
PHYSICAL REVIEW E 66, 061901 ~2002!
Statistical model for receptor-ligand binding thermodynamics
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Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

~Received 14 August 2002; published 6 December 2002!

We present a simple statistical model to describe receptor-ligand binding in terms of the number of binding
contact residues and the number of separate binding regions as a function of the temperature. The fact that the
binding depends on various random factors is modeled by a distribution of local binding energies and we take
into account that the interaction between receptor and ligand is only of significance for the activation of the
receptor if the total binding energy exceeds a threshold energy. We interpret our results in the light of both
experimentally observed antibody-antigen binding configurations and theoretical studies in the zero-
temperature limit.
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I. INTRODUCTION

During recent years, there has been a growing interes
the research directed towards the understanding and co
of molecular recognition in biochemical processes. Mole
lar recognition is realized by the specific binding of ligan
to receptors. In the course of this process, the receptors
come activated and may initiate a cascade of events@1#. A
well-known example of a molecular system that is control
by receptor-ligand binding is the immune system, which p
forms the important task of defending living organism
against malignantly transformed cells and pathogenic org
isms. This is realized by immune responses that are mou
by the specific binding of antibody to antigen or T-cell r
ceptor to major histocompatibility complex~MHC! molecule
@2#. From a pharmacologic point of view, the understand
and control of molecular recognition is an important issue
the context of drug design. This includes, for instance,
design of ligands which are supposed to bind highly spec
only to their target cell receptors in order to prevent und
ired side effects, or which should be particularly long-livin
and able to bind the receptors of tumor cells in order
suppress their interactions with other cells.

In this paper, we study thermodynamic properties of
receptor-ligand binding within a statistical binding mod
and discuss our results in the light of experiments
antibody-antigen binding. X-ray crystallographic measu
ments have revealed that the binding between the recep
of the immune system and their ligands extends over an
of roughly 600 Å2 consisting of several linear binding re
gions @3–7#. In particular, for an antibody-antige
~lysozyme! complex the receptor-ligand overlap region co
sists typically of 100 amino acids. The receptor-ligand bin
ing area of such a complex has been found in one experim
to consist of a single linear binding region formed by
amino acids@3# and in another experiment to involve 1
amino acids distributed over three separate linear bind
regions@4#. Similar sizes for the binding area have not on
been confirmed for another type of antibody-antigen co
plex with a single linear binding region of 15 amino aci
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@6#, but also for a binding complex of T-cell receptor an
MHC molecule@7#.

The existence of a typical size for the binding region h
been successfully interpreted within a probabilistic model
the optimal result of efficient self–nonself discrimination b
antibodies and T-cell receptors@8#. In this model, the recep
tor ~antibody! and ligand~antigen! are represented by strings
as is schematically shown in Fig. 1. Antibodies and antig
are composed of amino acids that belong to differ
complementarity classes. Based on empirical data, amino
ids are distinguished as being hydrophobic, or hydrophi
and if hydrophilic as being positively or negatively charg
@8,9#. This gives rise toc53 complementarity classes, whe
hydrophobic is complementary to hydrophobic, positive
charged is complementary to negatively charged, and v
versa. In the probabilistic model, it is assumed that antib
ies and antigens are randomly taken from finite repertoi
respectively, of sizenR andnL . The probability that an an-
tibody repertoire of sizenR has the property that each of th
nL different antigens is recognized by at least one antibo
has been calculated under the condition that none of the
ganism’s nS self-molecules is recognized by any of the
antibodies@8#. The result can be expressed in terms o
numberr, which denotes the ratio between the size of t
receptor-ligand binding region and the size of the recep
ligand overlap region. In agreement with the experime
@3–7#, the ratio is found to be of intermediate order of ma
nitude:r;15% @8#. That this value ofr reflects optimal an-
tigen recognition by a finite antibody repertoire size can
understood as follows: If each antigen would be recogni

FIG. 1. Schematic representation of antibody~R! and antigen
~L! as strings which are composed of amino acids that belong
three different complementarity classes: hydrophobic (h), hydro-
philic positively charged (p), and hydrophilic negatively charge
(n). See the text for details.
©2002 The American Physical Society01-1
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over the entire overlap region, corresponding tor;100%,
one specific antibody would be required for each antig
which is not consistent with typical repertoire sizes. On
other hand, if antibodies would recognize too short am
acid patterns, say of the orderr;1%, they could as well
bind to self-molecules.

A different route to model receptor-ligand binding is fo
lowed in the present paper, where we calculate the~free!
energy of the receptor-ligand complex and obtain a partic
binding configuration as the result of a minimization proc
dure. The statistical element in our model originates from
fact that the local binding energy between two contact re
dues of receptor and ligand is not the same for any such
It rather depends on various random factors, such as the
environment, the influence of neighboring contact residu
and conformational effects of the binding. We take this in
account by a distribution of local binding energies. A seco
feature of our model is that the interaction between rece
and ligand is only considered to be of significance for
activation of the receptor if the binding energy exceed
certain threshold value. We refer to this value as thresh
energy. It is associated with the energy required to stabiliz
binding region against the steric interaction at its end poi
where binding and nonbinding pairs of contact residues
located next to each other, and against the thermally indu
motion between receptor and ligand that is counteracting
binding. Recently, a similar model has been used to calcu
the polymer-dimer binding probability as a function of th
threshold energy for different binding energy distributio
@10#.

The paper is organized as follows: We introduce the bi
ing model in Sec. II and show in Sec. III that the formati
of a binding configuration occurs with a finite probabilit
Next, in Sec. IV, we map the binding model on a model
the random-field Ising-type and calculate the correspond
free energy. This enables us to study thermodynamic pro
ties of the receptor-ligand binding in Sec. V and to interp
our results in the context of experimentally observ
antibody-antigen binding configurations. Finally, in Sec. V
we summarize and conclude this paper.

II. BINDING MODEL

We introduce a binding model where the receptor a
ligand are considered to be bound by contact residues
are distributed over several linear binding regions along
receptor-ligand overlap region. This is indicated in Fig.
where we label the contact residues of the receptor bym
51, . . . ,M with M the total number of receptor contact res
dues accessible to the ligand. Thenth binding region (n
51, . . . ,N) is defined by its two ending contact residue
respectively,m2n2111 andm2n , where we assume, withou
loss of generality, the orderingm111,m2,m311,m4
,•••,m2N2111,m2N . We will refer to two binding con-
tact residues as a pair of binding contact residues and
number is simply given byMb5(n51

N (m2n2m2n21).
The binding model is defined by the energy associa

with a receptor-ligand binding configuration and can be w
ten as the sum of two contributions,
06190
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E5Ei1DE] . ~1!

