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Fast algorithm for finding the eigenvalue distribution of very large matrices
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A theoretical analysis is given of the equation of motion method, due to Adbah [Phys. Rev. BL2, 4090
(1979], to compute the eigenvalue distributi@aensity of statesof very large matrices. The salient feature of
this method is that for matrices of the kind encountered in quantum physics the memory and CPU requirements
of this method scale linearly with the dimension of the matrix. We derive a rigorous estimate of the statistical
error, supporting earlier observations that the computational efficiency of this approach increases with the
matrix size. We use this method and an imaginary-time version of it to compute the energy and specific heat
of three different, exactly solvable, spin-1/2 models, and compare with the exact results to study the depen-
dence of the statistical errors on sample and matrix size.

PACS numbd(s): 05.10—a, 05.30--d, 03.67.Lx

[. INTRODUCTION algorithms is that they may run very efficiently on a quantum
computer{16,17).

The calculation of the distribution of eigenvalues of very A common feature of these fast algorithms is that they
large matrices is a central problem in quantum physics. Thisolve the TDSE for a sample of randomly chosen initial
distribution determines the thermodynamic properties of thétates. The efficiency of this approach as a whole relies on
system(see below It is directly related to the single-particle the hypothesigsuggested by the central limit theorgthat
density of state§DOS) or Green’s function. In a one-particle Satisfactory accuracy can be achieved by using a small
(e.g., one-electrondescription, knowledge of the DOS suf- sample qf mmal states. Experience not only shows that. this
fices to compute the transport propertiés hypothes'ls is correct; it strongly suggests that _er a fixed

The most direct method to compute the DOS, i.e., all thes@mple size the statistical error on physical quantities such as

eigenvalues, is to diagonalize the matkixrepresenting the the energy and specific heat decreases with the dimesion

L . -~ of the Hilbert spac¢16].
Hamiltonian of the system. This approach has two obvious In view of the general applicability of these fast algo-

limitations: The. numper of operations increases as_the th”?ithms to a wide variety of quantum problems, it seems war-
power of the dimensio of H, and, perhaps most impor- ranted to analyze in detail their properties and the pecDliar
tantly_, the amount sz memory _reqwre_:d by Stat_e'Offth_e'arHependence in particular. In Secs. Il and Illl we recapitulate
algorithms grows a®* [2,3]. This scaling behavior limits e essence of the approach. We present a rigorous estimate
the application of this approach to matrices of dimendlon  ¢or the mean square errérariance on the trace of a matrix.
=0(10000), which is too small for many problems of inter- |n Sec. IV we describe the imaginary-time version of the
est. What is needed are methods that scale linearly ith  method. The statistical analysis of the numerical data is dis-

There has been considerable interest in developing “fast’cussed in Sec. V. Section VI describes the model systems
[i.e.,O(D)] algorithms to compute the DOS and other simi- that are used in our numerical experiments. The algorithm
lar quantities. One such algorithm and an application of it toused to solve the TDSE is reviewed in Sec. VII. In Sec. VI
electron motion in disordered alloy models was given bywe derive rigorous bounds on the accuracy with which all
Alben et al. [4]. In this approach the DOS is obtained by eigenvalues can be determined, and demonstrate that this ac-
solving the time-dependent Schiinger equatiof TDSE) of ~ curacy decreases linearly with the time over which the TDSE
a particle moving on a lattice, followed by a Fourier trans-is solved. The results of our numerical calculations are pre-
form of the retarded Green’s functigd]. Using the uncon- sented in Sec. IX, and our conclusions are given in Sec. X.
ditionally stable split-step fast Fourier transform method to
solve the TDSE, it was shown that the eigenvalue spectrum Il. THEORY
of a particle moving in continuum space can be computed in
the same manngi5]. Fast algorithms of this kind proved
useful to study various aspects of localization of wa\ees3]
and other one-particle problerh@—14.

Application of these ideas to quantum many-body sys- D
tems triggered further development of flexible and efficient _
methods to solve the TDSE. Based on Suzuki’s product for- A ngl (SnlAhn). @)
mula approach, an unconditionally stable algorithm was de-
veloped and used to compute the time-evolution of two-Note that according to Eql) we have Tr E=D. If D is very
dimensionalS=1/2 Heisenberg-like mode|45]. Results for  large, one might think of approximating E(.) by sampling
the DOS of matrices of dimensioD~1000000 were re- over a subset oK (K<D)"important” basis vectors. The
ported [15]. A potentially interesting feature of these fast problem with this approach is that the notion “important”

The trace of a matriXA acting on aD-dimensional Hilbert
space spanned by an orthonormal set of stdtes)} is
given by
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may be very model dependent. Therefore, it is better tg, thec, , are now correlated, but that does not cause prob-
sample in a different manner. We construct a random vectdems (see Appendix A Second it follows thatE(|c|?)

|#) by choosing D complex random numbersg,=f, =1/D.
+ig,, with mean 0, fom=1...D, so Obviously the error can be written as
D D S
[9)= 3, colbu), @ TrA=g 3 (dhlAdy) =TrRA ©)
and we calculate where
D D S
(HAP)= X chenl bmlAdn). 3 Rnn=0mn~g 2 ChCnp (10)
nm=1 S p=1

