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Abstract. We review an event-based simulation approach which reproduces the statistical
distributions of quantum physics experiments by generating detection events one-by-one
according to an unknown distribution and without solving a wave equation. Einstein-
Podolsky-Rosen-Bohm laboratory experiments are used as an example to illustrate the
applicability of this approach. It is shown that computer experiments that employ the
same post-selection procedure as the one used in laboratory experiments produce data
that is in excellent agreement with quantum theory.

1. Introduction

Computer simulation is widely regarded as complementary to theory and
experiment [1]. Traditionally, in applications to physics, one starts from
one or more of the basic equations of physics and uses the computer as a
calculator to carry out arithmetics according to an algorithm derived from
or specified by these basic equations.

Computer experiments such as the ones discussed in this paper are con-
ceptually very different from man-made mathematical theories. For instance,
in the latter, the concept of a real number such as π plays a central role. Dig-
ital computers, which necessarily have finite resources, work with integer and
floating-point numbers that, strictly speaking, do not obey the rules of stan-
dard arithmetic. Of course, a digital computer can be used to manipulate
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symbols that are encoded as bits, symbols that represent mathematical con-
structs such as real numbers but that is not the point. A digital computer
is just a physical device, the state (i.e. the collection of all its bits) of which
changes according to certain rules. Running an algorithm on a digital com-
puter is nothing but carrying out a real experiment for which there are no
unknown or uncertain factors that might affect the outcome. Therefore the
digital computer + the rules can be viewed as a metaphor for a laboratory
experiment.

This metaphor can be carried further. As is well-known, a digital com-
puter can be realized not only with the semiconductor technology that we
are all familiar with these days but also by purely mechanical means, e.g.
a Babbage programmable machine. The use of the latter metaphor has an
important conceptual consequence. Indeed, if an algorithm running on a dig-
ital computer reproduces the results of a theory without making reference to
the basic equation(s) of that theory, it has been established that, at least for
this particular instance, there exists a (macroscopic) mechanical device that
produces the same data. In other words, there is no need to invoke concepts
of the said theory to explain the facts, at least not for this particular case.

Applied to quantum physics experiments, this means the following. In
the traditional approach, we would typically solve the Schrödinger equation
to obtain a probability distribution. The individual events, ultimately regis-
tered by our senses, are then generated by means of pseudo-random numbers
drawn from this probability distribution. An alternative approach is to invent
algorithms that generate the same type of events as observed in experiment
such that, for instance, interference patterns appear only after a considerable
number of individual events have been recorded by the detector [2, 3, 4], and
all this without solving the Schrödinger equation, of course.

The central question addressed by such alternative approach can be posed
as follows: Can we construct an algorithm which runs on a digital computer
and produces events with frequencies that agree with those observed in labo-
ratory experiments without the algorithm referring, in any way, to the proba-
bility distribution that is predicted by theory? An affirmative answer to this
question implies, through the computer-experiment metaphor, that we have
found a set of rules by which the digital computer acts as an experiment, pro-
ducing data that is of the same type and has similar frequency distributions
as the data that is generated in the laboratory experiment.

The basic ideas of the discrete-event computer simulation approach that
we review in this paper are that (i) we stick to what we know about the
experiment, that is we consider the experimental configuration, its outcome
and its data analysis procedure as input for constructing the simulation algo-
rithm; (ii) we try to invent a set of simple rules that generates the same type
of data as those recorded in an experiment while reproducing the averages
predicted by quantum theory; (iii) we keep compatibility with macroscopic
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concepts, which in view of the experiment-computer-macroscopic mechanical
device is not a surprise.

The discrete-event simulation methodology has successfully been applied
to all of the most fundamental quantum physics experiments performed with
neutrons as well as photons that involve interference, uncertainty, and entan-
glement [5 – 9]. In this paper, we review its application to Einstein-Podolsky-
Rosen-Bohm laboratory experiments and the related subject of violations of
Bell-type inequalities. From the viewpoint of computer simulation, this appli-
cation is the simplest, nontrivial case to consider. Applications that involve
interference require rules that are more sophisticated but backwards com-
patible with the ones that suffice to simulate Einstein-Podolsky-Rosen-Bohm
laboratory experiments [10, 6, 7, 8].

2. Einstein-Podolsky-Rosen-Bohm Experiments

In 1935, Einstein, Podolsky and Rosen (EPR) proposed a thought experi-
ment to address the question of incompleteness of quantum theory [12]. The
thought experiment involves the measurement of the position and momentum
of two particles which interacted in the past but not at the time of measure-
ment. This thought experiment is difficult to perform in a laboratory.

In 1951 Bohm proposed another experiment [11] which addresses the same
question and has the potential to be realized in a real laboratory, a point
which is discussed further in Sect. 4. A schematic diagram of Bohm’s ver-
sion of the EPR thought experiment, which will be called Einstein-Podolsky-
Rosen-Bohm (EPRB) thought experiment in the following, is shown in Fig. 1.
A source emits charge-neutral pairs of particles with opposite magnetic mo-
ments +S and −S. The two particles separate spatially and propagate in
free space to an observation station in which they are detected. As the parti-
cle arrives at station i = 1, 2, it passes through a Stern-Gerlach magnet. The
magnetic moment of a particle interacts there with the inhomogeneous mag-
netic field. The Stern-Gerlach magnet deflects the particle, depending on the
orientation of the magnet ai and the magnetic moment of the particle and it
divides the beam of particles into two spatially well-separated parts. As the
particle leaves the magnet, it generates a signal xi = ±1 in one of the two
detectors D±,i. The firing of a detector corresponds to the detection event.
The quantity of interest is the correlation of the intrinsic angular momentum
(magnetic moments, spins) of the particles.

