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1. Introduction

The most direct approach to calculate the physical properties of a quantum system
is to solve the eigenvalue problem of the Hamiltonian H. In particular the ground
state properties of a quantum system can be computed from the solution of the
eigenvalue problem

H|Φ〉 = E1|Φ〉 , (1)

where E1 denotes the smallest eigenvalue of the “matrix” H, the Hamiltonian of
the system, and |Φ〉 represents the corresponding eigenvector.

A critical factor for this approach to be useful in practice is the amount of
memory needed to characterize a state of the system. In a classical N -particle sys-
tem a many-particle state can be specified in terms of the position and momentum
of each of the particles, i.e. 2dN numbers are sufficient to uniquely characterize a
state (d denotes the dimension of the space in which the particles move). In quan-
tum mechanics this is not the case: A state of the same system is described by a
wave function which in general is a linear combination of all the allowed “classical”
states. Thus instead of O(N) numbers, we need to specify all the coefficients of
this linear combination, i.e. M numbers where M denotes the dimension of the
matrix H representing the Hamiltonian. In general M � O(N) as will be clear
from the following, rather generic, example.

Consider a lattice model of L sites, filled with L/2 electrons with spin up and
L/2 electrons with spin down. Taking into account the fermion character of the
electrons simple counting shows that

M =

(
L

L/2

)2

, (2)

which for large L (L ≥ 16 will do) can be approximated using Stirling’s formula
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to give M ≈ 22L+2/2πL, demonstrating that M increases exponentially with 2L.
Using 8 bytes/floating point number the estimated amount of memory we need to
store a single eigenvector is given by

M≈
22L−25

2πL
Gbyte . (3)

From (3) it follows that M ≈ 1Gbyte if L = 16, M ≈ 109Gbyte if L = 32, and
M ≈ 1028Gbyte if L = 64. Clearly any method that requires storage of the full
matrix (i.e. M2 Gbyte will be of very limited use (as far as the range of system
sizes that can be studied is concerned) to solve models for interacting fermions.

Although our estimate of the required amount of memory is somewhat crude
(it does not incorporate reductions due to the use of symmetries) it gives a feeling
for the kind of systems that can be solved by conventional, sparse matrix eigenvalue
techniques such as the Lanczos [1, 2, 3], the (inverse) power [1, 2], or (generalized)
Davidson method [4, 5]: L = 16 is within reach [6− 8] but L = 32 is not.

Usually one is not content with the solution of a many-body problem describing
a few particles only: The system-size dependence of the physical properties needs
to be studied in order to get insight into the collective behavior of the particles.
Unfortunately, as the many-particle system becomes larger, M grows exponentially
fast and it is not a matter of just waiting for the next generation of computers
to become affordable. If we want to solve these monster eigenvalue problems for
values of M that our computers cannot manage we have to adopt another strategy.
In fact we have only one option: We have to make the fundamental hypothesis
that of all the M possible configurations (states) sampling only a small fraction
MI (MI � M) of states will suffice to compute the ground-state properties to
the desired accuracy. Searching the very large number of M states for the MI

important states may be viewed as a problem of importance sampling. However,
the probability of a state to occur, i.e. its contribution to the ground state, is not
known until we actually solve the eigenvalue problem.

In classical equilibrium statistical mechanics one faces a similar problem: The
probability for a configuration is pj ≡ e−βEj /

∑
j e
−βEj where Ej is the energy

corresponding to the configuration j. The partition function Z ≡
∑
i e
−βEi is,

in general, unknown and hence so is pj. Any Markov process which has {pj} as
its limit distribution can be used to generate the “important” configurations, i.e.
those that give the largest contributions to Z. The Metropolis Monte Carlo (MMC)
method [9, 10, 11] is the most widely used algorithm implementing this idea but
other simulation techniques such as Molecular Dynamics or Langevin Dynamics
can be used as well. The MMC method uses the ratio pi/pj to determine the
transition probability for the underlying stochastic process. Crucial thereby is
that in forming the ratio, the unknown partition function drops out.

The apparent similarity between quantum and classical problems can be ex-
ploited to reformulate the calculation of the lowest eigenvalue or thermal expec-
tation values of a quantum system in terms of a Markov process on the space of
states. Various standard methods of linear algebra have a stochastic counterpart.
The power method is at the heart of the Diffusion Monte Carlo technique which
uses a stochastic process to sample powers of the matrix H [12]. The Green Func-
tion Monte Carlo technique performs the inverse iteration steps by solving this
linear equation by a stochastic method [12]. Quantum statistical problems can be
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recasted into a “classical” form by means of the Feynman path integral [13, 14] or,
more generally by invoking a Trotter-Suzuki formula [14−19]. The Markov pro-
cess will properly sample the important contributions to the ground state provided
the elements of the stochastic matrix, defining the Markov process, correspond to
the matrix elements of a judiciously chosen function f(H) of the Hamiltonian H.
However, for many problems of interest constructing this correspondence seems
extremely hard: The elements of the stochastic matrix, being probabilities, have
to be positive but, more as a general rule than an exception, the matrix elements
of f(H) may be negative and positive (except for f(H) ∝ 1).

The fundamental difficulty of constructing the appropriate stochastic matrix
is called the minus-sign problem in Quantum Monte Carlo (QMC) simulations
[20]. It results from the choice of the representation used to calculate the matrix
elements of f(H), in combination with the desire or need to use a Markov process
as a vehicle to search for the important states. Accordingly the minus-sign problem
should also be present in cases where there are no fermionic degrees of freedom
and indeed, there are ample examples that show it is, including systems with only
one degree of freedom [18]. The analogy with classical statistical mechanics breaks
down completely if the minus-sign problem is present. In practice this implies that
a quantity of interest might be a sum of a positive and a negative contribution
which, unfortunately, nearly cancel each other. Extremely good statistics and
accuracy may be required to obtain meaningful results.

This lecture is devoted to a method, called stochastic diagonalization [21, 22],
that is free of minus-sign problems by construction. It is fundamentally different
from QMC methods in that it uses a random process, based on orthogonal instead
of stochastic matrices, to collect the important contributions to the ground state.

2. Minus-sign Problem in Quantum Monte Carlo Methods

From mathematical point of view all QMC methods [20] have in common that
at some point they evaluate, using a sampling technique, matrix elements of a
function f(H) of the Hamiltonian H that has the structure of a matrix product.
For the Diffusion QMC method

fDQMC(H) = (1− τH)m , (4)

where τ is some control parameter and m is related to the number of steps in the
random walk. The Green Function Monte Carlo method uses

fGFMC(H) = [(ω +H)−1]m , (5)

where ω is a real number, the purpose of which is discussed below. Path-integral
or Trotter-Suzuki-based techniques push the product-formula structure of (4) and
(5) a level further by approximating the function fPI (H) = e−βH by an ordered
product of exponents, e.g.

fPI (H) ≈
(
e−β(H−A)/m)e−βA/m)

)m
. (6)

where A denotes a contribution to H.
It is now instructive to ask the question under which conditions these QMC
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techniques will not suffer from the minus-sign problem. For the Diffusion QMC
Method (4) a sufficient condition is given by (almost trivial)

Theorem 1. A sufficient condition for 〈φ|(1− τH)|ψ〉 to possess positive matrix
elements is given by 〈φ|H|ψ〉 ≤ 0 for all |φ〉,|ψ〉.

