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Abstract

We present an algorithm to compute the number of solutions of the (constrained) number partitioning problem. A concrete
implementation of the algorithm on an Ising-type quantum computer is given. 2001 Elsevier Science B.V. All rights reserved.

PACS: 03.67.Lx; 89.70.+c

1. Introduction

The discovery of quantum algorithms (QAs) that,
when executed on a quantum computer (QC), give sig-
nificant speedup over their classical counterparts [1,2]
has given strong impetus to recent developments in the
field of quantum computation. In theory an ideal QC
is a universal computer. This means that for a given
problem there exists an algorithm to solve this problem
on a QC. The fact that a QC is a universal computer
does not tell us the algorithm itself, nor the computa-
tional resources that are required to solve the problem.
In general it is not easy to construct algorithms for an
ideal QC. The purpose of this Letter is to present a
new QA for a problem of combinatorial optimization:
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Counting the number of solutions of the (constrained)
number partitioning problem.

2. Number partitioning

The number partitioning problem (NPP) is defined
as follows [3–5]: Does there exist a partitioning of
the setA = {a1, . . . , an} of n positive integersaj
into two disjoint setsA1 andA2 = A− A1 such that∑
aj∈A1

aj =∑
aj∈A2

aj? The answer to this question
is trivially no if the sum of allaj , B ≡∑

aj∈A aj , is
odd. More generally, the case of even or oddB can be
treated on the same footing by asking if there exists
a partition such that|∑aj∈A1

aj −∑
aj∈A2

aj | � ∆,
where∆= 1 (0) if B is odd (even).

For certain applications there may be additional
constraints on the partitioning of the setA. A common
one is to fix the differenceC between the number of
elements inA1 andA2: C ≡ ∑

aj∈A1
1 −∑

aj∈A2
1.

For instance, ifC = 0 we ask if there is a partitioning
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such that the number of elements inA1 andA2 are the
same.

For a given instance ofA = {a1, . . . , an}, we may
encode the whole problem using onlyn log2B bits.
The NPP can be solved by dynamic programming, in a
time bounded by a low-order polynomial innB [4]. As
nB is not bounded by any polynomial of the input size
n log2B, the dynamic programming algorithm does
not solve the NPP with polynomial computational
resources[4].

Number partitioning is one of Garey and Johnson’s
six basic NP-complete problems [4]. Number parti-
tioning is a key problem in the theory of computational
complexity and has a number of important practical
applications such as job scheduling, task distribution
on multiprocessor machines, VLSI circuit design to
name a few.

The computation time to solve a NPP depends on
the number of bitsb = log2B needed to represent the
integersaj andB. Numerical simulations using ran-
dom instances ofA show that the solution time grows
exponentially withn for n	 b and polynomially for
n
 b [6–9]. For random instancesA, the NPP can be
mapped onto a hard problem of statistical mechanics,
namely that of finding the ground state of an infinite-
range Ising spin glass [10–12]. The transition from the
computationally “hard” (exponential) to “easy” (poly-
nomial) has been related to the phase transition in the
statistical mechanical system [10,12].

Although the transition between easy and hard
problems is important from conceptual point of view,
it is good to keep in mind that most real-life problems
are of the easy type [4]. For instance, if theaj ’s
represent the weight of boxes that are to be distributed
over several trucks, it is highly unlikely that the weight
of these boxes will vary between say 1 and 232 kg, or
that it is important to know the weights of the boxes
with a precision of, e.g., ten digits.

3. Quantum algorithm

The potential power of a QC stems from the fact that
a QC operates on superpositions of states [13–19]. The
interference of these states allows exponentially many
computations to be done in parallel [13–19]. A QA
consists of a sequence of unitary transformations that
change the state of the QC [13–19]. Therefore to solve

a NPP on a QC, we first have to develop an algorithm
that can be expressed entirely in terms of unitary
operations.

A genericn-qubit QC can be modeled by a collec-
tion of n two-state systems, represented byn Pauli-
spin matrices{�σ1, . . . , �σn} [13–19]. The two eigen-
states ofσzj will be denoted by|↑〉j and |↓〉j , corre-
sponding to the states|0〉j and|1〉j of thej th qubit re-
spectively. The eigenvalues corresponding to|↑〉j and
|↓〉j areSj = +1 andSj = −1. They can be used to
represent a partitioning ofA: We assignaj toA1 (A2)
if Sj = +1 (Sj = −1). If we can find a set{S1, . . . , Sn}
such that∆−∑n

j=1 ajSj = 0, we have found one so-
lution of the NPP.

