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Peierls instability due to the interaction of electrons
with both acoustic and optical phonons in metallic carbon nanotubes

Marc Thilo Figge, Maxim Mostovoy, and Jasper Knoester
Centre for Theoretical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen,

The Netherlands
~Received 17 July 2001; published 13 March 2002!

We consider Peierls instability due to the interaction of electrons with both acoustic and optical phonons in
metallic carbon nanotubes, resulting in a static twist in the nanotube lattice below the critical temperatureTc .
We study lattice excitations, the so-called solitwiston and polartwiston, over the ordered Peierls state for
different types of boundary conditions. Furthermore, we calculate the electrical resistivity and find that our
theory offers a possible explanation for the observed low-temperature rise in the electrical resistivity of carbon
nanotubes.
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I. INTRODUCTION

It is well known that a half-filled conducting chain is un
stable against a doubling of the unit cell, where the bo
length between neighboring lattice sites alternates along
chain. The dimerization of the lattice results in an alternat
of the electron hopping amplitudes leading to the opening
a Peierls gap in the electron spectrum and turning the sys
into a semiconductor. In this Peierls instability, the relev
phonons are the optical ones with wave vectorq;2kF .1

These phonons backscatter electrons from the left part o
Fermi surface with electron wave vector2kF to the right
one with electron wave vector1kF and vice versa. It is
usually assumed that above the phase-transition temper
Tc these phonons have a finite frequencyvo and we will,
therefore, refer to them as optical phonons. Due to the m
ing with the low-energy electron-hole excitations, the
phonons soften and atTc their frequency vanishes~giant
Kohn anomaly!.2

Recently, we have shown thatacousticphonons of small
wave vectorq and small frequencyva(q)5vuqu may lead to
a similar instability in metallic carbon nanotubes.3 In fact,
backscattering due to acoustic phonons always occurs if
size of the system’s unit cell is the same above and below
transition temperatureTc . The reason is that in this case th
phonon wave vector is only conserved up to a multiple
2kF , such that optical- and acoustic-phonon modes of
same symmetry do exist which cooperate in the opening
the Peierls gap. As a specific example we considered
Peierls transition in metallic carbon nanotubes where, in
presence of both optical and acoustic phonons, the aco
ones are the first to soften, which in this case means a
ishing of the phonon velocity at the Peierls transition te
perature. A great deal of work has been done, e.g., to un
stand the role of electron-electron interactions in meta
carbon nanotubes which are typical candidates for an exp
mental realization of Luttinger liquid behavior. In this co
text the bosonization method has been applied,4,5 as well as a
mapping to a two-leg Hubbard model to describe the sh
range Coulomb repulsion.6,7 A different view is taken in our
approach, where we, in fact, disregard electron correlati
0163-1829/2002/65~12!/125416~17!/$20.00 65 1254
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and concentrate on the electron-lattice interaction which
assume to govern the system’s low-temperature proper
The Peierls transition in metallic carbon nanotubes aris
from the interaction with optical phonons has been stud
before.8–12A general conclusion which has been drawn fro
these studies is that the opening of a Peierls gap is stro
suppressed for increasing nanotube diameters. This ca
understood as the consequence of the fact that the el
energy cost of the Peierls distortion grows proportional to
number of chains around the nanotube circumference. T
conclusion remains valid when acoustic phonons are ta
into account, however, the character of the Peierls distor
and topological excitation is new in this case, as we poin
out in Ref. 3.

In this paper, we give the detailed derivation of the mod
and its properties presented in Ref. 3. Moreover, we add
the open question whether this model may offer a quant
tive explanation for the observed low-temperature rise in
measured electrical resistivity of carbon nanotubes and, m
generally, to what extent one may expect the Peierls tra
tion and the associated softening of the acoustic phonon
be observable in such nanotubes. Finally, we show how
choice of boundary conditions imposed on the atomic latt
of a nanotube affects the properties in the low-tempera
phase.

The outline of this paper is as follows: In Sec. II we sta
out by describing the nanotube lattice by the most gen
continuum model that is compatible with the symmetry
the hexagonal lattice. Next, we calculate the electron-lat
coupling for the long-wavelength phonon modes that res
in the backscattering of electrons and develop an elect
lattice continuum model for armchair carbon nanotub
Then, in Sec. III, we calculate the renormalized phonon f
quencies at temperaturesT.Tc and study the phase trans
tion in the presence of both acoustic and optical phono
Making use of the thus obtained renormalized acous
phonon frequency, we calculate in Sec. IV the temperat
dependence of the electrical dc conductivity due to electr
phonon scattering. Topological excitations in the orde
Peierls phase (T,Tc) are studied in Sec. V and we perform
numerical simulations within an elastic spring model in S
VI for different types of boundary conditions on the atom
©2002 The American Physical Society16-1



an

ec
bd
-
r

a
tr
b
A
an

la
te
w
ro
tu
n

n
b

r
no

i

ck
ts
th

w-
sed

near

re-
gi-

m-
l of
tice
t

ex-
rees
ing
at
dis-

tial
t in

ly.
is

e-

t-

is-

he

at

.

e

n

al
nal

ing

Th
o

dis

f
ck

MARC THILO FIGGE, MAXIM MOSTOVOY, AND JASPER KNOESTER PHYSICAL REVIEW B65 125416
shifts. We discuss our results in Sec. VII and summarize
conclude this paper with Sec. VIII.

II. DERIVATION OF THE ELECTRON-LATTICE
CONTINUUM MODEL

Carbon nanotubes are well known for their unique el
tronic properties. Metallic carbon nanotubes can be su
vided in two classes:13 ~i! nominally metallic carbon nano
tubes that are in fact semiconducting due to a curvatu
induced energy gap proportional to the inverse square
their diameter, and~ii ! metallic carbon nanotubes for which
curvature-induced energy gap does not exist by symme
The latter class is formed by the armchair carbon nanotu
to which we restrict our considerations in what follows.
so-called armchair carbon nanotube is shown in Fig. 1
can be considered as composed of a finite numberNl of
coupled two-leg ladders around its circumference. Each
der consists of two coupled zigzag chains that are direc
along the axis of the carbon nanotube. An effective lo
energy model that describes the nanotube’s electronic p
erties takes into account electrons that have zero momen
in the circumferential direction of the carbon nanotube a
corresponds to a two-leg ladder tight-binding model.6,7

The corresponding electronic energy spectrum is show
Fig. 2 for noninteracting electrons and is characterized
two Fermi points. At each Fermi point (n51,2) two electron
bands that have a linear dispersion close to the Fermi ene
E50, intersect. While the undistorted armchair carbon na
tube is a half-filled metallic system,14,15two types of electron
backscattering~reverting the sign of the electron velocity!
exist that can give rise to the opening of an energy gap in
electronic spectrum.

The dashed arrow in Fig. 2 indicates the usual ba
scattering, taking place between two different Fermi poin
The relevant short-wavelength phonons correspond to

FIG. 1. Schematic picture of an armchair carbon nanotube.
open (s) and closed (d) circles denote the C ions of the tw
triangular sublatticesi 5A,B. The thick arrow points in thex direc-
tion along the nanotube axis and the definitions of the lattice
placementsXi ,Yi are indicated.

FIG. 2. Electron energy dispersion near the Fermi energy o
half-filled armchair carbon nanotube and the two types of ba
scattering processes distinguished in the text.
12541
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Kekulé structure of the carbon nanotube. In addition, ho
ever, a second type of backscattering exists, which is cau
by long-wavelength phonons and leaves the electrons
the Fermi point~solid arrow!. In what follows we will solely
concentrate on the latter type of backscattering, which is
sponsible for the new type of Peierls distortion and topolo
cal excitation.3

To develop an electron-lattice continuum model for ar
chair carbon nanotubes we first derive a continuum mode
the armchair carbon nanotube lattice. We consider the lat
of the armchair nanotube as an array ofN connected rings a
a distancea/2 along the nanotube axis~see Fig. 1!. Each ring
contains 2Nl carbon atoms, whereNl carbon atoms belong to
each of the two triangular sublattices that build up the h
agonal nanotube lattice. We take into account lattice deg
of freedom in the cylindrical nanotube surface and, keep
in mind that the lattice distortion couples to electrons th
have zero transverse momentum, we can disregard the
persion of the atomic displacements in the circumferen
direction. Thus, the time-dependent atomic displacemen
the i th sublattice,

uW i~x,t !5@Xi~x,t !,Yi~x,t !#T, ~1!

is a function of thex coordinate along the nanotube axis on
Within the continuum model a ring of the nanotube lattice
characterized by the atomic displacementsuW i in the two sub-
latticesi 5A,B and by their spatial and time derivatives, r

spectively,uW i8 anduẆ i . It is convenient to introduce an eigh
dimensional ring vector

RW ~x,t !5~XA ,XA8 ,YA ,YA8 ,XB ,XB8 ,YB ,YB8 !T, ~2!

which combines all required information to describe the d
tortion in a ring along the nanotube axis.