For the Green Function Monte Carlo method (5) it is clear that if a real number
ω can be found such that the matrix (ω+H)−1 has all positive elements it can, in
principle, be used to define a Markov process [23]. A sufficient condition follows
from

Theorem 2. If ω is taken such that ω +H is a positive definite matrix with the
property that 〈φ|H|ψ〉 ≤ 0 for all |φ〉 6= |ψ〉 then (ω + H)−1 has only positive
elements.

The proof of theorem 2 can be found in [22, 24]. Finally for QMC Methods (6)
that are based on e−βH (or approximations thereof) we have

Theorem 3. The necessary and sufficient condition for 〈φ|e−τH |ψ〉 to be positive
for all τ > 0 is 〈φ|H|ψ〉 ≤ 0 for all |φ〉 6= |ψ〉.

The proof of theorem 3 can be found in [22, 24]. Obviously, for all three QMC
methods the sufficient condition is the same.

It is easy to see that the sufficient condition puts rather strong constraints
on the choice of the representation that is used to actually evaluate the matrix
elements. Due to the product-formula structure of the algorithms the product of
all (positive or negative) factors might still be positive, for instance because the
total number of negative factors is always even. An example of such a system is
the two-dimensional Heisenberg model on a bipartite lattice [14].

The sufficient condition for not having minus-sign problems seems rather re-
strictive. There are a number of examples where, at first glance, the necessary
condition is not fulfilled but where there are no minus-sign problems. This, in
all cases that we know of, is due to the presence of symmetries that allow us to
reverse the sign of the non-diagonal elements of H by changing the representation
of the states.

Usually it is expedient to carry out analytically as many integrations (or sum-
mations) as possible, for instance by introducing auxillary degrees of freedom,
completing the square and performing the resulting Gaussian integrals [18]. In
some cases, e.g. some electron-phonon models [25], the minus-sign problem disap-
pears completely while in other cases (e.g. the two-dimensional Hubbard model)
it is absent for particular values of the model parameters [18]. We are not aware
of general results on the presence or absence of the minus-sign problem in QMC
methods that use auxillary fields. For fermion systems this amounts to a study
of one or more determinants of non-symmetric real matrices [18, 26], a non-trivial
problem in itself.

3. Stochastic Diagonalization

If the dimension of the Hilbert space is so large that it is no longer possible
to store even a single vector, standard diagonalization methods cannot be used
to solve the Schrödinger equation. Then the only way to proceed is to make
the basic assumption (i.e. the fundamental hypothesis mentioned above) that of
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the whole, large set of basis vectors {|φj〉 ; j = 1, . . . ,M} spanning the Hilbert
space, only a relatively small portion is important for the computation of physical
properties. The stochastic diagonalization (SD) algorithm implements this idea in
the following manner [21, 22]. Instead of using the sparseness of the matrix, it is
assumed that the solution itself is “sparse” in the sense that only a small fraction
of the elements of the eigenvector, corresponding to the smallest eigenvalue, is
important.

As the ground state can be written as a linear combination of all the basis
states

|Φ〉 =
M∑
j=1

aj|φj〉 , (7)

we can, at least in principle, rearrange the terms in this sum so that the ones with
the largest amplitude are in front:

|Φ〉 =
M∑
j=1

aPj |φPj〉 . (8)

Here P denotes the permutation of the set {1, . . . ,M} such that |aPj | ≥ |aP(j+1)|.
Keeping only the first MI = MImportant terms we have

|Φ〉 ≈ |Φ̃〉 =

MI∑
j=1

aPj |φPj〉 . (9)

From Poincaré’s theorem [1, 2] it follows that E ≤ Ẽ = 〈Φ̃|H|Φ̃〉/〈Φ̃|Φ̃〉 demon-
strating that keeping the MI important states gives an upperbound to the ground-
state energy.

If the basic premise on the existence of important states holds we may expect
that MI �M . In practice the choice of the MI that will give satisfactory accuracy
will depend on the actual choice of the basis vectors (i.e. the representation used)
and on the model itself.

Up to now, we argued as if we already know the permutation P that re-shuffles
the expansion (8) in terms of the chosen basis states but in fact we don’t know
P nor do we know the coefficients aPj . The essence of the SD algorithm is that
it finds P and the coefficients aPj simultaneously through a combination of plane
(Jacobi) rotations and matrix inflation. As will be clear from the theory given
below, this algorithm cannot suffer from the minus-sign problems by construction.
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3.1. THEORY: PRELIMINARIES

We start by introducing some notations. The projection of a real and sym-
metric matrix H on the subspace spanned by the n ≤ M orthonormal states
(vectors) S(n) ≡ {|φ1〉, . . . , |φn〉} will be denoted by H(n), matrix elements by

H
(n)
i,j = 〈φi|H|φj〉 and the eigenvalues E

(n)
i of H(n) are assumed to be ordered

such that E
(n)
1 ≤ E

(n)
2 ≤ . . . ≤ E

(n)
n . Eventually the superscript n will keep track

of the number of important states and therefore also of the size of the matrix H(n).

Evidently H(M) = H and E
(M)
i = Ei. We will use H and Hi,j to denote the full

matrix and the corresponding matrix elements respectively. Without loss of gen-
erality we may assume that in each row (or column) i = 1, . . . ,M there is at least
one non-diagonal matrix element (Hi,j) that differs from zero, i.e.

∑
j 6=i |Hi,j| > 0

for 1 ≤ i ≤M . Otherwise the matrix would decompose into blocks of smaller ma-
trices and the determination of the smallest eigenvalue amounts to the calculation
of the smallest eigenvalue of each block. The transpose of a matrix A is denoted by

AT . The norm of a vector x = (x1, . . . , xn) will be denoted by ‖x‖ =
(∑n

i=1 x
2
i

)1/2
and ‖A‖ stands for the spectral norm, i.e. the square root of the largest eigenvalue
of the matrix ATA [1].

A plane rotation involving states |φin,k〉 and |φjn,k〉 (1 ≤ in,k < n, in,k < jn,k ≤

n) is represented by a n×n orthogonal matrix U (n,k) = U (n,k)(in,k, jn,k, cn,k, sn,k)
which, in block matrix form, can be written as

U (n,k)(in,k, jn,k, cn,k, sn,k) =



1 in,k jn,k n

1
. . .

cn,k . . . sn,k
... 1

...
−sn,k . . . cn,k

. . .
1


. (10)

In (10) all diagonal elements are unity except for the two elements cn,k in columns
in,k and jn,k. All non-diagonal elements are zero except the two elements −sn,k
and sn,k. The subscript k will be used as a running index of the plane rotations
for fixed dimension n. This admittedly complicated notation is necessary to avoid
ambiguities in the interpretation of the symbols. The product of a sequence of
plane rotations will be denoted by U (n,m) = U (n,1) . . . U (n,m). We adopt the con-
vention that the order in which plane rotations are applied corresponds to the
value of k, i.e. first U (n,1), then U (n,2) and so on. The transformed matrix is given

by H(n,m) =
[
U (n,m)

]T
H(n)U (n,m). Note that the label n only determines the

dimension of the matrices and that it puts no restriction on m.
Plane rotations will be determined by the following elementary result.