In the early 1960’s, Bell derived his famous inequalities. Originally be-
lieved by Bell to be a vehicle to prove quantum theory wrong [71], these
inequalities were later thought to be useful for establishing the existence of
an action on a distance [70, 46]. Many researchers questioned the relevance of
Bell’s inequalities for addressing such issues [13 – 46] but his work had a major
impact in that it spurred many experimental efforts to implement the (vari-
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Fig. 1: (Color online) Schematic diagram of the Einstein-Podolsky-Rosen-
Bohm (EPRB) experiment with magnetic particles [11]. The source emits
charge-neutral pairs of particles with opposite magnetic moments +S and
−S. One of the particles moves to station 1 and the other one to station
2. As the particle arrives at station i = 1, 2, it passes through a Stern-
Gerlach magnet which deflects the particle, depending on the orientation of
the magnet ai and the magnetic moment of the particle. As the particle leaves
the Stern-Gerlach magnet, it generates a signal in one of the two detectors
D±,i. Coincidence logic pairs the detection events of station 1 and station 2
so that they can be used to compute two-particle correlations.

ations of) EPRB thought experiment. As a result, in scientific and popular
literature on quantum physics, it is quite common to find statements that the
experimental results [47 – 59] of EPRB experiments confirm the predictions
of quantum theory.

While it is firmly established that the experimental data indeed do show
violations of a Bell inequality, it is remarkable that this observation alone is
taken to imply that the experimental data gathered in EPRB experiments
does indeed comply with the predictions of quantum theory for this particular
experiment. However, the most elementary analysis of the data gathered in
three very different experiments [53, 60, 61, 62] show the same feature, namely
that the statistical variation of data produced by these EPRB experiments
is much larger than for most experiments which made quantum theory fa-
mous [63, 64]. For instance, the energy of photons emitted from atoms is
reproducible to many digits of accuracy so that the theory and experiment
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agree very well but data of EPRB experiments deviate significantly (more
than 4–5 standard deviations) from quantum theoretical predictions [63, 64].
This finding does not prove quantum theory wrong: it merely indicates that
the experimental data are not described by quantum theory of the EPRB
thought experiment (e.g. this model is too simple) or that more precise ex-
periments are called for.

In terms of controllability, experiments with photons are no match for
computer experiments and are therefore much harder to perform. More-
over, it has been shown in [65], without taking recourse to quantum theory,
that under very general conditions, the statistics of a close-to-perfect, robust
EPRB experiment is determined by the probability

P (x1, x2|a1,a2) =
1

4
(1 − x1x2a1 · a2)

(i.e. the probability distribution of a singlet state), hence the success of such
an endeavor is guaranteed.

3. Quantum-Theoretical Description

3.1. Single- and two-particle averages

According to the quantum theoretical description of the EPRB thought ex-
periment, the results of repeated measurements of the system of two spin-1/2
particles in the quantum state |Ψ⟩ = c0 |↑↑⟩ + c1 |↓↑⟩ + c2 |↑↓⟩ + c3 |↓↓⟩ with∑3

j=0 |cj |2 = 1 are given by the single-spin and two-spin expectation values

Ê1(a1) = ⟨Ψ|σ1 · a1|Ψ⟩ = ⟨Ψ|σ1|Ψ⟩ · a1,

Ê2(a2) = ⟨Ψ|σ2 · a2|Ψ⟩ = ⟨Ψ|σ2|Ψ⟩ · a2,

Ê12(a1,a2) = ⟨Ψ|σ1 · a1σ2 · a2|Ψ⟩ = a1 · ⟨Ψ|σ1 · σ2|Ψ⟩ · a2, (1)

where a1 and a2 are unit vectors specifying the directions of the analyzers,
σi denote the Pauli vectors describing the spin of the particles j = 1, 2.
We have introduced the notation ̂ to make a distinction between quantum
theoretical results and the results obtained from simulation/experiments.

Quantum theory of the EPRB thought experiment further assumes that
|Ψ⟩ does not depend on a1 or a2. Therefore, from (1) it follows immediately

that Ê1(a1) does not depend on a2 and that Ê2(a2) does not depend on
a1. Note that this holds for any state |Ψ⟩ or, more generally, for any state
described by a density matrix which does not depend on a1 or a2.

The quantum theoretical description of the EPRB experiment assumes
that the state of two spin-1/2 particles is described by the singlet state ρ =
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|Ψ⟩⟨Ψ|, where

|Ψ⟩ =
1√
2

(|↑↓⟩ − |↓↑⟩) . (2)

For the singlet state, Ê1(a1) = Ê2(a2) = 0, Ê12(a1,a2) = −a1 · a2, the cor-

relation ρ̂12(a1,a2) = Ê12(a1,a2) − Ê1(a1)Ê2(a2) = Ê12(a1,a2). Note that
the quantum state of two spins is fully characterized by the three quantities
Ê1(a1), Ê2(a2) = 0, and Ê12(a1,a2).

