
INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY

Nanotechnology 13 (2002) 23–28 PII: S0957-4484(02)25285-X

A simulator for quantum computer
hardware
Kristel Michielsen1, Hans De Raedt1,3 and Koen De Raedt2

1 Institute for Theoretical Physics and Materials Science Centre, University of Groningen,
Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
2 European Marketing Support, Vlasakker 21, B-2160 Wommelgem, Belgium

E-mail: kristel@phys.rug.nl and deraedt@phys.rug.nl

Received 21 May 2001, in final form 15 August 2001
Published 12 December 2001
Online at stacks.iop.org/Nano/13/23

Abstract
We present new examples of the use of the quantum computer (QC)
emulator. For educational purposes we describe the implementation of the
CNOT and Toffoli gate, two basic building blocks of a QC, on a three qubit
NMR-like QC.

1. Introduction

Quantum computers (QCs) have recently become of
great interest, primarily due to their potential of solving
certain computationally hard problems such as factoring
integers [1] and searching databases faster than a conventional
computer [2]. In principle there is nothing a QC can do that a
conventional computer cannot do but quantum mechanics may
allow us to calculate faster. The fact that a QC might be more
powerful than an ordinary computer is based on the notion that
a quantum system can be in a superposition of states and that
this allows exponentially many computations to be done in
parallel. In experiments, the operation of elementary quantum
logic gates using ion traps, cavity QED, and NMR technology
has been demonstrated. Primitive QCs have been built [3–6].

Just as simulation is an integral part of the design
process of each new generation of microprocessors, software
to emulate the physical model representing the hardware
implementation of a quantum processor may prove essential.
In contrast to conventional digital circuits where the internal
working of each basic unit is irrelevant for the logical operation
of the whole machine, in a QC the internal quantum dynamics
of each elementary constituent is a key ingredient of the QC
itself. Therefore, it is essential to incorporate into a simulation
model the physics of the elementary units that make up the
QC.

Theoretical work on quantum computation usually
assumes the existence of units that perform highly idealized
unitary operations. However, in practice these operations
are difficult to realize: disregarding decoherence, a hardware
implementation of a QC will perform unitary operations that
are more complicated than those considered in most theoretical

3 http://rugth30.phys.rug.nl/compphys

work. Therefore it is important to have theoretical tools to
validate designs of physically realizable quantum processors.

Recently, a quantum computer emulator (QCE) has been
developed [9] to emulate various hardware designs of QCs.
The QCE consists of a simulator of a generic, general
purpose QC and a graphical user interface [9]. The simulator
simulates the physical processes that govern the operation of
the hardware quantum processor, strictly according to the laws
of quantum mechanics. The graphical user interface is used
to control the simulator, to define the physical realization of
the QC and to debug and execute quantum algorithms (QAs).
The QCE runs in a Windows 98/NT/2000 environment [9]. It
can be used as a research tool to validate designs of physically
realizable quantum processors and as an educational tool to
learn about QCs and QAs in an interactive way.

In this paper we present new applications of the QCE. We
focus on the educational aspects of the QCE. For pedagogical
reasons we show how to implement the CNOT and Toffoli gate
on QCs using ideal units and more realistic qubits, such as those
used in NMR QCs [3–6]. Although the CNOT and Toffoli
gate are basic building blocks of a QC, the implementation of
the latter on various types of QCs is not, as far as we know,
documented in the literature.

2. Quantum computer emulator

2.1. Simulator

QC hardware can be modelled in terms of quantum spins
(qubits) that evolve in time according to the time-dependent
Schrödinger equation (TDSE)

i
∂

∂t
|�(t)〉 = H(t)|�(t)〉, (1)
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in units such that h̄ = 1. For pedagogical reasons we will
consider three qubit QCs only. The state

|�(t)〉 = a(↓,↓,↓; t)|↓,↓,↓〉 + a(↓,↓,↑; t)|↓,↓,↑〉
+ · · · + a(↑,↑,↑; t)| ↑,↑,↑〉, (2)

describes the state of the whole QC at time t . The complex
coefficients a(↓,↓,↓; t), . . . , a(↑,↑,↑; t) completely spec-
ify the state of the quantum system. For the time-dependent
Hamiltonian we take