The total lattice energy is the sum of the kinetic and t
potential lattice energyHlat5T1U. In terms of the ring vec-

tor RW , the kinetic lattice energy readsT5 1
2 *dxRẆ Tr̂RẆ , where

r̂5(r lm) is the mass density matrix andl ,m51, . . . ,8. The
only nonzero elementsr lm are the diagonal elements th

couple the time derivativesuẆ i of the atomic displacements
The potential energy in terms of the ring vectorRW readsU

5 1
2 *dxRẆ TK̂RW , where the matrixK̂5(klm) couples all ele-

ments ofRW in a ring (l ,m51, . . .,8). Wenote that the ma-
trix elementsr lm and klm are real and have to satisfy th
conditions that the total lattice energy is invariant under~i! a
constant shift ofuW A anduW B that leaves the distance betwee
the two sublattices unchanged, and~ii ! a transformationRW

→ÛRW that is allowed by the symmetry of the hexagon
nanotube lattice. As can be seen from Fig. 1, the hexago
lattice is invariant under the reflection in the plane contain
the carbon nanotube axis (P̂y): y→2y, XA↔XB , and
YA↔2YB , and in the plane perpendicular to the axis (P̂x):
x→2x, Xi→2Xi , and Yi→Yi . It then follows from the
condition P̂r̂ P̂T5 r̂, where P̂5 P̂x ,P̂y , that the only non-
zero elementsr lm are given byr115r55[rx and r335r77

e

-
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[ry . Furthermore, the conditionP̂K̂ P̂T5K̂, where again
P̂5 P̂x ,P̂y , together with condition~i! given above, reduce
the number of free coupling parametersklm from 36 to a set
of eight parameters. It is convenient to define four new fu
tionsX6 ,Y6 by the symmetric and antisymmetric combin
tions X65(XA6XB)/A2 andY65(YA6YB)/A2. The total
lattice energy is then given by the expression

Hlat5
1

2E dx@rx~Ẋ1
2 1Ẋ2

2 !1ry~Ẏ1
2 1Ẏ2

2 !1axX2
2 1ayY2

2

1bxX81
2 1byY81

2 1gxX82
2 1gyY82

2 12dxX2Y18

12dyY2X18 #, ~3!

which represents the most general continuum model of
armchair carbon nanotube lattice compatible with its symm
try and is determined by the se
$ax ,ay ,bx ,by ,gx ,gy ,dx ,dy% of coupling parameters.

We can write Eq.~3! in a more compact form, if we defin
a new ring vectorRW 5(X1 ,Y1 ,X2 ,Y2)T, and use the an
satzRW (x,t)51/AN(qRW q exp(iqx2ivt). The total lattice en-
ergy is then obtained in the simple formHlat

5 1
2 (qRW q

†ĥlatRW q , where the matrixĥlat reads

ĥlat5
a

2 1
v2rx

1q2bx

0 0 iqdy

0
v2ry

1q2by

2 iqdx 0

0 iqdx

v2rx1ax

1q2gx

0

2 iqdy 0 0
v2ry1ay

1q2gy

2 .

~4!

It is easy to check thatĥlat is invariant under the parity
transformation

p̂5S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

D with p̂25I , ~5!

where I is the unit matrix. It thus follows that the fou
eigenmodes of the lattice HamiltonianHlat can be classified
by their parity p̂RW 656RW 6 , where RW 25(0,Y1 ,X2 ,0)T

and RW 15(X1 ,0,0,Y2)T. The negative-parity mode
describes a bond-length alternation along the nanot
axis (XA52XB and YA5YB), which is out of phase in
neighboring zigzag chains of the armchair nanotube latt
The two eigenmodes that belong to the negative-parity m
RW 2 are ~i! an optical-phonon mode with amplitudeuo(x,t)
and frequencyvo ,
12541
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]2

]t2
uo~x,t !52vo

2uo~x,t !, vo'Aax

rx
, ~6!

and ~ii ! an acoustic-phonon mode with amplitudeua(x,t),

]2

]t2
ua~x,t !5v0

2 ]2

]x2
ua~x,t !, ~7!

frequencyva(q)'v0uqu, and phonon velocity

v05S by

ry
2

dx
2

ryax
D 1/2

. ~8!

On the other hand, the positive-parity mode describes a s
of the two sublattices against each other in the circumfer
tial direction (YA52YB andXA5XB). This does not affect
the length of the bonds along the nanotube axis. To
positive-parity modeRW 1 belongs an optical-phonon mod
with frequencyv̄o'Aay /ry, and an acoustic-phonon mod
v̄a(q) with phonon velocityv̄05@bx /rx2dy

2/(rxay)#1/2. In
what follows we will show explicitly that the optical- an
acoustic-phonon modes which belong to the negative-pa
mode, respectively, Eqs.~6! and ~7!, will cause the back-
scattering of electrons for smallq.

The effective low-energy model describing free electro
in the armchair carbon nanotube corresponds to a two
ladder tight-binding model.6,7 At all relevant temperatures
the electrons have zero transverse momentum around the
cumference of the carbon nanotube and can only propa
in the x direction along its axis. Here, we generalize t
Hamiltonian of the two-leg ladder model and take into a
count that the electron hopping amplitudes depend on
interatomic distances between the electronic orbitals
neighboring atoms. Figure 3 visualizes the notation tha
used to write the two-leg ladder Hamiltonian in the comp
form

Harm52 (
ni ,s

(
j 51

6

Tj~dAs
† ~nia1aj !dBs~nia1bj !1H.c.!.

~9!

The fermionic operatordis(nia) @dis
† (nia)# annihilates~cre-

ates! an electron in sublatticesi 5A,B with spin s at posi-
tion x5nia along the nanotube axis. The electron hoppi
amplitudes depend on the atomic displacements, Eq.~1!, and
take the form

Tj5t j1
a j

ANl

eW j•@uW B~nia1bj !2uW A~nia1aj !#. ~10!

Here, t j denotes the hopping amplitude in the absence
electron-lattice interactions, whilea j /ANl is the electron-
lattice coupling andeW j is a unit vector which is oriented
along bondj. The explicit expressions of the electron ho
ping amplitudesTj are summarized in the table of Fig. 3 an
satisfy the condition thatHarm has to be invariant under th
reflection symmetryP̂y .
6-3
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We now derive the continuum version of the Hamiltoni
Harm which will model the system close to the Fermi poin
This is done by interpretingx as a continuous variable in th
direction of the nanotube axis and by representing the op
tor dis(x) close to each Fermi point as a product of tw
factors,

dis~x!'Aa

2
„eikFxc i ,1,s~x!1e2 ikFxc i ,2,s~x!…. ~11!

The exponential factor varies fast along the nanotube axi
the scale of the lattice constanta;kF

21 , while the second
factor is the slowly varying functionc i ,n,s at Fermi points
n51,2 and is related to the small deviation of the electr
momentum from the Fermi wave vector6kF . In the absence
of the electron-lattice couplinga j[0, we obtain from Eq.
~9! the kinetic energy of the electrons,

FIG. 3. The unrolled armchair carbon nanotube lattice co
sponds to a graphene sheet~solid grey lines! which is composed of
a ladder repeat unit around the nanotube circumference as indic
by the dashed black lines. The repeat unit of such a ladder in
direction of the nanotube axis is drawn with solid black lines. T
two triangular sublatticesi 5A,B are depicted by, respectively
‘‘ d ’ ’ and ‘‘ s ’ ’ , and the hopping amplitudesTj are obtained from
the table in combination with Eq.~10!.
12541
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Hel5
vF

i (
n,s

E dxCn,s
† ~x!s3

]

]x
Cn,s~x!, ~12!

where s3 is the Pauli matrix. The spinorCn,s(x)
[@cR,n,s(x),cL,n,s(x)#T is given by

Cn,s~x!5
1

A2
S 1 ~21!n

i 2 i ~21!nD S cA,n,s~x!

cB,n,s~x! D ~13!

in terms of the slowly varying functionsc i ,n,s . It describes
left-moving @cL,n,s(x)# and right-moving@cR,n,s(x)# elec-
trons at the two Fermi pointsn51,2 with Fermi velocity
vF5atisin(kFa/2) and Fermi wave vectorkF5(2/a)arccos
@2t' /(2t i)#. Thus,Hel describes the kinetic energy of ele
trons in two electron bands that intersect with linear disp
sion at each of the two Fermi points~see Fig. 2!.

For a finite couplinga j , we obtain from Eq.~9! the
electron-lattice Hamiltonian

Hel-lat5(
n,s

E dxCn,s
† ~x!s1Cn,s~x!

3(
j

~Tj2t j !
sin@kF~aj2bj !#

2
, ~14!

which contains the Pauli matrixs1 and describes the back
scattering of electrons at each Fermi pointn. In the deriva-
tion of this expression, forward-scattering contributions ha
been omitted, as these processes are of the
Cn,s

† (x)Cn,s(x) and do not lead to an instability. After pe
forming the sum overj we find

Hel-lat5A6
a i

ANl

sinS kF

a

2D(
n,s

E dxCn,s
† ~x!s1Cn,s~x!