Lemma 1. The eigenvalues λ1 ≤ λ2 of a real and symmetric matrix A =

(
x y
y z

)
where x ≤ z and y 6= 0 satisfy λ1 < x ≤ z < λ2.
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The eigenvalues of A are λ1 = x− ty < x and λ2 = z + ty > z and the orthogonal
matrix

U =

(
c s
−s c

)
, (11)

with c = 1/
√

1 + t2, s = t/
√

1 + t2 and t = 2y/(z − x+
√

(z − x)2 + 4y2) (i.e.
|t| ≤ 1), diagonalizes the matrix A, i.e.

UTAU =

(
λ1 0
0 λ2

)
. (12)

The strict inequality λ1 < x is essential for the importance sampling algorithm.

3.2. THEORY: MODIFIED JACOBI METHOD

One strategy to compute the ground state would be to transform the matrix H as

UTHU =

(
E1 0T

0 H̃

)
. (13)

We modify the cyclic Jacobi method [1] to accomplish this. Let us assume for
a moment that H1,1 ≤ Hj,j, 2 ≤ j ≤ M . We will remove this restriction
later. If, instead of considering all pairs (i, j), the plane rotations involve pairs
(1, 2), . . . , (1,M) only, then

Ĥ(M) ≡ lim
m→∞

H(M,m) =

(
Ei 0T

0 H̃

)
, (14)

where Ei = E
(M)
i is one of the eigenvalues. The proof of (14) is straightforward.

According to Lemma 1, application of a plane rotation involving a pair (1, j)

strictly reduces H
(M,m)
1,1 , i.e. H

(M,m+1)
1,1 < H

(M,m)
1,1 for m > 0 and since E

(M)
1 ≤

H
(M,m)
1,1 the sequence {H

(M,m)
1,1 } is monotonically decreasing and bounded from

below. Thus limm→∞H
(M,m)
1,1 = Ê exists. Furthermore limm→∞H

(M,m)
1,j = 0 for

all j ∈ {2, . . . ,M}. To prove this assume the contrary, i.e. limm→∞H
(M,m)
1,j 6= 0

for at least one j ∈ {2, . . . ,M}. Then, according to Lemma 1, a plane rotation
involving the pair (1, j) would reduce the (1, 1) element, in contradiction with the

assumption that the monotonically decreasing sequence {H
(M,k)
1,1 } converges to Ê.

Moreover, since limm→∞H
(M,m)
1,j = 0 for all j ∈ {2, . . . ,M}, Ê is an eigenvalue.

Hence Ê = E
(M)
i for some i ∈ {1, . . . ,M}. This completes the proof that this

variant of the Jacobi method isolates an eigenvalue.

The eigenvector corresponding to E
(M)
i is given by |Φ

(M)
i 〉 with

|Φ(n)
i 〉 ≡ lim

m→∞

n∑
j=1

U (n,m)
j,i |φj〉 ; 1 ≤ n ≤M , (15)
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i.e. the i-th column vector of U (n,m) in the basis {|φ1〉, . . . , |φn〉}.

3.3. THEORY: MATRIX INFLATION

The modified Jacobi method isolates an eigenvalue and yields the corresponding
eigenvector but at this point it is not known which eigenvalue it will find. In order
to obtain the smallest eigenvalue we combine the modified Jacobi method with a
matrix inflation procedure. The latter will turn out to be essential to determine
which states are important and which are not.

The theoretical justification of the method is by induction. Consider the sub-
matrix

H(n) =


H1,1 H1,2 . . . H1,n

H1,2 H2,2 . . . H2,n

...
...

. . .
...

H1,n H2,n . . . Hn,n

 , (16)

and assume that application of the modified Jacobi scheme reduces H(n) to the
form

Ĥ(n) ≡ lim
m→∞

H(n,m) =

(
E

(n)
1 0T

0 H̃

)
, (17)

where E
(n)
1 is the smallest eigenvalue of H(n). This assumption is trivially satisfied

for n = 1. We now inflate the matrixH(n) by adding the (n+1)-th row and column.
Apply to H(n+1) the sequence of plane rotations that transforms H(n) to the form
(17) and obtain

Ĥ(n+1) =

(
Û (n) 0

0 1

)T
H(n+1)

(
Û (n) 0

0 1

)
, (18a)

=


E

(n)
1 0 . . . 0 α

(n+1)
1

0 H̃2,2 . . . H̃2,n α
(n+1)
2

...
...

. . .
...

...
0 H̃2,n . . . H̃n,n α

(n+1)
n

α
(n+1)
1 α

(n+1)
2 . . . α

(n+1)
n Hn+1,n+1

 , (18b)

where Û (n) = limm→∞ U (n,m), α
(n+1)
j = limm→∞ α

(n+1,m)
j for j = 1, . . . , n,

α
(n+1,m)
j =

((
U (n,m) 0

0 1

)T
H(n+1)

(
U (n,m) 0

0 1

))
j,n+1

, (19a)

and
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U (n,m) ≡

(
Û (n−1) 0

0 1

)
U (n,m) ; Û (1) = 1 . (19b)

Here use has been made of the symmetry of H and the fact that the plane rotations
in (19) do not affect the matrix elements in column n+ 1.

Let us now assume that

α
(n+1)
1 6= 0 . (20)

We will discuss the case α
(n+1)
1 = 0 in more detail below. According to Lemma 1,

a single plane rotation involving the pair (1, n+ 1) will lead to a reduction of the
(1, 1) element of H(n+1) provided

E
(n)
1 ≤ Hn+1,n+1 , (21)

a restriction to be removed later. With x = E
(n)
1 , y = α

(n+1)
1 , and z = Hn+1,n+1,

Lemma 1 gives

H(n+1,1) =

λ1 βT 0
β H̃ γ̃
0 γ̃T λ2

 , (22)

with βT = −sn+1,1

(
α

(n+1)
2 , . . . , α

(n+1)
n

)
and λ1 < E

(n)
1 . Invoking the separation

theorem [1] gives E
(n+1)
1 ≤ E

(n)
1 and hence

E
(n+1)
1 ≤ λ1 < E

(n)
1 . (23)

If β = 0 we have E
(n+1)
1 = λ1. In general β 6= 0 but we already showed that in

the modified Jacobi method, the (1, 1) element monotonically decreases and con-
verges to an eigenvalue. According to inequality (23), application of the modified
Jacobi strategy to the matrix (22) will yield the smallest eigenvalue of H(n+1), i.e.

limm→∞H
(n+1,m)
1,1 = E

(n+1)
1 . Then, returning to (18) with n replaced by n + 1,

the whole procedure can be repeated. This completes the proof that the method
will isolate the smallest eigenvalue of H.

Summarizing: The calculation starts by diagonalizing the 2× 2 matrix. Then
one row and column is added to the matrix and the modified Jacobi method is
employed to compute the smallest eigenvalue of the 3 × 3 matrix. This step is
repeated, yielding the smallest eigenvalue of a 4× 4 matrix, 5× 5 matrix, and so
on.