If we now sample oves realizations of the random vectors is a traceles$due to Eq.(8)] Hermitian matrix of random
{y} and calculate the average, we obtain numbers. We pukK=TrRA, and computeE(|X|?). The re-
5 sult for the general case can be found in Appendix A. For a
. uniform distribution of thec,, ,'s on the hypersphere defined
n;ﬂ CmpCnp(PmlA¢n). (4 py 3P_|cnpl?=1, the expression simplifies considerably,
and we find
Assuming that there is no correlation between the random
numbers in different realizations, and that the random num-
bersf,, andg, , are drawn from an even and symmetric
(both with respect to each variablprobability distribution
(see Appendix A for more detajlswe have an exact expression for the variance in terms of the sample
size S, the dimensiorD of the matrixA, and the(unknown

S

1 1
S Z <‘/’p|A'r//p>:§

S
p=1 p§=:1
D TrATA—|TrAJ?

sb+1)

E(|TrRA?) = (11)

1S, ) constants TATA, and|TrA|.
im 5 pEl Cin,pCn.p=E([C|%) S (5 Invoking a generalization of Markov’s inequalif8]
S—w© =
. . ) E(X?)
whereE(-) denotes the expectation value with respect to the P(|X|*=a)< T VY a>0, (12

probability distribution used to generate thg,’s. On the
right hand side of Eq(5) the subscripts of, , have been
dropped to indicate that the expectation value does not d
pend onn or p. It follows immediately that

whereP(Q) denotes the probability for the stateménto be
Frue. We find that the probability thallr RA|? exceeds a
fractiona of |Tr A|? is bounded by

S D
1
lim < 2 (ol Ap) =E(|c|)TrA=E(lc]) 2 ($alAdn), ITrRN2>a) _ 1 DTrATA-[TrAR,
—> 00 =1 =1 = =
S P ) ©) |TrA|? aS(D+1) ITrA|2
showing that we can compute the trace Aty sampling Va>o, (13
over random statefg), }, provided there is an efficient algo- : . -
rithm to calculate{ ,|Ag,) (see Sec. VI or, in other words, the relative statistical erreg on the
plA¥p i : e i
According to the central limit theorem, for a large but €Stimator of the trace ok is given by
finite § we have
D TrATA—|TrA|?
> =N sDr1)|TrAl .
r
2 Capcn,p:E(|C|2)5m,n+o

1 1 @)

Sp=1 Vs)’ _ Lo . .
if |TrA|>0. We see thag,=0 if A is proportional to a unit

meaning that the statistical error on the trace vanishes likgatrix. From Eq.(14) it follows that, in general, we may

1//S, which is not surprising. What is surprising is that one XPECtex to vanish with the square root &D. The prefac-

can prove a much stronger result as follows. Let us firstor is @ measure for the relative spread of the eigenvalues of
normalize thec, ,'s so that, for allp A, and is obviously model dependent. The dependeneg of

on S D, and the spectrum oA is corroborated by the nu-
D merical results presented below.
> cn pl?=1. (8) It is also of interest to examine the effect mdt normal-
n=1 izing thec, ,’'s. A calculation similar to the one that led to

L . . the above results yields
This innocent looking step has far reaching consequences.

First we note that the normalization renders the method exact TrATA
in the (rather trivia) case when the matri& is proportional ea= 1\ / _ (15)
S|TrAl?

to the unit matrix. The price we pay for this is that for fixed
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Clearly, this bound is less sharp and does not vanighi§  mined by examination of the bottom of spectrum. To com-
proportional to a unit matrix. puteZz, E, or C, we simply replace the interval-o, + ] by
[€0,T].
Ill. REAL-TIME METHOD

s . IV. IMAGINARY-TIME METHOD
The distribution of eigenvalues or DOS of a quantum sys-

tem is defined as The real-time approach has the advantage that it yields
o information on all eigenvalues and can be used to compute

Y E :i * ite Tra-itH g 16 both dynamic and static properties without suffering from

2, O(e—Ep) e ire t (18 humerical instabilities. However for the computation of the

thermodynamic properties, the imaginary-time version is
whereH is the Hamiltonian of the system anduns over all  more efficient. We will use the imaginary-time method as an
the eigenvalues of. The DOS contains all the physical independent check on the results obtained by the real-time
information about the equilibrium properties of the system.algorithm.
For instance the partition function, the energy, and the heat Repeating the steps that lead to Etj7), we find

capacity are given by
Z=Trexp(—BH)

z=fw deD(e) e Pe, (17) 1S
- =lim = X, (y,lexp(— BH) ), (22)
S S p=1
l ©
E=5 deeD(e) e P, (18 with similar expressions foE andC.
- Furthermore we have
C=:32<% ’ de e D(e) e Pe—E?]|, (19 (ol H e PPyy=(e P2y [HNe™FH2y), (23

assumingH is Hermitian. Therefore we only need to propa-
respectively. Hergg= 1/kgT andkg is Boltzmann’'s constant gate the random state for an imaginary tig/ instead of5.
(we putkg=1 andA=1 from now on. Furthermore we do not need to perform a FFT. Disregarding
As explained above, the trace in integ(ab) can be es- these minor differences, the algorithm is the same as in the
timated by sampling over random vectors. For the statisticaleal-time case withr replaced by—i .
error analysis discussed below it is convenient to define a
DOS per sample by V. ERROR ANALYSIS

1 . - Estimating the statistical error on the partition function
dp(e)=5—| e “(dple” "M yp)dt, (200 is easy because it depends linearly on the trace ofithagi-
nary) time evolution operator. However, the errorBandC
where the subscrig labels the particular realization of the depends on this trace in a more complicated manner, and this

: : fact has to be taken into account.
random stat . The DOS is then given b
4p) g y First we define