3FX22
a

4A3

]Y1

]x G , ~15!

which shows that, as expected, the backscattering of e
trons only depends onX2 and Y1 . The latter are linear
combinations of the optical- and acoustic-phonon modes
fined in Eqs.~6! and~7!, respectively. The shiftsX2 andY1

and the amplitudesuo andua are related by

X25
dx

ax

]

]x
ua1uo ; Y152ua2

dx

ax

rx

ry

]

]x
uo ~16!

or

uo5X21
dx

ax

]

]x
Y1 ; ua52Y12

dx

ax

rx

ry

]

]x
X2 .

~17!

We thus see that the optical- as well as the acoustic-pho
modes involve atomic shifts in both the directions perpe
dicular and parallel to the nanotube’s axis. However, withi
somewhat simplified picture restricted to lowest order in
derivatives, the optical phonons correspond to a relative s
of the nanotube’s two triangular sublattices against e
other along its axis:uo;(XA2XB)/A2. This then leads to a

-

ted
e
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lattice deformation with out-of-phase bond-length dimeriz
tion in neighboring zigzag chains along the nanotube a
Similarly, the acoustic phonons which describe a twist d
tortion of the cylindrical nanotube latticeua;(YA

1YB)/A2 also result in an out-of-phase bond-length dim
ization. The electron-lattice interaction Eq.~15! is finally
written in the convenient form

Hel-lat@Do1Da#5(
n,s

E dxCn,s
† ~x!~Do1Da!s1Cn,s~x!.

~18!

Here, we introduced the ‘‘order parameter’’D i for optical
( i 5o) and acoustic (i 5a) phonons, which to the lowes
order in the derivatives of the phonon amplitudeui are given
by

Do5A6
a i

ANl

sinS kF

a

2Duo ,

Da5A6
a i

ANl

sinS kF

a

2D F dx

ax
1

1

4

a

A3
G ]

]x
ua . ~19!

As is clear from Eq.~18!, the difference between the optic
and acoustic phonons is thatDo is proportional to the ampli-
tude uo , while Da is proportional to the derivative of th
amplitude]ua /]x. Since in the ordered state this implies th
X2 is of the same order asaY18 , one may doubt the validity
of the continuum approximation used above. Therefore,
performed numerical calculations of the optimal lattice co
figuration atT50, which are presented in Sec. VI, and pro
this approach to be valid.

To summarize, we study the Peierls transition due to b
optical and acoustic phonons starting from the continu
electron-lattice Hamiltonian

H5Hel1Hel-lat@Do1Da#1Hlat@Do#1Hlat@Da#, ~20!

whereHel andHel-lat are given by, respectively, Eq.~12! and
Eq. ~18!. The last two terms in Eq.~20! represent the lattice
energy of the relevant optical (i 5o) and acoustic (i 5a)
phonons,

Hlat@D i #5
NF

pl ivF
E dxD i

21
1

2r i
E dxp i

2 , ~21!

where the momentum density is given byp i(x,t)
5r i]ui(x,t)/]t and contains the corresponding mass den
ties (ro5rx and ra5ry). We introduced in Eq.~21! the
factor NF which denotes the number of Fermi points,n
51, . . . ,NF , at which two-electron bands cross with line
energy dispersion. The dimensionless electron-lattice c
pling constant for the optical (i 5o) and acoustic (i 5a)
phonon modes is defined by

l i[
2NF

pvF

2ugi u2

v i
~22!

and absorbs a factorNF , while gi is the electron-lattice cou
pling constant defined below by Eq.~24!. For Da50 and
12541
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NF51 the Hamiltonian Eq.~20! coincides with the Hamil-
tonian of the Takayama-Lin-Liu-Maki~TLM ! model. This is
the continuum version of the Su-Schrieffer-Heeger model
transpolyacetylene.16,17 On the other hand, forDo50 and
NF52, the Hamiltonian Eq.~20! is equivalent to the Hamil-
tonian describing the electron-twiston interactions in t
armchair carbon nanotubes.13,18 An order parameterDa
5const corresponds to a uniform twist deformation of t
armchair carbon nanotube; such a twist was, in fact, rece
observed using scanning tunneling microscopy.19

III. PEIERLS TRANSITION WITH ACOUSTIC AND
OPTICAL PHONONS

We consider the Peierls transition in the electron-latt
system Eq.~20!. The coupling of the phonons to electron
has two effects which have to be taken into account in
self-consistent treatment of the system dynamics:~i! a renor-
malization of the optical- and acoustic-phonon frequenc
and ~ii ! a mixing of the two phonon modes due to electro
hole excitations. Applying a Fourier transformation, t
Hamiltonian Eq.~20! in momentum space is given by

H5(
n,s

(
s56

(
p

F«n
s~p!cn,s,s

† ~p!cn,s,s~p!

1 (
i 5a,o

(
q

sgi~q!

AL
~bi~q!1bi

†~2q!!cn,s,s
† ~p!

3cn,2s,s~p2q!G1 (
i 5a,o

(
q

v i~q!S bi
†~q!bi~q!1

1

2D .

~23!

Here, the fermionic operatorcn,s,s
† (p) @cn,s,s(p)# denotes

the creation~annihilation! of an electron with spin projection
s and small momentumupu!kF measured from the Ferm
point n. The indexs refers to right- (s51) and left- (s5
2) moving electrons with linear energy dispersion«n

s(p)
5svFp. The second term in the Hamiltonian is obtain
from the quantization of the atomic displacements and
scribes the backscattering of the electrons (s56↔s57)
due to the interaction with acoustic and optical phonons. T
creation ~annihilation! of an acoustic (i 5a) or optical (i
5o) phonon with small momentumq is represented by the
bosonic operatorbi

†(q) @bi(q)# and the corresponding
electron-lattice coupling constantsgi(q) are given by

go5A6
a i

ANl

sinS kF

a

2D i

A2rovo

,

ga5A6
a i

ANl

sinS kF

a

2D F dx

ax
1

1

4

a

A3
G 2q

A2rava~q!
. ~24!

It thus follows that the couplingga(q) to the acoustic pho-
non with frequency va5v0uqu is proportional to Aq,
whereas the coupling to the optical phonongo(q) is approxi-
mately constant with finite frequencyvo . We note that,
6-5
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though the coupling to acoustic phononsga(q) is small for
small q, the actual strength of the interaction is given by t
dimensionless electron-lattice coupling Eq.~22! which is fi-
nite both for optical and acoustic phonons. The lattice ene
of the two modes is given by the third term in Eq.~23!.

Let us consider the temperature dependence of
optical- and acoustic-phonon frequencies at temperaturT
above the critical temperatureTc . The bare phonon propa
gatorD0 is formally written in terms of a 232 matrix,

D05S Da
0 0

0 Do
0D . ~25!

This matrix contains the bare acoustic- (i 5a) and optical-
( i 5o) phonon propagatorDi

0(v i ,ivm)522v i /(vm
2 1v i

2)
with the bosonic Matsubara frequencyvm52mpT (m is an
integer number! and the bare phonon frequencyv i . Simi-
larly, the free particle Green’s function is defined b
Gn

s(p,ipm)51/@ ipm2«n
s(p)#, with the fermionic Matsubara

frequencypm5(2m11)pT (m is an integer number!. In the
matrix formalism, the coupling of the phonons to electrons
given by the interaction matrix

V5S gaga* gago*

goga* gogo*
D P~q,ivm ,T!, ~26!

which contains the vacuum polarizationP(q,ivm ,T). The
Feynman diagram of an interaction matrix elementVi j is
shown in Fig. 4. The vacuum polarization describes
electron-hole excitation and recombination by absorpt
and emission of a phonon with momentumq and ~Matsub-
ara! frequencyivm . In terms of the particle Green’s functio
Gn

s(p,ipm) the vacuum polarization reads

P~q,ivm ,T!5(
n

2

L (
p

T(
ipm

$Gn
1~p,ipm!Gn

2~p1q,ipm

1 ivm!1Gn
2~p,ipm!Gn

1~p1q,ipm1 ivm!%.

~27!

The summation is over the internal variables at each Fe
point n with p the particle momentum andipm the particle
energy, while the factor 2 accounts for the spin degrees
freedom. An elegant way to calculateP(q,v,T)5Re@P#
1 i Im@P# is presented in Ref. 20, where we obtain the a
lytical expressions

FIG. 4. Feynman diagram of the matrix elementVi j of the in-
teraction matrix Eq.~26!.
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Re@P#52
2NF

pvF
H ln

gW

pT
2

1

4 FCS 1

2
2 i

vFq1v

4pT D
1CS 1

2
1 i

vFq2v

4pT D1CS 1

2
2 i

vFq2v

4pT D
1CS 1

2
1 i

vFq1v

4pT D24CS 1

2D G J ~28!

for the real part and

Im@P#52
NF

vF

sinhS U v

2TU D
coshS v

2TD1coshS vFq

2T D ~29!

for the imaginary part. Here,C(z)5(d/dz)ln G(z) is the di-
gamma function,W is the energy cutoff which is of the orde
of the electron bandwidth~;10 eV!, andg51.781 072•••
denotes the exponential of Euler’s constant.

We proceed with the calculation of the renormaliz
acoustic- and optical-phonon frequencies using the rand
phase approximation. The propagation of phonons that
dressed by the interaction with the electrons is described
the matrix

D5S Daa Dao

Doa Doo
D , ~30!