We now review the assumptions made. Restriction (21) (which includes the
condition H1,1 ≤ Hj,j) is trivially removed. If this condition is not satisfied,
application of the permutation

P =

(
1 . . . n+ 1 . . . M

n + 1 . . . 1 . . . M

)
, (24)

will bring the matrix in the desired form, without loosing numerical stability. In
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practice this is a trivial operation.

At each inflation step (n → n + 1) we might have α
(n+1)
1 = 0. Then the

arguments that were used to prove convergence to the smallest eigenvalue cannot

be used because the inequality λ1 < E
(n)
1 does not hold. If the matrix is block

diagonal, i.e. α
(n+1)
j = 0 for all j ∈ {1, . . . , n}, it is clear that we have to compute

the lowest eigenvalue of each block. However this case cannot occur because we
assumed that there is at least one non-zero off-diagonal matrix element in each
column (or row) and the application of orthogonal transformations does not change
this property. The process of clearing a matrix element on the first row and

inflating the matrix may “accidentally” lead to α
(n+1)
1 = 0, some rather exotic

examples being given in ref. [22]. As long as n + 1 < M there is no immediate
danger for the method to break down. If there exists a permutation of the columns

(and rows) n+ 1 and n′ (n+ 1 < n′ ≤M) that yields α
(n+1)
1 6= 0, we perform this

permutation (in theory, not in practice of course) and continue as usual. However,
if n + 1 = M or if there does not exist such a permutation then the method has
isolated an eigenvalue but there is no guarantee that it is the smallest. In this
case the matrix has been reduced to the block-diagonal form and we have no other
option than to repeat the procedure, i.e. isolate the smallest eigenvalue, for the
remaining (M − 1)× (M − 1) block matrix. However, according to the hypothesis
made in the introduction, the number of important states MI is assumed to be a

small fraction of M . Hence n ≤MI �M and the case α
(p)
1 = 0 with n < p < M

will hardly occur in practice.

3.4. THEORY: IMPORTANCE SAMPLING ALGORITHM

The theoretical method can be turned into a useful importance sampling algorithm
by a few minor modifications. The order to annihilate the off-diagonal elements of
the first row (and column) is fully determined by our desire to efficiently isolate an

eigenvalue. Accordingly, the pair (1, j) and (j, 1) is chosen such that |H(n,m)
1,j | =

maxi>1 |H
(n,m)
1,i |.

The first modification, identical to the one made in the case of the Jacobi
method [1], is to limit the number of plane rotations for fixed n by introducing

the threshold ε
(n,m)
R > 0. Rotations will be carried out if |H

(n,m)
1,i | ≥ ε

(n,m)
R for

any i = 2, . . . , n or, in different words, until the size of all off-diagonal elements on

the first row becomes smaller than the threshold ε
(n,m)
R . Keeping ε

(n,m)
R fixed the

transformed matrix reads

H(n,m) =

(
E

(n,m)
1 δ(n,m)T

δ(n,m) H̃

)
, (25)

where E
(n)
1 ≤ E

(n,m)
1 and δ

(n,m)
i = H

(n,m)
1,i for i > 1. Invoking the monotonicity

theorem [1, 2, 22], yields
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E
(n,m)
1 −E

(n)
1 ≤ ‖δ(n,m)‖ =

√∑
i>1

(
H

(n,m)
1,i

)2

<
√
nε

(n,m)
R . (26)

The second modification concerns the inflation step, providing the criterion
to decide which states are important and which are not. Again we proceed by
induction. Assume the number of important states is n. We pick a trial state

|φ̂〉 from the set of M − n remaining states, for instance randomly. Recall that
there must be at least one non-zero element in the new row and column. We
temporarily set |φn+1〉 = |φ̂〉, compute α

(n+1,m)
1 and the corresponding change of

the (1, 1) element (see Lemma 1)

∆
(n+1,m)
n+1 =

2
(
H

(n,m)
1,n+1

)2

∆ +

√
∆2 + 4

(
H

(n+1,m)
1,n+1

)2
, (27)

where ∆ = H
(n+1,m)
n+1,n+1−H

(n+1,m)
1,1 .

If ∆
(n+1,m)
n+1 ≥ ε

(n+1,m)
A the trial state |φ̂〉 is considered to be important and

is added to the set of states. Clearly the threshold ε
(n+1,m)
A > 0 will control the

importance sampling process. We set |φn+1〉 = |φ̂〉 and

U (n+1,k) =

(
U (n,k) 0

0 1

)
; k = 1, . . . , m . (28)

Unlike in the previous sections of this chapter, the plane rotation index is not reset
to its initial value m = 1 when we inflate the matrices. Annihilation of the matrix
element α

(n+1,m)
1 = 0 determines the new rotation matrix U (n+1,m+1). We finally

replace n by n + 1, m by m + 1 and continue. If ∆
(n+1,m)
n+1 < ε

(n+1,m)
A the trial

state is rejected and a new trial state |φ̂〉 is generated. If α
(n+1,m)
1 = 0 the trial

state is always rejected since ∆
(n+1,m)
n+1 = 0.

In order to isolate the smallest eigenvalue the reduction has to be large enough.
A sufficient condition can be derived by repeating the steps that led to (18). In
place of (18) we now have

H(n+1,m) =


E

(n,m)
1 δ

(n,m)
2 . . . δ

(n,m)
n α

(n+1,m)
1

δ
(n,m)
2 H̃2,2 . . . H̃2,n α

(n+1,m)
2

...
...

. . .
...

...
δ

(n,m)
n H̃2,n . . . H̃n,n α

(n+1,m)
n

α
(n+1,m)
1 α

(n+1,m)
2 . . . α

(n+1,m)
n Hn+1,n+1

 , (29)

because now m is finite. Annihilating α
(n+1,m)
1 leads to a matrix of the form (22).

From (26) it is clear that if λ1 ≤ E
(n,m)
1 − ‖δ(n,m)‖, we will have λ1 < E

(n)
1 .

Repeating the reasoning that follows (23) establishes that if λ1 ≤ E
(n,m)
1 −
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‖δ(n,m)‖ the inflation step will guarantee convergence to the smallest eigenvalue.

The condition for isolating the smallest eigenvalue follows from λ1 ≤ E
(n,m)
1 −

‖δ(n,m)‖ and E
(n,m)
1 − λ1 ≥ ε

(n,m)
A and is given by ε

(n,m)
A ≥ ‖δ(n,m)‖. As is usual

with this kind of theoretical analysis, the bounds on the maximum reduction
of the smallest eigenvalue may be too weak and strict use of (29) may have a
negative impact on the performance of the algorithm. The construction of the
importance sampling algorithm and the mathematical proof that it yields the
smallest eigenvalue of H have now been completed.