The energy of the unbound receptor and ligand is represe
by Ei and does not depend onMb andN, while the energy
change due to the formation of a particular receptor-liga
binding configuration is given by

DE]5Et1 (
n51

N

(
m5m2n2111

m2n

Eb~m!. ~2!

Here,Et denotes the threshold energy while the second te
represents the binding energy since the sum runs over al
Mb pairs of binding contact residues with local binding e
ergy Eb(m).

The local binding energy depends on various factors, e
the type of interaction between two contact residues, the
fluence of neighboring contact residues, conformational
fects of the binding, and also the environment. Because
precise distribution of local binding energies is usually n
known, we will assume throughout this paper thatEb(m) is
Gaussian distributed. We expect that, as far as the qualita
conclusions are concerned, our results will not depend
this particular choice for the distribution, which has the tec
nical advantage that properties of the receptor-ligand bind
can be calculated analytically. The corresponding probab
density,

f „Eb~m!…5
1

A2p«2
expS 2

@Eb~m!2Ēb#2

2«2 D , ~3!

is characterized by the average local binding energy,

Ēb5^Eb~m!&Eb
, ~4!

and by the standard deviation

«5$^@Eb~m!2Ēb#2&Eb
%1/2, ~5!

where^•••&Eb
denotes the Gaussian average with probabi

density Eq.~3!. For a given binding-energy distribution ther
are M f contact residue pairs that favor the binding, i.e., t
corresponding local binding energyEb(m),0. The ration
[M f /M is the fraction of contact residues that favor t
binding and can be expressed in terms ofĒb and«,

n5E
2`

0

f „Eb~m!…dEb~m!5
1

2 F12erfS Ēb

A2«
D G , ~6!

where erf(x)[(2/Ap)*0
xdze2z2

denotes the error function
This number plays an important role in characterizing h
specific a particular binding configuration is, howeve
whether binding between the receptor and ligand is reali
depends on whether this is energetically favorable. In ot
words, as follows from Eq.~1!, receptor-ligand binding take
place if

DE]<0, ~7!

meaning that the threshold energy is compensated by
binding energy.
1-2
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The threshold energy consists of two parts,

Et5NEs1MbEv~T!, ~8!

whereEs accounts for the steric interactions that arise at
end points of theN binding regions where binding and non
binding pairs of contact residues are located next to e
other. The second contribution in Eq.~8! accounts for the
thermally induced relative motion between binding cont
residue pairs. The vibrations counteract the binding and u
mately cause the dissociation of the receptor and ligan
sufficiently high temperaturesT. This is modeled by the en
ergy contributionEv(T), which is a function that increase
with the temperature from its zero-temperature valueEv(T
50)50 and will be specified below on phenomenologic
grounds. The binding and the nonbinding pairs of cont
residues enter into the energy expression Eq.~1! with ther-
mal energy contributions of opposite sign, respective
1MbEv(T)/2 and 2(M2Mb)Ev(T)/2, so that the energy
of the unbound receptor and ligand becomes

Ei52
M

2
Ev~T!. ~9!

It is instructive to calculate the probability for the occu
rence of receptor-ligand binding within the statistical mod
Eq. ~1!. We do this in Sec. III before we study thermod
namic properties of the receptor-ligand binding in Sec. V

III. BINDING PROBABILITY

We consider the probability that receptor-ligand bindi
occurs betweenMb pairs of contact residues distributed ov
N binding regions along an overlap region that consists oM
contact residues. Binding between the receptor and ligan
energetically favorable if the condition Eq.~7! is satisfied,
however this condition is not sufficient to calculate the bin
ing probability of the optimal binding configuration with th
lowest energyDE] . We take this into account in the forma
expression of the binding probability,

P5
1

N ^Q~2DE]!C~m1 ,m2 ; . . . ;m2N21 ,m2N!&Eb
,

~10!

where the step function

Q~x!5H 1 for x>0

0 for x,0
~11!

ensures thatP satisfies the condition Eq.~7!, while the func-
tion C(m1 ,m2 ; . . . ;m2N21 ,m2N) serves to guarantee thatP
is the binding probability of the optimal binding configur
tion. An expression forC(m1 ,m2) will be given in Sec. III B,
where we consider the case of a single binding regionN
51). Finally, N is determined by the normalization cond
tion,
06190
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PdMb51, ~12!

with respect to the numberMb of binding contact residue
pairs.

A. Occurrence of receptor-ligand binding

We start with the calculation of the probability that, for
given distribution of local binding energies, binding betwe
Mb contact residue pairs occurs at all. In this ca
C(m1 ,m2 ; . . . ;m2N21 ,m2N)51, meaning that all possible
binding configurations with binding regions 1<N<Mb are
taken into account, and Eq.~10! reduces to

P5
1

N K QS 2Et2 (
n51

N

(
m5m2n2111

m2n

Eb~m!D L
Eb

. ~13!

We find @11#

P5
1

2N @12erf„g~Mb ,N!…#, ~14!

where we defined

g~Mb ,N![
Et1MbĒb

A2Mb«2
. ~15!

In Fig. 2, we plot the probability Eq.~14! as a function of the
average local binding energyĒb /Et for three different values
of the standard deviation«/Et . We set the number of binding
contact residue pairs toMb515 and consider an overlap re
gion of M5100 contact residues. These parameters co
spond to realistic values for antibody-antigen binding as
served in crystallographic x-ray experiments@3–6#.

FIG. 2. Probability for the occurrence of receptor-ligand bindi
by Mb515 contact residue pairs along an overlap region ofM
5100 contact residues as a function of the average local bind

energyĒb /Et . The three curves correspond to standard deviat
«/Et50.07 ~dashed line!, «/Et50.10 ~solid line!, and«/Et50.13
~dashed-dotted line! of the binding-energy distribution.
1-3
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At negative average local binding energies,Ēb /Et!
21/Mb , we find that the binding probability becomes ind
pendent of the standard deviation« and approaches the con
stant valueP51/M . This result can also be derived direct
from Eq.~14! and has the simple interpretation that any ki
of binding configuration can exist in this limit, because t
fraction of contact residues that favor the binding betwe
the receptor and ligand tends ton51 @see Eq.~6!#. For a
vanishing average local binding energy,Ēb /Et50, we have
n50.5 and the probability Eq.~14! is a function of the stan-
dard deviation« of the binding-energy distribution:P}1
2erf(Et /AMb«2).