FIG. 5. Feynman diagrams of the matrix elementsDi , j of the
dressed phonon propagation matrix Eq.~30!. The bare acoustic-
~optical-! phonon propagatorDa

0 (Do
0) is represented by a dashe

~wiggled! line and the corresponding couplingga (go) by ‘‘ d ’’
( ‘ ‘ s ’ ’). The diagramatic symbol for the elementVi j of the inter-
action matrix was introduced in Fig. 4 and is the building block

the Dyson equation for the dressed elementV̄i j , which contains
electron-hole excitations that are coupled by all possible comb
tions of acoustic- and optical-phonon lines.
6-6
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which is related to the bare phonon propagation matrixD0

by D5D01D0V̄D0. In other words,D differs from D0 by
the interaction between the electrons and phonons den

by V̄. Within the random-phase approximation this intera

tion matrix is the solution of the Dyson equationV̄5V
1VD0V̄, which describes the renormalization of the bare
teraction matrix Eq.~26! due to the internal coupling o
electron-hole excitations by the acoustic and opti
phonons. The Feynman diagrams of the processes tha
included in the calculation of the dressed phonon propa
tion matrix are shown in Fig. 5. The renormalized optic

and acoustic-phonon frequencies denoted byṽo(q) and

ṽa(q), respectively, are found from the poles of det(D), or,
equivalently, by solving det(D 0

212V)50. This condition
can be rewritten in the form (vm→2 iv)

v42v2~va
2f a1vo

2f o!1va
2vo

2~ f a1 f o21!50, ~31!

where the vacuum polarization is hidden in

f i[11l i

pvF

2NF
P~q,v,T!, ~32!

and l i is the dimensionless electron-lattice coupling of t
optical- (i 5o) and acoustic- (i 5a) phonon modes as de
fined by Eq.~22!. We plot in Fig. 6 the numerically obtaine
solutions of Eq.~31! for various different temperaturesT
>Tc . We take the fullv andq dependencies ofP(q,v,T)
into account in these calculations. Furthermore, we setla

5lo50.05, the Fermi velocityvF55.3 eV Å , the band-
width W510 eV, while the frequency of the bare optica
phonon modevo50.18 eV, and the bare acoustic-phon
velocity v050.09 eV Å . As can be seen in Fig. 6, th
optical-phonon frequency is found to be shifted towa
lower frequencies but does not change qualitatively a
function of q. In contrast, the acoustic-phonon velocity
seen to change qualitatively relative to the phonon velo
of the bare acoustic mode and to vanish for small pho
momentumq at the transition temperatureT5Tc .

Analytical expressions for the renormalized phonon f
quencies are obtained in the limitsṽa(q)!T and ṽa(q)
!ṽo(q), where the static expression of the vacuum po
ization for phonon momentavFq!T can be used,

P~q,0,T!.2
2NF

pvF
H ln

gW

pT
2cS vFq

T D 2J , ~33!

with the constantc57z(3)/(16p2) containing Riemann’s
zeta function. In this limit we obtain from Eq.~31! the
solution
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ṽa
2~q!5va

2~q!F 12~lo1la!ln
gW

pT

12lo ln
gW

pT

1claS vFq

TS 12lo ln
gW

pT D D 2G ~34!

for the acoustic-phonon mode. The optical-phonon freque
is hardly affected ifṽo(q)@T as is the case for the param
eters in the simulation that yielded Fig. 6, while in the o
posite limit @ṽo(q)!T# it becomes

ṽo
2~q!5vo

2S 12loH ln
gW

pT
2cS vFq

T D 2J D . ~35!

We thus see that the expression for the renormalized op
frequency is independent ofla and is the same as in th
absence of the coupling to acoustic phonons. On the o
hand, the renormalized acoustic-phonon frequency depe
on the sum

l[la1lo . ~36!

As a result, the acoustic phonons soften first at the crit
temperature given by

Tc5
g

p
W expS 2

1

l D ~37!

FIG. 6. Numerical results for the renormalized phonon frequ

ciesṽa(q) andṽo as a function of the phonon momentumq. We set
la5lo50.05 and plot the dispersions for various values of t
temperatureT. ~a! The bare optical-phonon frequency~dashed! is
shifted towards lower frequencies~b! at T51000Tc and ~c! at T
5Tc . ~d! The bare phonon velocity of the acoustic mode~dashed!
is decreased~e! at T5100Tc and~f! at T5Tc even vanishes in the
limit q→0.
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for q→0. As ṽa(q50)50 at all temperatures, the ‘‘soften
ing’’ in this case means vanishing of the acoustic-phon
velocity v(q) at T5Tc ,

v~q!5
]ṽa~q!

]q
}q, ~38!

as follows from Eq.~34!. Thus, no matter how much th
optical coupling constant is larger than the acoustic coup
constant, it is always the velocity of the acoustic phonon t
becomes zero atT5Tc , whereas the optical-phonon fre
quency stays finite at this temperature,

ṽo~q50!5voAla

l
. ~39!

The fact that atTc the velocity of the acoustic phonon be
comes zero while the optical-phonon frequency stays finit
a consequence of the mixing of the optical and acou
phonons due to their interations with electrons, which res
in the repulsion between the frequencies of the two mod
Because of that, the optical and acoustic branches can n
cross and the singularity atTc always occurs in the lower
i.e., acoustic, branch. A similar effect takes place in so
ferroelectrics, in which the sound velocity vanishes at
transition temperature because of the mixing of the s
mode, describing the ferroelectric displacement of ions
acoustic phonons.21

We also note that, at first sight, Eq.~37! resembles the
result for the Peierls temperature obtained in Ref. 9. It sho
be kept in mind, however, that in that paper the various c
pling constantsl i correspond to contributions from scatte
ing within different electron bands and are not associa
with the presence of several phonon modes. The add
effect of the number of electron bands is implicit in o
result through the fact that bothlo andla are proportional to
NF .

Finally, it is worthwhile to mention here that our resul
also hold if phonons of momentumq;2kF are included.
Electron backscattering between different Fermi points is
dicated by the dashed arrow in Fig. 2 and the accompa
lattice distortion resembles a Kekule´ structure of the carbon
nanotube lattice. We checked that this type of backscatte
cooperates with the considered acoustic- and optical-pho
modes. This means that the opening of the Peierls gap
take place at an even higher critical temperature, Eq.~37!, as
l is the sum of the three dimensionless electron-lattice c
pling constants in this case.

IV. ELECTRICAL CONDUCTIVITY OF AN ARMCHAIR
CARBON NANOTUBE

The acoustic phonons that correspond to a twist defor
tion of the nanotube lattice couple right- and left-movi
electrons at each Fermi point. Since the velocity of the tw
ons is orders of magnitudes smaller than the Fermi velo
of electrons, these modes are always heavily thermally po
lated and, in contrast to the high-energy optical phono
these phonons are effective at backscattering electrons.
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scattering of electrons on the acoustic phonons with
temperature-independent bare phonon dispersion has
cently been used to explain the linear temperature dep
dence of the resisitivity of an armchair carbon nanotube18

Here, we briefly reconsider the temperature dependenc
the electrical conductivitys(T), taking into account the
renormalization of the acoustic-phonon frequency due to
electron-phonon interactions.

The electrical conductivity for an armchair carbon nan
tube is calculated using the Kubo formula

s~T!52
4e2vF

p E dktk

]nF@«~k!#

]k
, ~40!

wheretk is the electron transport lifetime, which depends
the electron wave vectork, andnF@«(k)# is the Fermi distri-
bution with the linear electron energy dispersion«(k)
5vFk. The factor 4 in Eq.~40! accounts for the spin degree
of freedom and the number of Fermi pointsNF52. The
transport lifetime is calculated from the imaginary part of t
electron self-energy describing the backscattering off
acoustic phonons:22 tk51/(4uIm$Sel@k,«(k)#%u). We take
into account one-phonon scattering processes for which
expression of the electron self-energy becomes22

Sel~k,ivm!

52
1

L (
q

T(
i ṽm

ugau2Da~q,i ṽm!G~k1q,ivm1 i ṽm!,

~41!

wherevm and ṽm are, respectively, fermionic and boson
Matsubara frequencies,q is the phonon momentum, and w
setkB51. The Green’s function for the electron with energ
dispersion«(2k2q) is denoted byG(k1q,ivm1 i ṽm),
while the dressed phonon propagator is denoted
Da(q,i ṽm). It describes the acoustic phonons with renorm
ized frequencyṽa(q) and is obtained from a diagonalizatio
of the propagation matrixD given by Eq.~30!. The contri-
bution of the optical phonons to the resistivity can be n
glected for temperaturesT!ṽo . For la!lo this inequality
may not be fulfilled close toTc , as the renormalized optical
phonon frequency Eq.~39! at Tc may then be small. How-
ever, since the optical phonon frequency is known to be
large asvo;2000 K,23,24 and assuming thatla andlo are
of approximately the same order in armchair carbon na
tubes ~see Sec. VII!, no dramatic softening of the optica
phonon is to be expected and the conductivity close toTc is
dominated by the electron backscattering off acous
phonons.