D(e)= Ilm 2 dy(e). (21) z,= fwde dy(e) e P, (24)

Schematically the algorithm to compudg(e) consists of "
the following stepsi(1) Generate a random statg& (0)), hpzf ded,(e) ee P (25)
and sett=0. (2) Copy this state tdy(t)). (3) Calculate €0
(¥p(0)| (1)) and store the result4) Solve the TDSE for a
small time stepr, replacing|#,(t)) by |,(t+ 7)) (see Sec. N 2 ge
VII for model specific detall)sp(S) i?epeai?\l tlmeg from step Wp:J dedy(e) e g (26)
(3). (6) Perform a Fourier transform on the tabulated result,

and stored,(€). for the real-time method, and

In practice the Fourier transform in E(L6) is performed
by the fast Fourier transforifFFT). We use a Gaussian win- zo={ole " Fy), (27)
dow to account for the finite timeN used in the numerical
time integration of the TDSE. The number of time stép ho={yo|He Py, (28)
determines the accuracy with which the eigenvalues can be
computed. In Sec. VIII we prove that this systematic error in Wo=(ip|H?e Ay ) (29

the eigenvalues vanishes asN/

Since for any reasonable physical syst@mfinite matriy ~ for the imaginary-time method. For each valuefive gen-
the smallest eigenvalug, is finite, for all practical purposes erate the datdz,}, {h,}, and{w,}, for p=1,....S. For
d,(e)=0 for e<ey<E,y. The value ofe, is easily deter- both cases we have



4368 ANTHONY HAMS AND HANS DE RAEDT PRE 62

Z=limz, (30) A. Spin chains
S Open spin chains df sites described by the Hamiltonian
— L-1 L
E= lim 2 (31) H:_ng (UiX‘TiX+1+A(Tiiner1)_hi§l of (39
S V4

—whereo}, of, ando{ denote the Pauli matrices, addA,

) w  h? and h are model parameters—can be solved exactly. They
C=limg*| =—= |, (320 can be reduced to diagonal form by means of the Jordan-
S z z Wigner transformatio19]. We have
" — L
herex=S"135_ x,. Th iati h 1
wh erex. ST E-1%p e standard deviations an h, and H— E CiTAi i+ _(CiTBi jCJ-T+CjB,*iCi) hi,
w are given by i1 : 2 : :
(40)
Sz= v:r(zl)’ (33 wherec andc; are spinless fermion operators and
Ai,j:_‘](1+A)(5i,j—l+5i—1,j)_2h5i,j1 (41)

var(h)
oh=\/g—7 (34 Bij=—J(1-A)(&j-1— 6i-1)) (42)

areL XL matrices. By further canonical transformation, this

var(w) Hamiltonian can be written as

w=\g=1 (35

1
+5TrA+hL, (43)

- 1
L H= 2 Ak( n— 5
where vark)=x?—x? denotes the variance on the data k=1
{Xp}. However, the sets of datg,}, {hy}, and{w,} are
correlated, since they are calculated from the same s
{l#p)}. These correlations in the data are accounted for b

wheren, is the number operator of stateand theA’s are
?iven by the solution of the eigenvalue equation

calculating the covariance matrid,, (k,1=1,...,3), the (A—B)(A+B)gy=A2 by. (44)
elements of which are given by, —X, X, where {x,},
{x2}, and{x3} are a shorthand fofz,}, {h,}, and{w,}, Inthe general case this eigenvalue problem ofithel. Her-
respectively. The estimates for the error<Zing, andC are  mitian matrix (A—B)(A+ B) is most easily solved numeri-
given by cally. In the present paper we confine ourselves to two lim-
iting cases: theXY model A =1), and the Ising model in a
, 1 , transverse field4=0).
6Z ZQ(SZ , (36)
B. Mean-field model
1 3 dE dE The Hamiltonian of the mean-field model reads
5E2=— M —_ 3
S—lk,|2:1 I % d 30 J & . . e
H=—— 2 G'i'O'j_hZ O'iz, (45)
o LiST=1 =1
A dC dC _
O0Cr=——+ 2 My | ——, (38 and can be rewritten as
S_lk,|:1 1kadX|
H=—228 8- 2hsi+ o3 46
whereE = hiz and andC = B2(wiz—h?/2). - 2% (49
with
VI. EXACTLY SOLVABLE SPIN 1 /2 MODELS
L
The most direct way to assess the validity of the approach . } E o (47)
described above is to carry out numerical experiments on 24 Y

exactly solvable models. In this paper we consider three dif-

ferent exactly solvable models, two spin-1/2 chains and ahe single spiri-/2 Hamiltonian has eigenvalues
mean-field spin-1/2 model. The former have a complicated
spectrum, the latter has a highly degenerate eigenvalue dis-
tribution. These spin models differ from those studied else-
where[15,16], in that they belong to the class of integrable
systems. with degeneracy

3
Eim=—2J1(1+1)/L—2hm+ 57, (48)
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L interaction-controlled phase shiftand 4xX4 unit matrices.
Lio—1 ] (49 still working in the same representation, the action of
e '™y2 can be written in a similar manner, but the matrices

This rather trivial model serves as a test for the case ofnat contain the interaction-controlled phase-shift have to be
highly degenerate eigenvalues. replaced by nondiagonal matrices. Although this does not
present a real problem, it is more efficient and systematic to
proceed as follows. Let us denote BYY) the rotation by
/2 of each spin about the(y) axis. As

For the approach outlined in Secs. Illl and IV to be of
practical use, it is necessary that the _matrix elements of the e—iTHy/2:XxTe—iTHy/2xxT:Xe—iTH;/2xT, (53)
exponential ofH can be calculated efficiently. The purpose
of this section is to describe how this can be done.