It is known that the most simple class of spin
systems, i.e., those involving interactions of the Ising
type only, can be used to build universal QCs [14,18,
20]. For our purposes it is, at this stage, sufficient to
consider a system ofn non-interacting Ising spins. The
Hamiltonian is given by

(1)H =∆−
n∑
j=1

ajσ
z
j ,

where theaj ’s represent external fields acting on the
spins. From (1) it follows directly that an eigenstate of
H with energy zero corresponds to a solution of the
NPP. We will use Hamiltonian (1) to define the time
evolution of the QC, i.e., the QA that solves NPPs.

The second key to the construction of the quantum
algorithm is the observation that the number of solu-
tionsns of a NPP is given by

(2)ns ≡ 1

M

M−1∑
m=0

Tr e−2πimH/M,

whereM ≡ B +∆+ 1 and TrU denotes the trace of
the matrixU [21]. Using the representation that diag-
onalizes the spin operatorsσzj , we find

ns =
∑

{Sj=±1}

1

M

M−1∑
m=0

exp

[
2πim

M

(
n∑
j=1

ajSj −∆
)]

= 1

M

∑
{Sj=±1}

1− exp
[
2πi

(∑n
j=1ajSj −∆)]

1− exp
[
2πi

(∑n
j=1ajSj −∆)/M]

(3)=
∑

{Sj=±1}
δ∆,

∑n
j=1 aj Sj

.
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As |∆ − ∑n
j=1 ajSj | < M for any choice of{Sj },

the sum overm in (2) will be zero unless∆ −∑n
j=1ajSj = 0, in which case the configuration{S1,

. . . , Sn} is a solution of the NPP (note that there can
be exponentially many solutions, for instance, in the
case that all theaj ’s are equal). Performing the sum
over all spin configurations as indicated in (3), it fol-
lows immediately thatns is the number of solutions of
the NPP. Note that (2) gives the number of solutions
of a NPP, which is more than just a yes or no answer
to the question if a partition ofA exists [4].

Formally expression (2) is the density of states at
zero energy of the physical system described by Ham-
iltonian (1). Elsewhere we have shown that, for a large
class of modelsH , the density of states can be calcu-
lated efficiently on a QC [22]. The algorithm presented
below, although related to the one described in [22], is
specifically tuned to solve NPPs.

The equivalence of (2) and the solution of the NPP
can also be demonstrated by explicit calculation of the
trace over all spin configurations. This is easy because
the spins do not interact. The result is

(4)

ns = 2nM−1
M−1∑
m=0

e−2πim∆/M
n∏
j=1

cos(2πmaj/M).

For ∆ = 0 and in the limitM → ∞ we havens =
2nIs , where

(5)Is = 1

2π

2π∫
0

cos(a1θ) . . .cos(anθ) dθ.

The question whetherIs = 0 or not is known to be
equivalent to the (non-) existence of a solution of a
NPP [4,23].

If ns > 0 we can find a partitioning in the follow-
ing manner. Assume we already know the values of
the first 0< l − 1< n spins. We make a guess forSl
and computen(l)s ≡M−1∑M−1

m=0 tr e−2πimH/M , where
the use of the symbol tr instead of Tr indicates that
in calculating the trace, the values of the variablesS1,

. . . , Sl are fixed. Ifn(l)s > 0 our guess forSl was cor-
rect, if not we reverseSl . Then we increasel by one
and repeat the procedure.

The algorithm outlined above is easily general-
ized to handle constraints. Introducing another Hamil-

tonian

(6)H ′ = C −
n∑
j=1

σzj ,

the number of solutionsns(C) of the constrained NPP
is given by

(7)

ns(C)≡ 1

MK

K−1∑
k=0

M−1∑
m=0

Tr e−2πimH/Me−2πikH ′/K,

whereK = n+ |C| + 1. Repeating the same steps as
above we find that the sum overk yields zero unless
C = ∑N

j=1Sj = ∑
aj∈A1

1 − ∑
aj∈A2

1. The expres-
sion corresponding to (4) reads

ns(C)= 2n

MK

K−1∑
k=0

M−1∑
m=0

e−2πim∆/M−2πikC/K

(8)×
n∏
j=1

cos

(
2πmaj
M

+ 2πk

K

)
.