Two regimes have to be distinguished for positive aver
local binding energies. IfĒb /Et@«/Et , the fraction of con-
tact residues that favor the binding between the receptor
ligand approachesn50 and, consequently, the probabili
for the occurrence of binding configurations is found to
strongly suppressed in this case. Most interesting, at pos
average local binding energiesĒb /Et,«/Et , the probability
P has a sharp peak, which indicates that binding byMb
515 contact residues is most likely realized if the fraction
contact residues that favor the binding is in the range
,n,0.5. This can be easily understood if one takes i
account that antibodies and protein antigens are compose
amino acids that belong to different complementarity class
Amino acids are distinguished as being hydrophobic or
drophilic, and if hydrophilic, as being positively or neg
tively charged@8,9#. This gives rise toc53 complementarity
classes, where hydrophobic is complementary to hydrop
bic, positively charged, is complementary to negativ
charged and vice versa. Neglecting for a moment the ef
of all random sources on the binding, we estimate that
fraction of complementary pairs of amino acids along
antibody-antigen overlap region isn5c21;0.33. This value
is, in fact, within the relevant range forn. Furthermore, it
follows from Eq.~6! that Ēb /«;0.4 in this case, so that Eq
~14! may be replaced by

P'
1

2N
exp„2g~Mb ,N!2

…

Apg~Mb ,N!
, ~16!

which represents a valid asymptotic expression for aver
local binding energies in the range«/Et,Ēb /«,1. The in-
terpretation of the expression Eq.~16! is that the optimal
fluctuation which can induce binding, i.e., the bindin
energy fluctuation with the largest weight, has a const
negative value between theMb pairs of binding contact resi
dues,

Eb* ~Mb ,N!5Ēb2dEb* ~Mb ,N!, ~17!

and is zero between all other contact residues. The co
sponding amplitude is determined from the energy balan
DE]50, to be

dEb* ~Mb ,N!5Ēb1Et /Mb ~18!

and the weight of the optimal binding-energy fluctuation,
06190
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f „Eb* ~Mb!…Mb}expS 2
MbdEb* ~Mb!2

2«2 D , ~19!

is precisely the exponential factor appearing in Eq.~16!.
Thus, all binding-energy fluctuations that contribute sign
cantly to the binding probability are close to the optim
fluctuation. For the typical number of binding contact resid
pairs,

Mb* 5
NEs

Ev~T!1Ēb

, ~20!

the weight Eq.~19! reaches its maximal value,

f „Eb* ~Mb* !…Mb* }expS 2
2ĒbEt

«2 D , ~21!

and is exponentially decreasing with increasing threshold
ergyEt . Furthermore, Eq.~20! reveals that the typical num
ber of binding contact residue pairs is the result of a com
tition, becauseMb* is directly proportional to the steric
interaction energy and inversely proportional to the ene
associated with the thermally induced vibrations within pa
of binding contact residues.

B. Optimized receptor-ligand binding

We consider a binding configuration that consists o
single binding region (N51), which we denote by
$m1 ,m2%, involving Mb5m22m1 contact residue pairs. Th
condition Eq.~7! reduces to

DE]@$m1 ,m2%#5Et1 (
m5m111

m2

Eb~m!<0, ~22!

with

Et5Es1MbEv~T!. ~23!

To determine the probabilityP of the optimal binding con-
figuration $m1 ,m2% with respect to all other configuration
$m18 ,m28% that also consist of a single binding region, w
have to calculate Eq.~10! with

C~m1 ,m2!5 )
m18,m28

Q~ DE]@$m18 ,m28%#

2DE]@$m1 ,m2%#!. ~24!

SinceC(m1 ,m2) does not account for binding configuration
with more than one binding region, the corresponding bin
ing probability will only be valid in a range of the paramete
Ēb and«, for which binding configurations withN51 will
be the optimal ones. This restriction simplifies the calcu
tion of the binding probabilityP considerably. We presen
the calculation in the Appendix, where we arrive at the fin
expression,
1-4
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P5
K~M !Ēb

2AMb

«~Et1MbĒb!F ZS Et

Mb« D
ZS Ēb

«
D G

2

3expS 2
~Et2MbĒb!2

2Mb«2 D , ~25!

with Z(x)5tanh(1.14x) and

K~M !5A8

pH erfFg~Mb* ,1!

2 S M

Mb*
21D G

1erfS g~Mb* ,1!

2 D J 21

~26!

containsMb* as defined by Eq.~20!.
The binding probabilityP is dominated by the exponentia

factor which is just the normalized Gaussian weight of
optimal binding energy fluctuation,

P}
f „Eb* ~Mb!…Mb

f „Eb* ~Mb* !…Mb*
, ~27!

as follows from Eqs. ~19! and ~21! with Eb* (Mb)
52Et /Mb @see Eqs.~17! and ~18!#. In Fig. 3, we plot the
binding probability Eq.~25! for three different parameter se

$Ēb /Et ,«/Et% as a function of the numberMb of binding
contact residue pairs. For each set of parameters, the c
sponding binding probabilityP has its maximal value a
Mb515 and the binding probability falls off exponential
for smaller (Mb,15) or larger (Mb.15) binding regions.
Similarly, as can be deduced from Eq.~25!, the binding prob-

FIG. 3. Probability for receptor-ligand binding by a single bin
ing region (N51) as a function of the numberMb of binding
contact residue pairs (M5100). The three curves correspond

three parameter sets$Ēb /Et ,«/Et% for which P is maximal atMb

515: $0.062,0.07% ~dashed line!, $0.05,0.10% ~solid line!, and
$0.035,0.13% ~dashed-dotted line!.
06190
e

re-

ability has a peak structure as a function of the thresh
energyEt . It is intuitively clear that the binding probability
P decreases with increasing threshold energyEt , as has also
been found from calculations of the polymer-dimer bindi
probability @10#. However, a less obvious result is that th
binding probability decreases exponentially for decreas
threshold energiesEt,MbĒb . This behavior indicates onc
again that all binding-energy fluctuations that contribute s
nificantly to the receptor-ligand binding probability are clo
to the optimal binding-energy fluctuation.

