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The magnetic energy-level diagrams for models of the Mn12 and V15 molecule are calculated using the
Lanczos method with full orthogonalization and a Chebyshev-polynomial-based projector method. The
effects of the Dzyaloshinskii-Moriya interaction on the appearance of energy-level repulsions and its
relevance to the observation of steps in the time-dependent magnetization data are studied.
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1 Introduction

Magnetic molecules such as Mn12 or V15 have attracted a lot of interest recently because these nano-
magnets can be used to study e.g. quantum (de)coherence, relaxation and tunneling of the magnetiza-
tion on a nanoscale [1–22]. As a result of the very weak intramolecular interactions between these
molecules, experiments directly probe the magnetization dynamics of the individual molecules. In
particular the adiabatic change of the magnetization at low-temperature is governed by the discrete
energy-level structure [23–26]. As the magnetization dynamics of these molecules is determined by
the (tiny) level repulsions, a detailed knowledge of the low-lying energy level scheme is necessary.

Magnetic anisotropy, a result of the geometrical arrangement of the magnetic ions within a mole-
cule of low symmetry, mixes states of different total spin and enforces a treatment of the full Hilbert
space of the system. Disregarding the single-ion anisotropy, the dominant contribution to the magnetic
anisotropy due to spin-orbit interact ions is given by the Dzyaloshinskii-Moriya interaction (DMI)
[27–33]. In principle this interaction can change energy-level crossings into energy-level repulsions.
The presence of the latter is essential to explain the adiabatic changes of the magnetization at the
resonant fields in terms of the Landau-Zener-St�ckelberg (LZS) transition [23–26]. Thus a minimal
magnetic model Hamiltonian should contain (strong) Heisenberg interactions, the single-ion anisotro-
py, the DMI and a coupling to the applied magnetic field [10, 34–42]. As the DMI mixes states with
different magnetization, it is not possible to use the magnetization as a vehicle to block-diagonalize
the Hamiltonian and effectively reduce the size of the matrices that have to be diagonalized. Therefore
it is of interest to explore alternative routes to direct but accurate diagonalization of the full model
Hamiltonian.

We have tested different standard algorithms to compute the low-lying eigenvalues of large ma-
trices. The standard Lanczos method (including its conjugate gradient version) as well as the power
method [47, 48] either converge too slowly, lack the accuracy to resolve the (nearly)-degenerate eigen-
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values, and sometimes even completely fail to correctly reproduce the low-lying part of the spectrum.
It seems that model Hamiltonians for nanoscale magnets provide a class of Hermitian eigenvalue
problems that are hard to solve. Extensive tests lead us to the conclusion that only the Lanczos meth-
od with full orthogonalization (LFO) [47, 48] and a Chebyshev-polynomial-based projector method
(CP) [49] can solve these rather large and difficult eigenvalue problems with sufficient accuracy [49].

2 Manganese complex: Mn12

In the Mn12-acetate molecule the four inner Mnþ4 ions have spin S ¼ 3=2, the other eight Mnþ3 ions
have spin S ¼ 2. The number of different spin states of this system is 44 � 58 ¼ 108. If the total
magnetization is a conserved quantity, it can be used to block-diagonalize the Hamiltonian, allowing
the study of models of this size [39, 43]. However, to study the adiabatic change of magnetization, we
have to treat all the states, and the dimension of the matrix becomes prohibitively large. A drastic
reduction of the dimension of the matrix can be achieved by approximating the magnetic moment of
an inner ion by an effective S ¼ 1=2 moment. The schematic diagram of this simplified (but still
complicated) model is shown in Fig. 1. The number of different spin states of this model is
24 � 54 ¼ 104. The Hamiltonian for the magnetic interactions of the simplified Mn12 model can be
written as [34]

H ¼ �J
P4
i¼1

S2i�1

� �2

�J0
P
hi; ji

S2i�1 � S2j � Kz
P4
i¼1

Sz2i
� �2þP

hi; ji
Di; j � ½S2i�1 � S2j� �

P8
i¼1

h � Si ; ð1Þ

where even (odd) numbered Si are the spin operators for the outer (inner) S ¼ 2 (S ¼ 1=2) spins. The
first two terms describe the isotropic Heisenberg exchange between the spins. The third term describes
the single-ion easy-axis anisotropy of S ¼ 2 spins. The fourth term represents the antisymmetric DMI
in Mn12. The vector Di; j determines the DMI between the i-th S ¼ 1=2 spin and the j-th S ¼ 2 spin.
We do not consider higher-order correction terms that restore the SU(2) symmetry [29–31, 44]. The
last term describes the interaction of the spins with the external field h. Note that the factor gmB is
absorbed in our definition of h. The first three terms in Hamiltonian (1) conserve the z-component of