The procedure to find a partitioning itself is the same
as in the unconstrained case.

The algorithms defined by (1), (2) and (6), (7)
solve NPPs and constrained NPPs without recourse
to dynamic programming. This follows directly from
explicit expressions (4) and (8). On a conventional
computer the computation time required is bounded
by nM (or nMK for the constrained case). Hence
also these algorithms do not solve the (constrained)
NPP in polynomial time (space). The conceptual
difference between these algorithms and the dynamic-
programming approach is that the former directly
compute the number of solutions of the NPP whereas
the latter performs a search for a solution of the NPP.

As we now show, (2) (or (7)) is a convenient starting
point to construct a QA that solves the (constrained)
NPP on a QC. As will be clear from the discussion
below, it will be sufficient to concentrate on (2), the
algorithm for (7) is almost identical.

The first step is to introduce a “number operator”
X with eigenstates|x〉, X|x〉 = x|x〉, x = 0,1, . . . ,
M − 1. We modify the Hamiltonian that governs the
time-evolution of the QC as follows:

(9)H̃ =∆X−
n∑
j=1

ajσ
z
j X.
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Calculating the trace in the basis that diagonalizesσz1

. . . σ zn andX we find thatns =M−1 Tr e−2πiH̃/M . Be-

causeH̃ is diagonal in this basis Tre−2πiH̃/M is pro-
portional to one matrix element, namely

Tr e−2πiH̃/M

(10)= 2nM〈U1 . . .UnUx |e−2πiH̃/M |U1 . . .UnUx〉,
where|Uj 〉 ≡ (|↑〉j + |↓〉j )/

√
2 is the uniform super-

position of the spin up and down state of spinj , and
|Ux〉 ≡ (|0〉+ |1〉+ · · ·+ |M−1〉)/√M is the uniform
superposition of all the eigenstates of the number
operatorX. To derive expression (10) we made use of

(11)e
−iaσ zj |Uj 〉 = cos(a)|Uj 〉 − i sin(a)

∣∣Ūj 〉
and〈Uj |Ūj 〉 = 0, where|Ūj 〉 = (|↑〉j − |↓〉j )/

√
2.

From (2) it follows that

(12)ns = 2n〈U1 . . .UnUx |e−2πiH̃/M |U1 . . .UnUx〉.
As a QC can computee−itH |ψ〉 with one operation
(for arbitrary input|ψ〉) [13], (12) shows that once
the QC is in the state of uniform superposition|U1 . . .

UNUx〉, one time-evolution step of the QC will solve
the NPP.

The initial state|↑, . . . ,↑, x = 0〉 can be transformed
into the state of uniform superposition|U1 . . .UNUx〉
by the standard procedure [16,17]: The states|U〉j can
be obtained from the initial state|↑〉j by a rotation of

the spinj about they-axis, i.e.,|U〉j = e−iπσyj /4|↑〉j
for j = 1, . . . , n. On an Ising-type QC the states|x〉
can be implemented by adding new two-state systems.
We denote the corresponding Pauli-spin operators and
eigenvalues by�µp andsp , respectively. We use these
spins to representx = ∑p

l=1 2l−2(1 − sl) in binary
form. As 0� x < M the number of spinsp required
to representx is the smallest integerp for which
M � 2p. Using this binary representation for|x〉,
the uniform superposition|Ux〉 can be obtained byp
rotations of the initial state:

(13)|Ux〉 = e−iπµy1/4|↑〉1 ⊗ · · · ⊗ e−iπµyp/4|↑〉p,
where ⊗ denotes the direct product operation. The
system now comprisesn+p spins and its Hamiltonian
reads

(14)

H = −
p∑
l=1

n∑
j=1

Jj,lσ
z
j µ

z
l −

n∑
j=1

bjσ
z
j −

p∑
l=1

clµ
z
l + d,

where Jj,l = −aj2l−2, bj = aj (2p − 1)/2, cl =
∆2l−2, andd =∆(2p − 1)/2.

