

D
, E~ ucu4!5

2

D~D11!
,

~A23!

where the first two results provide some check on the pro
dure used. Substituting Eq.~A23! into Eq. ~A14! yields
e-

E~ uTr RAu2!5
D Tr A†A2uTr Au2

S~D11!
. ~A24!

APPENDIX B: ERROR BOUNDS

Here we prove that the difference between the eigen
ues of the Hermitian matrixA1B and those obtained from
the approximate time-evolution exp(zA/2)exp(zB)exp(zA/2)
(z52 i t,2t) is bounded byt2. In the following we assume
A and B are Hermitian matrices and taket, a real, non-
negative number. We start with the imaginary-time case.

We define the differenceR(t) by

R~t![et(A1B)2etA/2etBetA/2

5
1

4E0

t

dlE
0

l

dmE
0

m

dnelA/2elB$e2nB
†2B,@A,B#‡enB

1enA/2
†A,@A,B#‡e2nA/2%elA/2e(t2l)(A1B), ~B1!

a well-known result@24#. We have@26#
zuR~t!uz<
1

4I E0

t

dlE
0

l

dmE
0

m

dnelA/2e(l2n)B
†2B,@A,B#‡enBelA/2e(t2l)(A1B)I

1
1

4I E0

t

dlE
0

l

dmE
0

m

dnelA/2elBenA/2
†A,@A,B#‡e(l2n)A/2e(t2l)(A1B)I

<
1

4E0

t

dlE
0

l

dmE
0

m

dnel zuAuz/2e(l2n) zuBuzzu†2B,@A,B#‡uzn zuBuzel zuAuz/2e(t2l)( zuAuz1 zuBuz)

1
1

4E0

t

dlE
0

l

dmE
0

m

dnel zuAuz/2el zuBuzen zuAuz/2zu†A,@A,B#‡uze(l2n) zuAuz/2e(t2l)( zuAuz1 zuBuz)

5
1

24
t3et( zuAuz1 zuBuz)~ zu†A,@A,B#‡uz1 zu†2B,@A,B#‡uz!, ~B2!

and

zuR~2t!zu<
1

4I E0

2t

dlE
0

l

dmE
0

m

dnelA/2e(l2n)B
†2B,@A,B#‡enBelA/2e(2t2l)(A1B)I

1
1

4I E0

2t

dlE
0

l

dmE
0

m

dnelA/2elBenA/2
†A,@A,B#‡e(l2n)A/2e(2t2l)(A1B)I

5
1

4I E0

t

dlE
0

l

dmE
0

m

dne2lA/2e(2l1n)B
†2B,@A,B#‡e2nBe2lA/2e(2t1l)(A1B)I

1
1

4I E0

t

dlE
0

l

dmE
0

m

dne2lA/2e2lBe2nA/2
†A,@A,B#‡e(2l1n)A/2e(2t1l)(A1B)I

<
1

4E0

t

dlE
0

l

dmE
0

m

dnel zuAuz/2e(l2n) zuBuzzu†2B,@A,B#‡uzen zuBuzel zuAuz/2e(t2l)( zuAuz1 zuBuz)

1
1

4E0

t

dlE
0

l

dmE
0

m

dnel zuAuz/2el zuBuzen zuAuz/2zu†A,@A,B#‡uze(l2n) zuAuz/2e(t2l)( zuAuz1 zuBuz)

5
1

24
t3et( zuAuz1 zuBuz)~ zu†A,@A,B#‡uz1 zu†2B,@A,B#‡uz!. ~B3!
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Hence the bound inR(t) does not depend on the sign oft so
that we can write

zuR~t!uz<sutu3eutu( zuAuz1 zuBuz), ~B4!

where

s[
1

24
zu†A,@A,B#‡uz1 zu†2B,@A,B#‡uz. ~B5!

For realt we have

etA/2etBetA/2[etC(t), ~B6!

whereC(t) is Hermitian. Clearly we have

et(A1B)2etC(t)5R~t!. ~B7!