It is straightforward to obtain the imaginary part of th
retarded self-energy@ ivm→«(k)1 id andd→0],

Im$Sel@k,«~k!#%

52
pla

16 E
2`

1`

dq
va

2

ṽa

@2nB~ṽa!11#d~2k1q!,

~42!
6-8
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wherenB(w̃a) is the Bose-Einstein distribution. In the der
vation of this expression we used the fact that the velocity
acoustic phonons is much smaller than the Fermi velo
v(q)!vF , and took elastic-scattering processes into
count. Furthermore, since 2nB(ṽa)11'2T/ṽa for T@ṽa ,
we finally obtain the transport lifetime

tk5
2

plaT
S ṽa~2k!

va~2k!
D 2

. ~43!

In Fig. 7 we plot the temperature dependence of the electr
resistivity r(T)5s(T)21, which is calculated numerically
for T>Tc from

r~T!5
lap2T2

2e2vF
2 F E dkS ṽa~2k!

va~2k!coshS vFk

2T D D
2G21

.

~44!

At temperaturesT@Tc , the electrical resistivity Eq.~44! de-
creases linearly with the temperature,r(T@Tc)5k0laT,
where k05p2/(8e2vF). However, close toTc , due to the
vanishing of the acoustic-phonon velocity at the critical te
perature, the resistivity Eq.~44! strongly increases up to
some finite value,r(Tc).k0A2(la /l)2Tc . This behavior is
very similar to the one observed for bundles of single-w
carbon nanotubes,18 where the crossover between the line
decrease and the sharp upturn of the electrical resistivity
cur atT* ;102100 K. In Sec. VII we discuss the relevanc
of phonon softening to this observed upturn, as well as
general possibility of observing the Peierls instability in c
bon nanotubes.

V. TOPOLOGICAL EXCITATIONS
IN THE PEIERLS PHASE

We study the ordered Peierls state (T,Tc) in the pres-
ence of optical- and acoustic-phonon modes. Because
lattice distortions, corresponding to the optical and acou
phonons, are coupled due to electron-lattice interactions,
order parametersDa(x) andDo(x) should appear below th
transition temperature. In the mean-field treatment of the
tice the total free energy of the model Eq.~20! is minimized
with respect to the two order parameters. The solutions of

FIG. 7. Numerical calculation of the electrical resistivityr ac-
cording to Eq.~44!. The resistivity is plotted as a function of th
temperature and the dimensionless electron-lattice couplings
chosen to bela5lo50.05.
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resulting self-consistency equations have the following pr
erties:~i! The sum of the optical and acoustic order para
eters corresponds to a generalized order parameter

D~x!5Do~x!1Da~x!, ~45!

which satisfies the same Bogoliubov–de Gennes equation
the order parameter of the TLM model17 with a single pho-
non mode, but with the dimensionless electron-lattice c
pling constantl5la1lo , as given by Eq.~36!. ~ii ! The
optical (i 5o) and acoustic (i 5a) order parameters are pro
portional toD(x):

D i~x!5
l i

l
D~x!. ~46!

It thus follows that the stationary minimal-energy lattice co
figuration of the continuum model Eq.~20! can be equally
deduced from that of the Hamiltonian

H5(
s
E dxCs

†~x!H vF

i
s3

]

]x
1D~x!s1J Cs~x!

1
NF

plvF
E dxD~x!2 ~47!

in terms of the generalized order parameterD(x) and the
coupling constantl. Here, we introduced the indexs
5(s,n), which is a combination of the electron’s spin d
grees of freedoms561 and the number of Fermi point
n51, . . . ,NF . In other words, an effective internal dege
eracy Nd52NF is ascribed to the electrons and each on
electron level can be occupied by up toNd electrons. The
advantage of relating Eq.~20! to Eq. ~47! is that formally,
Eq. ~47! is equivalent to the Hamiltonian of the TLM
model,17 where electrons interact with one optical-phon
mode @D(x)5Do(x)# and NF51. The solutions of this
model can be used to study the ordered state of our m
Eq. ~20!.

In particular, the value of the homogeneous soluti
D(x)5D0 at zero temperature is given by the mean-fie
result

D05W expS 2
1

l D5
p

g
Tc , ~48!

which coincides with the critical temperature Eq.~37! as
obtained within the random-phase approximation. A hom
geneous optical order parameterDo5const is a ‘‘frozen’’
phonon mode corresponding to a lattice deformation w
out-of-phase bond-length dimerization in neighboring zigz
chains along the nanotube axis, as is shown in Fig. 8~a!. On
the other hand, for acoustic phonons,Da5const describes a
static twist of the cylindrical nanotube lattice and corr
sponds to ionic displacements that grow linearly along
nanotube:ua(x)5tan(u)x (u is the twist angle!. As is clear
from Fig. 8~b!, this distortion also leads to out-of-phas
bond-length alternation in neighboring chains, explaini
why the optical and acoustic modes cooperate in opening
Peierls gap. It should be stressed that the distortionDa
5const is not a ‘‘frozen’’ phonon mode, as it would corr

re
6-9
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spond to large deviations of ions from their equilibrium p
sitions in the high-temperature phase.

Furthermore, as is known from the TLM model, kink
~solitons! in the order parameter, corresponding to a cha
of sign of the lattice dimerization along the chain, constitu
an interesting class of excitations.16,17The analytical expres
sion for the kink is given by17

D~x!5D0 tanh~x/j0!, ~49!

where j05vF /D0 is the correlation length. It is easy t
verify that the configuration Eq.~49! for the generalized or-
der parameter in our model corresponds to the optical
acoustic lattice distortions given by

uo~x!5ūo tanh~x/j0!,

ua~x!5ūa ln cosh~x/j0!. ~50!

Near the kink, which we call a solitwiston, both the latti
dimerization, described byuo(x), and the derivative ofua(x)
change sign.

In the TLM model (ua50), the soliton is the minimal-
energy lattice configuration in a chain~of connected carbon
rings! with antiperiodic boundary conditions on the atom
shifts uo(x1L)52uo(x) (L is the system length!. The cor-
responding discrete model is that of a closed chain with
odd number of lattice sites, where the dimerizationDo
changes sign around the soliton position. If the number
lattice sites in the closed chain is even, however,
minimal-energy lattice configuration contains no soliton, c
responding to the continuum model for a chain with perio
boundary conditions@uo(x1L)5uo(x)#. The situation is
different in the presence of a twist (uaÞ0): For a homoge-
neous ground-state lattice configuration with acoustic dis
tion ua(x)5tan(u)x, periodic boundary conditions requir
that

]ua~x!

]x
5tanu5nw

C

L
. ~51!

Here, we introduced an integer winding numbernw , while C
andL denote, respectively, the circumference and the len
of the carbon nanotube. In other words, the optimal value
the twist angleu, which follows from Eqs.~48! and~46!, has

FIG. 8. ~a! A homogeneous optical distortionDo5const results
in a lattice deformation with out-of-phase bond-length dimerizat
in neighboring zigzag chains.~b! A homogeneous twist deformatio
Da5const corresponds to a shear of the graphene sheet, and
to the same type of bond alternation. The thick arrow points in
direction along the nanotube axis.
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to be equal to a value of a discrete set that is characterize
nw . We note that lattice configurations with different wind
ing numbers belong to different topological classes that c
sically cannot be continuously transformed into each oth
The trivial solutionnw50 corresponds to a ground-state la
tice configuration withD50, while the condition Eq.~51!
for a homogeneous ground-state lattice configuration w
D5const is most easily realized in long carbon nanotu
for which C/L→0. To gain energy from the lattice distortio
and, at the same time, to satisfy the periodic boundary c
ditions *0

LdxDa(x)50, it is possible that an inhomogeneou
ground-state lattice configuration becomes energetic
more favorable. Then,ua(x) has to change sign at least tw
times along the electronic chain and the minimal-ene
lattice configuration contains one solitwiston and o
antisolitwiston.

It follows from Eq. ~47! that the creation energym of a
solitwiston is formally the same as for the usual soliton in t
TLM model taking into account the internal electro
degeneracyNd :

m5
NdD0

p
5

4D0

p
. ~52!

The dynamical properties of the kinks in our model are, ho
ever, quite different from those in the TLM model withua
50. In the latter, the soliton can propagate with velocityv
along the chain, without changing its profile. This resu
from the independence of the soliton energy of its posit
and the fact that the kinetic-energy density of the mov
soliton uo(x,t)5ūo tanh@(x2vt)/j0# decays exponentially a
distances larger than the correlation lengthj0 away from the
soliton position. Thus, the mass of the soliton is finite and
transpolyacetylene was estimated to be;6me ~with me the
electron mass!.16 On the other hand, the motion of the kin
in the model with acoustic phonons (uo50) would result in
a constant kinetic-energy density at distances larger thaj0
from the kink. This follows from the substitution ofua(x) in
Eq. ~50! by ua(x2vt) and a calculation of the kinetic energ
Es5(Ms/2)v2. We then find for an armchair carbon nan
tube consisting of carbon atoms with massMC

Ms}MCE
2L/2

L/2 dx

a
tanhS x

j0
D 2

}MC

L

a
~53!

and, thus, that the mass of a kink is proportional to the s
tem lengthL. It follows that isolated solitwistons canno
propagate. This relates to the fact that a translation of
solitwiston configuration Eq.~50! changes the coordinates
the boundaries of the system, so that its shift induces a
tion of the entire system. Solitwistons can propagate with
affecting the boundaries of the system only together w
antisolitwistons and the mass of such a pair is proportiona
its pair sizeR (@j0).

