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Abstract

This paper reviews a general method to characterize the morphology of two- and three-dimensional
patterns in terms of geometrical and topological descriptors. Based on concepts of integral geometry, it
involves the calculation of the Minkowski functionals of black-and-white images representing the patterns.
The result of this approach is an objective, numerical characterization of a given pattern. We brie#y review
the basic elements of morphological image processing, a technique to transform images to patterns that are
amenable to further morphological image analysis. The image processing technique is applied to electron
microscope images of nano-ceramic particles and metal-oxide precipitates. The emphasis of this review is on
the practical aspects of the integral-geometry-based morphological image analysis but we discuss its
mathematical foundations as well. Applications to simple lattice structures, triply periodic minimal surfaces,
and the Klein bottle serve to illustrate the basic steps of the approach. More advanced applications include
random point sets, percolation and complex structures found in block copolymers. � 2001 Elsevier Science
B.V. All rights reserved.

PACS: 07.05.Pj

Keywords: Morphology; Euler characteristic; Integral geometry; Minkowski functionals; Electron microscopy; Meso-
structures; Polymers; Morphological image processing

K. Michielsen, H. De Raedt / Physics Reports 347 (2001) 461}538 463



1. Introduction

Geometrical patterns are encountered in many di!erent "elds of science and technology [1,2].
Very often these patterns come in the form of pictures. In general, the purpose of image analysis is
to "nd out what is in these pictures [3}6]. Describing this information in words is one extreme form
of characterizing the image, another extreme form is to assign one or more numbers to the image.
In this paper we only consider the latter.
In this paper, we will analyze two-dimensional (2D) and three-dimensional (3D) patterns by

numerical representions of the corresponding images in terms of two-valued functions. Therefore,
a numerical characterization of features in the image requires that the image has been digitized, i.e.
that the image has been converted to numerical form [3}6]. This conversion may include additional
digital image processing steps [3}6] to enhance the quality of the images. If the image contains color
or gray-level information, the digitization process should include the mapping of the spatial and
color/brightness information in the image onto a collection of black-and-white picture elements
[3}6]. For simplicity, we will use the term pixel to refer to both 2D and 3D picture elements.
Numerical functions on the set of black-and-white images are called image functionals [7]. An

image functional performs a measurement of certain properties or features in the image, such as the
brightness, or location of objects, their surface, perimeter, size distribution, etc. An example of an
image functional � is the area of black pixels on a background of white pixels. If P

�
and P

�
are two

patterns of black pixels we obviously have

�(P
�
�P

�
)"�(P

�
)#�(P

�
)!�(P

�
�P

�
) . (1)

The last term in (1) compensates for the double counting of black pixels that are common to P
�
and

P
�
. Image functionals that share property (1) are called additive. Intuitively, it may seem obvious to

require image functionals to be additive: In general, one would like to avoid counting a feature in
an image more than once. However, in image analysis there is no fundamental reason to stick to
additive image functionals. In fact, there is a large collection of non-additive image functionals that
yield useful information on speci"c features of an image [3]. For instance, the two-point correlation
function of the positions of the black pixels (i.e. the Fourier transform of the structure factor) is
a non-additive functional but it certainly yields very useful information about the spatial distribu-
tion of the black pixels.
Morphology is a branch of biology dealing with the form and structure of animals and plants.

The same word is used for the study of the geometry and topology of patterns. Integral-geometry
morphological image analysis (MIA for short from now on) employs additive image functionals to
assign numbers to the shape and connectivity of patterns formed by the pixels in the image. Integral
geometry [8}10] provides the rigorous mathematical framework to de"ne these image functionals.
A fundamental theorem (discussed below) of integral geometry [8] states that under certain
conditions, the number of di!erent additive image functionals is equal to the dimension of the
pattern plus one. Thus, in the case of a 2D (3D) image there are exactly 3 (4) of these functionals,
called quermassintegrals or Minkowski functionals. For a given image the "rst step in MIA is to
compute these functionals themselves. The second step is to study the behavior of the three or four
numbers as a function of some control parameters, such as time, density, etc.
A remarkable feature of MIA is the big contrast between the simplicity of implemention and

use and the level of sophistication of the mathematical theory. Indeed, as explained below, the
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calculation of the image functionals merely amounts to the proper counting of, e.g. faces, edges and
vertices of pixels. The application of MIA requires little computational e!ort. Another appealing
feature of MIA is that the image functionals have a geometrically and topologically intuitive and
hence perceptually clear interpretation: For 2D images they correspond to the area, boundary
length, and connectivity number. The four functionals for 3D images are the volume, surface area,
integral mean curvature and connectivity number.
This paper gives an overview of the various aspects of MIA, with an emphasis on the practical

application. MIA has proven to be very useful to describe the morphology of porous media and
complex #uids [11}14], the large-scale distribution of matter in the Universe [14}16], regional
seismicity realizations [17], quantum motion in billiards [18], microemulsions [14,19], patterns in
reaction}di!usion systems [14,20], spinodal decomposition kinetics [14,21,22], and the dewetting
structure in liquid crystal and liquid metal "lms [23], and in polymer "lms [24]. In many cases
additional information can be extracted from the pattern by making assumptions about size, shape
and distribution of the objects. Usually, this involves making a probabilistic model of the pattern
and comparing the Minkowski functionals of the model with those of the images. Applications of
this stochastic-geometry approach to model natural phenomena can be found in [10].
The paper is structured as follows. Section 2 gives a brief introduction to MIA in practice

(including examples of computer code), for those who want to start right away. Section 3 gives
a brief introduction to morphological image processing (MIP), a digital image processing tech-
nique to enhance the quality of images while preserving the morphological content of the images as
much as possible. In Section 4 we present some examples of MIP applied to scanning electron
microscopy images of nano-ceramics. The mathematical framework on which MIA is based is
reviewed in Section 5. In Section 6 we illustrate how MIA works in practice, using well-known
point patterns and geometrical objects. Section 7 discusses the application of MIA to random point
sets and percolation. In Section 8 we use MIA to analyze various structures found in block
copolymers. A summary is given in Section 9.

2. Quick start

In this section we give a brief overview of MIA. Thereby we focus on the practical aspects. For
the sake of brevity we omit most mathematical justi"cation, references to relevant work, and
discussions of examples. These can be found in the sections that follow. We only consider the
analysis of black-and-white images. Extensions are discussed below.
In the next two subsections we describe a simple and e$cient procedure to compute the image

functionals for a given image. The following two subsections focus on the second step of MIA: The
study of the dependence of these functionals on some control parameters. In the last subsection we
give an alternative interpretation of the Minkowski functionals in terms of correlation functions of
Ising spins.

2.1. Computation of the image functionals

Consider a 2D lattice "lled with black pixels on a white background (see Fig. 1). For simplicity,
we will assume that the pixels are squares and that the linear size of each square has been
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Fig. 1. Decomposition of the pixels of a two-dimensional black-and-white pattern (left) into squares, edges and vertices
(right). For this example: number of squares n

�
"8, number of edges n

�
"24 and number of vertices n

�
"16.

normalized to one. We want to characterize the geometry and topology of the pattern formed by
the black pixels. According to integral geometry, there are three additive image functionals, called
Minkowski functionals, that describe the morphological content of this 2D pattern, namely the
area A, the perimeter ; and the Euler characteristic �. The latter describes the connectivity
(topology) of the pattern: In 2D � equals the number of regions of connected black pixels minus the
number of completely enclosed regions of white pixels. Two black pixels are `connecteda if and
only if they are nearest neighbors or next-nearest neighbors of each other or can be connected by
a chain of black pixels that are nearest and/or next-nearest neighbors. Using this de"nition we "nd
that the Euler characteristic of the pattern shown in Fig. 1 is zero.
Conceptually, the procedure (that easily extends to three dimensions) to compute these three

numbers consists of two steps. First, we decompose each black pixel into 4 vertices, 4 edges and the
interior of the pixel (see Fig. 1). Then we count the total number of squares n

�
, edges n

�
and vertices

n
�
and we compute the area A, perimeter ; and Euler characteristic � from

A"n
�
, ;"!4n

�
#2n

�
, �"n

�
!n

�
#n

�
. (2)

For the example shown in Fig. 1 we "nd A"8, ;"16 and �"0.
For a 3D cubic lattice "lled with black and white pixels (we do not distinguish between voxels

and pixels) the four additive image functionals (Minkowski functionals) are the volume <, the
surface area S, the mean breadth B (see Section 5), and the Euler characteristic �. In 3D � equals the
number of regions of connected black pixels plus the number of completely enclosed regions of
white pixels minus the number of tunnels, i.e. regions of white pixels piercing regions of connected
black pixels. As in the 2D case, the "rst step in the calculation of these four numbers is to consider
each black pixel as the union of 8 vertices, 12 edges, 6 faces and the interior of the cube. It can be
shown that

<"n
�
, S"!6n

�
#2n

�
, 2B"3n

�
!2n

�
#n

�
, �"!n

�
#n

�
!n

�
#n

�
, (3)

where n
�
and n

�
are the number of cubes and faces, respectively. Thus, as in the 2D case, the

morphological characterization of a 3D pattern reduces to the counting of the elementary
geometrical objects (vertices, edges, faces, cubes) that constitute the pattern.
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2.2. Computer program

Technically, the only real `problema with the procedure described above is to avoid counting,
e.g. an edge or vertex more than once. However this problem is easily solved, as illustrated by the
algorithm we will brie#y discuss now.
In Appendix A we list a computer program to compute A, ; and � (<,S,B, �) for a 2D (3D)

black-and-white pattern. We discuss the 2D case only because the 3D program only di!ers in the
details. Conceptually, what these programs do is to build up the whole image using vertices, edges,
etc. In practice, this is accomplished by adding active ("black in the example above) pixels to an
initially empty ("white in the example above) image (held in array tmp( ) )) one by one. Just before
adding the active pixel to the current image (in tmp( ) )) subroutine `minko}2D}freea determines
the change in A,; and � that would result if this pixel is actually added to the current image. This
change is calculated by "rst decomposing this square pixel as discussed above and then checking
whether, e.g. an edge overlaps with an edge of another active pixel in the current image. Then the
pixel is made active in the current image and the changes are added to the current values of A,
; and �. Inspection of `minko}2D}freea shows that all it does is check to see if the pixel-to-be-
added has active nearest neighbors and/or next-nearest neighbors and count the number of edges
and vertices accordingly. Clearly, the number of arithmetic operations required to compute A,;
and � (or <, S,B and �) scales linearly with the number of black pixels of the image. Thus the
numerical procedure is e$cient.
Some applications, notably those where the patterns are the result of computer simulation, make

use of periodic boundary conditions. There is no need to adapt the programs given in Appendix A
to deal with this situation. One can embed the original image into a larger one, formed by
surrounding the original image by one extra layer of pixels, the value of which is determined by
making use of the periodic boundary conditions.

2.3. Point patterns

Many systems observed in nature may be modeled by point patterns. For example, a system of
particles may be viewed as a collection of points de"ned by the position of the particles. These
points are usually called the germs of the model [10,25]. In order to study the morphological
properties of the set of points (degree of randomness, clustering, periodic ordering, etc.) it is useful
to attach to the points discs (spheres) of radius r. Those discs (spheres) are called the grains of the
model [10,25]. The study of the coverage of the image by the grains gives information about the
distribution of the germs.
Mapping the point pattern onto a square (cubic) lattice yields a black-and-white picture. Black

pixels represent the germs of the model. On the pixel lattice we can construct the grains of the
model in two di!erent ways. In the "rst method we consider the germs to be discs (spheres) of
radius r"0. We enlarge the discs (spheres) by making black all pixels that are positioned at
a distance smaller or equal to r'0 from the germs. The grains form discrete approximations to
discs (spheres) in the Euclidean space. An example of this graining procedure in two dimensions is
shown on the left-hand side of Fig. 2 for grains of radius r"3. The right-hand side of Fig. 2
illustrates the second graining procedure (for d"2), where we take the germs to be squares (cubes)
of edge length r"1 and the grains to be enlarged squares (cubes) of edge length 2r#1, r'0. Note
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Fig. 2. Graining procedure of a point pattern in two dimensions. Left: the grains are discrete approximations to a sphere
with radius three in the Euclidean space. Right: the grains are squares of edge length seven. The light grey pixels indicate
the positions of the germs.

that the growing of the cubic grains leads to a faster complete coverage of the image than the
growing of the circular grains. In the following, the cubic grains will be used for special cases only
(see Section 7).
For this type of problem MIA consists of the calculation of the three (four) numbers A, ; and

� (<, S, B and �) as a function of the grain size r. A schematic representation of this procedure for
the case of 2D point patterns is shown in Fig. 3.

2.4. Digitized and thresholded images

In general, the intensity (or gray level) in experimental images may be thought of as a continuous
function of the position in the image. In order to analyze such images by computer we "rst have to
digitize them [3}6]. The digitization process requires the mapping of the image on a grid and
a quantization of the gray level. Usually, 2D (3D) images are partitioned into square (cubic)
regions. Each square (cube) is centered at a lattice point, corresponding to a pixel. In general, the
range of gray levels is divided into intervals and the gray level at any lattice point is required to take
only one of these values.
The output of image analysis should be a description of the given picture. Thus, we have to de"ne

the various objects building up the picture, i.e. we need a method to distinguish objects from the
background [3,6]. The simplest method of reducing gray-scale images to two-valued images or
black-and-white pictures is to make use of a threshold. If the given pictureP(x) with x3�� has gray
level range [a, b], and q is any number between a and b, the result of thresholdingP(x, q) at q is the
two-valued picture P(x, q) de"ned by [3}6]

P(x, q)"�
1, P(x)5q ,

0, P(x)(q .
(4)

By de"nition if P(x, q)"0, x is part of the background, and if P(x, q)"1, x is part of an object. In
practice not all thresholds q yield useful P(x, q). If q is too large too many objects are classi"ed as
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Fig. 3. Schematic representation of how to use MIA to analyze the morphological properties of (patterns that can be
interpreted in terms of) 2D point patterns.

background or if q is too small the opposite happens. Other thresholding operations may also be
considered [3}6].
For this type of problem MIA consists of the calculation of the three (four) numbers A, ; and

� (<, S, B and �) as a function of the threshold q. A schematic representation of this procedure for
the case of 2D gray-scale images is shown in Fig. 4.

2.5. Minkowski functionals and Ising spins

It is instructive to represent black-and-white images as a set of Ising spins and to express the
Minkowski functionals in these variables. This exercise is useful for two purposes. First, it shows
that in certain cases, Minkowski functionals have a direct physical interpretation and second it
gives insight into the kind of correlations of pixels theMinkowski functionals actually measure.We
restrict ourselves to the 2D case, the extension to 3D is trivial.
The standard procedure to map a black-and-white picture onto a lattice of Ising spins is to

assign a spin �
���

"#1(!1) to the black (white) pixel at lattice position (i, j). Starting from the
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Fig. 4. Schematic representation of how to use MIA to analyze the morphological properties of 2D digitized images.

expressions given in Appendix B, a straightforward calculation gives
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where (¸
�
,¸

�
) denote the number of lattice sites in the (x, y)-direction. Readers familiar with the

Ising model recognize immediately that up to irrelevant constants, the area A and perimeter
; correspond to the magnetization and energy of the Ising model with nearest-neighbor
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interactions. The Euler characteristic is a weighted sum of all possible correlations of up to four
neighboring spins. Furthermore, it is clear that the Minkowski functionals (A, ; and �) and the
two-spin correlation function (or structure factor)

S(k, l)"
1

¸
�
¸

�

��

�
���

��

�
���

�
���

�
������	

(6)

perform di!erent, hence complementary measurements on the con"guration of spins (or pixels).