If two spin-1/2 particles are in a product state |Ψ⟩ = |Ψ⟩1|Ψ⟩2 with |Ψ⟩j =

c0,j |↑⟩j + c1,j |↑⟩j with |c0,j |2 + |c1,j |2 = 1 for j = 1, 2, then Ê12(a1,a2) =

⟨Ψ|σ1|Ψ⟩1 · a1⟨Ψ|σ2|Ψ⟩2 · a2, hence the correlation ρ̂12 = Ê12(a1,a2) −
Ê1(a1)Ê2(a2) = 0.

Many implementations of the EPRB experiment use photons instead of
massive particles. Then the polarization of each photon plays the role of the
spin-1/2 degree-of-freedom. Using the fact that the two-dimensional vector
space with basis vectors {|H⟩, |V ⟩}, where H and V denote the horizontal
and vertical polarization of photons, respectively, is isomorphic to the vector
space with basis vectors {|↑⟩ , |↓⟩} of spin-1/2 particles, we may use the
quantum theory of the latter to describe the experiments with photons. For
photons, the singlet state reads

|Ψ⟩ =
1√
2

(|H⟩1|V ⟩2 − |V ⟩1|H⟩2) =
1√
2

(|HV ⟩ − |V H⟩) , (3)

and the uncorrelated quantum state reads

|Ψ⟩ = (cos ζ1|H⟩1 + sin ζ1|V ⟩1) (cos ζ2|H⟩2 + sin ζ2|V ⟩2) , (4)

where ζj for j = 1, 2 denote the definite polarization of photons and the
subscripts refer to photon 1 and 2, respectively. The polarization vector
P j = (cos ζj , sin ζj , 0) replaces the magnetic moment

Sj = (cosϕj sin θj , sinϕj sin θj , cos θj)

of the spin-1/2 particle.
The expressions for the single-photon expectation values and the two-

photon correlations are similar to those of the genuine spin-1/2 particle prob-
lem except for the restriction of a1 and a2 to lie in planes orthogonal to the
direction of propagation of the photons and that the polarization is defined
modulo π, not modulo 2π as it is in the case of the spin-1/2 particles. The lat-
ter results in a multiplication of the angles by a factor of two. For simplicity
it is often assumed that aj = (cos aj , sin aj , 0) for j = 1, 2. The resulting sin-
gle and two-particle expectation values and the correlations are summarized
in Table 1.
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Table 1: Single and two-particle expectation values for a quantum system of
two photons in the singlet state and the uncorrelated quantum state.

Singlet state Uncorrelated quantum state

Ê1(a1) 0 cos 2(ζ1 − a1)

Ê2(a2) 0 cos 2(ζ2 − a2)

Ê(a1, a2) − cos 2(a1 − a2) cos 2(ζ1 − a1) cos 2(ζ2 − a2)
ρ̂12(a1, a2) − cos 2(a1 − a2) 0

In any laboratory, thought or computer experiment which aims at demon-
strating that the system may be described by a singlet state, it is absolutely
necessary to show that the results for the three quantities Ê1(a1), Ê2(a2) = 0

and Ê(a1,a2), and not only for the latter (which seems to be the standard in
all laboratory experiments reported upto now) comply with the predictions
of quantum theory.

3.2. Bell-type inequalities

From the algebraic identity (1± xy)2 = (x± y)2 + (1− x2)(1− y2) it follows
that |x ± y| ≤ 1 ± xy for real numbers |x| ≤ 1 and |y| ≤ 1. From this
inequality it immediately follows that

|xz ± yz| ≤ 1 ± xy , (5)

for real numbers x, y, z such that |x| ≤ 1, |y| ≤ 1 and |z| ≤ 1. From (5) it
follows immediately that

|xz − yz + xz′ + yz′| ≤ 2 , (6)

if, in addition, z′ is a real number such that |z′| ≤ 1.
If the two spin-1/2 particles are described by a product state, we can use

(5) and with unit vectors a1, a2, a3 and a4 obtain a Bell-type inequality

|Ê(a1,a2) − Ê(a1,a3)| ≤ 1 + Ê(a2,a3) , (7)

and the Bell-CHSH (Clauser-Holt-Shimony-Horne) inequality [66]

−2 ≤ Ê(a1,a3) − Ê(a1,a4) + Ê(a2,a3) + Ê(a2,a4) ≤ 2 , (8)

where, for later use, it is expedient to introduce the function

Ŝ = Ŝ(a1,a2,a3,a4) = Ê(a1,a3)−Ê(a1,a4)+Ê(a2,a3)+Ê(a2,a4) . (9)

1650010-7



H. De Raedt and K. Michielsen

Within the quantum theory of two spin-1/2 particles, it can be shown that

|Ŝ| ≤ 2
√

2, independent of the choice of the quantum state [67]. If the
quantum system is described by a product (singlet) state, we necessarily

have |Ŝ| ≤ 2 (|Ŝ| = 2
√

2).
From the conditions under which (7) and (8) have been derived it follows

immediately that if the state of the two spin-1/2 particle system is a product
state, then both Bell and Bell-CHSH inequalities hold.

On the other hand, if the Bell or Bell-CHSH inequality is violated, then
the two-particle quantum system cannot be described by a product state.
Note that these logical statements are made entirely within the framework
of quantum theory and that, within this context, these are the only logically
valid conclusions that can be drawn from a (non)violation of the Bell or Bell-
CHSH inequality [45]. For discussions of Bell-inequalities in the context of
(non) Kolmogorovian probability theory see [43, 68] and references therein.