To summarize, the SD algorithm looks like this:

Initialize data structures
do

if {Maximum of absolute value of off-diagonal elements of the first row
smaller than threshold for rejecting plane rotations}
then

Generate a new trial state
if {No important state has been found}

then
Reduce the threshold(s)

else
Inflate the matrix

end if
else

Annihilate the pair of off-diagonal elements with the largest
absolute value by performing a plane rotation

end if
end do

3.5. COMPUTATION OF PHYSICAL PROPERTIES

Assuming the ground state has been found, either in exact form by e.g. the Lanczos
method or in the variational sense through the SD algorithm, the calculation of
expectation values of physical quantities may become a non-trivial computational
problem if the matrix representing the observable is not diagonal in the basis
{|φj〉 ; j = 1, . . . ,M} that was used to represent the Hamiltonian. Indeed, if A
denotes the physical observable, the expectation value of A is given by

〈A〉 = 〈Φ|A|Φ〉 =
MI∑
i,j=1

aPiaPj〈φi|A|φj〉 , (30)

showing that in general it will take O(M2
I ) operations to carry out this compu-

tation. The calculation of the ground-state energy itself does not require extra
work because (the approximation to) it is known at each stage of the SD process
[22]. However for large MI the calculation of certain expectation values, e.g. the
reduced two-fermion density matrix (see below), might take a substantial amount
of CPU time.
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Table 1. Comparison between ground state energies of the 2D tt′-Hubbard model as obtained by

exact diagonalization (ED), stochastic diagonalization (SD) and projector quantum Monte Carlo

(PQMC) for a Lx = Ly = 4 lattice. The density of electrons with spin-up or spin-down is 5/16.

For U < 0, t′ = 0 whereas for U > 0, t′ = −0.22t.

U/|t| ED SD PQMC

−6 −2.458782 −2.4568 −2.460± 0.004
−4 −2.045849 −2.0453 −2.045± 0.002
−2 −1.731689 −1.7316 −1.731± 0.003

2 −1.230034 −1.2300 −1.231± 0.001
4 −1.126160 −1.1261 −1.125± 0.003
6 −1.058717 −1.0581 −1.061± 0.005

3.6. COMPARISON WITH OTHER METHODS

We have tested the SD algorithm by comparing the results of SD calculations
to results obtained by other, more established methods. In Table 1 we collect
some data, obtained by various numerical methods, for the two-dimensional (2D)
tt′-Hubbard model [27, 28]. In reciprocal space the model Hamiltonian reads

HHub =
∑
k

∑
σ=↑,↓

εk c
+
k,σck,σ +

U

L

∑
k,p,q

c+k+q,↑c
+
p−q,↓cp,↓ck,↑ , (31)

where εk = −2t(cos(2πkx/Lx) + cos(2πky/Ly)) − 4t′ cos(2πkx/Lx) cos(2πky/Ly),
k = (kx, ky), U is the on-site Coulomb interaction, Lx (Ly) denotes the number
of lattice points in the x-(y-)direction, L ≡ Lx · Ly, and t (t′) is the nearest
(next-nearest) neighbour hopping-integral. From Table 1 it is clear that the SD
algorithm is working properly in this case. In Table 2 we compare results of a fixed-
node approximation approach [29] and SD calculations for a small two and three-
dimensional Hubbard model (t′ = 0, εk = −2t(cos(2πkx/Lx) + cos(2πky/Ly) +
cos(2πkz/Lz)), k = (kx, ky, kz)). The number of states collected in these SD
calculations was limited to 10 and 600 for the first and second (and third) row
respectively, the corresponding dimension of the Hilbert space being 36 and 4900.
Compared to mean-field approximations the fixed-node approximation yields a
significant improvement for the upper-bound to the ground-state energy of the
Hubbard model [29] but is clearly not as accurate as the SD method.

In Table 3 we present a selection of results of SD and other calculations on
some typical quantum chemistry problems [30]. The SD results using MI = 40000
compare favourably with the results of the full Configuration Interaction (CI)
calculation [5]. These and other [30] results demonstrate that the SD algorithm
can be quite effective in reducing the number of basis states while giving up little
in terms of accuracy.

4. Application: Off-Diagonal Long-Range Order

In boson systems Bose-Einstein condensation is characterized by the existence of
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Table 2. Comparison between ground state energies per site of the two and three-dimensional

Hubbard models as obtained from a fixed-node aproximation (FN) [29], exact diagonalization

(ED) and stochastic diagonalization (SD). N denotes the number of electrons with spin-up and

spin-down. The difference between the FN results of the second and third row stems from the

choice of the trial state [29].

Lattice N U/|t| FN ED SD

2× 2 2 1 −3.3172 −3.3408 −3.3408
2× 2× 2 4 10 −2.6507 −2.8652 −2.8634
2× 2× 2 4 10 −2.6382 −2.8652 −2.8634

Table 3. The energy E and correlation energy Ecorr, both in hartree of the Mg atom as obtained

by SD and various standard quantum chemistry methods. MI denotes the number of basis states

(determinants with D2h symmetry) that was used.

Method E Ecorr MI

SCF −199.585212 0.0000 1
RASSCF −199.615701 −0.0305 4
CISD −199.721386 −0.1362 2960
CISDT −199.722039 −0.1368 102928
CISDTQ −199.726256 −0.1410 1964232
SD −199.724237 −0.1409 2000
SD −199.726164 −0.1410 40000
CI [5] −199.7263 −0.1411 2538603250

Off-Diagonal Long-Range Order (ODLRO) in the reduced single-particle density
matrix [31, 32]. Yang has shown that the concept of ODLRO can also be used
to characterize the superconducting state of fermion systems [33]. Under certain
simplifying assumptions, ODLRO implies the existence of the Meissner effect and
magnetic flux quantization [34 − 36]. ODLRO in the reduced n-particle density
matrix implies ODLRO in the reduced m-particle density matrices for all m > n
[33].

For a fermion system the one-particle reduced density matrix cannot exhibit
ODLRO [33]. Therefore we will compute the largest eigenvalue λ0 of the reduced
two-body density matrix [33]

ρr,s ≡ ρ(i, j, σ; k, l, σ′) = 〈c+i,σc
+
j,−σcl,−σ′ck,σ′〉 , (32)

where r = (i, j, σ) and s = (k, l, σ′) and c+i,σ and ci,σ are the creation and annihila-
tion operators, respectively, for a fermion with spin σ =↑, ↓ at the generalized site
index i. As is evident from the spin labels in (32) we only consider singlet pairing.
For conciseness we will from now on use the term ODLRO, always refering to
ODLRO in the two-body density matrix.

The eigenvector of the two-body density matrix, corresponding to λ0, contains
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all the information about the type of pairing, including all exotic forms of pairing
[37− 39]. For instance, in the case of pure s-wave pairing, for all r = (i, i, σ) the
elements of the eigenvector are non-zero and the same whereas they are zero for
all r = (i, j, σ), i 6= j. In general, having obtained this eigenvector, it is a simple
matter to identify the dominant pairing mechanism.

One could also use flux quantization [33, 40] or the superfluid density [41] as
criteria to look for superconductivity in a particular model. Exact calculations for
free fermions show that for systems of sizes accessible to numerical simulations,
both these quantities display a very strong size dependence, making them less
suited for our purpose [25, 42].

The evaluation of the two-particle density matrix (32) can be time consuming.
The number of operations in the algorithm that we use to compute all entries
of this matrix scales with L4MI . For most of the systems that we have studied
MI = O(105), and the CPU time required to set up the two-particle density matrix
is substantial.