The general form of the Hamiltonians of the models we

B 21+1
Mm= 271+ 1

VII. TIME EVOLUTION

it is clear that the action oé~'™"2 can be computed by
applying to each spin, the inverse &f followed by an

study is interaction-controlled phase-shift anditself. The prime in
L L Eqg. (53) indicates that)f; andh{ in H, have to be replaced
H= —_Z Ji‘fjcri“aj“—z hiof*, (50) by JY; andh! respectively. A similar procedure is used to
W=l a=xy.z =1 a=xy.z compute the action o' ™x. We only have to replack by
Y.

where the first sum runs over all paifsof spins, o7 («
=X,Y,z) denotes therth component of the spin-1/2 operator
representing thath spin. For both methods, we have to VIlIl. ACCURACY OF THE COMPUTED EIGENVALUES

calculate the evolution of a random state, i.6(7)|y) First we consider the problem of how to choose the num-

éexp(—lﬂﬁ)|¢) or U(T)|‘/’>EeXp(_.ﬂ_|)|‘/’> for the rgal and ber of time stepd to obtain the DOS with acceptable accu-
imaginary time methods, respectively. We will discuss the

S i : . o racy. According to the Nyquist sampling theorem employing
real-time case only; the imaginary-time problem can bea sampling interval\t = 7r/max || is sufficient to cover the
solved in the same manner.

Using the semigroup property(ty)U(ty)=U(t,+1,), full range of eigenvalues. On the other hapd,jhe time step
we can writeU(t)=U (7)™ wheret=mr. Then the main also determines the accuracy of the approximatidgn). Let

step is to replac&)(7) by a symmetrized product-formula US call the maximum value of which gives satisfactory
approximation[20]. For the case at hand it is expedient to @ccuracyr, (for the imaginary-time method, this is the only

take parameter. For the examples treated herg<At), implying
that we have to use more steps to solve the TDSE than we
U(1)~U(r)=e i™2e-1H2g=imHygitHy2g=17H,2 actually use to compute the F_FT. I_E_igenvalues that differ less
(51) than Ae=w/NAt cannot be identified properly. However,

since AexN~! we only have to extend the length of the
where calculation by a factor of 2 to increase the resolution by the
same factor.
o oo . w At first glance the above reasoning may seem to be a little
H.= _ijE:l Jijoi'o] _izl hioi", a=xy,z. (52)  optimistic. It apparently overlooks the fact that if we inte-
’ grate the TDSE over longer and longer times the error on the
Other decomposition§15,21 work equally well, but are Wave function also inc_reaséalthog_gh it remains bounded
somewhat less efficient for the cases at hand. In the real-tim@ecause of the unconditional stability of the product formula

approachl(7) is unitary, and hence the method is uncondi-algomhm' In fact it has been shown that, in genejiad),
tionally stable[20] (also the imaginary-time method can be , _

made unconditionally stable It can be shown that lle” ™ y(0))—U™(7)|(0))||<cr?t, (54)
lU(7)—U(7)||<s7® (s>0 a constant[22], implying that

the algorithm is correct to second order in the time step wheret=mr, suggesting that the loss in accuracy on the
[20]. Usually it is not difficult to choose so small that for wave function may well compensate for the gain in resolu-
all practical purposes the results obtained can be considerdi®n that we obtain by using more data in the Fourier trans-
as being “exact.” Moreover, if necessafy(7) can be used form. Fortunately this argument does not apply when we
as a building block to construct higher-order algorit{@@—  Want to determine the eigenvalues as we now show. As be-
26]. In Appendix B we will derive bounds on the error in the fore, we will discuss the real-time algorithm only because
eigenvalues when they are calculated using a symmetrih€ same reasonirigut different mathematical prooffolds
product formula. for the imaginary-time case. .

As basis state§|$,)} we take the direct product of the ~ Consider the time-step operat2). Using the fact that
eigenvectors of thé? (i.e., spin-upl ;) and spin-dowr|;)). &Ny unitary matrix can be written as the matrix exponential
In this basise™~ ™72 changes the input state by altering the ©f @ Hermitian matrix, we can write
phase of each of the basis vectors. Agis a sum of pair B
interactions, it is trivial to rewrite this operation as a direct U(7)=e ™' ™21 THy/2g=imHxg=i7Hy/2g=i7H 2= g=i7H(7)
product of 4x4 diagonal matrices (containing the (55)

L L
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FIG. 1. The density of staté®OS) as obtained from the real-time algorithm for spin chains of lehgt15 and forS= 20 random initial
states. LeftXY model; middle: Ising model in a transverse field; right: mean-field model. For the mean-field model a logarithmic scale was
used to show the highly degenerate spectrum more clearly.