3. Morphological image processing

In the preceding section we took for granted that the digitized images are free of noise and other
artifacts that may a!ect the geometry and topology of the structures of interest. Such perfect images
are easily generated by computer and are very useful for the development of theoretical concepts
and models (see e.g. Sections 6 and 7). Unfortunately, as we all know, genuine pictures or patterns
obtained from computer simulations (e.g. a polymer solution, see Section 8) are all but perfect.
Therefore, some form of image processing may be necessary before attempting to make measure-
ments of the features in the image.
Digital image processing is very important for many industrial, medical and scienti"c applica-

tions. There is a vast amount of literature on this subject so we can only cite a few books here [3}6].
There is also a huge number of di!erent processing steps and methods. The type of measurements
that will be performed on the image is an important factor in making a selection of the most
appropriate processing steps.
In morphological image analysis the geometric and topological content of the image are of prime

importance and this should be re#ected in the operations that are used to enhance the image
quality. The morphological image processing (MIP) technique reviewed below is well adapted for
this purpose. This is because MIP and MIA are based on the same mathematical concepts (see
below).Most importantly it is #exible, fast and easy to use. Pioneering work in this "eld was carried
out by Matheron [25] and Serra [26]. We have found the book of Giardina and Dougherty [7]
a very valuable source of information and inspiration. Most of the material of Sections 3.1}3.3
can be found in [7], albeit in di!erent form. We have chosen to present the material in the same
order as MIP is actually performed: From a gray scale to a black-and-white image. The emphasis is
on the practical application, much less on the mathematical foundations which are given in
[7,25,26].

3.1. Preliminaries

In this section we introduce the basic concepts of MIP. We start by giving a more precise
de"nition of an image. For simplicity, we will discuss MIP of 2D images only. Extension to 3D is
trivial, also in practice. As usual a 2D image will be represented by an ¸

�
�¸

�
array I(i, j) of gray

values, intensities represented by integers, ¸
�
(¸

�
) is the number of pixels in the x (y) direction. We

will see below that some operations may refer to pixels that are out of bounds of this array,
meaning that they refer to pixels that are not de"ned. It is convenient to assign the value minus
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Fig. 5. Some examples of templates used in MIP. As in most practical image processing work we adopt the convention
that the intensity is digitized in the range [0, 255]. Template (1): ¹(0, 0)"64; (2): ¹(0, 0)"64, ¹(1, 0)"128, ¹(0, 1)"128,
¹(!1, 0)"192, ¹(0,!1)"255; (3): ¹(0, 0)"64, ¹(1, 0)"128, ¹(0,!1)"192; (4): ¹(0, 0)"¹(1, 0)"¹(0, 1)"
¹(!1, 0)"¹(0,!1)"255; (5): ¹(0, 0)"2"¹(1,!1)"110; (6): ¹(0, 0)"2"¹(2,!2)"255.

in"nity to such pixels [7]. Hence, we will write I(i, j)"!R whenever the pixel at (i, j) (within or
outside the bounds of the array) is unde"ned.
The structuring element or template is a key concept in MIP. A template is a predetermined

geometrical structure, hence also an image, such as a square, a disc or star. Consistency of notation
would suggest the use of the symbol ¹(i, j) to denote the image corresponding to the template ¹ but
we will not do so. Instead we de"ne a template by specifying the displacement �k, l�



relative to its

origin (0, 0) together with the value ¹(k, l). The size of a template is de"ned as max��k�, �l�	.
A template cannot contain pixels that are unde"ned. Some examples of templates are shown in
Fig. 5. Very often templates are chosen to be symmetric (with respect to the symmetry operations
of a square lattice). In essence MIP is the study of how a template (or several templates) "t into an
image [7,25,26]. A template represents the viewer's a priori knowledge or expectation about the
morphological content of the image.
Finally, we need a de"nition of an object. For reasons of consistency with the integral geometry

approach discussed below an object is de"ned as a collection of pixels that satisfy the following
criteria: (i) they all have the same intensity, and (ii) they are nearest neighbors or next-nearest
neighbors of each other or can be connected by a chain of pixels that are nearest and/or
next-nearest neighbors.
It may seem strange that it is necessary to include next-nearest neighbors in counting objects but

in fact it is not. This can already be seen by looking at a very simple example: A pattern that
consists of two squares that touch each other at the vertex yield an Euler characteristic of one
(one connected component), since n

�
"2, n

�
"8 and n

�
"7 (see (1)). Clearly, there are no holes in

this pattern. Hence the number of objects must be equal to the Euler characteristic (recall, for 2D
patterns the Euler characteristic is equal to the number of connected components, i.e. objects,
minus the number of holes, see Section 2). The only way to get a consistent procedure of counting
objects and computing the Euler characteristic is to include next-nearest neighbors.

3.2. Gray-scale images

We now have all the ingredients to de"ne the two basic MIP operations: Dilation and erosion of
an image. Dilation D transforms an input image I(i, j) as follows:

D(I,¹)(i, j),max
���		


[I(i!k, j!l)#¹(k, l)] . (7)
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Fig. 6. Illustration of DilateD and Erode E of a gray-scale image (top left panel). Top right: star-shaped template of size
1; bottom left: star-shaped template of size 2; bottom right: square-shaped template of size 2. The values of the templates
is zero in all cases.

Erosion E uses the minimum instead of the maximum:

E(I,¹)(i, j),min
���		


[I(i#k, j#l)!¹(k, l)] . (8)

The maximum and minimum are to be taken over all values of displacement �k, l�


of the template

¹. In general for some (i, j), (i!k, j!l) may well go out of the bounds of array I(i, j), a situation we
already anticipated for by setting I(i, j)"!R whenever (i, j) is out of bounds. A similar argument
applies to erosion: If one of the pixels I(i#k, j#l)"!R, in the output image the pixel at
position (i, j) will be unde"ned too. Usually unde"ned pixels are displayed in background color
(black on a display, white on paper).
In Fig. 6 we show some illustrative examples of D and E. We used three di!erent templates to

perform dilateD and erode E on a rather schematic picture of a rabbit. The original image is shown
in the top left panel of Fig. 6(D and E). The top right image of Fig. 6(D) is obtained by replacing
a pixel by its most intense nearest neighbor. This has the e!ect of transforming gray pixels at the
boundaries of the gray objects into white pixels. The same happens to black pixels touching white
and gray objects, hence the rabbit gets in#ated a little. The bottom left panel of Fig. 6(D) shows
the e!ect of changing the intensity during the process of dilation. In this case we useD to remove all
the gray objects of the rabbit, increase the size of the rabbit and change the background color. The
bottom right panel of Fig. 6(D) shows the result of using a square (5�5) template. Apparently, this
template is so large thatD replaces all gray objects by white ones, except for the legs of the rabbit,
which get severely distorted. If our intention was to extract certain features from the original image
of the rabbit, using the large square template obviously is not the right thing to do. Indeed, as
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Fig. 7. Illustration of Open O and Close C of a gray-scale image (top left panel), using the same templates as in Fig. 6.

mentioned earlier, the choice of the template is directly linked to the viewers expectation about the
morphological content of the image.
A similar sequence of images, obtained by employing E instead of D, is shown in Fig. 6(E). Not

surprisingly, the `mina operation generally reduces the number of non-black pixels, i.e. the rabbit
shrinks. However E can increase the area of gray objects too. The top-right image shows that
E tends to emphasize internal structures: Eyes, inner ears, legs and other features became larger.
The `stara template of size 2 (see Fig. 5 (5)) reduces the gray level of all de"ned pixels (viewed
on a computer screen `blacka and `unde"neda are synonymous). Also, it reduces the number of
dark-gray objects. As in the case of D, using an oversized square template (bottom right panel)
yields a fairly distorted image of the rabbit.
The basic morphological operations D and E can be used to construct other operations that

performmore complicated "ltering operations. There are two other operations called Open (O) and
Close (C) that play a central role in MIP [7]. Open and Close are de"ned as

O(I,¹),D(E(I,¹),¹) (9)

and

C(I,¹),!O(!I,!¹) , (10)

where !I,!I(i, j) and !¹,!¹(k, l). Open and Close have all the mathematical properties
that are required for MIP [7]. In particular,O andC are idempotent, i.e. O(O(I,¹),¹)"O(I,¹) and
C(C(I,¹),¹)"C(I,¹), implying that in practice it does not help to `opena or `closea an image
twice or more using the same template.
In Fig. 7 we illustrate the e!ect of O and C, again using the image of the rabbit as an example.

Open and Close act as "lters, the exact result of the "ltering operation depending on the template.
Open O generally rounds corners from the inside of the objects (see the legs of the rabbit in Fig. 7(O)
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for example). Close C, on the other hand, smooths from the outside. Objects that do not "t the
template are removed from the image (see Fig. 7(C)).
It is instructive to compare, e.g. E and C (top right panel of Figs. 6(E) and 7(C)). We see that

E generally increases the size of the gray features whereas C removes the small gray features but
leaves other gray objects intact. This is most clearly seen by comparing the bottom right panel of
Figs. 6(E) and 7(C) that show the results of E andC using the square template. Whereas C does not
change the overall image very much, E makes the rabbit look like a cat. Our experience is that in
practice O and C are more useful than D and E.

3.3. Black-and-white images

Obviously, a black-and-white image B=,B=(i, j) may be considered as special case of the
gray-scale images treated earlier. As such a discussion of black-and-white MIP may seem super-
#ucious. However, in practice, it is often necessary to perform MIP on the gray-scale image,
convert it to black-and-white, and carry out some further MIP on the black-and-white image
before the image can be used as input for MIA. Therefore, it is worthwhile to discuss MIP on
black-and-white images in more detail.
On a computer display a black pixel may be considered as being unde"ned [7]. Instead of

assigning unde"ned pixels the value !R, in this case it is more convenient to assign to a black
pixel the traditional value of zero. A white pixel takes the value one. Hence, a black-and-white
image B= is represented by an array of Boolean variablesB=(i, j). In analogy with gray-scaleMIP
the four basic operations dilate D, erode E, open O and close C are de"ned by

D(B=,¹)(i, j), 

���		


B=(i!k, j!l) , (11a)

E(B=,¹)(i, j), �
���		


B=(i#k, j#l) , (11b)

O(B=,¹),D(E(B=,¹),¹) , (11c)

C(B=,¹),E(D(B=,!¹),!¹) , (11d)

respectively. Operations (11a)}(11c) are Boolean versions of (7), (8) and (9), respectively, but this
is not the case for pair (10) and (11d) [7]. Operations (11a) and (11b) are digital versions of
set-theoretic operators known as Minkowski addition and subtraction [7]. The latter are basic
concepts in point-set geometry and integral geometry [8]. This correspondence suggests that MIP
and MIA are closely related and indeed they are [7].
The collection of images shown in Figs. 8 and 9 serve to illustrate the e!ect of these four

operations on the thresholded image of the rabbit (top left panel). The threshold is chosen such that
the gray pixels are converted to black ones. The examples shown would suggest that MIP of
gray-scale images followed by thresholding yields pictures that are almost identical to the corre-
sponding morphological imaging processed black-and-white images. As a matter of fact compari-
son of the bottom left panel of Figs. 6(D) and 8(D) already shows that interchanging the order
in which thresholding and MIP are performed changes the output. Indeed after MIP of the
black-and-white image, some of the internal features remain visible, notably legs and eyes. In
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Fig. 8. Illustration of Dilate D and Erode E of a black-and-white image (top left panel), using the same templates as in
Fig. 6.

Fig. 9. Illustration of Open O, CloseC and FilterF of a black-and-white image (top left panel), using the same templates
as in Fig. 6.

contrast MIP of the gray-scale image yields a completely smoothed image of the rabbit. For the
input image of the rabbit used in the examples, interchanging thresholding and Erode (or Open or
Close) yields the same output image. In general, this will not be the case unless the images have
a very simple gray-scale structure, as the ones considered here.
As a "nal example of MIP we consider a more complicated "lter F de"ned as [7]

F(B=,¹),C(O(B=,¹),¹) . (12)
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Also this "lter is e!ective in removing small noisy structures (small with respect to the template ¹),
and leaves larger objects intact, whereas O has the tendency to tear objects apart (see bottom right
panel of Fig. 9(O)) and C has the opposite e!ect. Filter F may give a more satisfactory output
image in some cases.

3.4. Miscellaneous operations

Averaging an image using a template can sometimes help to remove artifacts. In our notation
this operation reads

I�(i, j)"
1

�¹

�
���		


I(i#k, j#l) , (13)

where �¹ denotes the number of elements of template ¹. As before, in computing this average,
we use the template to express our a priori knowledge or expectation about the shape and size of
the objects in the image.
Often it is useful to enhance the contrast of a gray-scale image. Again we can use a template to

perform this task. For each pixel in the image I(i, j) we determine M(i, j),max
���		


I(i#k, j#l)
and m(i, j),min

���		

I(i#k, j#l) and then replace each pixel in the image by invoking the rule:

I�(i, j)"�
m if I(i, j)!m(M!I(i, j) ,

M if I(i, j)!m'M!I(i, j) .
(14)

Note that the value of the template does not play any role in this operation.

3.5. Mapping gray-scale to black-and-white images

Excluding applications of MIA that use the threshold as a control parameter (see Section 2.4), in
many situations it may be expedient to reduce the number of di!erent gray values in an image. For
instance, to determine the number of objects in a gray-scale image, we will have to group pixels
according to their gray value. Fluctuations in the gray values due to noise and other experimental
limitations may prevent us from making the correct identi"cation if we use the full resolution of
gray values (typically 256 values). Clearly, a procedure that reduces the number of gray-scale levels
may be very useful.
Thus, we would like to have a procedure to map the original gray-scale image onto another one

with only a small number N of distinct gray levels (e.g. N"2, 4). A simple approach would be to
use histogram equalization to optimize the dynamic range of the gray levels, followed by thre-
sholding to classify pixels as either background or objects [3,4]. Clearly, it is much better to use
a scheme that computes a nearly optimal distribution of the N gray levels from the original image
itself. The method we will describe next performs very well in practice. It is a gray-scale version of
a scheme that is used to determine nearly optimal color pallets [27].
The "rst step of the algorithm consists of making a histogram of the gray-scale image. This we

can easily do at full gray-scale resolution. Let us consider the case of a reduction by a factor of two
(i.e. N"128). We want to group gray levels but keep the image quality as high as possible. Which
gray level should we remove "rst? A natural choice would be to select from the histogram the gray

K. Michielsen, H. De Raedt / Physics Reports 347 (2001) 461}538 477



level k with the lowest count, say 04k4255. Then we merge the bins 2[k/2] and 2[k/2]#1
([k/2]"k/2 if k is even, [k/2]"(k!1)/2 if k is odd). This we do by adding the count of bin
2[k/2]#1 to the count of bin 2[k/2] and then clearing bin 2[k/2]#1. This process of merging bins
is repeated until we have 128 empty bins (which could be rather exceptional) and we can stop the
whole procedure or until we conclude that all posibilities to merge two bins have been exhausted.
In the latter case we repeat the procedure by grouping the bins 4[k/4], 4[k/4]#2 (note that in the
previous step the counts in bins 4[k/4]#1 and 4[k/4]#3 have been set to zero). Thereby care has
to be taken to group the same four bins only once, a technical but crucial point. Again we repeat
this process, always working with groups of four bins, until the number of bins with a count larger
than zero is 128 (in which case the procedure terminates) or we keep restarting the grouping of bins
using increments of 8, 16,2 and so on. Clearly, this procedure terminates as soon as the number of
distinct gray levels becomes equal to the desired number of gray levels. Then it is a straightforward
matter to assign new gray-scale values to the pixels of the original image. Although there is
some ambiguity in chosing the strategy for grouping bins, experience has shown that the procedure
outlined here yields very satisfactory gray-scale images, and can be used to automatically reduce
a gray-scale image to a black-and-white picture.