There is ODLRO in a fermion system if the largest eigenvalue λ0 of the 2L2×
2L2 matrix ρr,s grows linearly with the size of the system (assuming the density
of particles is kept constant) [33]. Accordingly, a plot of λ0 versus the system size
will reveal whether or not the system exhibits ODLRO. It is also of interest to
compute the on-site (s-wave) pairing correlation function

P0 ≡
1

L

∑
i,j

〈c+i,↑c
+
i,↓cj,↓cj,↑〉 . (33)

As the contributions to P0 appear on the diagonal of the two-particle density
matrix (32) we must have P0 ≤ λ0, an inequality that is never violated by our
numerical data. From (33) it is clear that there is ODLRO if P0 ∝ L for large L,
i.e. ODLRO of the on-site type.

A simple check on the numerical results is that they should satisfy the rigorous
bound [33]

λ0 ≤ L
n(2− n)

2
+ n ; nL even , (34)

where n = L−1
∑
i,σ〈ni,σ〉 denotes the density of particles. All our numerical

results are in concert with (34).
On the one hand the computational effort required to compute the ground

state energy and the reduced two-particle density matrix grows (exponentially) fast
with the system size. On the other hand it is crucial to have data for significantly
different system sizes in order for the plot of λ0 versus L to be of any use at all.
With this in mind it is of interest to start searching for ODLRO in one-dimensional
(1D) systems [42]. SD results for two-dimensional models can be found in refs.
[43, 44].

Although in a 1D model there can be no ODLRO at non-zero temperature in
the strict sense [45], at T = 0 there can be ODLRO even in a 1D system. As the
numerical method we employ is designed to compute the ground-state properties
we may expect to find in our data clear signals for ODLRO whenever it is there.
Due to the quantum fluctuations there can at most be “quasi” ODLRO in 1D
systems with short-range interactions: The pairing correlation functions exhibit a
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slow (power-law) decrease for large distances, resulting in a sublinear dependence
of λ0 on L.

In our numerical work on Hubbard-like models we adopt periodic boundary
conditions. Our SD codes work either with the real-space or Fourier space repre-
sentation and can take advantage of the spatial and spin symmetries of the model.
Most of the data presented below have been obtained from runs that use all obvi-
ous tricks to reduce the size of the Hilbert space. For many of the systems studied,
the calculations were carried out using both representations, providing a highly
non-trivial consistency check. Occasionally some runs have been repeated without
the use of symmetries. For small systems, the results of the SD calculations have
been compared against those obtained from exact diagonalization and, as expected
on theoretical grounds, no differences were found.

4.1. BCS REDUCED HAMILTONIAN

From pedagogical viewpoint it is important to have at least one example for which
it is known that the system supports ODLRO. Such an example is provided by
the Hamiltonian

H = −t
∑
〈i,j〉

∑
σ=↑,↓

(
c+i,σcj,σ + c+j,σci,σ

)
−
|U |

L

∑
i,j

c+i,↑c
+
i,↓cj,↓cj,↑ , (35)

where c+i,σ and ci,σ are the creation and annihilation operators, respectively, for

a fermion with spin σ =↑, ↓ at the site (or orbital) i and the sum over 〈i, j〉 is
over distinct pairs of nearest neighbor lattice sites on a chain of length L. t is
the hopping parameter and U is the pairing interaction. A variational, BCS-like
treatment of (35) yields the exact solution [46], hence the name “BCS reduced
Hamiltonian”. As ODLRO is a characteristic feature of the BCS wave function
[33] any numerical method that solves (35) should be able to reproduce this feature.

SD results [42] for the ground-state energy per site E/L, the on-site pairing
correlation function P0 and the largest eigenvalue λ0 of the two-particle density
matrix as a function of system size for half-filled rings are shown in Fig.1. For
small system sizes E/L increases with L. For L ≥ 14 the L-dependence of the
ground-state energy is no longer visible on the scale used in Fig.1. For 6 ≤ L < 22
the largest eigenvalue λ0 of the two-particle density matrix grows linearly with
L, as expected since the system described by Hamiltonian (35) exhibits ODLRO
[46]. For larger system sizes λ0 decreases, indicating that the number of important
states MI that has been collected is too small for these system sizes. The number
of important states MI collected by the SD algorithm, working in the Fourier
space representation, varies from MI ≈ 6 for L = 4 to MI ≈ 100000 for L ≥ 22.
The dimension of the Hilbert space varies from M = 36 for L = 4 to M ≈ 1014

for L = 26. The behavior of P0 and λ0 as a function of system size is identical,
as expected in this case. Hence, the ODLRO exhibited by the system is mainly of
the on-site (s-wave) pairing type.
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Fig.1. Ground-state energy per site E/L, on-site pairing correlation function P0 and largest

eigenvalue λ0 of the reduced two-particle density matrix as a function of system size L for the

BCS reduced Hamiltonian for t = 1, U = −4 and n = 1. Squares: E/L; bullets: P0; triangles:

λ0. The lines are guides to the eye.

4.2. HUBBARD MODEL

The Hubbard model is the generic model for the description of electron correlations
in narrow energy-band systems [47] and, because of its apparent simplicity, is
often the model of choice for numerical work on correlated electron systems. The
Hamiltonian of the Hubbard model reads

HHub = −t
∑
〈i,j〉

∑
σ=↑,↓

(
c+i,σcj,σ + c+j,σci,σ

)
+ U

∑
i

c+i,↑c
+
i,↓ci,↓ci,↑ , (36)

where U is the on-site Coulomb interaction.
In Fig.2 we present results for the attractive (U < 0) and repulsive (U > 0)

Hubbard model for the case of a three-quarter filled band [42]. For U > 0, λ0

does not increase with the system size. Hence the 1D three-quarter filled repulsive
Hubbard model does not show ODLRO, as expected. For large negative U (U =
−4 for example) λ0 grows with L. This points to ODLRO. For U = −0.2 there
is no noticeable increase of λ0 with L. From a BCS treatment of the attractive
Hubbard model [42] it follows that for U = −0.2, the size of an electron pair is
much larger than the length of the rings we have studied with the SD method
while for U = −4, the size of an electron pair is approximately one lattice site.
Hence, due to these finite-size effects for small negative U , our numerical results
cannot show the characteristic signal of ODLRO.
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Fig.2. Largest eigenvalue λ0 of the reduced two-particle density matrix as a function of system

size L for the Hubbard model for t = 1 and n = 1.5. Squares: U = −4; bullets: U = −0.2;

circles: U = 0.2; triangles: U = 4. The lines are guides to the eye.