H(t) = −J1,2,zS
z
1S

z
2 − J1,3,zS

z
1S

z
3 − J2,3,zS

z
2S

z
3

−
3∑

j=1

∑
α=x,y,z

hj,α,0S
α
j

−
3∑

j=1

∑
α=x,y

hj,α,1 sin(fj,αt + φj,α)S
α
j (3)

where Sα
j denotes the αth component of the spin-1/2 operator

representing the j th qubit, Jj,k determines the strength of the
interaction between the qubits labelled j and k, hj,α,0 andhj,α,1

represent the static (magnetic) and periodic (RF) field acting
on the j th spin respectively. The frequency and phase of the
periodic field are denoted by fj,α and ϕj,α . It is known that (3)
is sufficiently general to serve as a model for a universal (three
qubit) QC [7, 8]. The sinusoidal external fields in (3) will be
used to simulate NMR pulses.

A QA for QC model (3) consists of a sequence of
elementary operations that change the state |�〉 of the quantum
processor according to the TDSE, i.e. by (a product of) unitary
transformations. We call these elementary operations micro
instructions (MIs) in what follows. They are not exactly
playing the same role as MIs do in digital processors, they
merely represent the smallest units of operation of the quantum
processor. The action of a MI on the state |�〉 of the quantum
processor is defined by specifying how long it acts (i.e. the
time interval it is active), and the values of all the J and h

appearing in (3). The J and h are fixed during the operation
of the MI. A MI transforms the input state |�(t)〉 into the
output state |�(t +τ)〉 where τ denotes the time interval during
which the MI is active. During this time interval the only time-
dependence of H(t) is through the sinusoidal modulation of
the fields on the spins.

The QCE solves TDSE (1) by a Suzuki product-formula,
i.e. in terms of elementary unitary operations [9–15]. For all
practical purposes, the results obtained by this technique are
indistinguishable from the exact solution of the TDSE.

2.2. Graphical user interface

A graphical user interface (GUI) has been developed to
facilitate the specification of the MIs (to model the QC
hardware) and the execution of the quantum programs (QPs).
The QCE runs in a Windows 98/NT/2000 environment. Using
the GUI requires no skills other than the basic ones needed
to run a standard MS-Windows application. The QCE is
freely distributed as a self-installing executable, containing the
program, documentation, and various QPs4.

The main window of the QCE (see figure 1 for example)
contains a window showing the set of MIs that is currently

4 http://rugth30.phys.rug.nl/compphys/qce.htm

Figure 1. Picture of the QCE showing a window with a set of micro
instructions implementing an ideal three qubit QC and a window
with the quantum program for the CNOT gate operating on the |110〉
state. The final state of the QC, i.e. the expectation value of the
qubits (spin operators), is shown at the bottom of the program
window (dark grey = |1〉, light grey = |0〉). The QCE has an option
to visualize the time evolution of the state of the QC in terms of
arrows representing the expectation values of the qubits.

active and one or more windows containing the QPs. Tooltips
appear when the mouse moves over the buttons, a standard
Windows feature. Each MI set has two reserved MIs:
‘breakpoint’ to allow a QP to pause at a specified point and
‘initialize’ to specify the initial state of the QC (normally the
first MI in a QP). The QCE supports the use of QPs as MIs (see
figure 1). QPs can be added to a particular MI set through the
button labelled ‘QP’ (top right of the MI set window). During
execution, a QP that is called from another QP will call either
another QP or a genuine MI from the currently loaded set of
MIs. The QCE will skip all initialization MIs except for the
first one. This facilitates the testing of QPs that are used as
sub-QPs. A QP calling a MI or QP that cannot be found in the
current MI set will generate an error message and stop.

Writing a QA on the QCE from scratch is a two-step
process. First one has to specify the MIs, taking into account
the particular physical realization of the QC that one wants
to emulate. A new MI set is created by clicking on the ‘MI’
button at the top of the main window of the QCE. The MI set
window offers all necessary tools to edit and manipulate the
MIs. New MIs in the MI set window are obtained by clicking
on the ‘white page’ button at the top of this window. The
parameters specifying the MI can then be filled out. Existing
MIs can be edited by double-clicking the MI icon.
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The second step, writing a QP, consists of dragging and
dropping MIs onto a ‘QP’ window. New ‘QP’ windows are
created by clicking on the ‘white page’ button at the top of the
main window of the QCE, old QPs are opened by clicking on
the ‘folder’ button at the top of the main window of the QCE
or by double-clicking on a QP in a ‘MI set’ window.