We note that, while a rigorous calculation of the gene
binding probability P5P(M ,Mb ,N) is quite involved, it
may be estimated on the basis of the expression Eq.~25! for
P(M ,Mb,1). This is done by dividing the receptor-ligan
overlap region intoN segments each containing a sing
binding region. Treating theN segments as independe
units, we may write

P~M ,Mb ,N!' )
n51

N

P„M ~n!,Mb~n!,1…, ~28!

whereM (n) andMb(n) are the number of contact residue
that are, respectively, accessible and binding in thenth seg-
ment. We assume here thatM (n)@Mb(n) holds in each seg-
ment. Since different binding-energy distributions give ri
to clearly distinct receptor-ligand binding configurations a
sociated with the corresponding optimal binding energy fl
tuations, we may conclude that the parameter

$Ēb /Et ,«/Et% which maximizes the binding probability
P(M ,Mb ,N) prefers an equal distribution of binding conta
residues withMb* (n);Mb* /N. Within this simplified picture,
we obtain a condition for the occurrence of receptor-liga
binding by a rough estimate as follows: Assuming that
typical numberMb* (n) is mainly determined by the expo
nential factor in Eq.~25!, we find from Eq. ~20! that
Mb* (n);Es /@Ev(T)1Ēb#. It thus follows that the probabil-
ity for the occurrence of receptor-ligand binding becom
zero for Ev(T);Es2Ēb , which can be related to the tem
perature at which the receptor and ligand dissociate.

To summarize, the calculation of the binding probabil
within the statistical model Eq.~1! yields the qualitative re-
sult that distinct binding configurations occur at sufficien
low temperatures with a finite probability.

IV. BINDING FREE ENERGY

In order to study thermodynamic properties of t
receptor-ligand binding, we calculate the free energy of
binding model. This can be done by rewriting Eq.~1! in
terms of a local binding variable,sm , which describes the
state of contact residuem by one of its two possible values

sm5H 21 if binding,

11 if nonbinding.
~29!

The energyE of a particular binding configuration$sm% can
again be written as the sum of two parts,

E5E01E1@$sm%#. ~30!
1-5
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Here, the first part,

E05
1

2 (
m51

M

Eb~m!, ~31!

is independent of the binding variablesm , while the second
part is given by

E1@$sm%#5
1

2 (
m51

M FEs

~12smsm11!

2

2Ev~T!sm2Eb~m!smG . ~32!

The first two terms represent the threshold energy Eq.~8!,
where the steric interactions are represented by the first
since the sum over

1

2
~12smsm11!5H 0 if sm5sm11

1 if sm52sm11
~33!

counts the number of binding-region end points within t
binding configuration$sm%. The second term accounts fo
the effect of the thermal vibrations which favor the nonbin
ing state,sm511, becauseEv(T.0).0. Finally, the third
term in Eq. ~32! corresponds to the local binding energ
Eb(m)[Ēb1«sm , where sm is a random variable that i
Gaussian distributed according to the probability density

f ~sm!5

expS 2
1

2
sm

2 D
A2p

. ~34!

We note that Eq.~32! may be interpreted as a one
dimensional random-field Ising model, wheresm denotes an
Ising spin at sitem of a chain and can be either up (sm
511) or down (sm521) due to the presence of a~quite
exotic! magnetic field that has a random component an
temperature-dependent component.

The average free energy may be written as

^F&s5^F0&s1^F1&s , ~35!

where^•••&s denotes the Gaussian average with probabi
density Eq.~34!. The first term originates from the energ
contributionE0,

^F0&s5
M

2
Ēb . ~36!

The second term is given by the logarithm of the Boltzma
weighted sum over all possible binding configurations w
energyE1@$sm%#,

^F1&s52TK ln (
$sm%

e2E1[ $sm%]/TL
s

, ~37!
06190
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in units where Boltzmann’s constantkB51. It is straightfor-
ward to computê F1&s applying the transfer-matrix formal
ism, where the sum in Eq.~37! is written as an ordered
product of matricesTm :

(
$sm%

e2E1[ $sm%]/T5 (
s,s8561

^s8u )
m51

M

Tmus&. ~38!

Here, the final summation overs,s8 accounts for all pos-
sible boundary conditions for the binding variable at the en
of the receptor-ligand overlap region. On the basis span
by the two vectorsu1& and u2& ~corresponding, respec
tively, to s511 ands521), the transfer matrixTm reads

Tm5S e1[Ev(T)1Eb(m)]/2T e2[Es2Ev(T)2Eb(m)]/2T

e2[Es1Ev(T)1Eb(m)]/2T e2[Ev(T)1Eb(m)]/2T D
~39!

and is a function of themth contact residue through the loc
binding energyEb(m)5Ēb1«sm . It is clear from Eq.~38!
that the numerical calculation of the free energy^F1&s sim-
ply requires the repeated multiplication of a matrix with
vector.

Recently, we derived a closed analytical expression
the free energŷF1&s which is valid in the low-temperature
limit. The tedious calculation is presented in Ref.@12# and
will not be reproduced here. It requires the derivation of t
continuum version of the discrete model Eq.~32!, which is
found to describe the relaxation of a single quantum spi1

2

in a magnetic field. The corresponding Hamiltonian can
mapped onto a Brownian motion model which is defined
terms of a Langevin equation. Solving the correspond
Fokker-Planck equation yields a probability distributio
which is used to perform the average of the free energy
~37! analytically. For temperaturesT!Es and energies
Ēb ,«,Ev(T)!Es , we obtain to leading order in the numbe
M of contact residues the expression@12#

^F&s5
M

2
F Ēb2

Ev~T!1Ēb

tanh~% !
G , ~40!

where the dimensionless variable

%5
~Ev~T!1Ēb!

«2
Ẽs~T,«! ~41!

contains the effective steric interaction energy

Ẽs~T,«!5H Es14k« for T<T0

Es24T lnS T

ek« D for T.T0 .
~42!

Here,T05k« andk5e2(g12)/2/A2.0.195 contains Euler’s
constantg.0.577. The temperatureT0 enters the expressio
for the free energy in the course of deriving the mode
continuum version@12#. The reason is that in the continuum
model, the end points of a binding region can take any po
1-6
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tion along the receptor-ligand overlap region and are not
stricted to the discrete locations of the contact residues in
original discrete model. In other words, each end point o
binding region enters in the expression Eq.~37! with a
weight

e2Ẽs(T,«)/2T5 l ~T,«!e2Es/2T. ~43!