4.3. HUBBARD MODEL WITH CORRELATED HOPPING

The tight binding Hamiltonian (for a single band) as derived by Hubbard contains
several different types of interactions [47]. The Hubbard integrals U = (ii|1/r|ii)
(on-site) and V = (ij|1/r|ij) (inter-site) set the strength of the interactions be-
tween electrons at the same site and neighboring sites, respectively. The correlated
hopping amplitude ∆t = (ii|1/r|ij) describes the interaction between an electron
hopping between two neighboring sites i and j and another electron localized either
on site i or j, hence the name bond-charge site-charge interaction. The integral
X = (ii|1/r|jj) represents the interaction between electrons on the same bond.
Here we will consider the case V = X = 0. Then the Hamiltonian reads [47]

H = HHub + ∆t
∑
<i,j>

∑
σ

(
ni,−σ + nj,−σ

) (
c+i,σcj,σ + c+j,σci,σ

)
. (37)

This model was first studied by Caron and Pratt using a self-consistent cluster
treatment [48]. For ∆t = t the exact ground state of the model at half-filling
(including V ) is known, for any dimension and a wide range of model parameters
[49, 50] and in one dimension the model has been solved exactly away from half-
filling [50− 52]. In more than one dimension the qualitative form of the ground-
state phase diagram for ∆t = t is basically the same as that of the ground-state
phase diagram in one dimension although the exact location of all phase boundaries
cannot be determined [52]. Exact diagonalization for chains up to 12 sites [53] and
weak-coupling continuum-limit calculations [54] provide additional information on
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(part of) the ground-state phase diagram.
It has been suggested that the correlated hopping interaction is essential for

the occurrence of superconductivity [55, 56]. The Hubbard model with correlated
hopping can be viewed as an effective one-band model for the CuO2-planes of
the cuprate superconductors [57 − 59]. The ground state of model (37) contains
η-pairs and the η-paired states exhibit ODLRO [51, 52, 60]. However the presence
of ODLRO in the η-paired states is not a sufficient condition for the existence of
superconductivity [61].

Adding spin-flip hopping processes, it is possible to obtain the static and dy-
namic properties of the model and a complete picture of the full (n,∆t/t, U/t)
phase diagram [62 − 69]. For ∆t = t the qualitative form of the ground-state
phase diagram is similar to the ground-state phase diagram of model (37) and
the dimensionality of the lattice does not play an important role. From the phase
diagram it follows that for ∆t = t, model (37) with spin-flip hopping processes
exhibits a continuous Mott metal-insulator transition at n = 1, U = 4d|t| where
d is the lattice dimensionality. For 0 < ∆t < t model (37) with spin-flip hopping
processes has a discontinuous metal-insulator transition at half-filling.

For ∆t = t, n = 1, U < −4t and zero temperature the BCS treatment yields
the exact ground state with an on-site pairing correlation function given by [42]
P0 = (L+ 1)/4 showing that there is ODLRO in this case. Although at first sight
there may be a flow of particles because t 6= 0, closer inspection reveals that the
current operator acting on the ground state (with ODLRO) is identically zero,
hence the ground state state is not superconducting [42]. This is due to the choice
∆t = t which implies conservation of local pairs of particles.

SD results for ∆t = t and n = 1 for rings of various lengths (results not
shown) indicate that for U > Uc the ground-state energy is zero and that no on-
site electron pairs are formed. For U < −Uc all electrons are paired, the pairs are
static and the ground-state energy is equal to the number of pairs times U . For
L = 6, Uc = 3.5; for L = 10, Uc = 3.9 and for rings with fourteen or more sites
Uc = 4. These SD results [42] are in perfect agreement with the analytical results
obtained in the thermodynamic limit [49− 52].

In Figs.3,4 we present SD results for the ground-state energy per site E/L, the
on-site pairing correlation function P0 and the largest eigenvalue λ0 of the two-
particle density matrix for the three-quarter filled Hubbard model with ∆t = 0.4
and t = 1. The number of important states MI collected by the SD algorithm,
working in the Fourier space representation, varies from MI = 4 for L = 4 to
MI ≈ 192000 for L = 28. In the latter case the dimension of the Hilbert space
M ≈ 1.4× 1012, so that MI �M indeed.

For U = −1 and 4 ≤ L < 28 the ground-state energy is almost constant,
as shown in Fig.3. The largest eigenvalue λ0 of the two-particle density matrix
increases with L, indicating that the system exhibits ODLRO. The on-site pairing
correlation function P0 also increases with L but is significantly smaller than λ0.
Hence, the ODLRO is not of the pure on-site (s-wave) type. Analysis of the
eigenvector of the two-body density matrix, corresponding to λ0, shows that the
ODLRO is mainly of the extended s-wave type.

For U = 1 (see Fig.4) the behavior of E/L, P0 and λ0 as a function of L
is qualitatively the same as for U = −1 and U = 0 [42]. There is ODLRO,
mainly of the extended s-wave type, and in a parameter regime where there is
no special symmetry in the model and for which the continuum theory [54] does

—19—



Fig.3. Ground-state energy per site E/L, on-site pairing correlation function P0 and largest

eigenvalue λ0 of the reduced two-particle density matrix as a function of system size L for the

Hubbard model with correlated hopping for t = 1, ∆t = 0.4, U = −1 and n = 1.5. Squares:

E/L; bullets: P0; triangles: λ0. The lines are guides to the eye.

not apply. This demonstrates, without invoking bosonization techniques or BCS-
like arguments, that correlated hopping terms can lead to ODLRO in a system of
electrons with a repulsive on-site interaction U . Since for small U we find ODLRO
in the Hubbard model with correlated hopping whereas for the standard Hubbard
model we do not find ODLRO, it seems that the correlated hopping interaction
not only favors the formation of pairs but also reduces the size of the electron
pairs.

To summarize: Our results suggest that the (repulsive) Hubbard model, sup-
plemented with correlated hopping terms, can exhibit Off-Diagonal Long-Range
Order for a wide range of model parameters.

5. Basis Set Optimization

The SD algorithm gives us a systematic, mathematically correct, recipe to collect
the MI most important contributions to the ground state wave function for a
fixed set of basis states {|φ1〉, . . . , |φM〉}. As can be expected on general grounds,
the convergence of the results with MI depends on the particular choice of the
basis states one makes. As discussed above, for the Hubbard-like models, our SD
codes operate with states built from simple single-particle states, i.e. |ψi 〉 = c+i |0〉
or |ϕk 〉 = c+k |0〉 respectively (whenever possible we will suppress the spin labels
from now on). It is obvious that the former will lead to poor performance if the
ground state has an extended structure (in real space) and that the latter is not
well-suited in cases where spin-up and spin-down electrons form localized (in real
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Fig.4. Ground-state energy per site E/L, on-site pairing correlation function P0 and largest

eigenvalue λ0 of the reduced two-particle density matrix as a function of system size L for the

Hubbard model with correlated hopping for t = 1, ∆t = 0.4, U = 1 and n = 1.5. Squares: E/L;

bullets: P0; triangles: λ0. The lines are guides to the eye.

space) pairs. Therefore it is to be expected that in situations where the many-
body ground state describes an extended state of localized pairs of electrons (as
in the case of ODLRO), the number of important states might be reduced if the
SD would be carried out using single-particle states that are adaptive, in the sense
that they can smoothly interpolate between the two extreme cases. In quantum
chemistry problems one faces the same problem: To start say a calculation one
first has to make a choice for the single-particle orbitals. In most cases the problem
is “solved” through a combination of a lot of experience and knowledge about the
problem at hand.

In this section we discuss an attempt to approach the problem of optimizing
the single-particle basis states in a systematic manner [28]. As a toy model we
will use the Hubbard model. For simplicity we only will consider N -particle states
|φn〉 that take the form of a Slater determinant, i.e.

|φn〉 =
K∑
ij=1

a(n)(i1, 1)a(n)(i2, 2) . . . a(n)(iN , N)c+i1c
+
i2
. . . c+iN |0〉 , (38)

where the number of single-particle states (= number of lattice sites in the case of
the Hubbard model, ignoring spin) is denoted by K.