We now turn to a discussion of the solitwiston’s spi
charge relations: Similar to the case oftranspolyacetylene,
the single-particle electronic spectrum of the armchair c
bon nanotube follows from Eq.~47! to consist of a con-
tinuum of plane-wave conduction- and valence-band sta
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that are separated by an energy gap 2D0. The presence of a
solitwiston Eq.~49! gives rise to a localized midgap sta
that can be either unoccupied or occupied by up toNd54
electrons. The solitwiston’s spin-charge relations differ fro
those of the soliton intranspolyacetylene, where the midga
state of the soliton can be occupied by onlyNd52 electrons
(NF51), and are, instead, equivalent to those expected
the topological excitation in polyyne.25 In the ~undoped!
armchair carbon nanotube the neutral solitwiston (Q50) can
have spinS50 or S51 since two electrons occupy the mid
gap states at the two Fermi points. The spin-charge relat
of the charged solitwiston in armchair carbon nanotubes
seen to be quite usual, in contrast to the exotic spin-cha
relations of solitons intranspolyacetylene.16

We should mention here that the model Eq.~47! also pre-
dicts the existence of a nontopological excitation correspo
ing to a bound solitwiston-antisolitwiston pair. In analogy
the polaron in conjugated polymers,16 this excitation is called
a polartwiston as it describes a local indentation of th
acoustic and optical lattice distortions in the carbon na
tube. The energy spectrum for this type of excitation conta
two localized intragap states with energies6« depending on
the electron occupancyn6 of the intragap states. Both th
creation energy of the polartwiston

mp52m sinf ~54!

and the maximal change of the generalized order param
associated with the local indentation around the polartwis
position

dD5~2 cosf21!D0 ~55!

depend on the electron occupancy of the intragap sta
which is hidden in the definition of the angle

f5
p

2 S 11
n12n2

Nd
D . ~56!

The spin-charge relations of a polartwiston are summ
rized as follows: A polartwiston with chargeQ56e or Q
563e has spinS51/2, while a polartwiston that is neutra
or has a chargeQ562e can have spinS50 or S51. Note
that the neutral polartwiston in the system with internal d
generacyNd54 does not have a counterpart in theNd52
system. Its creation energymp5A2m is less than that of a
neutral solitwiston-antisolitwiston pair. However, since tw
neutral polartwistons are unstable and decay into
solitwiston-antisolitwiston pair, the latter will be the lowes
lying thermal excitation in armchair carbon nanotubes. I
also interesting to note that the creation energy of a
lartwiston with chargeQ56e in the Nd54 system is
smaller than that of a solitwistonmp'0.77m. This difference
with the Nd52 system has important consequences for
creation of topological excitations as will be further di
cussed in the next section.
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VI. NUMERICAL SIMULATION:
ELASTIC SPRING MODEL

In this section we present the results of numerical sim
lations which we performed to study the appearance of so
wistons and polartwistons in the Peierls state of armch
carbon nanotubes with different types of boundary con
tions on the atomic shifts. We impose free boundary con
tions to describe the straight carbon nanotube with o
ends, while periodic boundary conditions correspond to
carbon nanotube of seamless toroidal shape.26

The potential energy of the hexagonal nanotube latticeU
is calculated within a discrete elastic spring model wh
carbon atoms are connected by ‘‘springs’’ which are char
terized by elastic spring constants. We derive an expres
of U under the assumption that it depends only on the cha
in the distance between the carbon atoms. The potential
ergy consists of three termsU5UAB1UAA1UBB , where
UAB refers to the coupling between carbon atoms of the t
different sublatticesA andB, while UAA andUBB denote the
potential lattice energy within sublatticesA and B, respec-
tively. Explicitly, we have

Ui j 5
1

2 (
l ,m

K~Rlm!~@uW i~xW l !2uW j~xWm!#•R̂lm!2, ~57!

whereK(Rlm) denotes the spring constant as a function
the distanceRlm between two carbon atoms that are locat
at sitesxW l and xWm in sublatticesi and j, respectively, while
R̂lm is the corresponding unit vector. The displacement o
carbon atom from its equilibrium position atxW l in the i th
sublattice is denoted byuW i(xW l).

The summation overl ,m in Eq. ~57! accounts for all pairs
of carbon atoms in sublatticesi and j. In practice we will
calculate the potential lattice energy Eq.~57! accounting for
a carbon atom’s three nearest neighbors by three diffe
spring constantsK1 , K2, and K3. Furthermore, as we ex
plained in Sec. II, it is sufficient to consider the two
dimensional atomic displacement vector in thei th sublattice
to be a function of thex coordinate along the nanotube ax
only, uW i(x5na/2)5@Xi(na/2),Yi(na/2)#T. The armchair
nanotube lattice is again considered as consisting ofN con-
nected rings at a distancea/2 along the nanotube axis~see
Fig. 1!, such that a lattice configuration is completely det
mined by the set$û%[$uW A(na/2),uW B(na/2)% of atomic dis-
placements.

We compute the minimal-energy lattice configuration u
ing a steepest-descent algorithm, where we start from a
domly chosen lattice configuration and calculate the to
ground-state energy,E@$û%#5^0uHarmu0&1U, for the elec-
tronic ground stateu0& of the discrete two-leg ladder Hamil
tonian Eq.~9! associated with this lattice configuration. Nex
we compute the gradient

¹W En,i5
dE@$û%#

d$uWi~na/2!%
~58!
6-11
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in each ringn for both sublatticesi 5A,B leaving the atomic
displacements in all the other rings unchanged. We determ
from the sign of¹W En,i in which direction the atomic dis
placement vectoruWi(na/2) is to be shifted such thatE@$û%# is
decreased. In this way, we obtain a new lattice configura

$û8% which is only accepted if the total ground-state ene
E@$û8%#,E@$û%#. The same procedure is repeated until t
gradient Eq.~58! is equal to zero within the required acc
racy of the computation.

We now turn to the discussion of the results for t
minimal-energy lattice configurations, which are presente
terms of the shifts

Y15
1

A2
~YA1YB!, X25

1

A2
~XA2XB!, ~59!

in Fig. 9 and Fig. 11~below!, respectively, for periodic and
free boundary conditions. To obtain a qualitative picture
the Peierls state for a general armchair carbon nanotube
precise values of the parameters involved (Nl , t i , a i , K1 ,
K2, and K3) are not important and are, instead, chosen
satisfy the following two convenient conditions:~i! For a
system of N5100 rings, the correlation length is muc
smaller than the system sizej05vF /D0!Na/2. ~ii ! The cou-
pling between the shiftsY1 and X2 is negligibly small, so
that the numerical results are directly related to the co
sponding acoustic and optical order parameters by

Da}
]

]x
Y1 , Do}X2 ~60!

@see Eqs.~19! and ~17!#.
We first discuss the results for periodic boundary con

tions which are summarized in Fig. 9. At half-filling~a!, we

FIG. 9. Minimal-energy lattice configuration of the armcha
carbon nanotube in the Peierls phase for periodic boundary co
tions imposed on the shiftsX2 ~dashed line! and Y1 ~solid line!.
Nel denotes the number of electrons that is added to the half-fi
system.
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obtainY150 and a finite value forX2 , corresponding to a
relative shift of the two triangular sublatticesA and B. The
absence of a twist in the ground state, which is in obvio
contradiction with the result of the continuum model E
~47!, is a finite-size effect: The uniform twist is simply in
compatible with the periodic boundary conditions for t
given carbon nanotube length and model parameters. In
9~b! we show the effect of doping on the lattice configurati
@Fig. 9~a!# by addingNel51, . . . ,4electrons to the initially
half-filled system. As we discussed in Sec. V, for an ad
tional electron the creation of a polartwiston is, in princip
energetically more favorable than the creation of a so
wiston. However, since in the finite chain@Fig. 9~a!# there is
no twist at half-filling, the energy is minimized by creatio
of a solitwiston-antisolitwiston pair@Fig. 9~b!#. This is a con-
sequence of the condition that in order to create a
lartwiston the sign ofua(x) has to be different to the left an
the right of the polartwiston positionua(x!x0)52ua(x
@x0), which cannot be satisfied in the lattice configurati
@Fig. 9~a!# with Y150. As the antibonding superposition o
the midgap states of the two solitwistons can accommod
up to Nd54 electrons, the lattice configuration@Fig. 9~b!#
remains the same forNel52,3–4. Then, on adding the fifth
up to seventh electron, a charged polartwiston appears in
carbon nanotube lattice@see Figs. 9~c!–9~e!#. This excitation
distorts the lattice locally with an indentation that depends
the number of added electrons and which we find to be e
in quantitative agreement with the relative change calcula
according to Eqs.~55! and~56!. Finally, we plot in Fig. 9~f!
the minimal-energy lattice configuration obtained with eig
extra electrons for which the periodic boundary conditio
require a second solitwiston-antisolitwiston pair to appea