4. Computer Simulation of EPRB Experiments with Photons

4.1. Laboratory experiments

We take the EPRB experiment with single photons, carried out by Weihs et
al. [53, 54], as a concrete example. We first describe data collection and the
analysis procedure of the experiment. Then we illustrate how to construct an
event-based model of an idealized version of this experiment which reproduces
the predictions of quantum theory for the single and two-particle averages
for a quantum system of two spin-1/2 particles in the singlet state without
making reference to the formalism of quantum theory.

Data collection

Figure 2 shows a schematic diagram of the EPRB experiment with single
photons carried out by Weihs et al. [53, 54]. The source emits pairs of photons
with orthogonal but otherwise random polarization. The photon pair splits
and each photon travels in free space to an observation station, labelled by
j = 1 or j = 2, where it is manipulated and detected. The two stations are
assumed to be identical and are separated spatially and temporally. Hence,
the observation at station 1 (2) cannot have a causal effect on the data
registered at station 2 (1) [53]. As the photon arrives at station j = 1, 2
it first passes through an electro-optic modulator (EOM) which rotates the
polarization of the photon by an angle φj depending on the voltage applied
to the EOM [53, 54]. This voltage is controlled by a binary variable Aj ,
which is chosen at random [53, 54]. Optionally, a bias voltage is added to the
randomly varying voltage [53, 54]. The relation between the voltage applied
to the EOM and the resulting rotation of the polarization is determined
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Fig. 2: (Color online) Schematic diagram of the EPRB experiment with
photons [53, 54]. The source emits pairs of photons. One of the photons
moves to station 1 and the other one to station 2. The photons in each pair
have orthogonal but otherwise random polarizations. As the photon arrives
at station j = 1, 2 it first passes through an electro-optic modulator (EOM)
which rotates the polarization of the photon by an angle ϕj depending on the
voltage applied to the EOM. This voltage is controlled by a binary variable
Aj , which is chosen at random. As the photon leaves the EOM, a polariz-
ing beam splitter directs it to one of the two detectors D±,j . The detector
produces a signal xn,j = ±1 where the subscript n labels the nth detection
event. Each station has its own clock which assigns a time-tag tn,j to each
detection signal. The data set {xn,j, tn,j, An,j |n = 1, . . . , Nj} is stored on a
hard disk for each station. Long after the experiment is finished both data
sets can be analyzed and among other things, two-particle correlations can
be computed.

experimentally, hence there is some uncertainty in relating the applied voltage
to the rotation angle [53, 54]. As the photon leaves the EOM, a polarizing
beam splitter directs it to one of the two detectors. The detector produces
a signal xn,j = ±1 where the subscript n labels the nth detection event.
Each station has its own clock which assigns a time-tag tn,j to each signal
generated by one of the two detectors [53, 54]. Effectively, this procedure
discretizes time in intervals, the width of which is determined by the time-
tag resolution τ . In the experiment, the time-tag generators are synchronized
before each run [53, 54].

The firing of a detector is regarded as an event. At the nth event at
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station j, the dichotomic variable An,j , controlling the rotation angle φn,j ,
the dichotomic variable xn,j designating which detector fires, and the time
tag tn,j of the detection event are written to a file on a hard disk, allowing
the data to be analyzed long after the experiment has terminated [53, 54].
The set of data collected at station j may be written as

Υj = {xn,j , tn,j , φn,j : n = 1, . . . , Nj} , (10)

where we allow for the possibility that the number of detected events Nj at
stations i = 1, 2 need not (and in practice is not) to be the same and we
have used the rotation angle φn,j instead of the corresponding experimen-
tally relevant dichotomic variable An,j to facilitate the comparison with the
quantum theoretical description.

Data analysis procedure

A laboratory EPRB experiment requires some criterion to decide which de-
tection events are to be considered as stemming from a single or two-particle
system. In EPRB experiments with photons, the decision to consider de-
tection events as stemming from a two-particle system is taken on the basis
of coincidence in time [53, 69]. Here we adopt the procedure employed by
Weihs et al. [53, 54] Coincidences are identified by comparing the time dif-
ferences tn,1 − tm,2 with a window W , [53, 54, 69] where n = 1, . . . , N1 and
m = 1, . . . , N2. By definition, for each pair of rotation angles a1 and a2, the
number of coincidences between detectors Dx,1 (x = ±1) at station 1 and
detectors Dy,2 (y = ±1) at station 2 is given by

Cxy = Cxy(a1, a2)

=

N1∑
n=1

N2∑
m=1

δx,xn,1δy,xm,2δa1,φn,1δa2,φm,2Θ(W − |tn,1 − tm,2|) , (11)

where Θ(t) denotes the unit step function. In (11) the sum over all events has
to be carried out such that each event (= one detected photon) contributes
only once. Clearly, this constraint introduces some ambiguity in the counting
procedure as there is a priori, no clear-cut criterion to decide which events at
stations j = 1 and j = 2 should be paired. One obvious criterion might be
to choose the pairs such that Cxy is maximum, but such a criterion renders
the data analysis procedure (not the data production) acausal. It is trivial
though to analyze the data generated by the experiment of Weihs et al. such
that conclusions do not suffer from this artifact [63]. In general, the values
for the coincidences Cxy(a1, a2) depend on the time-tag resolution τ and the
window W used to identify the coincidences.
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The single-particle averages and correlation between the coincidence counts
are defined by

E1(a1, a2) =

∑
x,y=±1 xCxy∑
x,y=±1Cxy

=
C++ − C−− + C+− − C−+

C++ + C−− + C+− + C−+

E2(a1, a2) =

∑
x,y=±1 yCxy∑
x,y=±1Cxy

=
C++ − C−− − C+− + C−+

C++ + C−− + C+− + C−+

E(a1, a2) =

∑
x,y=±1 xyCxy∑
x,y=±1Cxy

=
C++ + C−− − C+− − C−+

C++ + C−− + C+− + C−+
, (12)

where the denominator Nc = Nc(a1, a2) = C++ +C−− +C+− +C−+ in (12)
is the sum of all coincidences and, in general, varies with the settings (a1, a2).