It is clear that in practice the real-time method yields theformly over the hypersurface. Although the first method does
spectrum ofH(7), not the one oH. Therefore the relevant not satisfy all the mathematical conditions that lead to error
question is: How much do the spectrafdfr) andH differ? _(14), our numerical_e>_<perim_enf[s with both generators give
In Appendix B we give a rigorous proof that the difference |d_en_t|cal resul'_cs,_ within statistical errors of course. Also,
between the eigenvalues Elf(r) and H vanishes as2. In within the_stanstlcal_ errors, the results from the imaginary
other words the value af (or t=m7) has no effect what- and real-time algorlthm. are the same. Therefore, we only
soever on the accuracy with which the spectrum can be des_how some representative results as obtained from the real-

termined. Therefore, the final conclusion is that the error idime algorithm.

the eigenvalues vanishes @N whereN is the number of 1N Fig. 1 we show a typical result for the DA3(¢) of
data points used in the Fourier transform ofeTHA( the XY model, the Ising model in a transverse field, and the

mean-field model, all withL =15 spins and using=20
samples. Because of the very high degeneracy we plotted the
DOS for the mean-field model on a logarithmic scale.

We write our results in units of and takeh=0, except In Fig. 2 we show the relative erra¥Z/Z based on Eq.
for the Ising model in a transverse field, where we thke (36) for the three models of various size, as obtained from
=0.75). The random numbers,, , are generated such that the simulation(symbols. For these figures we used the
the Eqgs.(A3) and (A4) are satisfied. We use two different imaginary-time algorithm, because then the statistical error

IX. RESULTS

techniques to generate these random numbers. can be related toe, directly [see Eq.(14), with A

(1) A uniform random number generator produgés ,} =exp(—BH)]. The theoretical resultfines) for the error es-
and{gn py with —1<f, ,,9,,<1. We then normalize the timate, obtained by a direct exact numerical evaluation of
vector[see Eq(8)]. Eq. (14) are shown as well. We conclude that for all systems,

(2) c,p's are obtained from a two-variablgeal and lattice sizes, and temperatures there is very good agreement
imaginary pant Gaussian random number generator and théetween numerical experiment and theory.
resulting vector is normalized. Results for the energlf and specific heat are presented

Both methods satisfy the basic requirements HAS) in Fig. 3 the XY mode), 4 (the Ising model in a transverse
and (A4) but because the first samples points out of &field), and 5(the mean-field modgl The solid lines represent
2D-dimensional hypercube and subsequently projects ththe exact result for the case shown. Simulation data as ob-
vector onto a sphere, the points are not distributed uniformlyained fromS=5 and 20 samples are represented by sym-
over the surface of the unit hypersphere. The second methdabls, and the estimates of the statistical error by error bars.
is known to generate numbers which are distributed uni\We see that the data are in excellent agreement with the

1 T " T T 1 T T " " 0.1

0.01

8z/1Z
82/Z
8Z/Z

0.001 " 0.001 0.001 e
o 1 2 3 4 5 0 05 1 15 2 25 3 0 05 1 15 2 25 3

TN TN T™

FIG. 2. The relative errobZ/Z [see Eq{(36)] on a logarithmic scale as a function of temperaflirel/B and for various system sizes.
Left: XY model; middle: Ising model in a transverse field; right: mean-field model. Solid leewith A=e #; see Eq.(14)] for L
=6; dashed linese, for L= 10; dash-dotted linee, for L=15. Crosses: simulation data f8= 20 andL = 6; squares: simulation data for
S=20 andL =10; circles: simulation data fd8=20 andL =15.
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FIG. 3. Energy(top) and specific heabotton) of the XY model[see Eq(39)], with A=1 andh=0. Left: L=6; middle:L=10; right:
L=15. Solid lines: exact result; crosses: simulation data uSin§ samples; squares: simulation data ussag20 samples. Error bars: One
standard deviation.

exact results and, equally important, the estimate for the etime equation-of-motion method for computing the distribu-
ror captures the deviation from the exact result very well. Wetion of all eigenvalues of very large matrices. The real-time
also see that in general the error decreases with the systemethod can be used whenever the more conventional,
size. Both the imaginary- and real-time methods seem téanczos-like, sparse-matrix techniques can be applied:
work very well, yielding accurate results for the energy andMemory and CPU requirements for each iteratibme-step
specific heat of quantum spin systems with modest amoung@e roughly the samélepending on the actual implementa-
of computational effort. tion) for both approaches.

We do not recommend using the real-time method if one
is interested in the smallegbr largest eigenvalue only.
Then the Lanczos method is computationally more efficient

The theoretical analysis presented in this paper gives because it needs less iteratigtime stepsthan the real-time
solid justification of the remarkable efficiency of the real- approach. However, if one needs information about all ei-

X. CONCLUSIONS
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FIG. 4. Energy(top) and specific heatbottom of the Ising model in a transverse figlsee Eq.(39)] with A=0 andh=0.75). Left:
L=6; middle:L=10; right: L=15. Solid lines; exact result; crosses: simulation data uSin$ samples; squares: simulation data using
S=20 samples. Error bars: one standard deviation.
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FIG. 5. Energy(top) and specific heatbotton) of the mean-field moddlsee Eq.(45)] with h=0. Left: L=6; middle: L =10; right:
L=15. Solid lines: exact result; crosses: simulation data uSin§ samples; squares: simulation data ustsg20 samples. Error bars: one
standard deviation.

genvalues and direct diagonalization is not possib&rause Finally we remark that although we used quantum-spin
of memory/CPU timg there is as yet no alternative to the models to illustrate various aspects, there is nothing in the
real-time method. The matrices used in this exanfpfeto real or imaginary-time method that is specific to the models
32768x 32768) are not representative in this respect: Theused. The only requirement for these methods to be useful in
real-time method has been used to compute the distributiopractice is that the matrix is sparse awery) large.
of eigenvalues for matrices of dimension 16777216
X 1677721415].