Here, l (T,«) is the typical size per length of a contact re
due for the thermal fluctuation of the end-point positi
along the receptor-ligand overlap region. We estimatel (T,«)
from the criterion that shifting the end position overl (T,«)
from its optimal position requires a fluctuation of the ord
of T:

K S (
m

«smsmD 2L
s

1/2

5« l ~T,«!1/2;T. ~44!

Therefore, the continuum model gives incorrect results
temperatures belowT0;«, where the thermal fluctuation o
the end-point position and the length of a contact residue
of the same order:l (T0 ,«);1. This explanation is con
firmed by numerical simulations of the discrete model E
~32!, where forT,T0 the corresponding free energy is
fact only weakly depending on the temperature@12#. In the
analytical expression of the free energy this is taken i
account by the effective steric interaction energy Eq.~42!.

V. BINDING THERMODYNAMICS

The calculation of the free energy enables us to study
a given distribution of local binding energies the correspo
ing binding configuration as a function of the temperature
follows directly from Eqs.~35!–~37! that the number of
binding regions is obtained by differentiation of the free e
ergy with respect toEs ,

N5
]

]Es
^F&s , ~45!

and the number of binding contact residue pairs by differ
tiation with respect toĒb ,

Mb5
]

]Ēb

^F&s . ~46!

Here and from now on we denote byN and Mb the corre-
sponding thermally and Gaussian averaged quantities.

Using the analytical expression Eq.~40! for the free en-
ergy, we obtain expressions for the number of binding
gions,

N5
M @Ev~T!1Ēb#2

2«2sinh~% !2
, ~47!

and for the number of binding contact residue pairs,
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Mb5
M

2 F12
sinh~2% !22%

2 sinh~% !2 G . ~48!

The solution of Eq.~48! in terms of%5%(Mb /M )* for a
given receptor-ligand binding configuration is easily o
tained numerically and can be represented by the series

%~Mb /M !* 5c01(
l 51

L

cl S Mb

M D 1/l

. ~49!

For L54 and coefficientsc058.546, c1520.107, c2
5221.745,c3570.135, andc45258.005, the relative de
viation of %* from the exact solution is already well belo
1% over the entire range 0<Mb /M<0.5. Combining Eqs.
~41!, ~47!, and~49!, we can calculate the average local bin
ing energy and the standard deviation of the binding ene
distribution Eq.~3! at temperatureT50. We find

Ēb5K~M ,Mb ,N!Es ~50!

and

«5
AMK~M ,Mb ,N!

A2Nsinh~%* !
Es , ~51!

where we defined

K~M ,Mb ,N![
2N sinh~%* !2

%* M24A2kAMN sinh~%* !
, ~52!

which is a positive number in the parameter regionN<Mb
<M /2.

In order to analyze the specificity of the receptor-liga
binding, we calculate the binding free energy^F(T50)&s
and the fraction of contact residue pairs that favor the bi
ing, n5M f /M , for any binding configuration characterize
by the parameter set$M ,Mb ,N%. It follows from Eqs.~40!,
~49!, and~50! that

^F~T50!&s5
MĒb

2 F12
1

tanh~%* !
G , ~53!

and from Eqs.~6!, ~50!, and~51! that

n5
1

2 F12erfSAN

M
sinh~%* ! D G . ~54!

We plotn and^F(T50)&s as a function ofMb /M for bind-
ing configurations with 0.01<N/M<0.04, respectively, in
Fig. 4 and Fig. 5. It can be seen in Fig. 4 thatn is larger for
a larger number of binding contact residue pairs,Mb , and is
smaller for a larger number of separate binding regions,N. In
Fig. 5, we see that, for a fixed number of binding regionsN,
a binding configuration is energetically more favorable
more binding contact residue pairsMb are involved, while
keeping the numberMb fixed, the energetically most favor
able binding configuration is that with the largest number
separate binding regionsN5Mb . A criterion to quantify the
specificity of a particular receptor and ligand may now
1-7
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MARC THILO FIGGE PHYSICAL REVIEW E66, 061901 ~2002!
formulated as follows: The larger the typical energy con
bution to the binding free energy per contact residue pair
favors the binding is, the higher is the specificity of the
ceptor and ligand. This energy contribution,

Ef[
^F~T50!&s

M f
, ~55!

can be calculated from Eqs.~53! and ~54!.
We discussed in Sec. III A that for antibody-antigen bin

ing in the absence of any random source,n is simply given
by the inverse of the number of complementarity classec

FIG. 4. The number of contact residuesn5M f /M that favor the
binding as a function ofMb /M for binding configurations with~a!
N/M50.01, ~b! N/M50.02, ~c! N/M50.03, and ~d! N/M
50.04. The three dots refer to the three binding configurati
$M ,Mb ,N%5$100,15,1%, $100,17,1%, and$100,14,3%. The typical
regime for antibody-antigen binding configurations is indicated
the shaded region.

FIG. 5. The binding free energŷF(T50)&s as a function of
Mb /M for binding configurations with~a! N/M50.01, ~b! N/M
50.02, ~c! N/M50.03, and~d! N/M50.04. The three dots refer t
the three binding configurations $M ,Mb ,N%5$100,15,1%,
$100,17,1%, and$100,14,3%.
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53, and thusn;0.33. It can be seen in Fig. 4 that the ran
0.25<n<0.45 corresponds to values of the ratior[Mb /M
that are of intermediate order of magnitude: 0.1<r<0.2
~shaded region in Fig. 4!. This parameter range has bee
interpreted in Ref.@8# within a probabilistic model as the
optimal result of efficient self–nonself discrimination by th
receptors of the immune system. Our model not only c
firms these conclusions, but also relates the parameterr to
the underlying distribution of binding energies. It follow
from Eqs. ~50!–~54! that for r;0.5 the characteristic fea
tures for the binding-energy distribution are a relative
small standard deviation« and an average local binding en
ergyĒb;0. In other words, in this regime it is equally likel
for receptor-ligand contact residue pairs to bind or not
bind. For even larger values ofr, the average local binding
energy is negative,Ēb,0, and if antibody-antigen binding
would typically occur in this regime, it would be highly spe
cific. However, the finite size of receptor repertoires can
be reconciled with the limitr;1, where one particular anti
body is required for each antigen. This leads to the conc
sion that receptor-ligand binding in the immune system
more efficiently realized by the binding of antibodies to se
eral, slightly different kinds of antigens involving fewe
binding contact residue pairs (r !1). On the other hand, fo
r !0.1 the underlying binding-energy distribution is chara
terized by a standard deviation which is much larger than
average local binding energy,«@Ēb . This means that ran
domness plays a dominant role in this limit, so that bindi
is realized by only a few contact residue pairs that are abl
stabilize a binding configuration due to relatively large loc
binding energiesEb(m);2Es . Clearly, if r !0.1 were the
typical parameter regime for the receptors of the immu
system to function, they would bind equally well to the o
ganism’s self-molecules. That this does not happen un
healthy conditions may be explained by arguing that the r
dom factors do not govern the binding between receptors
ligands of the immune system, meaning that large local bi
ing energies withEb(m);2Es are unlikely to occur. In
Table I, we present the values of binding configuration p
rameters as obtained by analytical and numerical calculat
for three experimentally observed antibody-antigen bind
configurations@3,4,6#. The parameters of both calculation
show the same qualitative behavior and are even in qua
tative agreement in the limitĒb ,«!Es , where we expect
our analytical calculation to be valid. We conclude that t
receptor and ligand of the binding configuratio
$M ,Mb ,N%5$100,14,3% represent the most specific comb
nation, since the energy contributionEf to the binding free
energy is the largest of the three binding configuratio
Comparing the binding configurations$100,15,1% and
$100,17,1%, the specificity of the receptor and ligand is foun
to be only slightly higher for the latter.