Execution of a QP on the QCE is realized by the control
buttons at the top of the ‘QP’ program. The results of
executing a QP appear in colour-coded form at the bottom of the
corresponding ‘QP’ window. For each qubit the expectation
value of the three spin components are shown: Qα

j ≡ 1/2 −
〈Sα

j 〉 (α = x, y, z), green (light grey) corresponds to 0, red
(dark grey) to 1. Usually one row of values (the z-component)
will be of interest. Optionally the QCE visualizes the time
evolution of the state of the QC in terms of arrows representing
the expectation values of the qubits (see figure 1) and generates
text files with the numerical results for further processing.

3. Elementary operations

One qubit or one spin-1/2 system is a two-state quantum
system. The two basis states spanning the Hilbert space are
denoted by 〈↑ | ≡ (10) ≡ 〈0| and 〈↓ | ≡ (01) ≡ 〈1|. In
quantum computation rotations of spin j about π/2 around
the x- and y-axis are frequently used operations. In matrix
notation, they are given by

Xj ≡ eiπSx
j /2 = 1√

2

(
1 i
i 1

)
, (4)

and

Yj ≡ eiπS
y

j /2 = 1√
2

(
1 1

−1 1

)
, (5)

respectively. With this notation we have for example

X1




|00〉
|10〉
|01〉
|11〉


 ≡ 1√

2




1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1







|00〉
|10〉
|01〉
|11〉


 , (6)

where |b1b2〉 ≡ |b1〉|b2〉 and bi = 0, 1. For example,
X1|11〉 = (|11〉 + i|01〉)/√2. Using the same labelling of
states as in (6) we have

Y2 ≡ 1√
2




1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1


 , (7)

e.g. Y2|11〉 = (|10〉 + |11〉)/√2. The matrix expressions
for the inverse of the rotations X1 and Y2, denoted by X1

and X2 respectively, are obtained by taking the Hermitian
conjugates of the matrices in (6) and (7). For example,
Y 2|11〉 = (|11〉 − |10〉)/√2.

Xj and Yj represent operations on single qubits. Two
qubits j, k ‘communicate’ with each other through the
interaction-controlled phase shift

Ijk ≡




eiφ00 0 0 0
0 eiφ10 0 0
0 0 eiφ01 0
0 0 0 eiφ11


 . (8)

Table 1. Input (IN) and output (OUT) states for the CNOT gate.

IN OUT

|00〉 |00〉
|10〉 |11〉
|01〉 |01〉
|11〉 |10〉

4. CNOT gate

The CNOT gate flips the second qubit if the first qubit is down,
i.e. the first qubit acts as a control qubit for the second one, see
table 1.

Assume that the QC is in a state

|�〉 = a0|00〉 + a1|10〉 + a2|01〉 + a3|11〉. (9)

First we apply to |�〉 the rotation operator Y2, as defined in
(7). This results in

Y2|�〉 = [(a0 + a2)|00〉 + (a1 + a3)|10〉 + (a2 − a0)|01〉
+(a3 − a1)|11〉]/

√
2. (10)

Next we apply to Y2|�〉 the interaction-controlled phase shift
I12

I12Y2|�〉 = 1√
2

{
eiφ00c0|00〉 + eiφ10c1|10〉

+ eiφ01c2|01〉 + eiφ11c3|11〉} : (11)

where c0 = a0 +a2, c1 = a1 +a3, c2 = a2−a0 and c3 = a3−a1.
Finally, we apply the inverse of the rotation Y2

Y 2I12Y2|�〉 = 1
2

{
[eiφ00c0 − eiφ01c2]|00〉

+ [eiφ10c1 − eiφ11c3]|10〉 + [eiφ00c0 + eiφ01c2]|01〉
+[eiφ10c1 + eiφ11c3]|11〉} . (12)

Since the CNOT gate will not change a0 and a2 (see table 1)
we can choose φ00 = φ01. Then (12) results in

Y 2I12Y2|�〉 = eiφ00
{
a0|00〉 + a2|01〉

+eiβ(a1 cosα + ia3 sin α)|10〉
+ eiβ(a3 cosα + ia1 sin α)|11〉} (13)

where β = α + φ11 − φ00 and α = (φ10 − φ11)/2. The global
phase factor eiφ00 is physically irrelevant.