Once the eigenvalue distribution is known the thermody- ACKNOWLEDGMENTS
namic quantities directly follow. However, if one is inter-
ested in the accurate determination of the temperature depe'gél
dence of thermodynamiand static correlation functioins
properties but not in the eigenvalue distribution itself, the
imaginary-time method is by far the most efficient method to
compute these quantities. For instance the calculation of the
thermodynamic properties f06J=0,...,10 of al5-sitt  AppeNpix A EXPECTATION VALUE CALCULATION
spin-1/2 system(i.e. implicitly solving the full 32768
X 32768 eigenvalue problenmakes 1410 sec per sample ona  In this Appendix we calculate the expectation value of the
Mobile Pentium Il 500 MHz system. error squared, as defined in Sec. Il. By definition we have

|

1 (5k,I5m,n_ D 5k,| E(C:n’an’p)— D 5m,n E(Ck,p’ctpr)
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ciliteiten (NCF)” and the Dutch “Stichting voor Funda-
menteel Onderzoek der Mater{@OM)” is gratefully ac-
knowledged.

( 5m,n_ D C’r;,pcn,p)Am,n

S
1
s

E(|TrRA[2)=E(

=
=
3

1 S
S pp- n=
+DZE(Ch p Cn,p Ciop C pr)) Al 1Amin» (A1)

wherep andp’ label the realization of the random numbers,=f, ,+ig, -
First we assume that different realizationg p’ are independent implying that

E(Ch.p Cn,p Ck,p’ cl*’p,)p#p, =E(Ch,p Cn,p) E(Cypr cfp,). (A2)

Second we assume that the random numbers are drawn from a probability distribution that is an even function of each variable,
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P(f1p.91p:f2p:92ps -+ fp:Okps - - fD,psO0,p) =P(F1p,91p.F2p.92p, - - - =i psOkps - - - fDp 90 p)
=P(f1p,91p,f2p:92p5 - - - sfkps—Gkps - - - »fDp Op,p)s  (A3)
and symmetric under interchange of any two variables,
P(fip.91ps -« sfipsGips - fipiGjps oo sfopsO0p) =P(F1p.01p, - ofj0:Gips - - fip:Tjps -+ - fDp:T0p)
=P(f1p,91p, - - - Gipsfips - FjpsGjps - - - fDp 9D p)

(A4)
foralli,j,k=1,... D. This is most easily done by drawing individual numbers from the same even probability distribution,
ie.,

D
P(fl,pygl,pl v ;fj,pvgi,p! e 1fi,p!gj,p1 e rfD,p!gD,p):n]ﬁ_f[:l P(fn,p)P(gn,p): (AS)
whereP(x) =P(—x). Normalizing the vectorf(;;,91p, . . . .fp p,9p,p) SUCh thatEiD:l|cn_p|2=1 (for p=1,....S), does not
affect the basic requirementd3) and (A4).
Making use of the above properties Btf,,9:, - ...fp.0p), we find that
E(C:n,pcn,p): 5m,nE(|Cm,p|2): 5m,nE(|C|2)n (A6)

where in the last equality we omitted the subscriptg,f, to indicate that the expectation value does not depench onp.
An expectation value of a product of twd 's and twoc’s can be written as

E(Cmp Cnp Chpr €1 pr) =(1= 85 1) SO E([Cm pl )E(|Cm,pr ) + 8p,pr Smn Skt (1= Smid E(Cly Cm G CF)
+ 85,01 OmkOn 1 (1= S n) E(Chy Cn € G ) + 8, 7 S S k(1= S, ) E(CHy € €y i)
+ 8p.p" Om,1 On kOmnE(Ch Cm Cm Ch)
=(1=8p,p) OmnOi 1 E(|C[*)?+ 8 7 Smn S (1= Sm i) E(|Cm pl * [ Ci pl ?)
+ 8p,pr OmkOn,1 (1= Smn) E(|Cm pl* €, pl ?) + .7 S S L= Smn) E(Chy p Crp Cr,p Cri )
+ 85,07 8.1 On kOm,nE (| Cm pl*). (A7)
Furthermore, fom+#n we have
E(Ch.p Cn,p Cn.p Cp) = E((F 5= 2 m pOm p— G o) (Fa 5 2if 0 pGnp— O )
=E(f5,of2 )+ 2IE(F], ofn pGnp) —E(F5, 00 0) = 2E (fim pGm pf1 o) + 4E(Fim o 0. pGm,pOn p)
+ 20 (fm,pGm,p97p) ~ E(9in pfh o) = 2IE (G5 ofn.pGn.p) + E(GF 597 )
=E(15,0f2 ) —E(9h of2 ) — E(T2 095 ») + E(95 105 )
=0. (A8)

By symmetryE(|Cp, ol |Cn p|?) does not depend om, n, or D 2
p, and the same holds fd&(|cp, p|*). El | 2 [cnpl? )
The fact that the vectorcf,, ... ,Cpp) is normalized n=1

yields the identities

30

D
= E E(lcn,p|2|cm,p|2)
mn=1

D D
D :nzl E(|Cn,p|4)+m;:1 (1_5m,n)E(|Cn|2|Cm|2)
=n§1 E(|cnpl?)=DE(|c[)=E(1)=1 (A9) ’

DE(|c|*)+D(D—1)E(|c|?[c'|?)=E(1)=1,
and (A10)
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wherec andc’ refer to two different complex random vari- 1/ D—D2E(|c|*
ables. Therefore, we have E(|Tr RA|2)=§ 51 TrATA
2 4
E(|c|>)=1D (A11) | 1-D*E(|¢| )|TrA|2
D-1
and 2 N D
+(D+1)D E(|c|*-2D S AL
D-1 iy 1ol
1-DE(|c|%)
e )= = Al4)
E(lc|*c"|%) B(D-1) (A12) (