4. Scanning electron microscope images of nano-ceramics

As an example of an application of MIP we consider the problem of identifying objects in
scanning electron microscope (SEM) images of nano-ceramic materials. These materials may
exhibit physical properties such as ductility, toughness and hardness of both metals and ceramics
and are useful for a number of technological applications that demand good mechanical behavior
and good resistance against the degrading e!ects of high temperature, corrosive environments, etc.
These materials can be manufactured by di!erent techniques, for instance by covering a surface by
layers of nano-sized ceramic particles. The mechanical and other properties of these materials
depend on the morphology, the microstructure and the initial stress due to the use of dissimilar
materials. Di!erent preparation techniques and additional (heat) treatments often yield materials
that have di!erent morphologies [28}30].
The changes in the morphology during the sintering process can be monitored by means of

high-resolution low-voltage scanning electron microscopy (HRSEM) [31]. In Fig. 10 we show two
SEM images of SiO

�
particles on a substrate of fused silica, before (top panel) and after (bottom

panel) a heat treatment [31,32]. From Fig. 10 it is clear that the latter causes particles to aggregate.
Although their size does not seem to change much, the voids get larger. A more quantitative
analysis of such images requires the identi"cation of objects (i.e. particles) in the image. MIP is well
suited for this purpose.
At the right-hand side of Fig. 10 we depict the images obtained by MIP. The #uctuations in the

intensity (i.e. gray value) within what our eyes would consider to be one particle can be rather large.
This experimental artifact can be removed from the image by means of O (open) and contrast
enhancement operations, both using as a template a disc with a radius of 10 pixels. The size of the
template re#ects our rough guess about the size of the objects. Then we use the algorithm described
in Section 3.5 to map the gray-scale image onto a black-and-white picture. The "nal step consists of
removing some minor artifacts of the size of one pixel by means of a C (close) operation. For this
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Fig. 10. Electron microscope micrographs of silica at two stages of the sintering process before (left) and after (right)
MIP.

purpose we use a single pixel as a template. Clearly the quality of these black-and-white pictures is
su$ciently good for further analysis of the particle size, distribution etc.
In Fig. 11 we present SEM images of another material, TiO

�
on the same substrate. Depending

on the heat treatment grains of TiO
�
grow in size, leading to the mosaic-like coverages shown in

Fig. 11 [31,33]. Also in this case gray-scale O and contrast-enhancement operations are used to
remove noisy features from the image. Here the template is a 4-pixel-radius disc, smaller than in the
previous example, but consistent with our expectation that the images of individual grains are
smaller. Then the images are converted to black-and-white pictures, using the same procedure as
the one described above. Also in this case the "nal pictures are of su$cient quality so that objects
can easily be identi"ed and analyzed.
As a "nal example we consider a rather di!erent type of system, namely small Mn

�
O

�
precipitates in Ag observed by high-resolution transmission electron microscopy (HRTEM). The
top-left panel of Fig. 12 shows a high-resolution picture of a small part of the sample shown in the
bottom-left panel. From the former we would like to extract information about the geometrical
properties of the individual grains, from the latter we want to learn how the particles are distributed
over the surface. It is somehow remarkable that the same MIP procedure can be used for both,
apparently quite di!erent, tasks. The top-left image has very low contrast. Moreover, due to
experimental conditions, the averaged intensity at the left-hand side of the image di!ers signi"-
cantly from the one at the right-hand side. After correcting for this artifact, repeated averaging and
contrast enhancement operations with a 15-pixel-radius template followed by the standard of
mapping to black-and-white yields the image shown in the top-right panel of Fig. 12. The
bottom-left image is processed in the same manner, except that instead of a 15 pixel-size disc we use
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Fig. 11. Electron microscope micrographs of zirconia at two stages of the sintering process before (left) and after (right)
MIP.

Fig. 12. High-resolution electron microscope image of Mn
�
O

�
precipitates before (left) and after (right) MIP.
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a radius of 4 pixels and we added a D (Dilate) step to remove some sharp edges from the objects.
Physically, relevant information about the particle size and spatial distribution is easily extracted
from these pictures.
The examples discussed above illustrate that MIP is a #exible and powerful tool for enhancing

image quality and object identi"cation, without destroying the morphological content of the image.
Of course, depending on the type of image technique used, additional non-morphological
image processing steps may be required to produce patterns that are suitable for morphological
image analysis. As the emphasis of this paper is on image analysis rather than on image processing
an in-depth discussion of the latter is outside the scope of the paper and we refer the reader to
standard treatises on the subject [3}6]. We now review the theory that provides a rigorous
framework for the quantitative characterization of the morphological properties of black-and-
white images.

5. Integral geometry

In this section we present the mathematics that lies at the heart of integral-geometry-based
morphological image analysis. The reader who is not interested in the mathematics can skip this
section and resort to Section 2.

5.1. Preliminaries

Consider the set of points of a line ¸ of length a embedded in one-dimensional (1D) Euclidian
space. We take a similar line of length 2r and put the center of this line at each point of the line ¸.
How does the union of all these points look like? Obviously, it is another line that is longer than ¸.
The sets ¸ (black line) and ¸

�
(union of black and light gray lines), the result of this operation, are

shown in Fig. 13. The length l of ¸
�
is given by

l(¸
�
)"a#2r"l(¸)#2r . (15)

The set ¸
�
is called the parallel set of ¸ at a distance r.

The one-dimensional case easily extends to two and three dimensions. We consider a circular
disk D of radius a, a square Q of edge length a and a equilateral triangle ¹ of side length
a embedded in the 2D space. Now, we use a disc of radius r and perform the same operation as we
did for the 1D case: We put the center of the disc of radius r at each point of D (or Q or ¹) and
consider the union of all points. The resulting parallel sets at a distance r are shown in Fig. 13. The
area A of D

�
, Q

�
and ¹

�
is given by

A(D
�
)"�a�#2�ar#�r� , (16a)

A(Q
�
)"a�#4ar#�r� , (16b)

A(¹
�
)"

�3
4

a�#3ar#�r� . (16c)
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Fig. 13. Parallel sets K
�
(union of black and grey area) at a distance r of the sets K (black area). Top: parallel set of a line

segment ¸ of length a embedded in one dimension; bottom: parallel set of a circular disk D of radius a, a square Q of edge
length a and an equilateral triangle ¹ of side length a embedded in the two-dimensional space.

Formulae (16) suggest that there may be a general relationship between the area of the original set
and its parallel set at a distance r. It is not di$cult to see that the areas of the three parallel sets can
be written as

A(K
�
)"A(K)#;(K)r#�r� , (17)

where;(K) denotes the boundary length (or perimeter) of the geometrical object K. The similarity
between the construction of the parallel sets and the dilation of an image by means of a template of
`radiusa r is not an accident: Dilation on a black-and-white image (see Section 3.3) is a digital
equivalent of building the parallel set in Euclidian space [7]. This again shows that MIA and MIP
have common roots.
As a last example we consider a cube C of edge length a embedded in 3D space. A simple

calculation shows that the volume < of the parallel set C
�
can be written as

<(C
�
)"a�#6a�r#3a�r�#

4�
3

r� . (18)

Again, under certain restrictions on the shape of the 3D object K, (18) suggests the generalization

<(K
�
)"<(K)#S(K)r#2�B(K)r�#

4�
3

r� , (19)

where S(K) is the surface area and B(K) is the mean breadth.
What is the point of all this? The examples presented above suggest that for a su$ciently simple

geometrical object, the change in the volume (area) can be computed from the original volume,
area, and mean breadth (area and perimeter), as long as we in#ate or de#ate the object without
changing its topology. This is the key to the morphological characterization of sets of points in
Euclidian space. Obviously, sets of pixels can be analyzed using these concepts too but in order to
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be useful in practice, there should be no constraints on the shape of the objects. The purpose
of the next two subsections is to discuss the generalization of the above concept to objects of
arbitrary shape.

5.2. Convex sets and Minkowski functionals

The simple geometrical bodies used in the previous subsection are special in the sense that the set
of points making up the body is convex. In fact, the general relations alluded to above only hold for
convex bodies. Convex bodies play an important role in integral geometry. Therefore, we will "rst
review some of their basic properties. A collection of points K in the d-dimensional Euclidean space
�� is called a convex set if for every pair of points in K, the entire line segment joining them also lies
in K. A convex set with nonempty interior is called a convex body. A single point x3�� is also
a convex set and convex body. We will only consider convex sets that are bounded and closed, i.e.
that are compact. The class of all compact convex sets is denoted by �.
The parallel set K

�
of a compact convex set K3� at a distance r is the union of all closed balls of

radius r, the centers of which are points of K [9]. The operation of taking a parallel set preserves
the properties of convexity and compactness, i.e. K

�
3� [10]. Clearly the notion of a parallel set,

introduced in the previous subsection, agrees with this de"nition.
The general expression for the volume v��	 of the parallel body K

�
at a distance r of a convex body

K, is given by the Steiner formula [8]

v��	(K
�
)"

�
�
��

�

d


�=��	� (K)r� , (20)

where the=��	� (K) are called quermassintegrals or Minkowski functionals and are given by

=��	


(K)"l(K), =��	

�
(K)"2, d"1 , (21a)

=��	


(K)"A(K), =��	

�
(K)"�

�
;(K), =��	

�
(K)"�, d"2 , (21b)

=��	


(K)"<(K), =��	

�
(K)"�

�
S(K), =��	

�
(K)"

2�
3

B(K) ,

=��	
�
(K)"

4�
3
, d"3 . (21c)

Clearly (21) generalizes the results for the simple examples given above and con"rms that the
Minkowski functionals have an intuitively clear meaning. It can be shown [8] that the Minkowski
functionals are

� Motion invariant: A functional is motion invariant if �(gK)"�(K) for K3� and g3G. Here
G denotes the group of all translations and rotations in ��. If we think of � as an image
functional, this condition assures that the result of the measurement � does not depend on the
choice of the coordinate system.

� C-additive: A functional is C-additive if �(K
�
�K

�
)"�(K

�
)#�(K

�
)!�(K

�
�K

�
) for

K
�
,K

�
3� and K

�
�K

�
3�. The notion of C-additive (means additive on the set �) is not just
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a technical one because the union of two convex sets is not necessarily convex, although the
intersection is.

� Continuity: � is continuous if lim
	��

�(K
	
)"�(K) whenever �K

	
	 is a sequence of compact sets

such that lim
	��

K
	
"K in the Hausdor! metric [7]. Intuitively, this continuity property of

� means that whenever the compact convex sets K
	
approach the compact convex set K, also

�(K
	
) approaches �(K). This is a rather technical condition that is sati"ed when we limit

ourselves to sets of pixels.

A fundamental result in integral geometry is the completeness of the family of Minkowski
functionals. A theorem by Hadwiger [8] states that every motion invariant, C-additive and
continuous functional � over � can be written as

�(K)"
�
�
��


a�=��	� (K) (22)

with suitable coe$cients a�3�. In other words, the d#1 Minkowski functionals form a complete
system of morphological measures on the set of convex bodies [8].
What is the relevance of the above to image functionals? In the Introduction we mentioned that

MIA uses additive image functionals. Of course, we prefer to use motion invariant, additive image
functionals. However, there is no reason why an image should be a convex set, so if we could
replace `C-additivea by `additivea then Hadwiger's theorem would tell us that there are no more,
no less than d#1 di!erent additive image functionals. This would be a nice result because
it implies that we would have to switch to non-additive or coordinate-system-dependent
image functionals to "nd additional non-morphological structure in the image. However, the
extension of Hadwiger's theorem to additive instead of C-additive image functionals requires
further consideration.

5.3. Convex rings and additive image functionals

The results of the previous subsection can be generalized to a much more general class of objects
by considering the convex ring [8]R, the class of all subsets A of �� which can be expressed as "nite
unions of compact convex sets

A"

	


���

K
�
; K

�
3� . (23)

If A
�
and A

�
both belong to R then so do A

�
�A

�
and A

�
�A

�
. As before, an additive functional

� has the property �(A
�
�A

�
)"�(A

�
)#�(A

�
)!�(A

�
�A

�
). Motion invariance of � on R is

de"ned as for � on �. Obviously, an image is an instance of the convex ringR, the pixels being the
convex sets and elements of �.
Fundamental to the extension from � to R is the Euler characteristic or connectivity number

� de"ned as [8]

�(K)"�
1, KO� ,

0, K"�
(24)
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for all K3�. The Euler characteristic is an additive, motion invariant functional onR [8]. For an
element A of the convex ring R, the use of the property of additivity of � yields

�(A)"��
	



���

K
��"�

�

�(K
�
)!�

�
�

�(K
�
�K

�
)#2#(!1)	���(K

�
�2�K

	
) . (25)

The value of �(A) is independent of the representation of A as a "nite union of compact convex sets
[8]. Note that all sets appearing on the r.h.s. of (25) are convex so that we can use (24) to compute
the numerical (integer) value of �(A).
The Euler characteristic can be used to de"ne the Minkowski functionals for all elements of the

convex ring A3R [8]. Recalling that a single point x3�� is a convex set, we can write the
characteristic function of the set A as I

�
(x)"�(A�x). Then the volume of A is given by

=��	


(A)"�GI

�
(gx) dg. Here dg denotes the motion-invariant kinematical density [8,9] and the

integration is over all elements of G [8,9]. The expression of the volume suggests the following
de"nition [8] of the Minkowski functionals on R:

=��	� (A)"�G�(A�gE� ) dg 
"0,2, d!1 ,

=��	
�
(A)"�

�
�(A) �

�
"����/�(1#d/2) , (26)

where E� is a 
-dimensional plane in ��. The normalization is chosen such that for a d-dimensional
ball B

�
(r) with radius r, =��	� (B

�
(r))"�

�
r��� where �

�
denotes the volume of the unit ball (�



"1,

�
�
"2, �

�
"�, �

�
"4�/3) [14].

The Minkowski functionals inherit from � the property of additivity

=��	� (A)"=��	� �
	



���

K
��"�

�

=��	� (K
�
)!�

�
�

=��	� (K
�
�K

�
)#2

#(!1)�	��	=��	� (K
�
�2�K

	
) (27)

and motion invariance. Hadwiger [8] has shown that representation (22) is also valid for elements
of the convex ring R. The d#1 Minkowski functionals form a complete system of additive
functionals on the set of objects that are unions of a "nite number of convex bodies [8].
In the translation of these abstract mathematical results toMIA it is essential to keep in mind the

conditions under which the mentioned theorems hold. Fortunately, in practice, this is easy to do.
The crucial step is to decompose the image into a union of convex sets so that we can use the
theoretical results that hold on the convex ring. We address this issue in Section 5.5.
For completeness and also because we make use of it in Section 7, we state one more important

result in integral geometry, the so-called kinematic formulae. These are very useful tools
in stereology and stochastic geometry [8,9,25]. They play a key role in deriving averages of
Minkowski functionals (see Appendix D for an example). Hadwiger's principal kinematic formulae
read [8]

�GM��	� (A�gB) dg"

�
�
��


�



��M��	���(B)M��	� (A) , (28a)

M��	� (A)"
�

���
����

=��	� (A), 
"0,2, d . (28b)
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Using (21), (28b) and the fact that �(K)"1 for K3�we de"ne the normalizedMinkowski functionals
as

M��	


(K)"l(K), M��	

�
(K)"�

�
�(K), d"1 , (29a)

M��	


(K)"A(K), M��	

�
(K)"

1
2�
;(K) ,

M��	
�
(K)"

1
�
�(K), d"2 , (29b)

M��	


(K)"<(K), M��	

�
(K)"�



S(K) ,

M��	
�
(K)"

1
�

B(K), M��	
�
(K)"

3
4�

�(K), d"3 (29c)

for all K3�.