the total spin Mz ¼
P8
i¼1

Szi . The DMI on the other hand mixes states with different total spin and also

states with the same total spin. Hence, the DMI can change level crossings into level repulsions and
may explain the experimentally observed adiabatic changes of the magnetization.
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Fig. 1 Left: Schematic diagram of the magnetic interactions of the simplified model (1) of the Mn12 molecule.
Right: The lowest 21 energy levels of the Mn12 model (1) as a function of the applied magnetic field h. Solid
lines: eigenstates with jMzj � 10; dashed lines: eigenstates with jMzj � 9.
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The four-fold rotational-reflection symmetry (S4) of the Mn12 molecule imposes some relations
between the DM-vectors. It follows that there are only three independent DM-parameters: Dx � D1;8

x ,
Dy � D1;8

y , and Dz � D1;8
z , as indicated in Fig. 1. The above model satisfactorily describes a rather

wide range of experimental data, such as the splitting of the neutron scattering peaks, results of EPR
measurements and the temperature dependence of magnetic susceptibility [34]. The parameters of this
model have been estimated by comparing experimental and theoretical data. In this paper we will use
the parameter set B from Ref. [34, 40]: J ¼ 23:8 K, J0 ¼ 79:2 K, Kz ¼ 5:72 K, Dx ¼ 22 K, Dy ¼ 0,
and Dz ¼ 10 K. Although the amount of available data is not sufficient to fix all these parameters
accurately, we expect that the general trends in the energy-level diagram will not change drastically if
these parameters change relatively little.

Model (1) provides a good test case for diagonalization methods because it is small enough to be
treated by full exact diagonalization but has all features of the larger problem. We find that the
results obtained by full exact diagonalization, LFO and CP are the same to working precision (about
13 digits). For one set of model parameters, full exact diagonalization (using standard LAPACK
algorithms) of the 10000� 10000 matrix representing model (1) takes about 2 hours of CPU time on
an Athlon 1.8 GHz/1.5Gb system. In Fig. 1 we show the results, obtained by LFO, for the lowest
21 energy levels of the Mn12 model as a function of the applied magnetic field. For each value of the
h-field, the LFO calculation takes about 20 minutes and uses much less memory than the full diago-
nalization method.

Although the total magnetization is not a good quantum number, we can label the various eigen-
states by their (calculated) magnetization. For large fields and/or energies, eigenstates with total spin
8, 9 and 10 appear. In Fig. 1 eigenstates with jMzj � 10ð9Þ (within an error of about 10%) are repre-
sented by solid (dashed) lines (eigenstates with jMzj � 8 appear for h > 4 but have been omitted for
clarity). The standard S ¼ 10 single-spin model for Mn12, H ¼ �DðSzÞ2 � hSz, is often used as a
starting point to interpret experimental results [6, 7, 11–13, 37]. The energy levels of this model
exhibit crossings at the resonant fields h ¼ �Dn for n ¼ �10; . . . ; 10, in agreement with our numeri-
cal results for the more microscopic model (1). For the parameter set B, we find that D � 0:55K, in
good agreement with experiments [6, 7]. The single-spin model commutes with the magnetization Sz

and therefore it only displays level crossings, no level repulsions. Adding an anisotropy term of the
form S4þ þ S4� only leads to level repulsions when the magnetization changes by 4, which does not
agree with the observation of adiabatic changes of the magnetization for all h ¼ nD [6, 7, 11, 12]. In
contrast, for the DMI the Hamiltonian has nonzero matrix elements for the pairs of states jS; Szi and
jS� 1; Sz � 1i, but zero matrix elements for levels with the same value of the total spin.

In Fig. 1, for some values of h, level repulsions appear to be present. However, these are due to
the fitting procedure used to plot the data and the number of h-values used (100) and disappear by
using a higher resolution in h-fields (results not shown). Thus these splittings have no physical
meaning. For the Mn12 system, the energy splittings at low field are extremely small. Their calcula-
tion requires extended-precision (128-bit) arithmetic [40]. Adding an extra transverse field by tilting
the h-field by 5 degrees does not change this conclusion. Thus, it is clear that within the (very
high) resolution in the h-field and the 13-digit precision of the calculation, there is no compelling
evidence that the DMI gives rise to a level repulsion, at least not for the choice of model para-
meters (set B, see above) considered here. The algorithms developed for the work presented in this
paper can be used for 33-digit calculations without modification and we leave the calculation of the
splittings for future work.