An expression for the fourth mome&(|c|*) cannot be
derived from general properties of the probability distribu-
Substitution into Eq(A7) yields tion or normalization of random vector. We can only make
progress by specifying the former explicitly. As an example
. . we take a probability distribution such that for each realiza-
E(Ch,p Cn,p Ck,p’ C.,pr) tion p the random numberf, , andg, , are distributed uni-
. s formly over the surface of a2-dimensional sphere of ra-
=(1=3p,p) 6m,n kD dius 1. This probability distribution can be written as
1-DE(|¢[*)

+5p,p'm(5m,n5k,l(1_5m,k) P(f1,91.f2,92, ... .fp.9p)
w8(f2+g3+f5+g3+---+f3+93—1),
+ 5m,k5n,l(1_ 5m,n))+ 5p,p’ 5m,| 5n,k5m,nE(|C|4)a (A15)
(AL3) where we omitted the subscriptbecause it is irrelevant for
what follows. The even moments ¢¢,|=(f2+g?)'? are
and the final result for the variance reads defined by

o

(fi+oHMa(fi+gi+f3+g5+ - +f3+gb—1)df;dg,df,dg, - -dfpdgp

E(|c|*™)= e (A16)
f S(f2+gi+- - +f3+g5—1)df,dg,- - -dfpdgp
It is expedient to introduce an auxiliary integration variakléy
XM&(F2+g2—X)6(fa+g3+ - - - +f2+g3—(1—X))dXdf,dg,df,dg, - -dfpdgp
E(|c|*M)= (A17)

|” attirg -+ fh+gh-1atadgy- - dfody

—o0

We can perform the integration ov&rlast and regard EqA17) as theMth moment of the variabl&X with respect to the
probability distribution:

_[75a%+gi—xw%@+g§+'~+4%+g%—<1—xndndmdudmy~dnﬂgD

P(X)= = . (A18)
|” attirgte -+ fh+gh-1atidg, - dfody

The calculation ofP(X) amounts to computing integrals of 2mN2 o
the form IN(X)= TN ), rN=18(r2—X)dr
o N , N/2
In(X)= fwé( nzl xn—X) dx,dx,- - -dxy. (A19) = memfla(X), (A20)

Changing to spherical coordinates, we have yielding
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12(X)12p—2(1—X) ,. DTrATA-|TrA]?
I25(1) BT RAD=—5p71)

=(D-1)(1-X)P20(X) 6(1—X). (A21)

P(X)= (A24)

APPENDIX B: ERROR BOUNDS

The momentsE(|c|?M) are given by . _
Here we prove that the difference between the eigenval-

E(lc/2My— < XMP(X)dX ues of the Hermitian matriA+B and those obtained from
(le[™)= C (X) the approximate time-evolution ex#(2)expgBexpA2)
(z=—ir,— 1) is bounded by In the following we assume
B 1ou b-24 I(D)I'(1+M) A and B are Hermitian matrices and take a real, non-
=(D-1) 0 XH(1=X) X= r'(D+M) negative number. We start with the imaginary-time case.
We define the differencB®(r) by
(A22)
and the values of interest to us are R(7)=e7A"®) - e™2emBe™?
1 1f7 JA ’ NA/2 )\B{ B[ Je*B
0y _ 2 4y _ =—| dA d,uf dve*Me'*{e” ""[2B,[A,B]]e”
(A23) +e"M2[A[A,B]le A2 N(A+B), (B1)
where the first two results provide some check on the proce-
dure used. Substituting E¢A23) into Eq. (A14) yields a well-known resulf24]. We have[26]

1 T N "
” R( 7')||$ Z‘ fo dn fo d/'LJO dve"A/Ze("_”)B[ZB,[A, B]]evBe)\A/Ze(r—)\)(A+ B)

JTdAJXdMJMdye)\AIZe)\BeyAIZ[A'[A,B]]e(A—V)A/Ze(T—)\)(A+B)
0 0 0

L
4

%fd)\f”dﬁf“d,,eAuAufzeo—»)||B||||[ZB,[A,B]]||v||B||eA||A||/2e<r—x><||A||+HBH)
0 0 0
N % J "i f 'y J * dueNlAllzeMBllg AIZ [ [ A, BT]|[e® IAIZe( N Al [B)
0 0 0

:2—];17-3e"(”A”+”B“)(||[A,[A, B11/|+1I[2B.[A.B]1], 82

and

1l (-7 N "
||R(— T)”gz‘ fo d)\fo dlufo dve)\A/Ze()\fv)B[ZB’[A'B]]evBe)\A/Ze(fff)\)(A+B)

" %‘ fﬁTd)\JAdMfﬂdveAAIZeABevA/Z[A,[A'B]]e()\—v)AIZe(—r—)\)(A+B)
0 0 0

1
4

‘ j‘rd)\J‘)\dlulfﬂdye—)\A/Ze(—)\-FV)B[ZB'[A’B]]e—VBe—)\A/Ze(—T+)\)(A+B)
0 0 0

T A
n %U d}‘f dluf”dve—xA/ZG—ABe—VA/Z[A,[A,B]]e(—)\+V)AIZe(—r+)\)(A+B)
0 0 0

T N
gﬂ d"f dﬂf“d,,ex||A||/ze<x—v>||B||||[ZB,[A,B]]||e»||B||ex||A\|/ze<r—x)<||A||+nB||>
0 0 0
T A
+% J ax f du J " dueNlAllZeMBllg AIZ [ [ A, B]][[e® MIAIZe( VAl [B1)
0 0 0