We already have an upper bound onR(t), and now want to
use this knowledge to put an upper bound on the differe
in eigenvalues ofC(t) and A1B. In general, for two Her-
mitian matricesU and V with eigenvalues$un% and $vn%,
respectively, both sets sorted in nondecreasing order,
have@2#

uun2vnu< zuU2Vuz, ; n. ~B8!

Denoting the eigenvalues ofA1B and C(t) by xn(0) and
xn(t), respectively, combining Eqs.~B4! and ~B8! yields

uetxn(0)2etxn(t)u<sutu3eutu( zuAuz1 zuBuz). ~B9!

To find an upper bound onuxn(0)2xn(t)u we first assume
that xn(0)<xn(t) and taket>0. It follows from Eq. ~B9!
that

et„xn(t)2xn(0)…21<st3et( zuAuz1 zuBuz)2txn(0). ~B10!

For x>0, ex21>x and we have2xn(0)< zuA1Buz< zuAuz
1 zuBuz. Hence we find

xn~t!2xn~0!<st2e2t( zuAzu1 zuBuz). ~B11!

An upper bound on the difference in the eigenvalues betw
C(t) andA1B can equally well be derived by considerin
the inverse of the exact and approximate time-evolution
erator~B6!. This is useful for the casexn(0).xn(t): Instead
of using Eq. ~B7! we start from exp„2t(A1B)…
2exp„2tC(2t)…5R(2t) (t>0). Note that the set of ei
genvalues of a matrix and its inverse are the same and
the matrices we are considering here, i.e., matrix expon
tials, are nonsingular. Making use of Eq.~B4! for R(2t)
gives

ue2txn(0)2e2txn(t)u<sutu3eutu( zuAuz1 zuBuz), ~B12!

and proceeding as before we find

t„xn~0!2xn~t!…<et„xn(0)2xn(t)…21<st3e2t( zuAuz1 zuBuz).
~B13!

Putting the two cases together, we finally have

uxn~t!2xn~0!u<st2e2t( zuAuz1 zuBuz). ~B14!
e

e

en

-
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Clearly Eq.~B14! proves that the differences in the eigenva
ues ofA1B andC(t) vanish ast2.

We now consider the case of the real-time algorithmz
52 i t). For Hermitian matricesA and B the matrix expo-
nentials are unitary matrices, and hence their norm equa
This simplifies the derivation of the upperbound o
R(2 i t). One finds@20#

zuR~2 i t!uzE<sutu3, ~B15!

wherezuAuzE
2[Tr A†A denotes the Euclidean norm of the m

trix A @2#. In general the eigenvalues of a unitary matrix a
complex valued, and therefore the strategy adopted abov
use the bound onR(t) to set a bound on the difference of th
eigenvalues no longer works. Instead we invoke
Wielandt-Hoffman theorem@27#:

If U and Varenormal matrices with eigenvalues ui andv i
respectively, then there exists a suitable rearrangemen
permutation% of the numbers1, . . . ,n) of the eigenvalues so
that

(
j 51

N

uuj2v%( j )u2< zuU2VuzE
2 . ~B16!

Let U and V denote the exact and approximate real-tim
evolution operators respectively. The eigenvalues ofA1B
andC(t) arexn(0) andxn(t), respectively. All thexn’s and
xn(t)’s are real numbers. According to the Wieland
Hoffman theorem

(
j 51

N

uei t xj (0)2ei t yj (t)u2< zuR~2 i t!uzE
2<s2t6. ~B17!

where yj (t)5x%( j )(t), % being the permutation such tha
inequality ~B17! is satisfied. We see that Eq.~B17! only
depends on„t xj (0)mod 2p… and „t yj (t)mod 2p…, but so
does the DOS@see Eq.~16!#. Since inequality~B17! and the
DOS only depend on these ‘‘angles’’ modulo 2p, there is no
loss of generality if we make the choice

0<ut„xj~0!2yj~t!…u<p. ~B18!

Rewriting the sum in Eq.~B17!, we have

(
j 51

N

uei t xj (0)2ei t yj (t)u25(
j 51

N

$222 cos@t „xj~0!2yj~t!…#%

54(
j 51

N

sin2@t/2 „xj~0!2yj~t!…#.