The appearance of topological excitations in the minim
energy lattice configuration depends on the imposed bou
ary conditions for the atomic shifts. This can be readily u
derstood within the two-leg ladder model and is illustrated
Fig. 10. If periodic boundary conditions are imposed on
shifts, the numberN of rings in the armchair carbon nano
tube has to be even. The out-of-phase dimerization of
minimal-energy lattice configuration is depicted by thick a
thin lines in the two-leg ladder. No topological excitation
are present if the twist deformation is homogeneous w
tanu5nwC/L @Fig. 10~a!#, while otherwise the lattice con
figuration contains ~for a sufficiently large system! a
solitwiston-antisolitwiston pair@Fig. 10~b!#. The latter con-
figuration is schematically shown by four unpaired electro
which give rise to the two doubly occupied midgap states.
on the other hand, the boundary conditions on the shifts
free, the numberN of rings in the armchair carbon nanotub
can be either even or odd. The corresponding minim
energy lattice configurations are then quite similar in bo
cases, since the system has the freedom to minimize its
ergy by a relative shift of the two triangular sublatticesA and
B against each other and by a static twist deformation. Thi
depicted in Figs. 10~c! and 10~d! by the out-of-phase dimer
ization in the two-leg ladder. It is, however, important
notice the difference between periodic and free bound
conditions. For the latter, the half-filled system contains t
unpaired electrons, independent of whetherN is even or odd,

di-

d
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PEIERLS INSTABILITY DUE TO THE INTERACTION . . . PHYSICAL REVIEW B65 125416
which are located at the left and right ends of the syste
These electrons give rise to edge states that appear in
middle of the Peierls gap. On doping the system the first
electrons will occupy the midgap electronic level associa
with the two edge states and, therefore, the lattice confi
ration will remain unchanged.

That this picture is, in fact, correct can be seen in Fig.
where we plot the results of numerical simulations for fr
boundary conditions on the shifts. The minimal-energy l
tice configuration of the half-filled system@Fig. 11~a!# is, as
expected, characterized by a lattice dimerization associ
with a relative shift of the two triangular sublattices (X2

5const) and a homogeneous twist deformation (Y1}x).
This lattice configuration does not change when the first
second electrons are added in Figs. 11~b! and 11~c!. Inspec-
tion of the electron energy spectrum reveals that the
added electrons occupy, in fact, a midgap state assoc
with the edge states that arise as a consequence of the
posed boundary conditions. A relaxation of the lattice is o
seen on adding the third electron to the system@Fig. 11~d!#.
As pointed out at the end of Sec. V, the creation of a
lartwiston with chargeQ52e is energetically more favor
able than the creation of a solitwiston. This polartwiston
seen to be located at the~right! system boundary, where th
presence of the edge state gives rise to a level splitting
minimizes the system’s total energy. In Fig. 11~e!, we plot
the minimal-energy lattice configuration containing four e
tra electrons. A charged solitwiston withQ522e is now
seen to be located in the middle of the armchair nanot
lattice and, beside the two completely occupied edge sta

FIG. 10. The minimal-energy lattice configuration for period
and free boundary conditions on the lattice distortions. The das
rectangle indicates the unit cell of the lattice that consists of the
sublattices ‘‘d’’ and ‘‘ s’’. An unpaired electron is indicated by th
shaded circle. See the text for details.
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the midgap state associated with this solitwiston is co
pletely occupied by four electrons. Therefore, on adding
fifth electron@Fig. 11~f!#, again a charged polartwiston wit
Q52e is formed that is located at the~left! boundary. This
is similar to the situation in Fig. 11~d! and together with Figs.
11~g! and 11~h! for, respectively, six and seven extra ele
trons we obtain the following general pattern:~i! A charged
polartwiston (Q52e) is located at the system’s boundary
the numberNel of added electrons is odd and larger th
two. ~ii ! The number of charged solitwistons (Q522e) in-
creases by one if the numberNel of added electrons is eve
and larger than two.

VII. DISCUSSION

As we mentioned already, the Peierls transition is co
monly believed to be irrelevant for carbon nanotubes,
cause the transition temperatureTc is estimated to be negli
gibly small. This smallness results from the fact thatTc
depends exponentially on the electron-lattice coupling c
stantl @Eq. ~37!# andl is inversely proportional to the num
ber of zigzag chains around the circumference of the a
chair carbon nanotube. We note, however, that while usu
l is taken to be the coupling with just one optical-phon
mode, we have seen above that optical and acoustic m
cooperate in the opening of the Peierls gap:l5lo1la @Eq.
~36!#. As a result of the exponential behavior ofTc , this
additive dependence on the two coupling constants m

ed
o FIG. 11. Minimal-energy lattice configuration of the armcha
carbon nanotube in the Peierls phase for free boundary condit
imposed on the shiftsX2 ~dashed line! and Y1 ~solid line!. Nel

denotes the number of electrons that is added to the half-filled
tem.
6-13
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greatly enhanceTc , especially for nanotubes withNl small.
In this section, we present estimates forl and Tc , we ad-
dress the relevance of the Peierls instability to experime
and we discuss the role of electron-electron interactions.

To estimatelo and la , we use the elastic spring mod
considered in Sec. VI. The calculation of the coupling co
stants as a function of the three spring constantsK1 , K2, and
K3 is given in the Appendix. For the optical-phonon mo
we obtain

lo5

12a i
2 sinS kF

a

2D
pt ivo

2MCNl

, ~61!

where MC is the mass of the carbon atom. Using typic
values for the electron hopping amplitudes along and perp
dicular to the nanotube axist i't''2.5 eV, the electron-
lattice coupling,a i'4.1 eV Å21, and the experimentally
and numerically determined value for the optical-phonon f
quencyv0'0.18 eV,23,24 we find lo'0.24/Nl . For the di-
mensionless electron-lattice coupling of the acoustic-pho
mode we obtain

la5lo

27K3
2a2

16MC
2 vo

2v0
2

, ~62!

which is finite only for a nonzero spring constantK3. This
reflects the fact that a twist distortion depends crucially
the elastic coupling between distant atomic neighbors,
also the corresponding twist angleu is related to the deriva
tive of the distortion amplitude tanu5@ua(x1a)
2ua(x)#/a.

In order to estimate the value ofla , we first have to
determine the values of the three spring constants. Two c
ditions are given by the optical-phonon frequency Eq.~A7!
and the sound velocity Eq.~A8!, which we require to yield
the experimentally and numerically obtained valuesv0
'0.18 eV~Refs. 23 and 24! andv0'14 km/s,14,24 respec-
tively. A third condition is imposed by fitting the value of th
acoustic-phonon frequency atq5p/a, where the acoustic
branch deviates from its linearq dependence and the fre
quency is known to be approximate
va(p/a)'0.07 eV.14,24 The expression forva(p/a) in
terms of the three coupling constants is given by Eq.~A9!. In
this way we obtainK1'25 eV Å 22, K2'1.1 eV Å22, and
K3'8.1 eV Å22. It thus turns out thatK3.K2 is required
in order to fulfill all three conditions. This counterintuitiv
result probably is a consequence of the fact that our mo
with only three spring constants is the minimal model th
leads to a finite value ofla and should be viewed as a
effective description of the complicated lattice dynamics.
fact, it is known that more involved force-constant mod
are required to accurately describe the phonon spectrum
the graphene sheet and carbon nanotubes.24,27

To maintain a consistent analysis, we proceed by us
the above values forK1 , K2, andK3. We then find from Eq.
~62! that la'lo/4, leading tol5lo1la'0.3/Nl . It then
follows from Eq. ~37! with W510 eV that for large nano
12541
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tubes (Nl;10), Tc is indeed negligibly small (,1029 K)
and the associated softening of the acoustic phonons, lea
to the upturn of the resistivity at low temperature~Fig. 7!,
will not be relevant to the explanation of the observed upt
for these large nanotubes.18 In fact, it has been shown that fo
such large-radius nanotubes, the temperature dependen
the resistivity can be well explained using a Luttinger mod
that describes the forward scattering due to electron-elec
interactions, in addition to electron scattering on acous
phonons, without accounting for possible phon
softening.4,5,28,29

At the same time, it is clear that for nanotubes w
smaller values ofNl , the Peierls instability becomes mor
important. Recent examples of small-radius nanotubes
have been prepared experimentally are those withNl;4;30

the possible technological interest in such narrow nanotu
has been emphasized in Ref. 31. While, to the best of
knowledge, transport measurements on such narrow n
tubes have not yet been reported, it is of interest to asses
relevance of the Peierls instability for them. Using the abo
estimatel'0.3/Nl , we arrive atTc;0.1 K for Nl54 and
Tc;3 K for Nl53. The steep increase relative to the ca
Nl510 reflects the exponential dependence onl. This same
dependence makesTc extremely sensitive to the precis
value ofl and calls for caution, as the prefactor 0.3 in o
expression forl is only an order-of-magnitude estimate. T
illustrate this, we note that if this factor is increased by 50
the above estimates change toTc;9 K for Nl54 andTc
;80 K for Nl53. These numbers clearly indicate that t
Peierls transition and the associated phonon softening
indeed be relevant for small-radius carbon nanotubes.