:%Taefamnwsn)(n[A,[A, B11l[+[I[2B.[A,BI]I]. -
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Hence the bound iR(7) does not depend on the signofo
that we can write

IR(7)||<s| 7.|3e|r|(|\A|I+HBH), (B4)
where
1
= SAALABIIHI2B AR @®9
For realT we have
eTA/ZeTBeTAIZE e‘rC(‘r), (86)
whereC(7) is Hermitian. Clearly we have
eT(A+ B) _ eTC(T): R( T). (B?)

We already have an upper bound B(r), and now want to
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Clearly Eq.(B14) proves that the differences in the eigenval-
ues ofA+B andC(7) vanish asr?.

We now consider the case of the real-time algorittm (
=—i7). For Hermitian matrice\ and B the matrix expo-
nentials are unitary matrices, and hence their norm equals 1.
This simplifies the derivation of the upperbound on
R(—i7). One findg 20]

IR(—i7)|[e<s|7]3, (B15)
where||A||2=Tr A'A denotes the Euclidean norm of the ma-
trix A[2]. In general the eigenvalues of a unitary matrix are
complex valued, and therefore the strategy adopted above to
use the bound oR(7) to set a bound on the difference of the
eigenvalues no longer works. Instead we invoke the
Wielandt-Hoffman theorem27]:

If U and Varenormal matrices with eigenvalues anduv;
respectively, then there exists a suitable rearrangement (a

use this knowledge to put an upper bound on the differencBermutationg of the numberd, . .. n) of the eigenvalues so

in eigenvalues of2(7) and A+ B. In general, for two Her-
mitian matricesU and V with eigenvalueu,} and{v,},

respectively, both sets sorted in nondecreasing order, we

have[2]

luy—val<[[U-V]|], Vn. (B8)
Denoting the eigenvalues &+ B and C(7) by x,(0) and
Xn(7), respectively, combining Eq$B4) and (B8) yields

|e™n(0) — e™n(7)| < 5| 7|3el7I(IAII+IIBID (B9)
To find an upper bound ofx,(0)—x,(7)| we first assume
that x,,(0)<x,(7) and taker=0. It follows from Eq.(B9)
that

eT(Xn(T) —xp(0)) _ 1< ST?’eT(”A”Jr”B”)* 7'Xn(o)_ (Blo)
For x=0, e*—1=x and we have-x,(0)<||A+B||<| A||
+]|B||. Hence we find

N
,Zl luj— v ?<llU-V|[2. (B16)

Let U and V denote the exact and approximate real-time
evolution operators respectively. The eigenvalueAefB
andC(r) arex,(0) andx,(7), respectively. All thex,’s and
Xn(7)’s are real numbers. According to the Wielandt-
Hoffman theorem

N
> |6l 5@ — el Yi(I|2<||R(—i7)|[E<s275. (B17)
=1

where y;(7) =X,j)(7), ¢ being the permutation such that
inequality (B17) is satisfied. We see that EGB17) only
depends or(7x;(0)mod 27) and (7y;(7)mod 27), but so
does the DO$see Eq(16)]. Since inequalitfB17) and the
DOS only depend on these “angles” modular2there is no
loss of generality if we make the choice

Xn(7) — X,(0)<s72e27UIAI+IBID, (B11)
0<|7(x;(0)—y;(")|=m. (B19)
An upper bound on the difference in the eigenvalues between
C(7) andA+B can equally well be derived by considering Rewriting the sum in Eq(B17), we have
the inverse of the exact and approximate time-evolution op- N
erator(B6). This is useful for the case,(0)>x,(7): Instead Prx(0) ATy (P2
of using Eq. (B7) we start from exp-7(A+B)) &% | 1O —el i) _121 {2=2cod 7 (x(0)~y;(1)]}

—exp(—7C(—17))=R(—17) (7=0). Note that the set of ei-
genvalues of a matrix and its inverse are the same and that
the matrices we are considering here, i.e., matrix exponen-
tials, are nonsingular. Making use of E®4) for R(—7)

N
:421 SInP[ 7/2 (x;(0) = y;(7)].

gives (B19)
|e™ ™n(0) — g~ ™n(7)| < 5| 7] 3¢l I WAIIFIIBID, (B12) As we have
i f fi ) 4x?
and proceeding as before we find SIP X< — for 0<|x|<m/2, (B20)
7(X,(0) — X, (7)) < e™*n(0)~Xn(M) _ 1 < 57327 (A [BID 7T
(B13) the restriction Eq(B18) allows us to write
Putting the two cases together, we finally have N 722
x;(0)—y;(7)*< 4 B21
1%y 7) — X5 0)] < 5722 IAI+ BID. (B14) 12’1 (X;(0)—yj(7) 77 (B21)
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implying that the difference with the exact ones vanishes?as
Finally we note that both upper bount822) and (B14)
IXj(O)—yj(T)I < %572_ (B22) hold for arbitrary Hermitian matrice& andB and are the_re—
fore rather weak. Except for the fact that they provide a
In summary, we have shown that in the real-time case thergound theoretical justification for the real- and imaginary
exists a permutation of the approximate eigenvalues suctime method, they are of little practical value.
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