Local-realistic treatments of the EPRB experiment assume that the cor-
relation, as measured in the experiment, is given by [70]

C(∞)
xy (a1, a2) =

N∑
n=1

δx,xn,1δy,xn,2δa1,θn,1δa2,θm,2 , (13)

which is obtained from (11) (in which each photon contributes only once)
by assuming that N = N1 = N2, pairs are defined by n = m and by taking
the limit W → ∞. However, the working hypothesis that the value of W
should not matter because the time window only serves to identify pairs may
not apply to real experiments. The analysis of the data of the experiment of
Weihs et al. shows that the average time between pairs of photons is of the
order of 30µs or more, much larger than the typical values (of the order of
a few nanoseconds) of the time-window W used in the experiments [54]. In
other words, in practice, the identification of photon pairs does not require
the use of W ’s of the order of a few nanoseconds.

4.2. Theory versus real data

Quantum theory predicts the expectation values Ê1, Ê2 and Ê12 but cannot
say anything about individual events [71, 72]. The fundamental question is
therefore how data that is produced by a laboratory or computer experiment
and comes in the form of individual events relates to the statistical results
of quantum theory. The tremendous success of quantum theory in describ-
ing a large variety of experiments is not an excuse for assuming that Nature
“knows” about the probability distributions of quantum theory, generates
events accordingly and does so by means of a magic “random” process. In-
stead, to avoid logical contradictions and/or the need of introducing mystical
elements, it is safer to take an agnostic standpoint, that is make no assump-
tion for which there is no empirical evidence and then demonstrate that all
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the averages computed from the (experimental or computer generated) data
comply with the predictions of quantum theory.

4.3. Event-based simulation

A discrete-event computer simulation model of a laboratory EPRB experi-
ment should be a one-to-one copy of the experimental setup and, most im-
portantly, should not rely on quantum theory. Moreover, the simulation
should involve only Einstein-local, cause-and-effect processes: acausal pro-
cesses, such as the one used to maximize the coincidence counts, are prohib-
ited.

A minimal, discrete-event simulation model of the EPRB experiment by
Weihs et al. requires a specification of the information carried by the parti-
cles, of the algorithm that simulates the source, the polarizers, the detectors,
and of the procedure to analyze the data. Since in the above description of the
experiment the orientation of the polarization vectors P j = (cos ζj , sin ζj , 0)
and the orientations of the optical axis of the polarizers aj = (cos aj , sin aj , 0)
for j = 1, 2 is limited to the xy-plane we omit the z-component in the simu-
lation.

Source and particles

Each time, the source emits two particles which carry a vector

un,j = (cos(ξn + (j − 1)π/2), sin(ξn + (j − 1)π/2)) ,

representing the polarization of photons. This polarization is completely
characterized by the angle ξn and the direction j = 1, 2 in which the particle
moves. A uniform pseudo-random number generator is used to pick the
angle 0 ≤ ξn < 2π. Clearly, the source emits two particles with a mutually
orthogonal, hence correlated but otherwise random polarization. Note that in
the simulation and unlike in the laboratory experiment, there is an ambiguity
as to which two particles have been generated as a pair.

Electro-optic modulator (EOM)

The EOM in station j = 1, 2 rotates the polarization of the incoming particle
by an angle φj , that is its polarization angle becomes

ξ′n,j ≡ EOMj(ξn + (j − 1)π/2, φj) = ξn + (j − 1)π/2 − φj

symbolically. Mimicking the experiment of Weihs et al. in which φ1 can take
the values a1, a

′
1 and φ2 can take the values a2, a

′
2, we generate two binary

uniform pseudo-random numbers Aj = 0, 1 and use them to choose the value
of the angles φj , that is φ1 = a1(1−A1) +a′1A1 and φ2 = a2(1−A2) +a′2A2.
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Beam-splitting polarizer

In laboratory EPRB experiments with photons, various polarizers are inter-
changeable, at least in principle. Therefore, the algorithms to simulate them
should be identical. The simulation model for a polarizing beam splitter is
defined by the rule

xn,j =

{
+1 if rn ≤ cos2 ξ′n,j
−1 if rn > cos2 ξ′n,j ,

(14)

where 0 < rn < 1 are uniform pseudo-random numbers. The polarizer sends
a photon with polarization un = (cosφj , sinφj) or un = (− sinφj , cosφj)
through its output channel labelled by +1 and −1, respectively. It is easy to
see that for fixed ξ′n,i = ξ′i, this rule generates events such that

lim
N→∞

1

N

N∑
n=1

xn,j = cos2 φn,j ,

with probability one, showing that the distribution of events complies with
Malus law.

This simplified mathematical model suffices to simulate the EPRB ex-
periment but cannot be used to simulate other optics experiments [10, 8].
However, more complicated models used to simulate the polarizing beam
splitter in these other experiments can be used to simulate the EPRB exper-
iment [10].