5.4. Relation to topology and diwerential geometry

The Euler characteristic � is identical to the one de"ned in algebraic topology [8]. For
d"2, �(A) equals the number of connected components minus the number of holes. In three
dimensions �(A) is given by the number of connected components minus the number of tunnels plus
the number of cavities. Some examples are shown in Fig. 14. The Euler characteristic describes A in
a purely topological way, i.e. without reference to any kind of metric.
Very often one is interested in the topology of the surface RA of A [2,15]. The Euler characteristic

of RA is directly related to that of A, namely �(RA)"�(A)[1!(!1)�], where n is the dimension of
the body A (n4d) [19].
The principal curvatures of a surface are useful quantities for the numerical characterization of

the surface of a 3D body. They are de"ned as follows. Consider a point on the surface and the
vector through this point, normal to the surface. A plane containing this normal vector intersects
the surface. This intersection is a planar curve with a curvature called the normal curvature.
Rotation of the plane about the normal produces various planar curves with di!erent values of
normal curvature. The extreme values of the normal curvatures are called the principal curvatures
�
�
and �

�
of a surface. These two curvatures can be combined to give two useful measures of the

curvature of a surface, namely the Gaussian and mean curvature de"ned as G"�
�
�
�

and
H"(�

�
#�

�
)/2, respectively. The integral mean curvature H and integral Gaussian curvature

G are given by

H(A)"
1
2�
.�
�
1

R
�

#

1
R

�
�df (30)

and

G(A)"�
.�

1
R

�
R

�

df , (31)
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Fig. 14. Two- and three-dimensional "gures with various connectivity numbers or Euler characteristics �.

respectively. Here R
�
"1/�

�
and R

�
"1/�

�
are the principal radii of curvature of A and df is the

area element on A. For H and G to be well de"ned the boundary RA should be regular.
The mean breadth is proportional to the integral mean curvature:

H(A)"2�B(A) . (32)

The Euler characteristic of RA is closely related to the integral Gaussian curvature G and the genus
g (number of handles):

G(A)"2��(RA), �(RA)"2(1!g) . (33)

Note that integral geometry imposes no regularity conditions on the boundary RA of the objects:
H(A) and �(A) are always well de"ned.

5.5. Application to images

Each pixel in a 2D (3D) black-and-white image is a convex set. Therefore, such images may be
considered as an element of the convex ring R and we can invoke integral geometry to build
additive image functionals to measure features in the image. However, as mentioned before, some
care has to be taken because the Minkowski functionals take known values on convex sets only.
The key to the practical application of integral geometry to images is the additivity of � (see (25)):

We can compute the Minkowski functionals of an image A by decomposing A into convex sets K
�
.

However, if we would take for �K
�
	 all black pixels (assuming the background consists of white

pixels), then we would have to compute all the intersections that appear in (25). Although this can
be done, it is much more expedient to take a slightly di!erent route.
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Table 1
Minkowski functionals =��	� (
"0,2, d"2) for the open bodies N[

�
, the basic building blocks of a two-dimensional

square lattice. Q[ : open square of edge length a; [̧ : open edge of length a; P[ : vertex. A denotes the covered area, ; the
perimeter and � the Euler characteristic

m N[
�

=��	



"A =��	
�

";/2 =��	
�

"��

0 P[ 0 0 �
1 [̧ 0 a !�
2 Q[ a� !2a �

First, we write each pixel K as the union of the disjoint collection of its interior body,
interior faces (in 3D only), open edges and vertices [19]. We will denote the interior of a set A by
Ax "A�RA. The values of the Minkowski functionals of the open interior of an n-dimensional body
A3R embedded in �� (n4d) are given by [19]

=��	� (Ax )"(!1)�����=��	� (A), 
"0,2, d . (34)

By making use of the additivity of the Minkowski functionals (see (27)) and the fact that there is no
overlap between open bodies on a lattice, the values of the Minkowski functionals on the whole
pattern P"P(x, q) may be obtained from

=��	� (P)"�
�

=��	� (Nx
�
)n

�
(P), 
"0,2, d , (35)

where n
�
(P) denotes the number of the open bodies Nx

�
of type m present in P. On a square and

cubic lattice there are d#1 open bodies Nx
�
: Nx



corresponds to a vertex, Nx

�
to an open line

segment, Nx
�
to an open square on both the 2D square and the 3D cubic lattice, and Nx

�
to an open

cube on the 3D cubic lattice. The values of theMinkowski functionals for the building blocks Nx
�
of

a 2D square and a 3D cubic lattice are given in Tables 1 and 2, respectively. Their derivation is
given in Appendix C. The procedure to calculate n

�
(P) is described in Appendix B. This completes

the construction of the method to compute the d#1 additive image functionals for a d-dimen-
sional lattice "lled with black and white pixels. In essence the method boils down to the simple
procedure of counting vertices, edges, etc., as described in Section 2.
We illustrate the procedure to compute the Minkowski functionals by considering the 2D

checkerboard pattern with an even number ¸


of cells, of edge length one, in each direction. We

consider free and periodic boundary conditions (see Fig. 15). The left picture in Fig. 15 shows the
4�4 checkerboard lattice with free boundary conditions, i.e. the pattern is completely surrounded
by white pixels. The right picture shows the same pattern but with periodic boundary conditions.
For the ¸



�¸



checkerboard P

�
with free boundary conditions we "nd n



(P

�
)"

(¸


#1)�!2, n

�
(P

�
)"2¸�



, n

�
(P

�
)"¸�



/2 and hence A(P

�
)"¸�



/2, ;(P

�
)"2¸�



and

�(P
�
)"¸�



/2!(¸



!1)�. Note that this value of � corresponds to the value we "nd if we calculate

� as the number of connected components minus the number of holes, since the number
of connected components (black structure) equals one and the number of holes equals
(¸



/2!1)(¸



!2). For the ¸



�¸



checkerboard P

�
with periodic boundary conditions we "nd
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Table 2
Minkowski functionals=��	� (
"0,2, d"3) for the open bodies N[

�
, the basic building blocks of a three-dimensional

cubic lattice. C[ : open cube of edge length a; Q[ : open square of edge length a; [̧ : open edge of length a; P[ : vertex.< denotes
the covered volume, S the surface area, B the mean breadth and � the Euler characteristic

m N[
�

=��	



"< =��	
�

"S/3 =��	
�

"2�B/3 =��	
�

"4��/3

0 P[ 0 0 0 4�/3
1 [̧ 0 0 �a/3 !4�/3
2 Q[ 0 2a�/3 !2�a/3 4�/3
3 C[ a� !2a� �a !4�/3

Fig. 15. 4�4 checkerboard pattern. The black line denotes the boundary. Left: free boundaries; right: periodic
boundaries.

n


(P

�
)"¸�



, n

�
(P

�
)"2¸�



, n

�
(P

�
)"¸�



/2 which yields A(P

�
)"¸�



/2, ;(P

�
)"2¸�



and

�(P
�
)"!¸�



/2. Note that �(P

�
)/¸�



"lim

�
��
�(P

�
)/¸�



"!1/2.

5.6. Reducing digitization errors

The Minkowski functionals computed on the lattice of pixels, will be called digital Minkowski
functionals. They yield approximate values of the Minkowski functionals of these objects in
Euclidean space. By digitizing the 2D (3D) image we have introduced square (cubic) distortions in
the objects, causing a directional bias. For example, digitizing a 2D (3D) image transforms
a smooth contour (surface) to a more stepwise contour (surface). The more complicated the image
the better the digital approximations are likely to become since the parts of the stepwise boundary
or surface will exhibit each orientation more often. The most problematic structures may be
isotropic ones. We will not treat the problems of digitization to large extent but will only give
a simple method to obtain a better approximation to the Euclidean perimeter and area (covered
area and volume) in two (three) dimensions.
There are several methods to correct for the systematic error, caused by digitization of the image

[3,26]. A correction to the digital Minkowski functionals that leads to a better approximation of
the area and perimeter in 2D (volume and covered area in 3D) can be made by explicitly taking into
account the number of `stepsa n

�
(P) in the pattern P"P(x, q). In 2D (3D) patterns, `stepsa are
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Fig. 16. Steps as de"ned on a 2D (3D) square (cubic) lattice.

de"ned by two pixels that share only one vertex (edge). Examples of steps are shown in Fig. 16. The
corrected digital Minkowski functionals corresponding to the perimeter and area (covered area
and volume) in 2D (3D), may be written as

=���	� (P)"=��	� (P)!C��	� n
�
(P), 
"0, 1 , (36)

where=��	� (P) is given by (35) and C��	� denotes a correction factor. On a square and cubic lattice
C��	



"C��	



"1, C��	

�
"(2!�2)/2 and C��	

�
"(2!�2)/3. The procedure to calculate n

�
(P) is

described in Appendix C.
As an illustration we use this correction procedure to calculate the area and perimeter for the

triangle shown in Fig. 17a. The Euclidean perimeter and area are 20.35 cm and 16.47 cm�,
respectively. As usual, we "rst digitize the image of the triangle by mapping the triangle on square
grids. Some results for various grid spacings are shown in Figs. 17b}d. The digitization transforms
the straight and smooth boundaries of the triangle to more stepwise boundaries. Using the
procedure outlined in Section 2 we calculate the digital perimeter and area of the objects in
Figs. 17b}d. Then by making use of (36), we compute the corrected digital perimeter and area. The
results are summarized in Table 3.
As seen from Table 3 the values of the digital perimeter and area obtained using (35) are always

larger than their Euclidean counterparts. Reducing the grid spacing does not lead to a fast
convergence of the values of the digital perimeter and area to the values of the Euclidean ones. If we
compute the digital perimeter and area using (36) the values are still larger than the Euclidean ones
but the improvement is substantial.
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Fig. 17. Digitization process for a triangle. Triangle in Euclidean space (a); triangle mapped on a square grid with grid
spacing 2 (b); 1 (c) and 1/2 (d).

Table 3
Digital and corrected digital perimeter and area of the objects shown in Figs. 17b}d. ¸



denotes the grid spacing and ;,

A (;�,A�) denotes the digital (corrected digital) perimeter and area, respectively. The Euclidean perimeter and area are
20.35 cm and 16.47 cm�, respectively

Fig. 17 ¸



; (cm) A (cm�) ;� (cm) A� (cm�)

(b) 2 36.00 48.00 33.07 28.00
(c) 1 30.00 31.00 27.36 22.00
(d) 1/2 30.00 23.50 26.92 18.25

5.7. Normalization of image functionals

In the following sections, we calculate Minkowski functionals for 2D (3D) for a variety of square
(cubic) lattice systems. For practical purposes it is convenient to introduce the following quantities:

AI "A/¸�, ;I ";/¸N���, �� "�/N, d"2 (37a)

and

<I "</¸�, SI "S/¸�N���, BI "2B/¸N���, �� "�/N, d"3 , (37b)

where ¸ denotes the linear size of the square (cube) and N denotes the number of germs.
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In the case of 2D (3D) periodic structures the structures may be divided into equivalent regions
bounded by a square (cubic) unit cell of space. Let us assume that the 2D (3D) periodic structure of
total area ¸� (volume ¸�) is composed of several unit cells of typical length scale ¸



. Then the Euler

characteristic � of the whole system is given by

�"�� �
¸

¸


�
�
,�� M , (38)

where M,(¸/¸


)� denotes the number of unit cells. The other morphological quantities of the

whole system may be written as

A"AM ¸�


M, ;";M ¸



M, d"2 , (39a)

<"<M ¸�


M, S"SM ¸�



M, B"2BM ¸



M, d"3 . (39b)

The quantities AM , ;M , <M , SM , BM and �� characterize the structure within one elementary unit of the
periodic structure.

6. Illustrative examples

We "rst apply MIA to simple cubic, face-centered cubic and body-centered cubic lattice
structures with and without imperfections. We use the method described in Section 2.3 to analyze
these point patterns. In Sections 6.2 and 6.3 we employ the method described in Section 2.4 to
compute the value of the Minkowski functionals of some complex 3D surfaces, namely some triply
periodic minimal surfaces and the Klein bottle.

6.1. Regular lattices

The face-centered cubic (FCC) and body-centered cubic (BCC) lattices are of great importance,
since an enormous variety of solids and several complex #uids [34] crystallize in these forms. The
simple cubic (SC) form, however, is relatively rare. The SC lattice may be generated from the
following set of primitive vectors:

a
�
"¸



(1, 0, 0), a

�
"¸



(0, 1, 0), a

�
"¸



(0, 0, 1) , (40)

where ¸


denotes the lattice constant. A symmetric set of primitive vectors for the FCC cubic

lattice is

a
�
"

¸


2
(0, 1, 1), a

�
"

¸


2
(1, 0, 1), a

�
"

¸


2
(1, 1, 0) (41)

and for the BCC cubic lattice is

a
�
"

¸


2
(1, 1,!1), a

�
"

¸


2
(1,!1, 1), a

�
"

¸


2
(!1, 1, 1) . (42)

To compute the Minkowski functionals for the SC, FCC, and BCC lattices we place them on
a cubic lattice with lattice constant one, making use of (40)}(42), and we put one black pixel at each
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Fig. 18. Graining procedure for the SC lattice with periodic boundary conditions and ¸


"4. The thick solid line

indicates the dimensions of the unit cell.

point of the SC, FCC or BCC lattice, respectively. By making use of the procedure described in
Section 2.3 we transform the resulting point pattern into a pattern of `sphericala grains of radius
r and study the behavior of the Minkowski functionals as a function of r. An example of the
graining procedure is shown in Fig. 18 for the SC lattice with periodic boundary conditions and
¸


"4. The thick solid line indicates the dimensions of the conventional unit cell, simply called the

unit cell from now on.
Fig. 19 shows the Minkowski functionals <I , SI , BI and �� as a function of r for the SC (dotted

curve), FCC (solid curve) and BCC (dashed curve) lattice without imperfections. The SC, FCC and
BCC lattices with periodic boundaries consist of one unit cell of linear dimension ¸



"32. Because

of normalization (37) the curves for more than one unit cell will be the same as the ones shown in
Fig. 19. Fig. 19 clearly shows that the behavior of the Minkowski functionals as a function of
r di!ers for the various lattice types. The area SI reaches a maximum if r equals ¸



/2, ¸



�2/4,

¸


�3/4, for the SC, FCC and BCC lattice, respectively. At this value for r the Euler characteristic

�� starts to deviate from one because the `spheresa touch each other. For the SC lattice �� jumps to
!2 independent of ¸



(result not shown). In the case of the FCC (BCC) lattice and for su$ciently

large ¸


(¸



516) the Euler characteristic jumps to a large negative (positive) value. For the SC,

FCC and BCC lattice with r"0 the Euler characteristic per unit cell equals 1, 4 and 2, respectively.
This corresponds to the number of `spheresa per unit cell.
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Fig. 19. Minkowski functionals as a function of r for the perfect SC (dotted curve), FCC (solid curve) and BCC (dashed
curve) lattice with M"1 and ¸



"32 with periodic boundary conditions.

Crystal structures formed in materials are not perfect. Therefore, it is of interest to study the
in#uence of defects on the curves shown in Fig. 19 for the BCC lattice. Imperfections in the crystal
structure may be formed by the absence or by small displacements of some of the basic lattice
points. Also the presence of impurities, creating extra lattice points, causes an imperfect crystal
structure. In Fig. 20 we show theMinkowski functionals as a function of r for perfect and imperfect
BCC lattice structures. The solid curve depicts the data for a perfect BCC lattice containing M"8
unit cells of linear dimension¸



"16. The dashed curve shows the data for the same BCC lattice to

which $30% of defects have been added at randomly chosen positions. The dotted curve depicts
the results of displacing $30% randomly chosen basic lattice points over a random distance 0 or
1. Apart from someminor changes the three curves behave in the same way. Only if we move all the
lattice points over a random distance 0 or 1 (dash}dotted lines), the curves for BI and �� di!er
qualitatively from the ones of the perfect BCC lattice. Therefore, we may conclude that the presence
of small amounts of defects in the crystal structure does not alter the characteristic behavior of the
Minkowski functionals as a function of r.

6.2. Triply periodic minimal surfaces [35]

A minimal surface in �� is de"ned as a surface for which the mean curvature (see Section 5.4) is
zero at each of its points. As a consequence, at every point of a minimal surface the two principal
curvatures are equal, but opposite in sign. Hence the Gaussian curvature is always non-positive.
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Fig. 20. Minkowski functionals as a function of r for BCC lattice structures with M"8 and ¸


"16 with periodic

boundary conditions. Solid line: perfect BCC lattice; dashed line: BCC lattice to which $30% of impurities have been
added at randomly chosen positions; dotted line: BCC lattice of which $30% of randomly chosen basic lattice points
have been moved over a randomly chosen distance 0 or 1; dash}dotted line: BCC lattice of which all the basic lattice
points have been moved over a randomly chosen distance 0 or 1.