3 Vanadium complex: V15

In Fig. 2 we show the schematic diagram of the dominant magnetic (Heisenberg) interactions of the
V15 molecule. The magnetic structure consists of two hexagons with six S ¼ 1=2 spins each, enclos-
ing a triangle with three S ¼ 1=2 spins. All dominant Heisenberg interactions are antiferromagnetic.
The number of different spin states of this model is 215 ¼ 32768. The minimal Hamiltonian for the
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magnetic interactions that incorporates the effects on magnetic anisotropy can be written as [22, 37,
38, 41]

H ¼ �
P
hi; ji

Ji; jSk � Sl þ
P
hi; ji

Di; j � ½Si � Sj� �
P
i
h � Si : ð2Þ

The various Heisenberg interactions Ji; j are shown in Fig. 2. For simplicity, we assume that Di; j ¼ 0
for sites i and j except for bonds for which the Heisenberg exchange constant is J (see Fig. 2) [37, 41].
Rotations about 2p=3 and 4p=3 around the axis perpendicular to and passing through the center of the
hexagons leave the V15 complex invariant. This enforces constraints on the values of Di; j [41, 42]. We
have calculated the energy level diagram for the sets of model parameters given in Refs. [18], [37],
and [41]. The level diagrams for these three choices are qualitatively similar [49]. Therefore we only
present results for one set of model parameters.

Following Ref. [37] we take J ¼ �800, J1 ¼ J0 ¼ �54:4 K, and J2 ¼ J00 ¼ �160 K, J3 ¼ J4
¼ J5 ¼ J6 ¼ 0. Then, in the absence of the DMI, we find for the energy gap between the ground state
and the first excited state at h ¼ 0 a value of 4.12478 K, in perfect agreement with Ref. [37]. As in
Ref. [42] we take for the DMI parameters D1; 2

x ¼ D1; 2
y ¼ D1; 2

z ¼ 40 K in the present lattice (Fig. 2).
The amplitude is approximately 5% of the largest Heisenberg coupling. Using the rotational symmetry
of the hexagon we have D3; 4

x ¼ 14:641 K, D3; 4
y ¼ �54:641 K, D3; 4

z ¼ 40 K and D5; 6
x ¼ �54:641 K,

D5; 6
y ¼ 14:641 K, D5;6

z ¼ 40 K. As the two hexagons are not equivalent we cannot use symmetry to
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Fig. 2 (online colour at: www.interscience.wiley.com) Left: Schematic diagram of the magnetic inter-
actions in model (2) of the V15 molecule. Right top: The lowest 8 energy levels of V15 model (2) with
model parameters taken from Ref. [42] as a function of the applied magnetic field h parallel to the
z-axis. Right bottom: Detailed view of the four lowest energy levels at h � 0.
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reduce the number of free parameters. For simplicity, we assume that the ðx; yÞ positions of the spins
on the lower hexagons differ from those on the upper hexagon by a rotation about p=3. This yields
for the remaining model parameters D10; 11

x ¼ �14:641 K, D10; 11
y ¼ 54:641 K, D10; 11

z ¼ 40 K,
D12; 13

x ¼ �40 K, D12; 13
y ¼ �40 K, D12; 13

z ¼ 40 K, and D14; 15
x ¼ 54:641 K, D14; 15

y ¼ �14:641 K,
D14; 15

z ¼ 40 K.
In Fig. 2 we show the results for the eight lowest energy levels of V15 model (2) as a function of

the applied magnetic field along the z-axis, using the parameters of Ref. [42]. At zero field, the DMI
splits the doubly-degenerate doublet of S ¼ 1=2 states into two doublets of S ¼ 1=2 states. The differ-
ence in energy of the splitting is � 0:0085 K, much smaller than the experimental estimate
� 0:05 K [22], but of the same order of magnitude as the values cited in Ref. [41]. The next four
higher levels are S ¼ 3=2 states. The energy-level splitting between the S ¼ 3=2 and S ¼ 1=2 states is
� 4:1 K, in reasonable agreement with the experimental value � 3:7 K [45]. The transition between
the states j1=2; 1=2i and j3=2; 3=2i takes place at h � 2:8 T in very good agreement with the experi-
mental value 2:8 T. It should be noted that an energy gap does not necessarily implies an energy-level
repulsion, as Fig. 2 demonstrates for the case when the magnetic field is applied in the z direction.
Here we find that the levels simply cross at a finite value of the field, and the system does not allow
for an adiabatic change of the magnetization between the states j1=2; �1=2i and j1=2; 1=2i. If we
apply the field in the x or y direction, the energy-level diagram exhibits degenerate repulsions as
shown in Ref. [22]. If we apply in an intermediate angle, the energy structure changes smoothly from
that for z direction to that for x (or y) direction. Therefore, although the DMI causes the avoided level
crossing structure, it is anisotropic with respect to the direction of the field. This structure (by a factor
of two at least) should lead to observable changes in the hysteresis loops but has not been seen in
experiment [45]. Our numerical data for the model parameters given in Refs. [18], [37], and [41]
suggest that the three-spin model reproduces the main features of the full V15 model. Within the three
spin model we have studied the effects of higher-order correction terms that restore the SU(2) symme-
try [29–31, 44]. While they cause the four S ¼ 3=2 levels to be degenerate at h ¼ 0, the low energy
degenerate doublets do not change in an essential manner. In experiments only weak directional de-
pendence was found. Thus, it seems that another type of mechanism for opening gaps is at work and,
as we have shown elsewhere, hyperfine interactions seems to be a good candidate [50].
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