The complete QA for computingns , i.e., for solving
NPPs, can be summarized as follows: The initial state
of the QC (all spins up by convention) is transformed
into the state of uniform superposition. This takes
n+ p one-qubit operations. Next the QC makes one
time-evolution step exp(−iπH/2p−1). The matrix
element in (12) is obtained by applying the inverse of
then+ p rotations, followed by a projection onto the
initial state. Clearly the total number of QC operations
is only 2n+ 2p+ 1 while the amount of memory used
isO(log2M + log2n).

The constrained NPP can be solved in the same
way: Add qubits to represent the variablek in (7) and
repeat the steps that lead to (12). Note that once the
uniform superposition has been prepared, the QA also
solves the constrained NPP with one time-evolution
step.

4. Implementation on a quantum computer
emulator

For the purpose of demonstration we have imple-
mented the QA that solves the unconstrained NPP on
a quantum computer emulator (QCE), a software tool
for simulating physical models of QCs [24]. A sub-
tle point thereby is that (12) is not directly measurable
becausee−2πiH̃/M is not a physical observable. How-
ever, it is not difficult to expressns in terms of an ex-
pectation value of a physical observable.

Let us write the number of solutions (7) asns =
2n〈0|Φ〉, where|Φ〉 = U−1e−iπH/2p−1

U |0〉 andU ≡
e−iπσ

y
1 /4 . . . e−iπσ

y
n /4e−iπµ

y
1/4 . . . e−iπµ

y
p/4. Our aim is

to replace the projection onto the initial state|0〉, a
shorthand notation for the state with all spins up, by
the measurement of some observable. This can be ac-
complished by introducing another spin�κ , initially in
the state of spin up, to the system and flip this spin if
the othern+p are all up, i.e., by performing an AND
operation on then+p spins. WithV denoting the uni-
tary transformation that performs this AND operation,
we have in the language of qubits instead of spins:

|Ψ 〉 ≡ VU−1e−iπH/2p−1
U |0〉 ⊗ |0〉κ

= V [2−nns |0〉 ⊗ |0〉κ + (. . .)⊗ |0〉κ
]
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(15)= 2−nns |0〉 ⊗ |1〉κ + (. . .)⊗ |0〉κ ,
where|Ψ 〉 is an element of the direct product of the
Hilbert spaces spanned by then+p spins and the aux-
iliary spin �κ . We use the abbreviation(. . .) to represent
the sum of all states of then+p spins that have at least
one spin down. From (15) it immediately follows that

(16)ns = 2n〈Ψ |(1− κz)/2|Ψ 〉1/2.

It is well-known how to implement the AND oper-
ation on a QC [25]. In our practical implementation
[26], we have chosen to use a three-bit network, the
Toffoli-gate, as a building block for realizing the AND
operation on then + p qubits [25]. By adding extra
work qubits the complete network requires of the order
of log2(n+p) steps andn+p extra qubits to perform
the AND operation. Clearly this does not change the
polynomial time and space character of the QA that
solves NPPs. A block diagram of the complete quan-
tum program is shown in Fig. 1. We have implemented
the QA on a 15-qubit QC and used it to solve the NPPs
A = {1,2,3,4}, A = {1,1,1,4} andA = {2,2,2,4}
(these examples are included in the software distribu-
tion [26]). In the final state the expectation values of
the 15th qubit are 0.015625, 0.00390625, and 0, re-
spectively. The corresponding number of solutions is
ns = 2, ns = 1 andns = 0. Clearly the demonstration
program correctly solves NPP problems.

5. Alternative implementation

The implementation described above has the same
logical structure as other QAs [1,2,19]: Prepare the
QC in a state of uniform superposition, perform some
unitary transformation to encode information and then
apply a filter to extract the answer. We now show that
there is another QA that solves the NPP but does not fit
into this general scheme in that the first step is missing.