For every closed circuit on the surface, the area is a minimum. We will consider the triply periodic
minimal surfaces (TPMS), minimal surfaces that are periodic in three independent directions.
During the last years these TPMS and similar interfaces have been elaborately discussed in
literature since structures related to TPMS may form spontaneously in physico-chemical and in
biological systems [2,36]. Examples may be found in various crystal structures [2,37,38], lipid-
containing systems [39}42], microemulsions [43], block copolymers [44}57], skeletal elements in
sea urchins [58,59] and cell membranes [60].
A TPMS is either free of self-intersections or may intersect itself in a more or less complicated

way. Each TPMS without self-intersections is two-sided and subdivides �� into two in"nite,
connected but disjunct regions. These two regions, or labyrinths, are not simply connected and they
interpenetrate each other in a complicated way. The two labyrinths may di!er in shape or they may
be congruent, i.e. there exist symmetry operations mapping one labyrinth onto the other. In the
latter case the surface is called a balance surface [61]. The symmetry of a balance surface is
described by a group}subgroup pair H/I of spacegroups, where H contains all isometries of
�� which map the surface onto itself. An isometry of H maps each side of the surface and each
labyrinth either onto itself or onto the other side and the other labyrinth [61]. I contains only
those isometries which map each side of the surface and each labyrinth onto itself. If the two sides of
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Fig. 21. Unit cube for the nodal primitive P surface (a), the nodal double diamond D surface (b) and the nodal gyroid
G surface (c). The surfaces are generated from Eq. (43).

a balance surface are `coloreda so that they are symmetrically distinct, black}white space groups
instead of the group-subgroup pairs with index 2 may be used to describe its symmetry [61]. In this
case the surface is called oriented.
The periodic surfaces can be divided into equivalent regions bounded by a unit cell of space.

There are two common choices of unit cells, the lattice fundamental region and the crystallographic
cell [62]. The lattice fundamental region contains the smallest region of the surface that reproduces
the complete surface upon translation of this unit cell alone. The crystallographic cell is the smallest
cube generating space by the lattice and can contain many lattice fundamental regions. We give our
data for the crystallographic cell, simply called the unit cell from now on, and consider the
bicontinuous structure of total volume ¸� to be composed of several unit cells of typical length
scale ¸



. Then the Minkowski functionals for one elementary unit may be calculated from (38)

and (39).
Here we only consider the P (primitive) [63] the D (diamond) [63] and the G (gyroid) [64]

surfaces, which are TPMS free of self-intersections. The P, D and G surfaces, with group-subgroup
pairs of space groups with index 2 Im3� m/Pm3� m, Pn3� m/Fd3� m and Ia3� d/I4

�
32, respectively, divide

space into two equal labyrinths related by a translation (for P and D) or an inversion (for G),
thereby generating a bicontinuous geometry. The Bravais lattices for the P, D, and G surfaces are
BCC, SC and BCC, respectively. For the oriented P, D and G surfaces the Bravais lattices are SC,
FCC and BCC, respectively.
The oriented P, D and G surfaces may be approximated by the periodic nodal surfaces [65}67]

cosx#cos y#cos z"0 , (43a)

sin x sin y sin z#sin x cos y cos z#cosx sin y cos z#cosx cos y sin z"0 , (43b)

sin x cos y#sin y cos z#sin z cosx"0 . (43c)

In Fig. 21a}c we show the nodal P (43a), D (43b) and G (43c) surfaces, in their unit cell. Tables 4}6,
summarize the results for the Minkowski functionals of the thresholded nodal oriented P, D and
G surfaces for several numbers of unit cells. As seen from Tables 4}6, the values calculated using the
integral-geometry approach are in good agreement with the numbers found in literature [62,68,69].
Note that in contrast to many works in literature, we compute �(P) and not �(RP)"2�(P) (see also
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Table 4
Minkowski functionals of the P surface (at threshold q"0.5) obtained from (43a) for M"(¸/¸



)� unit cells, where

¸ denotes the edge length of the total cube and ¸


the edge length of a unit cube. The values found in the literature

[62,68,69] are given in parenthesis

¸



¸ M <M SM ��

16 64 64 0.502 3.800 !2
32 64 8 0.501 3.715 !2
32 128 64 0.501 3.715 !2
64 64 1 0.501 3.671 !2
64 128 8 0.500 3.671 !2
128 128 1 0.500 3.675 !2

(0.500) (2.345) (!2)

Table 5
Minkowski functionals of the D surface (at threshold q"0.5) obtained from (43b) for M"(¸/¸



)� unit cells, where

¸ denotes the edge length of the total cube and ¸


the edge length of a unit cube. The values found in the literature

[62,68,69] are given in parenthesis

¸



¸ M <M SM ��

16 64 64 0.500 6.000 !8
32 64 8 0.500 6.000 !8
32 128 64 0.500 6.000 !8
64 64 1 0.500 6.000 !8
64 128 8 0.500 6.000 !8
128 128 1 0.500 6.000 !8

(0.500) (3.838) (!8)

Table 6
Minkowski functionals properties of the G surface (at threshold q"0.5) obtained from (43c) for M"(¸/¸



)� unit cells,

where ¸ denotes the edge length of the total cube and ¸


the edge length of a unit cube. The values found in the literature

[62,68,69] are given in parenthesis

¸



¸ M <M SM ��

16 64 64 0.500 4.970 !4
32 64 8 0.500 4.900 !4
32 128 64 0.500 4.900 !4
64 64 1 0.500 4.857 !4
64 128 8 0.500 4.857 !4
128 128 1 0.500 4.847 !4

(0.500) (3.092) (!4)

Section 5.4). Only the numbers for the area are about a factor of 1.6 larger than the numbers quoted
in literature. This systematic error is due to the digitization of the picture. This operation
transforms the smooth surface to a more stepwise surface which enlarges the covered area.
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Table 7
Corrected digital volume and covered area of the P, D and G surfaces (at threshold q"0.5) obtained from (43a) to (43c)
for one unit cell with edge length ¸



"128. The Euclidean values found in the literature [62,68,69] are given in

parenthesis

TPMS <M � SM �

P 0.481 (0.500) 2.204 (2.345)
D 0.470 (0.500) 3.782 (3.839)
G 0.474 (0.500) 2.916 (3.092)

Table 8
Digital (HI) and corrected digital (HI�) homogeneity index of the P, D, and G surfaces (at threshold q"0.5) obtained
from (43a) to (43c) for one unit cell with edge length ¸



"128. The Euclidean values found in the literature [70] are given

in the last column

TPMS HI HI� Ref. [70]

P 1.4053 0.6527 0.7163
D 1.4658 0.7336 0.7498
G 1.5051 0.7023 0.7667

In Table 7 we show the results of using the method described in Section 5.6 to reduce this error.
The results are for one unit cell and ¸



"128. As seen from Table 7 the numbers for the volume

and the covered area are now about a factor 0.94}0.98 smaller than the numbers quoted
in literature [62,68,69]. Hence for the examples shown in this section the method described in
Section 5.6 underestimates the Euclidean volume and covered area.
From Tables 4}7 the values for the non-oriented surfaces may be obtained using the following

relationships [62]: (i) one unit cell of the oriented P, D and G surfaces contains one, eight and one
unit cell(s) of the non-oriented P, D and G surfaces, respectively; (ii) the area numbers of the
oriented surfaces must be multiplied by a factor of 2 in the case of the P and G surface and a factor
of 1 in the case of the D surface to obtain the area numbers for the non-oriented surfaces.
A useful dimensionless measure of the surface of bicontinuous structures is the homogeneity

index HI de"ned as [69]

HI"�
!SM �
4���

.
(44)

A discussion of other dimensionless quantities can be found in [62]. For `homogeneousaminimal
surfaces for which the Gaussian curvature is constant everywhere on the surface, HI"0.75 [70].
The TPMS have homogeneity indices close to 0.75: HI"0.7163 for the P-surface, HI"0.7498 for
the D-surface and HI"0.7667 for the G-surface [70]. The values for HI for the TPMSmapped on
a cubic grid, as calculated using the method described in Section 5.5 are given in the second column
of Table 8. The results are for one unit cell of edge length ¸



"128. The third column of Table 8

shows the results if we use the correction method described in Section 5.6 to calculate HI�. These
values are much closer to the Euclidean ones found in the literature [70] (see last column of
Table 8).
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Fig. 22. Various orientations of the digitized Klein bottle.

In summary: Integral-geometry MIA is a convenient tool to characterize the morphological
properties of complex surfaces such as the TPMS. In particular, to study the topology of the
TPMS, MIA does not require the use of labyrinth graphs or surface tilings [71].

6.3. Klein bottle

TheKlein bottle is a well-known non-orientable (see Section 6.2) surface in algebraic topology. It
is obtained if two holes cut in the sphere are closed up with MoK bius bands (closed circular strip
with a twist) or if two MoK bius bands are pasted together along their boundaries [72]. The Klein
bottle is a single-sided bottle without boundary. A real Klein bottle cannot exist in 3D since the
surface has to pass through itself without a hole, but it can be immersed in 3D. The parametric
equation is given by

x" �
�


(3 sin 2t#4)sin s�sin� t#�
�
cos� t(4 cos� t!3)� , (45a)

y"!cos� t sin t# �
�


(3 sin 2t#4) sin t cos s , (45b)

z"cos�t# �
��

(3 sin 2t#4)(4 cos� t!3) cos t cos s (45c)

with t"0,2, � and s"0,2, 2�. Some pictures of a Klein bottle are given in Fig. 22. The surface
of the Klein bottle looks rough and steplike due to the digitization process. The Klein bottle has
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Euler characteristic zero [72]. If we study the topology of the Klein bottle by means of MIA we
also "nd �"0. This demonstrates once more that MIA is a fast, reliable and convenient tool
to study the topology of weird surfaces. In the following two sections we present examples that
show that MIA does not loose these attractive properties when we analyze much more complex
patterns.

7. Random point sets

We consider a collection of N points p
�
, with positions generated from a uniformly uncorrelated

random distribution, in a convex domain �L��. The mean density of points equals �"N/���,
where ��� denotes the volume of �. We attach to every point p

�
(germ) a grain A

�
3R. A con"gura-

tion of the grains A
�
gives rise to a set A

�
3R

A
�

"

�


���

g
�
A

�
, (46)

where g
�
3G, under the assumption that the translations are restricted to �. This random

distribution of grains includes the Boolean model [25], a basic model in stereology and stochastic
geometry [9,10].
We are interested in the mean values of the normalized Minkowski functionals of A

�
. In the

bulk limit N,�PR, �"N/��� "xed, the averages �M�/N�
�
, 
"0,2, d, with the notation

M�,M��	� , are known exactly [11,73,74] and are given by

�M


/N�

�
"(1!e���
)/� , (47a)

�M
�
/N�

�
"m

�
e���
 , (47b)

�M
�
/N�

�
"(m

�
!m�

�
�)e���
 , (47c)

�M
�
/N�

�
"(m

�
!3m

�
m

�
�#m�

�
��)e���
 , (47d)

where �M���
denote the average of the Minkowski functionals of the ensemble with density � and

m� denote the mean values of the Minkowski functionals of a single grain. In Appendix D we give
a derivation of (47) which di!ers from the one given in [11] in that no use is made of the so-called
Minkowski polynomials [74].
On a regular d-dimensional lattice it is more natural to work with hypercubes instead of digital

approximations of the corresponding Euclidean shapes. This suggests the construction of a genuine
discrete integral geometry, without making reference to Euclidean space. We therefore consider
a collection of N pixels p

�
in a hypercubic domain �L�� of volume ���"¸�

�
. The positions of the

pixels are generated from a uniformly uncorrelated random distribution. The mean density of
pixels equals �"N/���. We attach to every germ p

�
a hypercubic grain C

�
. In the bulk limit

N, �PRwith � "xed, the averages of the morphological quantities of the ensemble of con"gura-
tions of the hypercubic grains C

�
are still given by (47) but the explicit expressions for M� and

m� , 
"0,2, d are di!erent from those in Euclidean space [75].
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7.1. Two dimensions

In 2D Euclidean space and in the bulk limit (47) yields

�A(�)/N�
�

"�AI (�)�/�"(1!e���)/� , (48a)

�;(�)/N�
�

"�;I (�)�/����"ue��� , (48b)

��(�)/N�
�

"��� (�)�"�1!

1
4�

u���e��� , (48c)

where we made use of (29b) and (37a) and where a and u denote the mean values of the area and
perimeter of a single grain. The Euler characteristic of a single grain equals one. In the case that the
grains are circular discs of radius r, we substitute in (48) a"�r� and u"2�r. This leads to

�AI �"1!e��, �;I �"2�����re��, ��� �"(1!n)e�� (49)

with n"�r��.
As we are working on a square lattice anyway it might be more bene"cial to use square grains

(instead of discrete approximations to circular discs) to study the morphological properties of
random point sets and to make no reference to Euclidean space at all. Then we can still use (47) but
we need expressions for the normalized Minkowski functionals on a lattice, analogous to the
Euclidean ones given in (29b). In analogy with Sections 5.1 and 5.2 on a square lattice the area of
a square C� , parallel to a square C of edge length a at a distance � is given by

A(C�)"(a#2�)�"a�#4a�#4��

"A
�
(C)#;

�
(C)�#4�

�
(C)�� , (50)

where A
�
(C)"a�, ;

�
(C)"4a and �

�
(C)"1. Using Steiner's formula (20) and substituting for

�
�
the volume of the unit cube in d dimensions (i.e. �

�
"1) we "nd that

M


"A

�
, M

�
"S

�
/2, M

�
"4�

�
. (51)

Finally using (47) we obtain

�AI
�
�"1!e��, �;I

�
�"4a����e��, ���

�
�"(1!n)e�� (52)

with n"�a�.
We adopt the procedure outlined in Section 2.3 to compute the morphological properties of

a uniform random distribution of points in a square of edge length ¸ with periodic boundaries.
First, we transform the point pattern into a pattern of disc-like grains of radius r and then
investigate the behavior of the Minkowski functionals as a function of r.
The solid lines in Fig. 23 show AI ,;I and �� as a function of r for a single realization of N"10 240

pixels on a square lattice of linear size ¸"1024, subject to periodic boundary conditions. For
small r the disc-like grains are isolated. This gives rise to a small covered area, perimeter and to
a positive Euler characteristic. For large r the discs cover almost completely the whole square
leading to a large covered area, a small perimeter and a negative Euler characteristic which
approaches zero in the case of the completely covered square. For intermediate r, the coverage has
a net-like structure with a negative Euler characteristic and a large perimeter. The dotted lines in
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Fig. 23. Minkowski functionals as a function of r for random point sets with `disc-likea grains, using periodic boundary
conditions. Solid lines: 10 240 points in a square of edge length 1024; dotted lines: "t to data, using the expressions given
by (53).

Fig. 23 are the results obtained by "tting

�AI
�
�"1!e��, �;I

�
�"ue��, ���

�
�"(1!f

�
u��/4�)e�� , (53)

to data with n"��f
�
r� and u"2�f

�
r. The functional behavior of AI

�
, ;I

�
and ��

�
is chosen to be

the same as for grains that are circular discs in Euclidean space. The "tting parameters f
�
, f

�
and

f
�
have been introduced to take into account that in practice we are working on a square lattice and

are approximating circular discs by discrete structures. We "nd f
�
"0.22, f

�
"0.66 and f

�
"0.80

for the dotted line by "tting the solid line.
If we use square grains instead of disc-like grains we obtain the results shown in Fig. 24 (solid

line). The dotted lines are the results obtained from (52). As seen from Fig. 24 the agreement
between the data and the theoretical result (52) is excellent. Note the absence in (52) of any
adjustable parameter.

7.2. Three dimensions

In 3D and in the bulk limit we "nd [14]

�<(�)/N�
�

"�<I (�)�/�"(1!e���)/� , (54a)

�S(�)/N�
�

"�SI (�)�/����"se��� , (54b)
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Fig. 24. Minkowski functionals as a function of r for a random point set with square grains, using periodic boundary
conditions. Solid lines: 10 240 points in a square of edge length 1024; dotted lines: results obtained from discrete integral
geometry (see (52)), without "tting.

�B(�)/N�
�

"�BI (�)�/2����"b�1!