We can implement the interaction-controlled phase shift,
i.e. I12 = e−iτH , by means of the most simple spin-1/2 system,
i.e. the Ising model

H = −JSz
1S

z
2 − h(Sz

1 + Sz
2). (14)

Then the values for φmn are φ00 = τ(J/4 + h), φ10 = φ01 =
−τJ/4 and φ11 = τ(J/4 − h). With these values for φmn and
taking into account our choice φ00 = φ01, (13) results in

Y 2I12Y2|�〉 = eiα/2
{
a0|00〉 + a2|01〉

+e−iα(a1 cosα + ia3 sin α)|10〉
+e−iα(a3 cosα + ia1 sin α)|11〉}. (15)

Using the same labelling of states as in (6) we have

Y 2I12Y2 =




1 0 0 0
0 e−iα cosα 0 ie−iα sin α

0 0 1 0
0 ie−iα sin α 0 eiα cosα


 (16)
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where we dropped the global phase factor eiα/2. If we choose
α = π/2 operating with the operator Y 2I12Y2 on the states
|00〉, |10〉, |01〉 and |11〉 results in |00〉, |11〉, |01〉 and |10〉.
Hence the CNOT gate can be implemented by Y 2IY2 where
α = π/2 and φ00 = φ01 = φ10 = α/2, φ11 = −3α/2.

The example of the CNOT gate provided in the QCE
software distribution uses three instead of two qubits because
three qubits are required for implementation of the Toffoli gate
(see next section). The same QC and elementary operations
can then be used for both the CNOT and the Toffoli gate. To
illustrate the functionality of the QCE we describe the main
steps of how to program a three qubit QC so that it gives the
outcome of a CNOT gate operating on the |110〉 state. The
details can be found in the MI set ‘gates’ and the QP ‘cnot 12’
(see figure 1), which we built for this purpose and are included
in the QCE distribution.

First the QC has to be initialized (setting each of the three
qubits to |0〉) and then the first and second qubit have to be put
in the state |1〉. On the QCE this is accomplished by the QP
‘QP110’ which consists of the sub-QPs ‘QP 000’, ‘QP 100’
and ‘QP 010’. ‘QP000’ only contains the MI ‘initialize’, a
reserved MI in the QCE (see above), and puts the QC in the
state |000〉. ‘QP 100’ (‘QP 010’) consists of two MIs ‘Y1’ (‘Y2’)
and rotates clockwise qubit 1 (qubit 2) about π around the y-
axis. One single MI ‘Y1’ rotates clockwise qubit 1 about π/2
around the y-axis. This is done by choosing the parameters
in the MI ‘Y1’ such that −iτH = iπS

y

j /2, where H is given
by (3) withhj,α,1 = 0. In practice this means takingh1,y,0 = 1,
τ/2π = 1/4 and all other parameters zero. ‘QP 110’ puts the
QC in the state |110〉, the starting position for our particular
example.

The next task is to implement the CNOT gate itself.
First we rotate clockwise qubit 2 about π/2 around the y-
axis by means of the MI ‘Y2’. This brings the QC in the
state (|100〉 + |110〉)/√2. Then we apply the interaction-
controlled phase shift I12. We construct the MI ‘I12’ by taking
the parameters such that −iτH = iφ11, i.e. J1,2,z = −1,
h1,z,0 = h2,z,0 = 1/2, τ/2π = 1/2 and all other parameters
zero. Apart from some global phase factor this brings the QC in
the state (|100〉−|110〉)/√2. Finally, operating withY 2 on this
state results in |100〉 as the end state of the QC. The expectation
values of the three qubit components are Qx

1 = Q
y

1 = 0.5,
Qz

1 = 1 and Qx
2 = Qx

3 = Q
y

2 = Q
y

3 = 0.5, Qz
2 = Qz

3 = 0.

5. Toffoli gate

The Toffoli gate works with two control qubits: only if the first
two qubits (Q1,Q2) are down is the third qubit (Q3) flipped
(see table 2). A schematic representation of the Toffoli gate is
given in figure 2 [16]. A dot and a cross connected by a vertical
line represent a CNOT gate: if the qubit on the horizontal line
with a dot equals one, the qubit on the horizontal line with a
cross flips. A similar rule applies to the qubits connected by a
vertical line with as endpoints a dot and a box with an operator
V or V . Only if the qubit corresponding to the dot equals one
is operation V or V carried out.