Consider the time-dependentn-spin correlation
function

(17)C(t)= 〈Φ|eiHxt σ z1 . . . σ zne−iHx t σ z1 . . . σ zn |Φ〉,
whereHx = −∑n

j=1 ajσ
x
j /2. The state|Φ〉 can be

anyn-spin state that is an eigenstate ofσz1 . . . σ
z
n , e.g.,

the state with all spins up. As theσzj ’s are unitary op-
erators, it is a simple matter to write down a QA that

Fig. 1. Block diagram of the quantum algorithm that solves the
number partitioning problem. In this example the firstn= 4 qubits
are used to represent the integers to be partitioned. Thep = 4 qubits
5–8 are used to determine the number of solutions of the number
partitioning problem. The remaining 7 qubits are used to relate
ns to a physically measurable quantity: The expectation value of
the 15th qubit. The unitary transformationU prepares the uniform
superposition of the first 8 qubits,̄U is the inverse ofU , and the
combination of INVERT and AND gates sets the 15th qubit to one
if and only if the first eight qubits are all one.

computesC(t) on a QC. ObviouslyC(t) is a physi-
cally observable quantity but it may require a rather
complicated experimental setup to measure thisn-spin
correlation function.

Substituting into (17) the equation of motion for
each spin, i.e.,eiHxt σ zj e

−iHx t = σzj cos(aj t) − σyj ×
sin(aj t), we find

C(t)= 〈Φ|
n∏
j=1

[
1 cos(aj t)− iσ xj sin(aj t)

]|Φ〉

(18)=
n∏
j=1

cos(akt).

The Fourier transform ofC(t) at zero frequency is
directly proportional toIs and hence tons :

(19)S(ω)=
∞∫

−∞
eiωtC(t) dt = 2−nnsδ(ω)+R(ω),

where the regular partR(ω) is zero atω = 0. From
(19) it is clear that the NPP has a solution ifS(ω)
shows a peak at zero frequency. Detection of the cen-
tral peak in the dynamic correlation functionS(ω)
may require a very long observation timeT . To dis-
tinguish betweenns = 0 andns = 1 the observation
timeT must be larger than 2nπ .
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6. Discussion

The essence of the algorithm proposed above is
that it yields the number of solutionsns without
actually listing all solutions. This is made possible by
expressingns in terms of the density of states of a
physical system (Ising spins in our example). Clearly
this QA certainly has its weakness ifns is close to
zero andn is large. Of the order of 2n measurements
of κz are required to distinguish betweenns = 0 and
ns = 1. This is tantamount to random sampling. By
formulating, as we did, the outcome of the calculation
in terms of (an average of) physical observables
(see (16) or (19)) instead of a (collapsed) state, this
problem of efficiency is difficult to overlook [27].

The NP-completeness of the NPP depends strongly
on the fact that extremely large numbersaj are
allowed [4]. For a given instance ofA= {a1, . . . , an},
the whole problem can be encoded using onlyn log2B

bits [4] and running the algorithms defined by (1),
(2) or (6), (7) on a conventional computer requires a
computation time that is proportional tonB. On a QC
it takes only of the order ofn log2B steps to complete
our QA but in the hard case (b
 n) and for largen,
obtaining a yes-or-no answer requires tremendous
precision. In the absence of any information of the
aj ’s other than that they are positive integers, the range
of ns extends from zero to

(
n
n/2

)
. Any algorithm that

computesns (on a conventional or QC) should be able
to cover this range (otherwise it can never return the
correctns ). This implies that the whole computation
has to be done with at least the same (high) precision.

As the NPP example shows, a realistic assessment
of the potential power of a QA should include a quan-
titative estimate of the precision and other computa-
tional resources (e.g., energy) that are required to ob-
tain the correct answer. For our QA an estimate of the
required precision follows from (16). Note that the al-
ternative implementation yields a similar, physically
equivalent, estimate for the observation timeT .

The range of numbers a physically realizable QC
will be able to handle is directly related to the energy
range in which the QC operates (−B to +B in the
NPP case). Although not a problem of principle, the
physics of QC hardware will definitely impose some
constraints on the range of numbers.

There are two other, potentially large, numbers
involved in an NPP problem: The number of states

Ns = 2n and the number of computational unitsNcu
(of microscopic size) in the physical realization of the
QC. There are two cases to consider. (1) Theoretical
(computer science): We have to examine the worst
case. ThenNs 
 Ncu so that our NPP algorithm has
little merit. (2) In practice: In numerical experiments
[6–9] n � 32 (Ns < 232) whereas, for instance, in
NMR QC experimentsNcu ≈ 1018 
 Ns [28]. Using
a sufficiently large number of computational units and
efficient detectors it should be possible to distinguish
betweenns = 0 and ns = 1. Assuming that clever
engineering can produce spin systems such as (14), our
QA might be used to demonstrate that a physical QC
can solve a non-trivial problem.
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