We now turn to the discussion of our results at finite te
peratures. The temperature dependence of the energyEv(T)
associated with thermal vibrations of the receptor and liga
is obtained by arguing in a phenomenological way as f
lows: At temperatures well below the steric interaction e
ergy, 0<T<T1!Es , pairs of binding contact residues ma

s

y
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TABLE I. Parameters for three different binding configurations as obtained from analytical and num
calculations atT50 for experimentally observed antibody-antigen binding.

Binding Analytical Numerical
configuration calculation calculation

M Mb N Ēb /Es
«/Es n ^F&s /Es Ef /Es Ēb /Es

«/Es n ^F&s /Es Ef /Es

100 15 1 0.050 0.213 0.40720.419 20.010 0.050 0.229 0.41420.431 20.010
100 17 1 0.042 0.204 0.41820.447 20.011 0.042 0.217 0.42320.457 20.011
100 14 3 0.187 0.434 0.33321.405 20.042 0.213 0.507 0.33721.607 20.048
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slowly move together but the relative motion of contact re
dues against each other can be neglected, so thatEv(T
<T1) must be vanishingly small. The value of the tempe
ture T1 may depend on various factors, e.g., on the mas
the contact residue pairs, and indicates the temperatur
which the relative motion between binding contact resid
becomes relevant. For temperaturesT.T1, the vibrations
may initially be described by small harmonic oscillations
the distance between contact residues of the same pai
these oscillations take place in the plane perpendicular to
direction of the receptor-ligand binding region, we estim
for the corresponding temperature range thatEv(T);4T, so
that for the unbound receptor and ligandE5Ei;2MT in
accordance with the equipartition theorem. The thermally
duced vibrations are only harmonic up to a certain tempe
ture, above which anharmonic effects and significant str
tural changes of the receptor-ligand complex will beco
important. However, as a starting point we will assume t
harmonic oscillations represent a good approximation
function that captures the essential behavior described a
is given by

Ev~T!5Q~T2T1!
4Es

a
lnS coshFa~T12T!

Es
G D , ~56!

FIG. 6. The number of binding contact residue pairsMb /M
~solid line! and the number of separate binding regionsN/M
~dashed line! as a function of the temperatureT for the zero-
temperature binding configuration$M ,Mb ,N%5$100,15,1%. The
arrow indicates thatMb5N at temperatureT;0.70Es .
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whereQ(T2T1) denotes the step function@see Eq.~11!# and
the dimensionless parametera determines how fastEv(T)
evolves into the linear-temperature regime. Taking 104 dif-
ferent binding-energy realizations into account, we p
formed numerical calculations for the parametersT1
50.1Es and a55, so thatEv(T)}T for T.0.3Es . We
checked that qualitatively our results do not depend on
particular choice.

We plot the results of our numerical calculations for t
number of binding contact residue pairs and the numbe
separate binding regions in Figs. 6, 7, and 8, respectively,
the zero-temperature binding configurations$M ,Mb ,N%
5$100,15,1%, $100,17,1%, and$100,14,3%. Several common
features can be observed in the temperature dependen
the three binding configurations. When the temperature
increased fromT50, an increase ofMb andN is observed in
each binding configuration. This is a consequence of
thermal fluctuation of the binding regions’ end-point po
tions along the receptor-ligand overlap region. It follow
from Eq.~44! that the typical size for the thermal fluctuatio
scales withl (T,«);T2/« and effectively corresponds to
decrease of the steric interaction energy according to
~42!. As a consequence, the binding configuration rearran
by increasingMb and N in order to minimize the binding
free energy. This is only possible as long as the counterac
thermal vibrations within contact residue pai

FIG. 7. The number of binding contact residue pairsMb /M
~solid line! and the number of separate binding regionsN/M
~dashed line! as a function of the temperatureT for the zero-
temperature binding configuration$M ,Mb ,N%5$100,17,1%. The
arrow indicates thatMb5N at temperatureT;0.69Es .
1-9
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MARC THILO FIGGE PHYSICAL REVIEW E66, 061901 ~2002!
are small. The inset of thermal motion between contact r
dues of binding pairs is seen at temperatureT;T1, where
the increase ofMb andN becomes weaker. Then,Mb andN
reach a maximum before they start to decrease until fina
at a temperature which is indicated by the arrow, the bind
configuration is characterized byMb5N. Increasing the
temperature further would result in the dissociation of
receptor and ligand since binding configurations w
Mb /N,1 cannot exist.