~B19!

As we have

sin2 x<
4 x2

p2
for 0<uxu<p/2, ~B20!

the restriction Eq.~B18! allows us to write

(
j 51

N

„xj~0!2yj~t!…2<
p2s2

4
t4, ~B21!
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implying

uxj~0!2yj~t!u<
ps

2
t2. ~B22!

In summary, we have shown that in the real-time case th
exists a permutation of the approximate eigenvalues s
s.

d

gi,

gi,
re
ch

that the difference with the exact ones vanishes ast2.
Finally we note that both upper bounds~B22! and ~B14!

hold for arbitrary Hermitian matricesA andB and are there-
fore rather weak. Except for the fact that they provide
sound theoretical justification for the real- and imagina
time method, they are of little practical value.
K.

s.
@1# G. D. Mahan,Many-Particle Physics~Plenum Press, New
York, 1981!.

@2# J. H. Wilkinson,The Algebraic Eigenvalue Problem~Claren-
don Press, Oxford, 1965!.

@3# G. H. Golub and C. F. Van Loan,Matrix Computations~John
Hopkins University Press, Baltimore, MD, 1983!.

@4# R. Alben, M. Blume, H. Krakauer, and L. Schwartz, Phy
Rev. B12, 4090~1975!.

@5# M. D. Feit, J. A. Fleck, and A. Steiger, J. Comput. Phys.47,
412 ~1982!.

@6# H. De Raedt and P. de Vries, Z. Phys. B: Condens. Matter77,
243 ~1989!.

@7# T. Kawarabayashi and T. Ohtsuki, Phys. Rev. B53, 6975
~1996!.

@8# T. Ohtsuki and T. Kawarabayashi, J. Phys. Soc. Jpn.66, 314
~1997!.

@9# T. Iitaka, S. Nomura, H. Hirayama, X. Zhao, Y. Aoyagi, an
T. Sugano, Phys. Rev. E56, 1222~1997!.

@10# S. Nomura, T. Iitaka, X. Zhao, T. Sugano, and Y. Aoya
Phys. Rev. B56, 4348~1997!.

@11# S. Nomura, T. Iitaka, X. Zhao, T. Sugano, and Y. Aoya
Phys. Rev. B59, 10 309~1999!.

@12# T. Iitaka and T. Ebisuzaki, Phys. Rev. E60, 1178~1999!.
@13# T. Iitaka and T. Ebisuzaki, Microelectron. Eng.47, 321~1999!.
@14# T. Iitaka and T. Ebisuzaki, Phys. Rev. E61, 3314~2000!.
@15# P. de Vries and H. De Raedt, Phys. Rev. B47, 7929~1993!.
@16# H. De Raedt, A. Hams, K. Michielsen, S. Miyashita, and

Saito, Prog. Theor. Phys.138, 489 ~2000!.
@17# D. S. Abrams and S. Lloyd, Phys. Rev. Lett.83, 5162~1999!.
@18# G. R. Grimmet and D. R. Stirzaker,Probability and Random

Processes~Clarendon, Oxford, 1992!.
@19# E. Lieb, T. Schultz, and D. C. Mattis, Ann. Phys.~N.Y.! 16,

407 ~1961!.
@20# H. De Raedt, Comput. Phys. Rep.7, 1 ~1987!.
@21# M. Suzuki, S. Miyashita, and A. Kuroda, Prog. Theor. Phy

58, 1377~1977!.
@22# zuXuz denotes the spectral norm of the matrixX; seeThe Alge-

braic Eigenvalue Problem~Ref. @2#! andMatrix Computations
~Ref. @3#!.

@23# H. De Raedt and B. De Raedt, Phys. Rev. A28, 3575~1983!.
@24# M. Suzuki, J. Math. Phys.26, 601 ~1985!.
@25# H. De Raedt and K. Michielsen, Comput. Phys.8, 600~1994!.
@26# M. Suzuki, J. Math. Phys.61, 3015~1995!.
@27# A. J. Hoffman and H. W. Wielandt, Duke Math. J.20, 37

~1953!.