The operation of the Toffoli gate is demonstrated in table 3.
The first two columns give all possible combinations of qubits
Q1 and Q2. The next five columns show schematically the
outcome of the various operations that build up the Toffoli gate

Table 2. Input (IN) and output (OUT) states for the Toffoli gate.

IN OUT

|000〉 |000〉
|100〉 |100〉
|010〉 |010〉
|001〉 |001〉
|110〉 |111〉
|101〉 |101〉
|011〉 |011〉
|111〉 |110〉

Table 3. Operation of the Toffoli gate.

Q1 Q2 ‖ V CNOT V CNOT V ‖ Q3

0 0 ‖ x x x x x ‖ Q3

1 0 ‖ x 1 V 0 V ‖ VVQ3

0 1 ‖ V x V x x ‖ VVQ3

1 1 ‖ V 0 x 1 V ‖ V 2Q3

Figure 2. Schematic representation of the Toffoli gate.

(see figure 2). In the columns labelled ‘CNOT’ only the value
of qubit Q2 is shown since Q1 acts as a control bit and does
not change. A cross means that the operation is not carried out
because the control bit is zero. The last column shows the final
operation on the third qubit. From tables 2 and 3 it follows that
operation V has to be constructed such that V 2 flips Q3 and
that VV is equal to the identity matrix. These conditions are
fulfilled by taking

V = e−iπ/4

√
2

(
1 i
i 1

)
. (17)

For example, V12 can be written as Y 2U12Y2 where V12 is given
by the matrix in (16) with α replaced by π/4. Hence the
Toffoli gate can be implemented by the following sequence of
operations:

Y 3U13Y3Y 2I12Y2Y 3U 23Y3Y 2I12Y2Y 3U23Y3. (18)

This sequence can be shortened by observing that in some cases
a rotation is followed by its inverse. This leads to

Y 3U13Y 2I12Y2U 23Y 2I12Y2U23Y3. (19)

The implementation of the Toffoli gate on the QCE is very
similar to the implementation of the CNOT gate. Therefore,
we only mention here the two QPs that are delivered with the
QCE. QP ‘toffoli’ implements the toffoli gate by means of (18)
and QP ‘toffoli-optimized’ by means of the sequence (19).
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6. CNOT gate on a NMR quantum computer

Sections 4 and 5 described the implementation of the CNOT
and the Toffoli gate on an ideal QC. Our aim in this section is
to illustrate how to implement the CNOT gate on a two qubit
NMR-like QC and how to simulate this with the QCE.

In the NMR experiments [5, 6] the two nuclear spins of
the (1H and 13C atoms in a carbon-13 labelled chloroform)
molecule are placed in a strong magnetic field in the +z-
direction. In the absence of interactions with other degrees
of freedom this spin-1/2 system can be modelled by the
Hamiltonian

HNMR = −J1,2,zS
z
1S

z
2 − h1,z,0S

z
1 − h2,z,0S

z
2 (20)

where h1,z,0/2π ≈ 500 MHz, h2,z,0/2π ≈ 125 MHz, and
J1,2,z/2π ≈ −215 Hz [5].

NMR uses radiofrequency electromagnetic pulses to
rotate the spins. By tuning the frequency of the RF-field to
the precession frequency of a particular spin, the power of the
applied pulse (= intensity times duration) controls how much
the spin will rotate. The axis of the rotation is determined by
the direction of the applied RF-field.

The elementary model of a NMR experiment of a single
spin (qubit 1 for example) subject to a constant magnetic field
along the z-axis and a RF-field along the x-axis reads [17]

i
∂

∂t
|�(t)〉 = −[

h1,z,0S
z
1 + h1,x,1S

x
1 sin f1,x t

]|�(t)〉, (21)

where |�(t = 0)〉 is the initial state of the two-state system
and we have set the phase ϕ1,x = 0 in (21). Substituting
|�(t)〉 = eitf Sz

1 |�(t)〉 and choosing f = h1,z,0 yields

i
∂

∂t
|�(t)〉 = −h1,x,1

[
Sx

1 sin f1,x t cos f t

+Sy

1 sin f1,x t sin h1,z,0t
]|�(t)〉. (22)