�
64

s�
b

��e��� , (54c)

��(�)/N�
�

"��� (�)�"�1!

1
2

sb�#

�
384

s����e��� , (54d)

where use has been made of (29c) and (37b) for d"3 and where �<I (�)�, �SI (�)�, �BI (�)� and ��� (�)�
denote the mean values of the volume, area, mean breadth and Euler characteristic of the ensemble
with density �. The mean values of the volume, area and mean breadth of a single grain are denoted
by v, s and b, respectively. The Euler characteristic of a single grain equals one.
The mean values of the Minkowski functionals depend on the shape of the single grains. If the

grains are spheres of radius r we substitute in (54) v"4�r�/3, s"4�r� and b"2r. This leads to

�<I �"1!e�� , (55a)

�SI �"4�����r�e�� , (55b)

�BI �"4����r�1!

3��

32
n�e�� , (55c)

��� �"�1!3n#

3��

32
n��e�� (55d)

with n"4�r��/3.
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We now consider the case that the grains are cubes on a regular 3D lattice. In analogy to the 2D
case we "rst compute the volume of the cube C� parallel to a cube C of edge length a at a distance �

<(C� )"(a#2�)� , (56a)

"<
�
(C)#S

�
(C)�#8B

�
(C)��#8�

�
(C)�� , (56b)

where <
�
(C)"a�, S

�
(C)"6a�, B

�
(C)"3a/2 and �

�
(C)"1. Then by using the Steiner formula (20)

and substituting �
�
"1 we "nd that

M


"<

�
, M

�
"S

�
/3, M

�
"8B

�
/3, M

�
"8�

�
. (57)

Finally, using (47) we obtain

�<I
�
�"1!e�� , (58a)

�SI
�
�"6a�����e�� , (58b)

�BI
�
�"3a����(1!n)e�� , (58c)

���
�
�"(1!3n#n�)e�� (58d)

with n"�v"�a�. Note the absence in (58) of any adjustable parameter.
We will now study the Minkowski functionals for sets of points which are randomly positioned

in a cube of edge length ¸ subject to periodic boundaries. Again we follow the procedure described
in Section 2.3: We transform the point pattern into a pattern of `sphericala grains of radius r
and study the behavior of the Minkowski functionals as a function of r. Fig. 25 shows the
Minkowski functionals <I , SI , BI and �� as a function of r for one single con"guration of a random
point set with "xed density �"N/¸�+0.00049 and various system sizes (N"1024, ¸"128:
dotted line, N"128, ¸"64: solid line and N"16, ¸"32: dashed line). The curves for the
various system sizes show only minor quantitative di!erences, as could be expected from (55). For
small r the grains are isolated leading to a small covered volume and surface area and to a positive
Euler characteristic. For large r the grains largely overlap and cover almost completely the whole
cube. Only small cavities remain. This gives rise to a large covered volume, a small surface area and
a positive Euler characteristic which approaches zero in the case of the completely covered cube.
For intermediate r the coverage has a tunnel-like structure with a negative Euler characteristic and
a large surface area.
In Fig. 26 we depict the Minkowski functionals as a function of r for two random point sets with

¸"128 and di!erent density. The solid (dashed) lines show the data for N"1024 (N"512). For
both cases the behavior of the Minkowski functionals as a function of r is very similar: The curves
show the same qualitative behavior (the grains have the same shape in both cases) and are only
shifted with respect to each other. The dash}dotted (N"1024) and dotted (N"512) lines in
Fig. 26 are the results obtained by "tting

�<I
�
�"1!e�� , (59a)

�SI
�
�"s����e�� , (59b)
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Fig. 25. Minkowski functionals as a function of r for random point sets with `sphericala grains, using periodic boundary
conditions. Dotted line: 1024 points in a cubic box of edge length 128; solid line: 128 points in a cubic box of edge length
64; dashed line: 16 points in a cubic box of edge length 32.

�BI
�
�"2�b!

��s�
64 �����e�� , (59c)

���
�
�"�1!

�sb
2

f
�
#

���s�
384

f
��e�� (59d)

to the data with n"4��f
�
r�/3, s"4�f

�
r� and b"2f

�
r. The functional behavior of <I

�
, SI

�
, BI

�
and ��

�
is chosen to be the same as for perfect spherical grains in the Euclidean space. The "tting

parameters f
�
,2, f

�
have been introduced to take into account that in practice we are working

on a lattice and are approximating spheres by discrete structures. We "nd for N"512 and
1024, f

�
"0.108, f

�
"0.32, f

�
"0.8, f

�
"0.72 and f

�
"0.77 for the dash}dotted (dotted) line by

"tting the solid (dashed) line.
In Fig. 27 we show the Minkowski functionals for the same random set of points (solid lines) as

the one used for Fig. 26 (¸"128, N"1024) but we now used cubic instead of `sphericala grains.
The cubic grains have edge length a"2r#1, r'0. The dotted lines are the results obtained from
(58). As in two dimensions also in 3D there is excellent agreement between the numerical data and
the theoretical result (58). Note that the agreement is remarkable as only one realization of
a random point set was used in the simulation. The excellent agreement between the data and the
theoretical result (58) suggests that it is more natural indeed to analyze polyhedral sets on regular
lattices in terms of discrete integral geometry.
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Fig. 26. Minkowski functionals as a function of r for random point sets with `sphericala grains, using periodic boundary
conditions. Solid lines: 1024 points in a cubic box of edge length 128; dash}dotted lines: "t to 1024-point data, using the
expressions given by (59); dashed lines: 512 points in a cubic box of edge length 128; dotted lines: "t to 512-point data,
using the expressions given by (59).

7.3. Percolation

Consider a square lattice of linear dimension ¸ of which a certain fraction of squares (sites) is
colored black, whereas the others are colored white. We assume that the sites are colored
randomly, that is each site is colored black or white independent of the color of its neighbors. We
call p (04p41) the probability of a site being colored black. Hence, the average number of black
sites is given by p¸� and the average number of white ones by (1!p)¸�. Black pixels can be
grouped into clusters: Two black pixels belong to the same cluster if they are nearest neighbors or
can be connected by a chain of black pixels that are nearest neighbors (note that a `clustera is not
the same as an `objecta, see Section 3.1). Percolation theory deals with the number and geometric
properties of these clusters. The origin of the mathematical theory of percolation goes back to
a publication by Broadbent and Hammersley [76]. Since percolation processes and their applica-
tions have been discussed by so many authors we can only make reference to a few books which
give a general introduction to percolation theory, deal extensively with its mathematical aspects,
give applications and/or give an extensive bibliography [77}81]. From percolation theory it is
known that for in"nite square lattices there exists a critical value p

�
, the percolation threshold, such

that all clusters are "nite when p(p
�
, but there exists an in"nite cluster when p'p

�
. The latter
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Fig. 27. Minkowski functionals as a function of r for a random point set with cubic grains, using periodic boundary
conditions. Solid lines: 1024 points in a cubic box of edge length 128; dotted lines: results obtained from discrete integral
geometry (see (58)), without "tting.

cluster is called a percolation cluster since it percolates through the system like water percolates
through a porous stone.
There are two distinct types of percolation problems. An example of a site percolation problem

(as the one described above) is shown in Fig. 28a. The clusters are encircled. Another type of
percolation process is bond percolation, in which the edges rather than the sites are colored black
or white at random. A cluster is then a group of sites connected by black bonds. An example of
bond percolation is shown in Fig. 28b. It is well known that every bondmodel may be reformulated
as a site model on a di!erent lattice, but not vice versa.
One of the interesting problems in percolation theory is the determination of the value of the

percolation threshold p
�
. This value depends on the percolation problem studied and on the lattice

type (including its dimensionality). The percolation threshold p
�
, de"ned as the concentration at

which an in"nite cluster appears in the in"nite lattice, for site percolation on the square lattice is
not known exactly. Several authors have given (rigorous) upper and lower bounds [82}88]

0.556(p
�
(0.679492 . (60)

Computer evaluations of the percolation threshold give the estimate [89,90] p
�
"0.5927460. It is

also known that p
�
"1/2 for site percolation on the in"nite triangular lattice. For bond percolation

on the in"nite square lattice p
�
"1/2, as suggested by Sykes and Essam [91], and proven

rigorously by Kesten [92]. For the bond problem on the triangular lattice and honeycomb lattice

K. Michielsen, H. De Raedt / Physics Reports 347 (2001) 461}538 507



Fig. 28. Percolation problems on a square lattice: (a) site percolation problem (nearest neighbor), (b) bond percolation
problem. The clusters are encircled.

Sykes and Essam proposed that p
�
"2 sin(�/18), and p

�
"1!2 sin(�/18), respectively [91].

Rigorous proofs of these conjectured values are given by Wierman [93].
In the remainder of this section we will consider only the site percolation problem on a square or

cubic lattice. Clearly, this is yet another example of a random point (or pixel) set. We consider
a square (cubic) lattice of which a certain fraction of squares (cubes), with positions generated from
a uniformly uncorrelated random distribution, is colored black. The probability of a site being
colored black is p (04p41). In Fig. 29 (30) we show the Euler characteristic �� as a function of
p (diamonds) for a 2D (3D) square (cubic) lattice with periodic boundaries and linear dimension
¸"512 (¸"64). In 2D (see Fig. 29), �� (p) is positive and increases with p for small p. At some value
of p, �� (p) starts decreasing and becomes negative. �� (p)"0 at p+0.39. For large p, �� (p) starts
increasing again and becomes zero for the completely covered square (periodic boundaries). In 3D
(see Fig. 30), the behavior of �� as a function of p is similar but �� (p) has one more change of sign:
�� "0 at p

�
+0.16 and p

�
+0.61.

Intuitively, one would think one could use the Euler characteristic to de"ne percolation
[11,14,94}96]. Namely in 2D the Euler characteristic � is de"ned as the number of connected
components (objects) minus the number of holes. In the case of site percolation, one then expects
� to be positive and equal to p for small p while for large p one expects � to be negative. The
question then arises when one can relate the change of sign of � to the percolation threshold.
Calculation of the Euler characteristic of a pattern of active (here considered to be black) pixels

requires the consideration of both the nearest and next-nearest neighbors of the active pixels and
the nearest neighbors of inactive (white) pixels only (see also Section 3.1). In 2D we may write

�� �
�
(p)"N�

�
(p)!N

�
(p) , (61)

where N
�

(N�

�
) denotes the mean number of white (black) objects on the simple quadratic lattice

with nearest (and next-nearest) neighbors. The distinction between both lattices (¸at and ¸at�) is
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Fig. 29. Percolation on a 2D square lattice with periodic boundaries (¸"512). Diamonds: Euler characteristic as
a function of p; solid line: matching polynomial.

Fig. 30. Percolation on a 3D cubic lattice with periodic boundaries (¸"64). Diamonds: Euler characteristic as
a function of p. The solid line is a guide to the eyes.

denoted by the star. ¸at and ¸at� form a matching pair of lattices [91]. Note that all Euler
characteristics computed in this work are, in fact, calculated on ¸at� and should for reasons of
consistency have been denoted by ��. However, for the sake of clarity we have omitted the � in all
sections except this one. According to Sykes and Essam [91], at density p the mean number of
black (white) clusters on the simple quadratic lattice with nearest neighbors N

�
(p) [N

�
(p)] di!ers

from the mean number of white (black) clusters on the simple quadratic lattice with nearest and
next-nearest neighbors N�

�
(p) [N�

�
(p)] by �(p) [!��(p)]. Or in other words

N
�
(p)"N�

�
(p)#�(p) , (62a)

N
�
(p)"N�

�
(p)!��(p) , (62b)

where

�(p)"p!2p�#p� , (63a)

��(p)"p!4p�#4p�!p� , (63b)

are called the matching polynomials [91]. Property (62) is called cross-matching. From (61) and
(62b) it follows that

�� �
�
(p)"��(p) , (64)

i.e. in 2D the matching polynomial coincides with the Euler characteristic [94]. As can be seen from
Fig. 29, where we plot the Euler characteristic (diamonds) and the matching polynomial ��(p)
(solid line) as a function of p, our numerical results are in perfect agreement with (64). Note that the
value of p for which �� �

�
(p)"0 (i.e. p+0.39) does not correspond to the percolation threshold

p�

�
+0.41 for site percolation on the square lattice with nearest and next-nearest neighbors. The

property of cross-matching (62) leads to p
�
#p�

�
"1 [91]. To determine p

�
and p�

�
a second

relation is required.
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For some cases Sykes and Essam calculated the exact values of percolation thresholds using the
matching polynomials (see above) [91]. If ¸at"¸at� the lattice is called self-matching [91]. For
self-matching lattices [91]

N
�
(p)"�(p)#N

�
(p) , (65)

where

�(p)"p!3p�#2p� . (66)

The triangular lattice is an example of a self-matching lattice. For a self-matching lattice p
�
"1/2

and hence, in this particular case, ��
�
(p

�
)"0.

8. Block copolymers

Block copolymers consist of a successive number of sequences of the same type of monomer,
called blocks. The polymer block types, the composition and overall molecular size can be varied
and precisely controlled [97]. AB block copolymers, for example, consist of a sequence of type A
monomers covalently bonded to a chain of type B monomers.
In equilibrium AB block copolymers assemble into a variety of phases, creating domains of

component A and component B. The type of domain structures that are formed is determined by
three experimentally controllable factors: The overall degree of polymerization, the relative volume
fraction of the A and B components, and the A}B segment}segment (Flory}Huggins) interaction
parameter �

��
[97]. The "rst two factors contribute to the entropic chain-conformational energy

and the latter one to the enthalpic interaction energy. These two energies are important in the
formation of interfaces in block copolymers. If the product of the overall degree of polymerization
and �

��
is large, narrow interfaces separate nearly pure A and B domains [97]. In this regime, the

inter-material contact area is minimized under the constraint of "xed volume fraction [47]. These
conditions lead to interfacial surfaces of constant mean curvature (CMC) [47]. A minimal surface,
examples of which are described in Section 6.2, is a special kind of a CMC surface. The mean
curvature of a minimal surface is identically zero everywhere on the surface. Such a surface
minimizes the area without any volume constraint [47]. For diblock copolymers the following
phases can be identi"ed: A spherical micellar phase, a hexagonally packed cylinder phase,
a lamellar phase, and a gyroidal phase [57]. Spheres and cylinders are surfaces with non-zero
CMC, lamellae and gyroids are minimal surfaces. The "nal domain morphology determines the
properties of the polymeric material and hence its end-use capabilities.
Usually, the morphology of polymer systems is studied by analyzing the structure factor

obtained from scattering experiments, such as small-angle X-ray scattering (SAXS) and small-angle
neutron scattering (SANS), and/or direct observation using transmission electron microscopy
(TEM), scanning electron microscopy (SEM) or laser scanning confocal electron microscopy
(LSCM).
Structure factors, which describe the scattering length distribution of the phase-separated

structure of polymer blends, give information about the average domain size and in the case of an
ordered lattice about the lattice type and the space group. To get an idea of the real 3D
morphology from these data the modi"ed Berk theory [98] has been used to analyze for example
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the scattering data in bicontinuous phase-separated polymer blends and to generate the 3D
morphology corresponding to the scattering data [53].
TEM and SEM micrographs are two dimensional and give information about the size, shape

and connectivity of the domains. A characterization of the morphology of the underlying 3D
structure might be obtained by making assumptions about the structure and comparison of the
TEM or SEM images with computer generated 2D crystallographic projections of these assumed
structures.
Experimentally, 3D images of the morphology of a real polymer blend can be obtained by

LSCM. Similar data is also obtained from computer simulations of polymer systems. A method to
estimate the mean and Gaussian curvature from 3D digital images by means of di!erential
geometry is presented in [70]. Tools of integral and di!erential geometry have also been used to
describe quantitatively the morphology of homopolymer blends at di!erent spinodal decomposi-
tion stages [99].
In the following sections, we apply the method based on integral geometry and described

in Section 5, to analyze 3D morphologies observed in computer simulations of various block
copolymer systems.