It is convenient to arrange all the coefficients a(n)(i, j) of the complete set of
K single-particle states into a K ×K matrix
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Fig.5. The ground state energy E as a function of the number of plane rotations, as obtained by

optimizing one Slater determinant for the case of a 4 × 4 Hubbard model with N↑ = N↓ = 5,

t = 1 and U = 0. The single-particle wave functions used to construct the initial many-

body wave function are |ψi 〉 = c+i |0〉 where i refers to the i-th lattice site. The various symbols

correspond to different optimization strategies (see text). The exact resultE1 = −24 is indicated

by dashed-dotted line. Other lines are guides to the eye.

A(n,K) =


a(n)(1, 1) a(n)(1, 2) . . . a(n)(1, K)
a(n)(2, 1) a(n)(2, 2) . . . a(n)(2, K)

...
...

...
...

a(n)(K, 1) a(n)(K, 2) . . . a(n)(K,K)

 . (39)

The N -particle state (38) is build from the first N columns of A(n,K). As the cal-
culation of matrix elements 〈φn′ |H|φn〉 (for details see [28]) simplifies considerably
if the single-particle states are orthonormal [28] we will from now on assume that
the initial A(n,K) is a unitary matrix, i.e. A(n,K)(A(n,K))† = 1 [1]. For example,
adopting the real-space approach corresponds to working with the fixed matrix

A(n,K) =


1 0 . . . . . . 0
0 1 . . . . . . 0
...

...
...

...
...

0 0 . . . . . . 1

 . (40)

Let us now consider simple and efficient methods to optimize the sub-matrix
A(n,N) in the sense that it minimizes the current approximation to the ground
state energy. One simple way to transform A(n,K) is to perform the operation [28]
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Fig.6. The ground state energy E as a function of the number of plane rotations as obtained by

optimizing one Slater determinant for the case of a 4 × 4 Hubbard model with N↑ = N↓ = 5,

t = 0 and U = −1. The single-particle wave functions used to construct the initial many-

body wave function are |ϕk 〉 = c+k |0〉 where k denotes a wave vector of the reciprocal lattice.

The various symbols correspond to different optimization strategies (see text). The exact result

E1 = −5 is indicated by the dashed-dotted line. Other lines are guides to the eye.

A(n,K) ← A(n,K)U (p,q) , (41)

where U (p,q) is the plane rotation matrix (10) of size K ×K. As a (Slater) de-
terminant does not change if we replace a row (column) by a linear combination
of rows (columns) it is sufficient to let p ≤ N , and N < q ≤ K. In practice
(41) tells us how to replace the columns p and q by a linear combination of them.
Alternatively we can “mix” two arbitrary elements of each of the column vectors
of A(n,K) by computing [28]

A(n,K) ← U (p,q)A(n,K) . (42)

Both (41) and (42) preserve the unitary character of A(n,K) and can be used to
define a “dynamics” for changing Slater determinants [70]. Including the electron
spin requires a minor extension: We only have to replace each |φn〉 by a product of
two similar functions, one for the electrons with spin up and one for the electrons
with spin down [28]. For details on the calculation of matrix elements of the type
〈φn,↑ ⊗ φn,↓|H|φn′,↑ ⊗ φn′,↓〉 see Ref. [28].

In general there are several possibilities for optimizing the single-particle states.
Not only do we have the choice between (41) and (42) but we can also decide (not)
to use the same plane rotation to the spin-up and spin-down part of the wave func-
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Table 4. The ground state energy of the 4 × 4 Hubbard model with N↑ = N↓ = 5 and t = 1

as obtained by various methods. EExact1 : Exact diagonalisation. E(k)
1 : SD + basis-set opti-

mization using |ϕ
k
〉 = c+

k
|0〉 as initial single-particle states. E(i)

1
: SD + basis-set optimization

using |ψi 〉 = c+i |0〉 as initial single-particle states. ESD1 : SD. EHF1 : Hartree-Fock. In all SD

calculations the number of many-body wave functions MI = 200. A greedy algorithm was used

to optimize the single-particle states, using 10000 plane rotations for each new many-body state

added.

U EExact1 E
(k)
1 E

(i)
1 ESD1 EHF1

6 −18.35837 −18.09710 −17.93031 −17.41384 −14.62500
4 −19.58094 −19.50157 −19.42179 −19.24434 −17.75000
2 −21.37695 −21.36579 −21.34991 −21.32807 −20.87500
0 −27.12500 −27.12500 −27.12500 −27.12500 −27.12500
−2 −27.70702 −27.69305 −27.68078 −27.64086 −27.12500
−4 −32.73360 −32.51795 −32.45901 −32.05033 −30.25000
−6 −39.34051 −38.19426 −38.27180 −36.85642 −33.37500

tion. Furthermore we have the option to use different methods for chosing the angle
of the plane rotations. In Figs.5,6 we present some results for a very simple case
that illustrate the effect of using different optimization strategies. We use only
one wave function |φ1,↑ ⊗ φ1,↓〉 and minimize

〈φ1,↑ ⊗ φ1,↓|H|φ1,↑⊗ φ1,↓〉 . (43)

For the case of the Hubbard model with U = 0 (Fig.5) and t = 0 (Fig.6) the
initial state was taken to be the ground states for t = 0 (Fig.5) and U = 0 (Fig.6)
respectively, i.e. the most unfavourable initial state.

The results represented by diamonds have been obtained by using dynamics
(42) with p, q, and the rotation angle all chosen randomly. At each step we change
either the spin-up or the spin-down part of the wave function. Data marked by
squares has been obtained by applying the same (random) plane rotation to both
spin components of the wave function. With some additional effort for each pair
(p,q) it is possible to find the angle that yields the maximum decrease of the energy.
From Figs.5,6 it is clear that application of the “best” plane rotation (× and +)
seems the most effective of the four strategies used. However the calculation of
the optimal angle, although not complicated, takes additional CPU time that
compensates for the reduction of the number of rotations that results from it (for
details see [28]).

In the case of an attractive interaction (U < 0) between electrons with different
spin, performing the same rotation on both components simultaneously (×) instead
of rotating the components separately (+) yields a substantial improvement. For
U > 0 the opposite behavior is found (not shown) [28]. Of course this behavior is
closely linked to the difference in physical behavior. The main point in the present
context is that the optimization procedure changes the state such that it describes
the physics as good as possible.

The next step is to combine the procedure of optimizing the single-particle
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wave functions with matrix-inflation. In principle this can be done along the lines
described above but in practice a number of technical but nevertheless impor-
tant complications arise [28]. For a detailed description of various optimization
strategies and a lot of results see [28]. Some results of SD calculations with and
without optimized single-particle states are given in Table 4. It is clear that for a
fixed number of important states MI , the optimization can bring substantial im-
provements over the standard SD, especially in the intermediate coupling regime
(U ≈ 4|t|).

6. Outlook

Stochastic diagonalization (SD) is an importance sampling method that does not
suffer from the minus-sign problem. It is complementary to existing Quantum
Monte Carlo methods that compute ground state properties of quantum many-
body systems. The potential of the SD approach has been demonstrated in ap-
plications to quantum chemistry problems and to models of strongly correlated
electron systems. The results of a first attempt to combine ideas of SD and basis-
set optimization suggest that this might be a fruitful direction for further research.
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