It has been suggested that the affinity of the recep
ligand interaction may be related to the number of bind
contact residue pairs@9#. We note that, if a minimum numbe
Mb@1 is required to trigger the receptor, its proper functio
ing may stop already well below the dissociation tempe
ture. SinceN is seen to depend only weakly on the tempe
ture, a binding configuration which is most suited to functi
even at high temperatures is characterized by a large num
N at zero temperature, because thenMb5N close to the
dissociation temperature may be still sufficiently large
keep the receptor activated. It can be seen from Figs. 6–
intermediate temperatures thatMb decreases by roughly
factor 2 slower for the binding configuration withN53 as
compared to the binding configurations withN51. Inspec-
tion of Eq.~48! reveals that, in general, the decrease ofMb is
smaller if the zero-temperature binding configuration is ch
acterized by a largerN and a smallerMb . Thus, although a
zero-temperature binding configuration with a larger num
Mb is considered to be more specific, this is not advan
geous at finite temperatures since a binding configura
with smaller numberMb can resist the destroying effect o
thermal motion better. This can be easily understood from
comparison of two binding configurations: The binding co
figuration with larger numberMb has a lower binding~free!
energy atT50, however, due to thermally induced vibr
tions its free energy increases faster with the temperat
and the binding configuration can only survive if the numb
Mb is sufficiently reduced. Similarly, it can be understo

FIG. 8. The number of binding contact residue pairsMb /M
~solid line! and the number of separate binding regionsN/M
~dashed line! as a function of the temperatureT for the zero-
temperature binding configuration$M ,Mb ,N%5$100,14,3%. The
arrow indicates thatMb5N at temperatureT;0.66Es .
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that a binding configuration with a larger numberN can re-
tain a larger numberMb up to higher temperatures because
has the freedom to rearrange and to gain energy by decr
ing the numberN. To summarize, at finite temperatures o
model predicts that a high specificity of the receptor a
ligand is only preferable in terms of a large ratioN/Mb but
not in terms of a large ratioMb /M . This may explain why
the immune system does not aim to realize receptor-lig
binding by configurations withr 5Mb /M;1.

We finally turn to a quantitative discussion of our resul
A typical value for the binding free energy requires an es
mate of the energyEs , which sets the energy scale of th
model. Because of the fact that the binding configuration
an antibody-antigen complex starts to change significa
before it becomes unstable at temperatures aboveT
;310 K, we may estimate from Figs. 6–8 thatT5300 K
corresponds toT;0.2Es , so thatEs;1500 K;3 kcal/mol.
In these units, the binding free energy atT5300 K for the
zero-temperature binding configurations$M ,Mb ,N%
5$100,15,1%, $100,17,1%, and$100,14,3% is computed to be
^F(T5300 K)&s5216.14 kcal/mol, ^F(T5300 K)&s
5 216.11 kcal/mol, and̂ F(T5300 K)&s5219.23 kcal/
mol, respectively. These values represent the correct orde
magnitude which is typically measured in biomolecular
actions~25 to 220 kcal/mol!. Furthermore, using the value
for Ēb and« as given in Table I, also the typical value of th
binding energy for contact residues that favor the binding

Ē[n21E
2`

0

Eb~m! f „Eb~m!…dEb~m!, ~57!

is found for all three binding configurations to be of th
correct order of magnitude:Ē;21 kcal/mol. It should be
noted that our model predicts a typical value for the dis
ciation temperature of the receptor and ligand,T;1000 K,
which is too large by about a factor 3. This indicates,
expected, that the dissociation of the receptor and ligand c
not simply be described by small thermal vibrations acco
ing to Eq. ~56!. It is obvious that the predicted dissociatio
temperature would be strongly decreased if signific
changes in the structure of the receptor-ligand comp
would be taken into account by a suitable modification
Ev(T). However, we note that changingEv(T) within our
model would affect different binding configurations in
similar way and will not influence our qualitative conclu
sions.

VI. SUMMARY AND CONCLUSIONS

In this paper, we studied thermodynamic properties
receptor-ligand binding within a simple statistical mod
The main ingredients of our model are a distribution of loc
binding energies to account for the effect of various rand
sources on the binding, and an energy threshold for the t
binding energy associated with steric interactions and th
mally induced vibrations within the receptor-ligand comple
The calculation of the corresponding binding probability r
vealed that distinct binding configurations do occur depe
ing on the parameters of the binding-energy distribution. A
1-10
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STATISTICAL MODEL FOR RECEPTOR-LIGAND . . . PHYSICAL REVIEW E66, 061901 ~2002!
ter mapping the model on a random-field Ising model,
binding free energy could be calculated, which enabled u
study the thermodynamics of binding configurations in ter
of the number of binding contact residue pairs,Mb , and the
number of separate binding regions,N.

In contrast to the configurational complexity of realis
receptor-ligand binding configurations, our model is e
tremely simple, probably the main simplification being t
projection of the three-dimensional, entangled structu
onto a one-dimensional, effective model. In particular,
influence of thermally induced changes in the receptor-lig
complex is an important issue that has to be addresse
future research. Nevertheless, considering our results in
light of antibody-antigen binding, we not only find that the
are in convincing agreement with those of previous ze
temperature studies, but that they allow us to formulat
plausible interpretation of receptor-ligand binding as it is
alized in the immune system. We find that the ratio betwe
the size of the receptor-ligand binding region and the size
the receptor-ligand overlap region,r 5Mb /M , is a conse-
quence of two competing factors. On the one hand, for sm
r;1% large local binding energies are required to exc
the threshold energy and to stabilize a binding configurat
In particular, for receptor-ligand binding in the immune sy
tem, local binding energies of that order may be unlikely
occur, so that binding over short binding regions is su
pressed and self–nonself discrimination is realized in
way. On the other hand, for larger @10% the binding would
be highly specific and a large receptor repertoire would
required. However, our model predicts that binding config
rations with a smaller numberr 5Mb /M!100% can resist
the destroying effect of thermal motion better, so that a h
specificity of the receptor and ligand at finite temperature
only preferable in terms of a large ratioN/Mb but not in
terms of a large ratioMb /M . We conclude that the immun
system realizes receptor-ligand binding in an efficient w
by a finite number of different receptors that are able to b
several, slightly different kinds of antigens. The binding co
figurations withr 5Mb /M of intermediate order of magni
tude reflect a high specificity of receptor and ligand by
large ratioN/Mb .

We finally note that, although we considered recept
ligand binding in the immune system as an example throu
out this paper, our model is more general and may as we
of relevance to other molecular systems that are contro
by receptor-ligand binding.
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APPENDIX: OPTIMIZED RECEPTOR-LIGAND
BINDING

The binding probability Eq.~10! is calculated withDE]

andC(m1 ,m2) as given by Eqs.~22! and ~24!, respectively.
We start by noticing thatP factorizes into two indepen

dent parts,Pout and Pin , which account for binding region
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of sizes, respectively, larger and smaller thanMb contact
residues:

P5N 21PoutPin . ~A1!