Time-tag model

As is well-known, as light passes through an EOM (which is essentially a
tuneable wave plate), it experiences a retardation depending on its initial
polarization and the rotation by the EOM. We assume that for each particle
this time delay is represented by [73, 74]

tn,i = λ(ξ′n,i)r
′
n , (15)

which is distributed uniformly (0 < r′n < 1 is a uniform pseudo-random
number) over the interval [0, λ(ξ′n,i)]. For λ(ξ′n,i) = T0 sin4 2ξ′n,i this time-
tag model, in combination with the model of the polarizing beam splitter,
rigorously reproduces the results of quantum theory of the EPRB experiments
in the limit W → 0 [73, 74]. We therefore adopt the expression λ(ξ′n,i) =

T0 sin4 2ξ′n,i leaving only T0 as an adjustable parameter.

Detector

The detectors are ideal particle counters, producing a click for each incoming
particle. Hence, we assume that the detectors have 100% detection efficiency.
Note that this model for the detector is the simplest one can imagine. More
complicated models involving thresholds may be used as well [75, 76, 10].
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Fig. 3: (Color online) Simulation results (markers) and quantum theoretical
result (solid line) for the EPRB experiment with φ1 = φ and φ2 = 0 for the
two-particle expectation value E(φ) = ⟨S1 ·a1S2 ·a2⟩ (left) and the product
of the two single-particle expectation values E1(φ)E2(φ) = ⟨S1 ·a1⟩⟨S2 ·a2⟩
(right) as a function of φ. The source emits two photons with orthogonal
but otherwise random polarization. The number of emitted photon pairs
N = (N1 +N2)/2 = 106 with N1 = N2 and the adjustable parameter in the
time-tag model T0 = 103. Solid circles: coincidence counting with W/τ = 1;
open circles: no coincidence counting.

Simulation and data analysis procedure

The simulation algorithm generates the data sets Υi, similar to the ones
obtained in the experiment (see (10)). In the simulation we have N1 = N2.
We analyze the data sets in exactly the same manner as the experimental
data are analyzed, implying that we include the post-selection procedure to
select photon pairs by a time-coincidence window W . In order to count the
coincidences, we choose a time-tag resolution 0 < τ < T0 and a coincidence
window τ ≤ W . We set the correlation counts Cxy(φ1, φ2) to zero for all
x, y = ±1. We compute the discretized time tags kn,j = ⌈tn,j/τ⌉ for all
events in both data sets. Here ⌈x⌉ denotes the smallest integer that is larger
or equal to x, that is ⌈x⌉−1 < x ≤ ⌈x⌉. According to the procedure adopted
in the experiment [53, 54], an entangled photon pair is observed if and only
if |kn,1 − kn,2| < k = ⌈W/τ⌉. Thus, if |kn,1 − kn,2| < k, we increment the
count Cxn,1,xn,2(φ1, φ2). Although in the simulation the ratio of detected to
emitted photons is equal to one, the final detection efficiency is reduced due
to the time-coincidence post-selection procedure.

4.4. Simulation results

Figure 3 presents the simulation results (markers) with φ1 = φ and φ2 = 0
for the two-particle expectation value E(φ) = ⟨S1 · a1S2 · a2⟩ (left) and the
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Fig. 4: (Color online) The Bell-CHSH function |S| = |E(a, b) − E(a, b′) +
E(a′, b) + E(a′, b′)| as a function of the time window W for a = 0, a′ = π/4,
b = π/8 and b′ = 3π/8. The dashed lines represent the maximum value for
a quantum system of two S = 1/2 particles in a separable (product) state
(|S| = 2) and in a singlet state (|S| = 2

√
2), respectively. If |S| > 2, the

Bell-CHSH inequality is violated. Left: Red crosses: discrete-event simula-
tion data. The total number of pairs generated is 3 × 105 (roughly the same
as in experiment [53]) and T0 = 2000 ns (see (15)). Right: Results extracted
from the data set “newlongtime2” recorded in experiments performed by
Weihs [53, 54]. Red bullets connected by the red solid line: results obtained
by maximizing the coincidence counts through a time-shift ∆ = 0.5 ns. Blue
crosses: ∆ = 0. For W ≈ 200 ns, well below the average time between pair
(about 30µs) the data does not violate the Bell-CHSH inequality (|S| ≤ 2).
For W > 20 ns the change of some of these single-spin averages (data not
shown) observed by Bob (Alice) when Alice (Bob) changes her (his) set-
ting, systematically exceeds five standard deviations, suggesting it is highly
unlikely that the data is in concert with quantum theory of the EPRB ex-
periment [64].

product of the two single-particle expectation values

E1(φ)E2(φ) = ⟨S1 · a1⟩⟨S2 · a2⟩

(right) as a function of φ. Both the results of a coincidence counting analysis
(solid markers) and of the analysis without coincidence counting (open mark-
ers) is shown. The results expected from the quantum theoretical description

are Ê(φ, 0) = − cos 2φ and Ê1(φ) = Ê2(0) = 0 and are represented by the
solid lines. The coincidence counting analysis with W/τ = 1 (solid markers),
which is similar to the one used in the experiment by Weihs et al. [53, 54],
gives results which fit very well to the prediction of quantum theory.