8.1. Micellar lattices [35]

In `soft materialsa, which exhibit both temporal and spatial structural #uctuations over
many length and time scales, the underlying lattice is formed under certain thermodynamic
conditions and is far less rigid than the lattice of atomic crystals. The application of conventional
crystallographic techniques to identify the mesostructures in these `softa materials may be rather
di$cult. As an example we calculate the Minkowski functionals and the structure factor for
computer-simulation data of a 50% aqueous solution of a triblock copolymer surfactant (ethylene
oxide)

��
(propylene oxide)

�

(ethylene oxide)

��
[or (EO)

��
(PO)

�

(EO)

��
]. The data are generated

with a three-dimensional dynamic mean-"eld density functional method [100], a numerical
method for the simulation of coarse-grained morphology dynamics in polymer liquids. The
experimental [101] and simulated [102] phase diagram in the 50}70% surfactant concentration
interval agree well and consist of four di!erent phases: a micellar, an hexagonal, a bicontinuous and
a lamellar phase. The orientation of the copolymers is always such that the hydrophilic ethylene
oxide shields the more hydrophobic propylene oxide from contact with water. Fig. 31 shows the
morphology of propylene oxide in a 50% aqueous solution of (EO)

��
(PO)

�

(EO)

��
. The simula-

tion box is a cube of edge length 16 (32) with periodic boundaries for the "gure on the left (right).
The polymer solution is micellar. Visual inspection of the pattern suggests that for a small system
the micelles are organized in a BCC-like lattice. For the larger systems it is more di$cult to identify
the structure visually.
In order to study the Minkowski functionals as a function of r for these polymer systems we "rst

threshold the cubic image. Then we determine the centers of the micelles in the black-and-white
picture and use the same graining procedure for these centers (germs) as the one described
above (see Fig. 2, left). In Fig. 32 we depict the Minkowski functionals as a function of r for the
propylene oxide in the cubic simulation box of edge length 16 (solid line). For comparison we also
show the Minkowski functionals for the perfect BCC lattice with ¸



"8 and M"2 (dashed line),

for the same BCC lattice but all lattice points displaced over a randomly chosen distance 0 or
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Fig. 31. Morphology of propylene oxide in an aqueous solution (50% polymer surfactant) of (EO)
��
(PO)

�

(EO)

��
[(ethylene oxide)

��
(propylene oxide)

�

(ethylene oxide)

��
] Left: cubic simulation box of edge length 16; right: cubic

simulation box of edge length 32. Periodic boundary conditions were used.

Fig. 32. Minkowski functionals as a function of r. Solid line: simulation data of a 50% aqueous solution of (ethy-
lene oxide)

��
(propylene oxide)

�

(ethylene oxide)

��
in a cubic box of edge length 16; dashed line: perfect BCC lattice with

M"2 and ¸


"8; dotted line: BCC lattice with M"2, ¸



"8 and all lattice points displaced over a randomly chosen

distance 0 or 1; dash}dotted line: random set of 16 points in a cubic box of edge length 16. Periodic boundary conditions
were used.
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Fig. 33. Structure factor. Solid line: simulation data of a 50% aqueous solution of (ethylene oxide)
��
(propy-

lene oxide)
�

(ethylene oxide)

��
in a cubic box of edge length 16; dashed line: perfect BCC lattice with ¸



"8 and M"2;

dotted line: BCC lattice with ¸


"8 and M"2 and all lattice points displaced over a randomly chosen distance 0 or 1.

Periodic boundary conditions were used.

1 (dotted line) and for a random set of 16 points in a cubic box of edge length 16 (dash}dotted line).
From Fig. 32 we may conclude that the micelles are organized in a BCC lattice structure with
¸


"8 and M"2 and of which the lattice points are somewhat displaced. The Euler characteristic

per unit cell for the micellar phase equals two, which is also characteristic for a BCC lattice
structure. From the Euler characteristic �� as a function of r we may see that the radius of the
micelles has to be smaller than three lattice units. Otherwise the micelles glue together and �� di!ers
from one. Fig. 33 demonstrates that it is much harder to draw a similar conclusion from the
structure factor S(r) of the same system. The structure factor of the polymer solution exhibits
additional, pronounced peaks, peaks that are absent in the case of a perfect BCC lattice, and also
does not resemble the structure factor of a BCC lattice with random distortions.
Fig. 34 shows the Minkowski functionals as a function of r for the propylene oxide in the cubic

simulation box of edge length 32 (solid line). The number of micelles, as derived from � equals 100.
For comparison we also depict the Minkowski functionals for a random set of 100 points in
a cubic box of edge length 32 (dashed line), for the perfect BCC lattice with ¸



"8 and M"4

(dash}dotted line) and for the same BCC lattice but all lattice points displaced over a randomly
chosen distance 0 or 1 (dotted line). From this "gure we may conclude that in the bigger simulation
box the micelles are no longer organized on a BCC lattice structure, neither that their distribution
is random. Again, the latter conclusion is di$cult to draw from the structure factor, as can be seen
in Fig. 35, where we give S(r) for the polymer solution (solid line) and for a random set of 100
points in a cubic box of edge length 32 (dotted line). The data ofS(r) suggests that the micelles are
randomly distributed in the cube.
In summary, MIA of structures formed in soft materials such as polymer solutions provides

information about the mesostructures that is hard to obtain by other methods.
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Fig. 34. Minkowski functionals as a function of r. Solid line: simulation data of a 50% aqueous solution of (ethy-
lene oxide)

��
(propylene oxide)

�

(ethylene oxide)

��
in a cubic box of edge length 32; dashed line: random set of 100

points in a cubic box of edge length 32; dash}dotted line: perfect BCC lattice with ¸


"8 and M"4; dotted line: BCC

lattice with ¸


"8 and M"4 and all lattice points displaced over a randomly chosen distance 0 or 1. Periodic boundary

conditions were used.

8.2. Vesicles and worm-like micelles

Block copolymers are materials that are capable of forming mesoscale structures whose morpho-
logy can be tailored by controlled synthesis. Identi"cation and quanti"cation of the morphology of
these mesoscale structures may be rather di$cult. In this section we consider an example for which
conventional crystallographic techniques do not work and for which MIA proves to be very
valuable. We perform a MIA on computer-simulation data of the time evolution of a spherical
droplet of the diblock copolymer AB

�
in water (W). The data are generated with a three-

dimensional dynamic mean-"eld density functional method [100], a numerical method for the
simulation of coarse-grained morphology dynamics in polymer liquids. The simulation box is
a cube of edge length 32 with periodic boundaries. The initial spherical droplet has a radius of 10
lattice units.
Fig. 36 shows the morphologies of the B-block after 2000 time steps of di!usion as a function of

the interaction exchange parameters �
��

"�
��

and �
��

. Depending on the values of �
��

and
�
��

the spherical droplet remains a solid sphere, becomes a vesicle or a worm-like micelle. For
�
��

"1.0 and independent of the value of �
��

the polymer droplet dissolves in water what results
in a rather homogeneous polymer}water mixture.
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Fig. 35. Structure factor. Solid line: simulation data of a 50% aqueous solution of (ethylene oxide)
��
(propy-

lene oxide)
�

(ethylene oxide)

��
in a cubic box of edge length 32; dotted line: random set of 100 points in a cubic box of

edge length 32. Periodic boundary conditions were used.

Fig. 36. Morphologies of the B-block at t"2000 as a function of �
��

and �
��

. If the polymer forms a vesicle only half of
it is shown.
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Fig. 37. Morphologies of the B-block as a function of time for �
��

"1.5. Top: �
��

"!3.5; bottom: �
��

"!4.0. If the
polymer forms a vesicle only half of it is shown.

The formation of the worm-like micelles as the dynamic result of di!use phenomena is illustrated
in Fig. 37 in terms of some snapshots of the B-block morphology. The time series at the top
(bottom) of the "gure is for �

��
"1.5 and �

��
"!3.5 (�

��
"!4.0). For �

��
"!3.5

(�
��

"!4.0) and 0(t(600 (0(t(400) the polymer forms a vesicle. A schematic picture of
the polymer layers constituting the vesicle is shown in Fig. 38a. For �

��
"!3.5 and

600(t(2000 the polymer organizes in structures that look like hollow spheres with several holes
and the number of holes seems to increase with time. In the end the polymer forms a hollow
sphere-like structure with many holes. For �

��
"!4.0 and 400(t(2000 the polymer shows

a behavior that is similar to that described for �
��

"!3.5 but now the number of holes decreases
as a function of time. In the end the polymer forms a worm-like structure with one or more loops.
In both cases the B-block is always shielded from contact with water by the A-block.
A quantitative description of the various polymer morphologies may be obtained fromMIA.We

calculate the Minkowski functionals as a function of time for the B-block for �
��

"�
��

"1.5 and
several choices of �

��
. The results are shown in Fig. 39. For t"0 and all �

��
the B-block is

concentrated in a solid sphere-like structure leading to an Euler characteristic of one. For
�
��

"!1.5 (dotted line) the B-block remains organized in a solid sphere-like structure for all
times. All Minkowski functionals are approximately constant. For �

��
"!3.0 (dash}dotted line)

and t'200 the polymer forms a vesicle, leading to a decrease of the covered volume and the
integral mean curvature. The surface area increases and the Euler characteristic equals two. The
same happens for �

��
"!3.5 (dashed line) [�

��
"!4.0 (solid line)] and 0(t(600

[0(t(400]. For �
��

"!3.5 and intermediate t (600(t(1500) the polymer organizes in
structures that look like hollow spheres with several holes. The number of holes increases with
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Fig. 38. Schematic picture of the AB
�
polymer vesicle (a) and double-layered micelle (b).

Fig. 39. Minkowski functionals as a function of t for �
��

"1.5. Solid line: �
��

"!4.0; dashed line: �
��

"!3.5;
dash}dotted line: �

��
"!3.0; dotted line: �

��
"!1.5.

time. The Euler characteristic is negative and decreases while the integral mean curvature increases.
The volume further decreases and the surface area "rst decreases (for t(800) and remains
approximately constant afterwards. For �

��
"!4.0 and 400(t(1500 the Minkowski func-

tionals show behavior very similar to that described for �
��

"!3.5 except for the fact that the
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Fig. 40. Minkowski functionals as a function of t (0(t(200) for �
��

"1.5, �
��

"!4.

number of holes (Euler characteristic) decreases (increases) with time. For �
��

"!3.5 and
�
��

"!4.0 and large t (t'1500) the polymer structures di!er from each other. For
�
��

"!3.5 the polymer forms a hollow sphere-like structure with many holes. The integral mean
curvature is large and positive and the Euler characteristic is strongly negative. For �

��
"!4.0

the B-block forms a worm-like structure with one or more loops. This gives rise to a large integral
mean curvature and an Euler characteristic that is zero or slightly negative. Given the behavior of
the Euler characteristic as a function of time (see Fig. 39) we expect that for t'2000 the polymer
will organize in a worm-like structure without loops (�"1).
To gain more insight into the formation mechanism of the polymer vesicle, we study the polymer

morphology for �
��

"!4 and �
��

"1.5 in more detail for 0(t(200. In Fig. 40 we depict the
Minkowski functionals as a function of t for the B-block. For 0(t(64 the B-block is concen-
trated in a solid sphere-like structure leading to an Euler characteristic of one. All otherMinkowski
functionals are approximately constant. For 64(t(100 cavities and tunnels are formed in
the B-block morphology. The Euler characteristic #uctuates between positive and negative values.
The surface area strongly increases. The integral mean curvature "rst decreases and becomes
negative but increases and becomes positive again afterwards. Around t"100 the polymer system
seems to stabilize and the Euler characteristic becomes equal to three. The polymer is now
organized in a double-layered micelle. A schematic picture of the latter is given in Fig. 38b. When
time evolves the excess of B-block material in the core moves to the outer layer of B-block material
and "nally around t"180 a vesicle is formed (see Fig. 38a for a schematic picture).
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In summary, MIA gives the morphological properties of complex structures formed in polymer
solutions and provides detailed information about the structure of the material.

8.3. Complex surfaces

As already mentioned above, depending on the experimental conditions, complex domain
structures may be formed in block copolymers. Since the morphology of the "nal domain structure
determines the properties of the polymeric material, the study of the statics and dynamics of these
complex structures is a key issue in polymer science. Several computer simulation techniques
have been developed to simulate the formation of the domain structures. Once the domain
structures are obtained the problem of characterization of the structures arises. Usually, the
domain structures are characterized in terms of the average domain size which may be calculated
from the "rst moment of the structure factor or the "rst zero in the radial distribution function
[103,104]. As computer simulations are limited to rather small system sizes a structure factor
analysis su!ers from severe "nite-size e!ects. Disregarding this problem, the average domain size
alone cannot give a complete morphological characterization of the domain structure. For this
purpose MIA is very useful [14,21,22,96,99,105].
In this section, we will use MIA to characterize the complex domain structures observed in

computer simulation data of an AB binary polymer blend containing A}B-type block copolymer.
Adding a small amount of block copolymer to a polymer blend leads to a variety of stable complex
domain structures on the mesoscopic scale, such as irregular bicontinuous domains, hexagonally
aligned cylinders, and cubic crystalline structures of spherical domains [106]. The domain struc-
ture formation in the polymer system is studied by the self-consistent "eld (SCF) dynamic density
functional (DDF) method, a combination of the SCF path integral formalism of the polymer
conformations and the mesoscopic transport equations [107}109], and the Ginzburg Landau (GL)
method, a more phenomenological approach. For a quantitative comparison between the SCF-
DDF and the GL method see [106].
Fig. 41 shows the 2D domain structures, obtained by the GL and SCF-DDF method, of an

A
�

B

�

polymer blend containing 20% volume fraction of A

�
!B

�
��
block copolymer [106] at

time t"100 and 3000. In Fig. 41 a block copolymer with block ratio f"0.2 (left) and 0.5 (right) is
added, the block ratio being de"ned as the ratio of the length of block A to the total chain length of
the block copolymer. The domain structures are obtained after a sudden temperature quench from
a high-temperature equilibrium state [106]. Initially, (at t"0) the polymer systems were homo-
geneous mixtures. The A}B segment}segment interaction parameter (so-called Flory}Huggins
interaction parameter �

��
) is set to 0.5. The simulation box is a square of edge length 128 subject to

periodic boundaries.
The pictures in Fig. 41 suggest that for f"0.5 the resulting domain structure (at t"3000) is

bicontinuous while for f"0.2 it is globular. In order to study the dynamics of the domain structure
formation in more detail we compute the Minkowski functionals as a function of time for all cases.
The results are shown in Fig. 42 ( f"0.2, GLmethod: solid line; f"0.2, SCF-DDFmethod: dashed
line; f"0.5, GL method: dotted line and f"0.5, SCF-DDF method: dash}dotted line). Both
methods give roughly the same results. The area A/¸� is more or less constant as a function of time.
The perimeter ;/¸ decreases as a function of time. For f"0.2, the Euler characteristic is positive
and slightly decreases as a function of time. This means that for f"0.2 the domain structure
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Fig. 41. Two-dimensional domain structures of an A
�

B
�


polymer blend containing 20% volume fraction of
A

�
!B

�
��
block copolymer. Left: A

�
!B

��
, f"0.2; right: A

�

!B

�

, f"0.5.