From the above discussion, it is also clear that the ac
rate determination of the electron-phonon coupling consta
is of paramount importance when assessing the effect of
electron-lattice coupling in detail. While here we have giv
theoretical estimates forla and lo , one may, in principle,
also attempt to determine them from the resistivity curve.
we have found in Sec. IV,la determines the slope ofr(T) at
high T, while Tc depends onl5la1lo . The problem in
using this approach lies in our neglect of electron-elect
interactions. Both forward scattering~Luttinger model29! and
umklapp scattering, modeled by the on-site Hubbard mo
at half filling,6,7 affect the shape of the resistivity curve. I
particular, the contribution of umklapp scattering to the
sistivity is also expected to result in a linearT dependence a
temperatures larger than the charge gapEg , associated with
double occupation of a lattice site.6 Although its contribution
to the slope of the resistivity in the regime of linearT depen-
dence vanishes as 1/Nl

2 ,6 while electron-phonon interaction
enters the slope throughla}1/Nl , it is to be expected tha
attributing the slope to either one of the two scatteri
mechanisms alone will be impossible. We finally note th
the charge gap arising in the Hubbard model gives rise to
activated behavior of the resistivity forT,Eg ,6 which may
be hard to distinguish from the upturn associated with p
non softening.

We conclude that unequivocal evidence for the occurre
of the Peierls transition in narrow carbon nanotubes is pr
6-14
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PEIERLS INSTABILITY DUE TO THE INTERACTION . . . PHYSICAL REVIEW B65 125416
ably hard to obtain from measuring the electrical resistiv
alone. Other experimental evidence could be provided
observing the vanishing of the phonon velocity atTc ~as has
been done for the ferroelectric transition,21 but not, to our
best knowledge, for small-radius nanotubes yet! and by using
microscopic and spectroscopic techniques to directly obs
a twist deformation of an armchair carbon nanontube19

Similar techniques can, in principle, be used to probe
energies and shapes of the intragap states associated
solitwistons and polartwistons that occur in the Peierls pha
as introduced in Sec. V.

VIII. SUMMARY AND CONCLUSIONS

An interesting feature of the Peierls scenario in the pr
ence of both optical and acoustic phonons is that indepen
of the electron-lattice coupling constants the acous
phonon velocity vanishes at the critical temperature, wher
the optical-phonon frequency remains finite. In contrast
the conventional Peierls scenario, in which the optical p
non softens at the critical temperature in the absence
acoustic phonons, a level repulsion takes place between
optical- and acoustic-phonon modes due to their coupling
electron-hole excitations. In this way, the acoustic-phon
velocity is reduced to zero at the temperatureTc which is
higher than the critical temperature of the conventio
Peierls transition. Structural phase transitions resulting fr
electron-lattice interactions are of broad interest and
theory is not limited to one particular system. In fact, bac
scattering due to acoustic phonons always occurs if the
of the system’s unit cell is the same above and below
transition temperatureTc . The phonon wave vector is onl
conserved up to a multiple of 2kF in this case and optical
and acoustic-phonon modes of the same symmetry coop
in the opening of the Peierls gap. In this paper we conside
an armchair carbon nanotube where the unit cell conta
two carbon atoms above and belowTc due to its zigzag-
chain structure. The Peierls state contains both a static t
of the carbon nanotube along its axis and a lattice dimer
tion due to the relative shift of the two triangular sublattic
in the carbon nanotube.

While we have attempted to reach more than just a qu
tative picture of this Peierls transition and its consequen
it should be stressed that our quantitative predictions h
large error bars. This is a consequence of the fact that q
tities of interest, like the transition temperature, depend
ponentially on the electron-lattice coupling constants
volved, which are hard to estimate with high precision.
addition, the interactions with other carbon nanotubes
with the substrate may complicate the situation in practice
link was made to experiments on carbon nanotubes by
culating the temperature dependence of the electrical re
tivity due to electron scattering on acoustic phonons w
renormalized frequency. We have found that the softening
the acoustic phonons close toTc gives rise to an upturn in
the electrical resistivity. This upturn will only be observab
for small-radius carbon nanotubes and in general comp
with similar upturns that derive from various electro
12541
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electron scattering mechanisms. More generally, electr
electron interactions make it hard to estimate the electr
phonon coupling constants from temperature-depend
transport measurements alone.

We have studied the occurrence of topological excitatio
solitwistons and polartwistons, in the ordered phase of
armchair carbon nanotube. We find that the electronic ene
spectrum of the minimal-energy lattice configuration d
pends qualitatively on the applied boundary conditions~pe-
riodic and free!, as can be understood in terms of the two-l
ladder model. It follows that the appearance of solitwisto
and polartwistons is qualitatively different for the two typ
of boundary conditions. As carbon nanotubes can be ex
ined individually and also exist in a seamless toroid
shape,26 it will be an interesting challenge to use microsco
and spectroscopy techniques to probe the energies
shapes of the intragap states associated with solitwistons
polartwistons.
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APPENDIX

We calculate the couplingsla , lo and the frequency
va(p/a) within the elastic spring model of Sec. VI in term
of the spring constantsK1 , K2, andK3. For this purpose we
write Eq. ~57! using the Fourier representation of the atom
displacement Eq.~1!,

uW i~xW l !5
1

ANi
(

qW
eiqW •xW l@Xi~qW !,Yi~qW !#T, ~A1!

where Ni is the number of sites in thei th sublattice and
NA5NB in armchair carbon nanotubes. Let us choose
origin of thei th sublattice to be located atxW l50 from where
we measure the distance to themth atom in sublatticej by
RW m5uRW mu(cosum, sinum)T. If we combine the Fourier com
ponents of the atomic displacements in a single vector

uW ~qW !5@Xi~qW !,Yi~qW !,Xj~qW !,Yj~qW !#T, ~A2!

we obtain Eq.~57! in the formUi j 5
1
2 (qWuW (qW )†K̂ i j uW (qW ). The

matrix elementsK̂ i j 5(kab) i j ~with a,b51•••4) are given
by

k115k335(
m

K~Rm!cos2um ,

k225k445(
m

K~Rm!sin2um ,

k125k215k345k435(
m

K~Rm!cosum sinum ,
6-15
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k135k31* 52(
m

K~Rm!eiqW •RW m cos2um ,

k145k41* 5k235k32* 52(
m

K~Rm!eiqW •RW m cosum sinum ,

k245k42* 52(
m

K~Rm!eiqW •RW m sin2um . ~A3!

We now disregard the transverse momentum componen
the matrix elements Eq. ~A3! and write qW •RW m
5qRm cosum, whereq denotes the momentum in the dire
tion along the nanotube axis. Furthermore, it is convenien
use a transformationÛ with Û†Û51, such that the vecto
with the Fourier components of the atomic displacements
~A2! becomes with Eq.~59!

uW ~qW !→RW q5ÛuW ~qW !5~X1 ,Y1 ,X2 ,Y2!T. ~A4!

The potential lattice energy Eq.~57! takes the formU

5 1
2 (qRW q

†k̂qRW q with k̂q[Û(K̂AB1K̂AA1K̂BB)Û†. We note
that U contains the matrix elements Eq.~A3! and is, thus,
still valid for all values ofq.

In the limit of long wavelengthsq→0, we expand the
exponentials in Eq.~A3! up to second order inq and obtain
the matrixk̂q in the form

k̂q5
a

2 S q2bx 0 0 iqdy

0 q2by 2 iqdx 0

0 iqdx ax1q2gx 0

2 iqdy 0 0 ay1q2gy

D .

~A5!

As expected, the potential lattice energyU is formally iden-
tical to the potential lattice energy in the HamiltonianHlat
. J

12541
in

to

q.

given in Sec. II. In terms of the three spring constants
parameters are given by

ax5ay5
3

2a
~K11K3!,

bx53by5
9a

2
K21

3a

2 S 1

4
K11K3D ,

gx53gy5
9a

2
K22

3a

2 S 1

4
K11K3D ,

dx52dy52A3S 1

2
K12K3D . ~A6!

Using these relations we obtain from Eqs.~6! and ~8! the
optical-phonon frequency

vo5A3~K11K3!

MC
, ~A7!

whereMC is the mass of the carbon atom, and the acous
phonon velocity

v05aA3~4K1K213K1K314K2K3!

16~K11K3!MC
. ~A8!

The dimensionless electron-lattice couplingl i is now ob-
tained according to its definition Eq.~22! together with Eq.
~24!. The resulting expressions for the optical- (i 5o) and
acoustic- (i 5a) phonon modes are given by, respective
Eq. ~61! and Eq.~62!. The third condition to determine th
three spring constants is obtained from the acoustic-pho
frequency atq5p/a where the acoustic branch deviat
from its linearq dependence. It reads
vaS p

a D5S 2K1116K21K32A4K1
212K1~4K22K3!1~K324K2!2

2MC
D 1/2

. ~A9!
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