At resonance, i.e. f1,x = h1,z,0, we find

i
∂

∂t
|�(t)〉 = −h1,x,1

2

[
S
y

1 + Sx
1 sin 2h1,z,0t

−S
y

1 cos 2h1,z,0t
]|�(t)〉. (23)

Assuming that the effects of the higher harmonic terms
(i.e. the terms in sin 2h1,z,0t and cos 2h1,z,0t) are small [17],
(23) is easily solved to give

|�(t)〉 ≈ eith1,x,1S
y

1 /2|�(t = 0)〉, (24)

so that the overall action of a RF-pulse of duration τ can be
written as

|�(t + τ)〉 ≈ eiτh1,z,0S
z
1 eiτh1,x,1S

y

1 /2|�(t)〉. (25)

Hence it follows that application of an RF-pulse of ‘power’
τh1,x,1 = π will have the effect of rotating the spin by an
angle of π/2 about the y-axis.

For the implementation of the CNOT gate it is expedient
to write Hamiltonian (20) as HNMR = H + H ′, where H is
given by (14) and H ′ = (h − h1,z,0)S

z
1 + (h − h2,z,0)S

z
2. The

CNOT gate can then be implemented by

Y 2I12Y2 = e−iτ(h1,z,0−h)Sz
1 e−iτ(h2,z,0−h)Sx

2 Y 2e−iτHNMR
Y2. (26)

Guided by the experiments [5, 6], we take, for the
implementation of this CNOT gate on the QCE, the parameters
h1,z,0 = 1, h2,z,0 = 1/4 and J1,2,z = −10−6. In all operations
these values are fixed since they are determined by the
molecules used in the NMR experiment. As usual, we initialize
the QC by means of MI ‘initialize’ (using the parameters
mentioned above). Then, as an example, we put the two qubits
in state |1〉 by means of MI ‘Y1’ and MI ‘Y2’. The parameters in
the MI ‘Y2’ for example, are chosen as follows: rotating spin 2
about they-axis in an NMR experiment leads tof2,x = h2,z,0 =
f1,x = 1/4. Rotation by an angle of π/2 requires τh2,x,1 = π .
Choosing h2,x,1 = 1/80 gives h1,x,1 = 0.05 and τ/2π = 40.
All other parameters, except for h1,z,0, h2,z,0 and J1,2,z, are
zero. For the MI ‘Y1’ we choose f1,x = h1,z,0 = f2,x = 1,
h1,x,1 = 1/40, h2,x,1 = 1/160 and τ/2π = 20.

Implementation of the CNOT gate itself requires
(τ/2π)J = −1/2 and (τ/2π)h = 1/4 (see section 4).
Hence, τ/2π = 0.5 × 106 and h = 0.5 × 10−6. Using
this condition and the fact that τh1,z,0/2π = 500 000 and
τh2,z,0/2π = 125 000, (26) can be written as

Y 2I12Y2 = eiπSz
1/2eiπSx

2 /2Y 2e−iτHNMR
Y2

= X1Y1X1X2Y 2I12Y2. (27)

For MI ‘X2’ we choose f2,y = h2,z,0 = f1,y = 1/4, h2,y,1 =
−1/80, h1,y,1 = −0.05 and τ/2π = 40 and for MI ‘X1’:
f1,y = h1,z,0 = f2,y = 1, h1,y,1 = −1/40, h2,y,1 = −1/160
and τ/2π = 20. For MI ‘I12’ we take the parameter values
J1,2,z = −10−6, h1,z,0 = 1, h2,z,0 = 1/4, τ/2π = 500 000,
and all others zero. As a result of the application of sequence
(27) on the state |11〉 the final state of the QC becomes |10〉,
as required. However, the expectation values of the three
components of the qubits slightly differ from the ones obtained
on the ideal QC (see section 4): Qx

1 = 0.510, Qy

1 = 0.489,
Qz

1 = 1 and Qx
2 = 0.519, Qy

2 = 0.5, Qz
2 = 0. This is due to

the approximate nature of the operations used in the NMR case.

7. Summary

We have demonstrated the use of the QCE as an educational
tool to learn interactively about QCs and quantum algorithms.
For pedagogical reasons the use of the QCE has been illustrated
through the implementation of the CNOT and Toffoli gate
on QCs using ideal and more realistic units, such as those
of NMR-like QCs. Additional examples, including several
popular quantum algorithms, can be found in [9,15] and in the
QCE software distribution itself.
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