It is now convenient to define the dimensionless variable

t[Et /«, ~A2!

b[Ēb /«, ~A3!

sm[@Eb~m!2Ēb#/«, ~A4!

so that

Pout5^Q~b1sm1
!Q~2b1sm1

1sm121!

3Q~3b1sm1
1sm1211sm122!•••&s

3^Q~b1sm211!Q~2b1sm2111sm212!

3Q~3b1sm2111sm2121sm213!•••&s ~A5!

and

Pin5K QS 2t2bMb2 (
m5m111

m2

smDPLPRL
s

, ~A6!

where^•••&s denotes the Gaussian average with probabi
density

f ~sm!5

expS 2
1

2
sm

2 D
A2p

, ~A7!

and we introduced

PL[Q~2b2sm111!Q~22b2sm1112sm112!•••

3Q~2bMb2sm1112•••2sm2
! ~A8!

and

PR[Q~2b2sm2
!Q~22b2sm2

2sm221!•••

3Q~2bMb2sm2
2•••2sm111!. ~A9!

The reason for the factorization ofP into Pout andPin is that
a binding configuration$m1 ,m2% which is energetically fa-
vorable compared to the binding configurations$m1
1n1 ,m2% and $m1 ,m21n2% with one of the end position
fixed, is also energetically favorable compared to the c
figuration $m11n1 ,m21n2% with both end positions
changed.

Note thatPout itself also consists of two independent fa
tors: the first factor excludes the configuration of bindi
regions with the end located to the left ofm111, while the
second one excludes end positions larger thanm2. Both these
factors can be written in the form
1-11
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Z~b!5 )
m51

` F E
2`

1`

dsmf ~sm!QS (
k51

m

~b1sk!D G ,

~A10!

so that

Pout5@Z~b!#2. ~A11!

We note that if the conditions imposed by the firstQ func-
tions in Eq.~A10! are satisfied, the arguments of the lastQ
functions also almost certainly are positive. In other wor
only the first fewQ functions in Eq.~A10! are really restric-
tive and, therefore, we can replace the finite product ofQ
functions by an infinite number of factors. To calculate E
~A10!, we introduce the functionZ(sub), satisfying the inte-
gral equation,

Z~sub!5E
0

`

ds8 f ~s1b2s8!Z~s8ub!. ~A12!

Comparing the iterative solution of this equation to E
~A10!, one findsZ(b)5Z(0ub). The integral equation~A12!
can be easily solved numerically. The result is shown as s
in Fig. 9 and the solid line represents the best fit to th
points by a function of the form

Z~b!5tanh~kb! ~A13!

with k.1.14.
The calculation of the inner factor is complicated by t

presence of the extraQ function in Eq. ~A6!, which pre-
cludes the factorization ofPin in two independent average
However, considerable simplification is possible if we r
strict our considerations to the average local binding ener
with 1,bt,t, where the main suppression factor inP is the
probability of the local binding-energy fluctuation necess
to create a binding region at all~see Sec. III A!. In other
words, the most important contribution toPin ~and alsoP)
comes from averaging the firstQ function in Eq.~A6!. Bear-

FIG. 9. Numerical solution of the functionZ(b) ~stars!. The best
fit by a function of the formZ(b)5tanh(k b) yields k.1.14 ~solid
line!.
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ing this in mind, we now calculate the inner factor Eq.~A6!.
First, we can rewrite Eq.~A6! in the form

Pin5E
t1bMb

`

dSE
2 i`

1 i` dl

2p i
e2lS

3 )
m5m111

m2 E
2`

1`

dsme2lsmf ~sm!PLPR , ~A14!

where the integration overl ensures that

S52 (
m5m111

m5m2

sm ~A15!

and the limits of the integration overS follow from the first
Q function in Eq.~A6!. We now shift the argument off (sm)
on each site byl,

f ~sm!→ f ~sm1l!5e2(1/2)l22lsmf ~sm!, ~A16!

so that the average value now becomessm52l and Eq.
~A14! reads

Pin5E
t1bMb

`

dSE
2 i`

1 i` dl

2p i
e2lS1(1/2)Mbl2

3 )
m5m111

m2 E
2`

1`

dsmf ~sm1l!PLPR . ~A17!

The integral overl comes from the vicinity ofl05S/Mb ,
where the exponential in Eq.~A17! has its maximum.
Saddle-point integration overl then gives

Pin5E
t1bMb

` dS

A2pMb

e2(1/2Mb)S2

3 )
m5m111

m2 E
2`

1`

dsmf S sm1
S

Mb
DPLPR . ~A18!

Next we note that, as we saw before, only the first fewQ
functions in PL and PR are really restrictive, because th
relevant binding-energy fluctuation is close to the optim
fluctuation. This implies that the local binding-energy av
ages ofPL and PR in Eq. ~A18! are approximately decou
pled. Furthermore, it is easily seen from Eq.~A10! that then
^PL&5^PR&5Z@(S/Mb)2b#, so that Eq.~A18! becomes

Pin5E
t1bMb

` dS

A2pMb

e2(1/2Mb)S2FZS S

Mb
2bD G2

.

~A19!

The integral overS comes from the vicinity of the lower
limit, S5t1bMb . The result of the integration is

Pin5AMb

2p

expF2
~ t1bMb!2

2Mb
G

~ t1bMb! FZS a

Mb
D G2

, ~A20!
1-12
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where for S in the argument of the smooth functionZ we
took its value at the lower limit of the integration. Combi
ing Eqs.~A1!, ~A11!, and ~A20!, we obtain for the binding
probability,

P5
1

2N
exp~2g2!

Apg
FZS a

Mb
DZ~b!G2

, ~A21!

whereg5(t1bMb)/A2Mb in accordance with the definition
Eq. ~15!. The most important contribution toP is the expo-
nential term in Eq.~A21!, which is identified as the probabil
n

st

k,

.J
ci.

ul

06190
ity Eq. ~16! of the binding energy fluctuation necessary
create binding betweenMb pairs of contact residues at a
~see Sec. III A!. The last term in Eq.~A21! originates from
the condition Eq.~24!, which ensures thatP is the binding
probability of the optimal binding configuration with respe
to all configurations that also contain a single binding regi

As the functionZ is only slowly varying, we are able to
calculateN from the normalization condition Eq.~12! by
another saddle-point integration and obtain the final exp
sion Eq.~25! for the binding probability in the original set o
variables Eqs.~A2!–~A4!.
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