When all emitted particles are taken into account (open markers), cor-
responding to a data analysis procedure without using a time-coincidence
window W to select pairs, E(φ, 0) = −(cos 2φ)/2 = Ê(φ, 0)/2. Note that
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this data analysis procedure is equivalent to a procedure in which W → ∞
or to a procedure in which the time-tag data is simply omitted. The differ-
ence with the case of coincidence counting with a finite W demonstrates the
fact that the observation of two-particle correlations ρ12(φ, 0) correspond-
ing to those of the singlet state ρ̂12(φ, 0) = − cos 2φ strongly depends on
how the data is analyzed (size of the time-coincidence window) and not only
on how the photon pairs are generated, which in the case of our computer
experiments is “on demand”.

In summary, these simulation results leave no room for an interpretation
other than the “non-quantum”, discrete-event simulation of a real labora-
tory experiment reproduces all the results of quantum theory of two photons
in a polarization-entangled singlet state. As the simulation results are, for
all practical purposes, the same as those of quantum theory, it is no surprise
that the “non-quantum” simulation model also violates Bell inequalities. Fur-
thermore, as the algorithm simulates Einstein-local processes only and does
not contain operations that mimic “action-on-a-distance” the simulation also
proves (via the computer-mechanical device metaphore) that there is no need
to invoke the latter in order to give a rational “classical-statistical” explana-
tion for the correlations of a quantum system in the singlet state.

As shown in Fig. 4, the statement that the simulation data violates the
Bell-CHSH inequality |S| > 2 strongly depends on the time window W .
While in the case of the laboratory experiment, one might argue that as
W increases the identification of pairs becomes less certain, resulting in a
decrease of |S|, taking into account the time scales involved (W ≈ 300 ns
versus an average time of 30µs between single events), this argument is not
very convincing. Indeed, the “perfect” experiment carried out on a digital
computer shows the same dependence of |S| on W without suffering from the
pair-identification problem, see Fig. 4.

4.5. Violating Bell inequalities by locally causal processes

It is of interest to examine the mechanism by which the discrete-event model
(and the laboratory experiments) produce data that leads to a violation of
inequalities such as |S| ≤ 2, even though every pair of particles that arrives
at the detectors is accounted for. In essence, the reason is simple: it is the co-
incidence window that acts as a filter, removing pairs for which the difference
of the time-delays incurred while passing through the optical components is
larger than W . As these time-delays depend on the settings of these com-
ponents (once more a metaphor for the interactions of the photons with the
optical components), the coincidence counts depend on these settings. The
idea that one can carry out a laboratory experiment and identitify pairs
without a proper space-time labelling will remain a pipe-dream as long as
the man-made world of mathematical models and concepts differs from the
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world which we experience. In other words, when the aim is to construct sim-
ulation models that, through the computer-experiment metaphor, represent
real laboratory experiments, it is necessary to include all the elements that
are essential to the laboratory experiments. Otherwise, the relation between
computer and laboratory experiment is lost.

We use an abstraction of the computer simulation algorithm in terms
of a Kolmogorovian probabilistic model to scrutinize in depth the mecha-
nism by which the time-coincidence window leads to violations of Bell-like
inequalities. In [74, 6], we present such a probabilistic description and (i)
rigorously proved that for up to first order in W the model yields the single
particle averages and the two-particle correlations of quantum theory for the
system under consideration; (ii) discuss how the presence of the time-window
W introduces correlations that cannot be described by the original Bell-like
“hidden-variable” models [70] and how the non-Kolmogorovian nature ap-
pears. Here, we closely follow [6].

The time-coincidence post-selection procedure with the time-window W
defines the “coincident” photons based on the time-tags tn,i thereby reducing
the final detection efficiency to less than 100%, although in the simulation a
measurement always returns a +1 or −1 for both photons in a pair (100%
detection efficiency of the detectors). Hence, even in case of a perfect de-
tection process the data set that is finally retained consists only of a subset
of the entire ensemble of correlated photons that was emitted by the source,
exactly as in the laboratory experiments [53].

In the spirit of Kolmogorov probability theory, let us assume that there
exists a probability P (x1, x2, t1, t2|φ1, φ2) to observe the data {xi, ti} con-
ditional on the settings φi at stations i for i = 1, 2. The probability can
always be expressed as an integral over the mutually exclusive events ξ1, ξ2,
representing the polarization of the photons

P (x1, x2, t1, t2|φ1, φ2) =
1

4π2

2π∫
0

2π∫
0

P (x1, x2, t1, t2|φ1, φ2, ξ1, ξ2)

× P (ξ1, ξ2|φ1, φ2)dξ1dξ2 . (16)

We now assume that in the probabilistic version of our simulation model, for
each event, (i) the values of {x1, x2, t1, t2} are independent of each other, (ii)
the values of {x1, t1} ({x2, t2}) are independent of φ2 and ξ2 (φ1 and ξ1),
(iii) ξ1 and ξ2 are independent of φ1 or φ2. With these assumptions Eq. (16)
becomes

P (x1, x2, t1, t2|φ1, φ2) =
1

4π2

2π∫
0

2π∫
0

P (x1|φ1, ξ1)P (t1|φ1, ξ1)P (x2|φ2, ξ2)

× P (t2|φ2, ξ2)P (ξ1, ξ2)dξ1dξ2 . (17)
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It is not difficult to see that (17) is the generic probabilistic description of
the simulation algorithm presented in Sect. 4.3 if we leave out the detailed
specification of the operation of the optical components.

In the experiment [53] and therefore also in our simulation model, the
events are selected using a time window W . Accounting for the time window,
that is multiplying (17) by a step function and integrating over all t1 and t2,
the expression for the probability for observing the event (x1, x2) reads

P (x1, x2|φ1, φ2) =

2π∫
0

2π∫
0

P (x1|φ1, ξ1)P (x2|φ2, ξ2)ρ(ξ1, ξ2|φ1, φ2)dξ1dξ2 ,

(18)
where the probability density ρ(ξ1, ξ2|φ1, φ2) is given by

ρ(ξ1, ξ2|φ1, φ2) =
+∞∫

−∞

+∞∫
−∞

P (t1|φ1, ξ1)P (t2|φ2, ξ2)φ(W − |t1 − t2|)P (ξ1, ξ2)dt1dt2

2π∫
0

2π∫
0

+∞∫
−∞

+∞∫
−∞

P (t1|φ1, ξ1)P (t2|φ2, ξ2)φ(W − |t1 − t2|)P (ξ1, ξ2)dξ1dξ2dt1dt2

.

(19)

From (19) it follows immediately that in general, ρ(ξ1, ξ2|φ1, φ2) depends on
the settings φ1 and φ2. This fact brings the derivation of the original Bell
(CHSH) inequality to a halt. Indeed, in these derivations it is assumed that
the probability distribution for ξ1 and ξ2 does not depend on the settings φ1

or φ2 [72, 70]. From (18) and (19) it is also clear that, in general, the presence
of the time window renders the probabilistic description of the event (x1, x2)
non-Kolmogorovian: the probability density (19) depends on the settings
φ1 or φ2. By ignoring the time-tag information (W → ∞), ρ(ξ1, ξ2|φ1, φ2)
becomes independent of φ1 and φ2 and the two-particle probability takes the
form of the hidden variable models considered by Bell [70].

Summarizing: Our simulation model and its probabilistic version (17)
describe local processes only. It is the filtering of the detection events by
means of the time-coincidence window W produce correlations which violate
Bell-type inequalities [77, 78]. For W → 0 the classical, local and causal
simulation model and its probabilistic abstraction yields single-particle and
two-particle averages that are the same as those of a singlet state in quantum
theory.
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5. Discussion

We have discussed a computer simulation approach to model quantum physics
phenomena without making use of quantum theory. Specifically, in this pa-
per, we have shown that the event-based simulation model provides a cause-
and-effect description of laboratory EPRB experiments at a level of detail
which is not covered by quantum theory, such as the effect of the choice of
the time-window W on the coincidence counts. The statistical distributions
which ensue and which are usually thought to be of quantum mechanical
origin, emerge from a time series of discrete events generated by Einstein-
local, cause-and-effect processes which in principle could be executed using a
macroscopic mechanical computer. The violations of the Bell-type inequal-
ities is a direct consequence of the use of a coincidence criterion which is
unavoidable to identify pairs of particles in space-time. The post-selection
procedure is essential for any EPRB experiment involving pairs of objects
but it is not required for the discrete-event simulation of Bell-inequality tests
with neutrons [79] in which the path and the magnetic moment of the neutron
are correlated, see [7].

Invoking the computer-mechanical device metaphor mentioned in the In-
troduction, it is clear that whatever algorithm the digital computer carries
out, there exists a one-to-one mapping to objects that are directly accessi-
ble to our senses. Therefore computer simulation offers unique possibilities
to confront man-made concepts and theories with actual facts, not just ab-
stract symbols, facilitating the ordering and deeper understanding of human
experience.

Acknowledgement

We would like to thank K. De Raedt, K. Keimpema, F. Jin, S. Miyashita, S.
Yuan, and S. Zhao for many thoughtful comments and contributions to the
work on which this review is based.

Bibliography

[1] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulation in Statistical Physics,
Cambridge University Press, Cambridge, 2000.

[2] P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173 (1986).

[3] A. Tonomura, The Quantum World Unveiled by Electron Waves, World Scientific,
Singapore, 1998.

[4] H. Rauch and S. A. Werner, Neutron Interferometry: Lessons in Experimental Quan-
tum Mechanics, Clarendon, London, 2000.

[5] K. Michielsen, F. Jin, M. Delina, and H. De Raedt, Phys. Scr. T151, 014005 (2012).

[6] H. De Raedt and K. Michielsen, Ann. Phys. (Berlin) 524, 393 (2012).

1650010-19



H. De Raedt and K. Michielsen

[7] H. De Raedt, F. Jin, and K. Michielsen, Quantum Matter. 1, 1 (2012).

[8] K. Michielsen and H. De Raedt, Int. J. Mod. Phys. C 25, 1430003 (2014).

[9] H. De Raedt and K. Michielsen, Frontiers Phys. 2, 14 (2014).

[10] K. Michielsen, F. Jin, and H. De Raedt, J. Comput. Theor. Nanosci. 8, 1052 (2011).

[11] D. Bohm, Quantum Theory, Prentice-Hall, New York, 1951.

[12] A. Einstein, A. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

[13] L. de la Peña, A. M. Cetto, and T. A. Brody, Lett. Nuovo Cim. 5, 177 (1972).

[14] A. Fine, Synthese 29, 257 (1974).

[15] A. Fine, Synthese 50, 279 (1982).

[16] A. Fine, Phys. Rev. Lett. 48, 291 (1982).

[17] A. Fine, J. Math. Phys. 23, 1306 (1982).

[18] W. M. de Muynck, Phys. Lett. A 114, 65 (1986).
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