Fig. 42. Minkowski functionals as a function of t for simulation data of an A
�

B
�


polymer blend containing 20%
volume fraction of A

�
!B

�
��
block copolymer in a square of edge length 128. Solid line: f"0.2, GL method; dashed

line: f"0.2, SCF-DFF method; dotted line: f"0.5, GL method; dash}dotted line: f"0.5, SCF-DFF method.
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Fig. 43. Three-dimensional domain structures of an A
�

B
�


polymer blend containing 20% volume fraction of
A

�
!B

�
��
block copolymer. (a) A

�
!B

��
, f"0.2, SCF-DDF method; (b) A

�
!B

��
, f"0.2, GL method;

(c) A
�


!B
�

, f"0.5, SCF-DDF method; (d) A

�

!B

�

, f"0.5, GL method.

consists of separate objects and that the number of separate objects is slightly decreasing as
a function of time. For f"0.5, the Euler characteristic is always negative pointing to a bicontinu-
ous domain structure. The resulting domain structure depends on the architecture of the block
copolymer. For comparison, the results for the average domain size as a function of time can be
found in [106].
In Fig. 43 we show the 3D domain structures, obtained by the SCF-DDF method ((a) and (c))

and the GL method ((b) and (d)), of an A
�

B
�


polymer blend containing 20% volume fraction of
A

�
!B

�
��
block copolymer [106] at time t"1000. Also for this example �

��
"0.5. The

simulation box is a cube of edge length 32 with periodic boundaries. In Figs. 43(a), (b) ((c), (d))
a block copolymer with block ratio f"0.2 ( f"0.5) is added. In both cases, interconnected
bicontinuous structures are observed. Initially (at t"0) the polymer systems were homogeneous
mixtures. In order to study the evolution of morphology of the domain structures in more detail we
compute their Minkowski functionals as a function of time. The results are depicted in Fig. 44
( f"0.2, GL method: solid line; f"0.2, SCF-DDF method: dashed line; f"0.5, GL method:
dotted line and f"0.5, SCF-DDFmethod: dash}dotted line). As in the case for the 2D system also
for the 3D system both methods give roughly the same results. As a function of time the volume
</¸� is more or less constant, the mean breadth B/¸ is also more or less constant but rather small
and positive and the area S/¸� decreases. The Euler characteristic is negative and increases as
a function of time. Hence the domain structure is net-like for f"0.2 as well as for f"0.5. The fact
that the 3D system behaves di!erently from the 2D system may have two reasons. First, "nite-size
e!ects play a more important role in 3D than in 2D systems and second, the percolation
characteristics in 2D and 3D continuum systems are di!erent. For the 2D continuum system, the
percolation threshold p

�
"0.5, above which the Euler characteristic becomes negative and the

system forms a percolating mesh structure. For the 3D system there exist two percolation
thresholds p

�
+0.16 and p�

�
+0.84 [95]. For p

�
(p(p�

�
the system forms a percolating mesh

structure (�(0). This suggests that in 2D it is rather easy to observe the morphological transition
from a globular system to a bicontinuous one. Introduction of a slight asymmetry between the
A and B phase is su$cient to observe the transition since a bicontinuous phase can only be
obtained in the vicinity of the symmetric composition (percolation threshold p

�
"0.5). However, in
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Fig. 44. Minkowski functionals as a function of t for simulation data of an A
�

B
�


polymer blend containing 20%
volume fraction of A

�
!B

�
��
block copolymer in a cubic box of edge length 32. Solid line: f"0.2, GL method; dashed

line: f"0.2, SCF-DFF method; dotted line: f"0.5, GL method; dash}dotted line: f"0.5, SCF-DFF method.

the 3D system the bicontinuous phase can be seen in a much larger region (0.16(p
�
(0.84).

Therefore, a slight asymmetry between the two phases is not enough to induce the morphological
transition for a system with a nearly symmetric composition.
The Minkowski functionals for cases (b) and (d) are [105]

(b): N"8; <M "0.47; SM "3.65; BM "0.27; �� "!1.88 ,

(d): N"8; <M "0.50; SM "4.55; BM "0.023; �� "!3.75 (67)

and are close to the values of oriented P and G surfaces (at threshold q"0.5, one unit cell and
¸


"32)

P: <M "0.50; SM "3.71; BM "0; �� "!2 ,

G: <M "0.50; SM "4.90; BM "0; �� "!4 . (68)

For cases (a) and (c) we "nd

(a): N"1; <M "0.47; SM "6.37; BM "1.00; �� "!10.00 ,

(c): N"8; <M "0.50; SM "3.50; BM "0.13; �� "!1.63 (69)
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which resemble the values of oriented D and P surfaces (at threshold q"0.5, one unit cell and
¸


"32)

D: <M "0.50; SM "6.00; BM "0; �� "!8 ,

P: <M "0.50; SM "3.71; BM "0; �� "!2 . (70)

These examples show that MIA can be used to characterize complex, computer generated surfaces
with modest e!orts.

9. Summary

Integral-geometry morphological image analysis characterizes patterns in terms of numerical
quantities, calledMinkowski functionals. These morphological descriptors have an intuitively clear
geometrical and topological interpretation. Integral-geometrymorphological image analysis yields
information on structure in patterns. In most cases this information is complementary to the one
obtained from two-point correlation functions.
As the examples presented in this review and many other applications mentioned in the

introduction show, MIA is a very versatile and powerful method to study structure in (complex)
patterns. For some problems, e.g. the characterization of complex surfaces, the samemorphological
descriptors can also be computed within the framework of di!erential geometry. In contrast to the
di!erential geometry approach, the application of integral geometry does not require the surface to
be regular, nor is there any need to introduce labyrinth graphs or surface tilings to compute
derivatives.
A remarkable feature of MIA is the big contrast between the level of sophistication of the

underlying mathematics and the ease with which MIA can be implemented and used. MIA is
applied directly to the digitized representation of the patterns, it can be implemented with a few
lines of computer code, is computationally inexpensive and is easy to use in practice. Therefore, we
believe it should be part of one's toolbox for analyzing geometrical objects and patterns.
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Appendix A. Programming example

!
! Minkowski}functionals}2D computes the Minkowski functionals
! (area,perimeter,euler) for a 2D image, represented by the
! 1D array LATTICE(.). A pixel at (jx, jy) is active if LATTICE(jx�jy*Lx)"1,
! otherwise LATTICE(jx�jy*Lx)"0. Here 0(jx(Lx and 0(jy(Ly.
! The array TMP(.) is used as work space.
!

subroutine minkowski}functionals}2D(Lx,Ly,lattice,tmp,
& area,perimeter,euler) ! 2D

implicit integer (a}z)
integer lattice(0:Lx*Ly!1),tmp(0:(Lx�2)*(Ly�2)!1)

sur"0
cur"0
eul"0

tmp(0:(Lx�2)*(Ly�2)!1)"0 ! work space

do jy"0,Ly!1
do jx"0,Lx!1

i"jx�Lx*jy
if( lattice(i) ' 0 ) then ! active pixel

call minko}2D}free(Lx�2,Ly�2,jx�1, jy�1,tmp,s,c,e)
tmp(jx�1�(Lx�2)*(jy�1))"1 ! add pixel to image
sur"sur�s
cur"cur�c
eul"eul�e

endif
enddo
enddo

area"sur
perimeter"cur
euler"eul

end

!
! Minkowski}functionals}3D computes the Minkowski functionals
! (volume,surface,integral mean curvature,euler) for a 3D image,
! represented by the 1D array LATTICE(.). A pixel at (jx, jy, jz) is
! active if LATTICE(jx�Lx*(jy�Ly*jz))"1, otherwise
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! LATTICE(jx�Lx*(jy�Ly*jz))"0.
! Here 0(jx(Lx, 0(jy(Ly, and 0(jz(Lz. The array TMP(.)
! is used as work space.
!

subroutine minkowski}functionals}3D(Lx,Ly,Lz,tmp,
& lattice,volume,surface,curvature,euler)

implicit integer (a}z)
integer lattice(0:Lx*Ly*Lz!1),tmp(0:(Lx�2)*(Ly�2)*(Lz�2)!1)

vol"0
sur"0
cur"0
eul"0

tmp(0:(Lx�2)*(Ly�2)*(Lz�2)!1)"0 ! work space

do jz"0,Lz!1
do jy"0,Ly!1
do jx"0,Lx!1
i"jx�Lx*(jy�Ly*jz)

if( lattice(i)'0 ) then ! active pixel
call minko}3D}free(Lx�2,Ly�2,Lz�2, jx�1, jy�1, jz�1,tmp,v,s,c,e)
tmp(jx�1�(Lx�2)*(jy�1�(Ly�2)*(jz�1)))"1 ! add pixel to image
vol"vol�v
sur"sur�s
cur"cur�c
eul"eul�e

endif
enddo
enddo
enddo

volume"vol
surface"sur
curvature"cur
euler"eul

end

subroutine minko}2D}free(Lx,Ly, jx, jy,
& lattice,surface,perimeter,euler2D)

implicit integer (a}z)
integer lattice(0:LX*LY!1)
parameter(
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& surface}face"1 , !(a*a, open face)
& perimeter}face"!4 , !(!4*a, open face)
& perimeter}edge"2 , !(2*a, open line)
& euler2D}face"1 , !(open face)
& euler2D}edge"!1 , !(open line)
& euler2D}vertex"1) !(vertices)

nedges"0
nvert"0

do i0"!1,1,2
jxi"jx�i0
jyi"jy�i0
kc1"1!lattice(jxi�Lx*jy)
nedges"nedges�kc1�1!lattice(jx�Lx*jyi)
do j0"!1,1,2

k4"Lx*(jy�j0)
nvert"nvert�kc1*(1-lattice(jxi�k4))*(1-lattice(jx�k4))

enddo ! j0
enddo ! i0

surface"surface}face
perimeter"perimeter}face�perimeter}edge*nedges
euler2D"euler2D}face�euler2D}edge*nedges�euler2D}vertex*nvert

end

subroutine minko}3D}free(Lx,Ly,Lz, jx, jy, jz, lattice,
& volume,surface,curvature,euler3D)

implicit integer (a}z)
integer lattice(0:LX*LY*Lz!1)
parameter(

& volume}body"1 , !(a*a*a, where a is lattice displacement)

& surface}body"!6 , !(!6*a*a, open body)
& surface}face"2 , !(2*a*a, open face)

& curv}body"3 , !(3*a, open body)
& curv}face"!2 , !(!2*a, open face)
& curv}edge"1 , !(a, open line)
& euler3D}body"!1 , !(open body)
& euler3D}face"1 , !(open face)

526 K. Michielsen, H. De Raedt / Physics Reports 347 (2001) 461}538



& euler3D}edge"!1 , !(open line)
& euler3D}vertex"1) !(vertices)

nfaces"0
nedges"0
nvert"0

do i0"!1,1,2
jxi"jx�i0
jyi"jy�i0
jzi"jz�i0
kc1"1!lattice(jxi�Lx*(jy�Ly*jz))
kc2"1!lattice(jx�Lx*(jyi�Ly*jz))
kc3"1!lattice(jx�Lx*(jy�Ly*jzi))
nfaces"nfaces�kc1�kc2�kc3
do j0"!1,1,2

jyj"jy�j0
jzj"jz�j0
k4"Lx*(jyj�Ly*jz)
k7"Lx*(jy�Ly*jzj)
kc7"1!lattice(jx�k7)
kc1kc4kc5"kc1*(1!lattice(jxi�k4))*(1!lattice(jx�k4))
nedges"nedges�kc1kc4kc5

& �kc2*(1!lattice(jx�Lx*(jyi�Ly*jzj)))*kc7
& �kc1*(1!lattice(jxi�k7))*kc7

if(kc1kc4kc5.ne.0) then
do k0"!1,1,2

jzk"jz�k0
k9"Lx*(jy�Ly*jzk)
k10"Lx*(jyj�Ly*jzk)
nvert"nvert�(1!lattice(jxi�k9))*(1!lattice(jxi�k10))

& *(1!lattice(jx�k10))*(1!lattice(jx�k9))
enddo ! k0

endif ! kc1kc4kc5
enddo ! j0

enddo ! i0

volume"volume}body
surface"surface}body�surface}face*nfaces
curvature"curv}body�curv}face*nfaces�curv}edge*nedges
euler3D"euler3D}body�euler3D}face*nfaces

& �euler3D}edge*nedges�euler3D}vertex*nvert
end
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Appendix B. Algorithm

We describe a procedure to determine how the number of open bodies of each type changes when
one adds (removes) one active pixel (see Section 2.2) to (from) a given pattern.
Using this procedure it is easy to compute theMinkowski functionals for a given pattern, namely

by adding the active pixels one by one to an initially empty picture (see Appendix A).
In 2D, the number n

�
(P) of open squares building up the objects in the ¸

�
�¸

�
picture

P(x, q)"P(i, j, q); (i"1,2,¸
�
, j"1,2,¸

�
) increases (decreases) with one if one adds (removes)

one active pixel at the position x"(i, j) to (from) the image. Therefore, if we add an active pixel,

�n
�
(P)"1 , (B.1)

where we introduce the symbol � to indicate that we compute the di!erence. Similarly, the change
in the number of open edges, �n

�
(P) is given by

�n
�
(P)" �

��
�

[Q(i#�, j, q)#Q(i, j#�, q)] , (B.2)

where Q(x,q)"1!P(x, q). For the change in the number of vertices, n


(P), we "nd

�n


(P)" �

����
�

Q(i#�, j, q)Q(i#�, j#�, q)Q(i, j#�, q) . (B.3)

The change in the number of steps, n
�
(P), may be computed from

�n
�
(P)" �

����
�

P(i#�, j#�, q)(Q(i#�, j, q)#Q(i, j#�, q)) . (B.4)

In 3D, the number n
�
(P) of open cubes building up the objects in the ¸

�
�¸

�
�¸

�
image

P(x, q)"P(i, j, k, q); (i"1,2,¸
�
, j"1,2,¸

�
, k"1,2,¸

�
) increases (decreases) with one if one

adds (removes) one active pixel to (from) the image at the position x"(i, j, k), i.e. �n
�
(P)"1. The

change in n
�
(P), the number of open faces, may be computed from

�n
�
(P)" �

��
�

[Q(i#�, j, k, q)#Q(i, j#�, k, q)#Q(i, j, k#�, q)] . (B.5)

The change in n
�
(P), the number of open edges, reads

�n
�
(P)" �

����
�

[Q(i#�, j, k, q)Q(i#�, j#�, k, q)Q(i, j#�, k, q)

#Q(i, j#�, k, q)Q(i, j#�, k#�, q)Q(i, j, k#�, q)

#Q(i#�, j, k, q)Q(i#�, j, k#�, q)Q(i, j, k#�, q)] . (B.6)
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For the change in n


(P), the number of vertices, we "nd

�n


(P)" �

����	�
�

Q(i#�, j, k, q)Q(i#�, j#�, k, q)Q(i, j#�, k, q)

�Q(i#�, j, k#�, q)Q(i#�, j#�, k#�, q)

�Q(i, j#�, k#�, q)Q(i, j, k#�, q) . (B.7)

The change in n
�
(P), the number of steps, is given by

�n
�
(P)" �

����
�

[P(i#�, j#�, k, q)(Q(i#�, j, k, q)#Q(i, j#�, k, q))

#P(i#�, j, k#�, q)(Q(i#�, j, k, q)#Q(i, j, k#�, q))

#P(i, j#�, k#�, q)(Q(i, j#�, k, q)#Q(i, j, k#�, q))] . (B.8)

Appendix C. Minkowski functionals for elementary bodies

We derive the values of the Minkowski functionals for the open bodies building up a black-
and-white image. A 2D image consists of square pixels. Each pixel is a closed square Q3�� of edge
length a and is the union of its interior Qx , its four open edges x̧ , and its four vertices P (points are
open as well as closed convex bodies). The parallel volume v��	(Q

�
) is given by

v��	(Q
�
)"a�#4ar#�r� , (C.1)

which by making use of (21b) and (34) implies

=��	


(Q)"=��	



(Qx )"a�, =��	

�
(Q)"!=��	

�
(Qx )"2a ,

=��	
�
(Q)"=��	

�
(Qx )"� , (C.2)

and

A(Q)"A(Qx )"a�, ;(Q)"!;(Qx )"4a, �(Q)"�(Qx )"1 . (C.3)

Next, we consider the closed edge ¸3�� of length a. The parallel volume v��	(¸
�
) is obtained from

v��	(¸
�
)"2ar#�r� , (C.4)

which leads to

=��	


(¸)"!=��	



( x̧ )"0, =��	

�
(¸)"=��	

�
( x̧ )"a ,

=��	
�
(¸)"!=��	

�
( x̧ )"� (C.5)

and

A(¸)"!A( x̧ )"0, ;(¸)";( x̧ )"2a, �(¸)"!�( x̧ )"1 . (C.6)

Finally, we consider the vertices P3��. Their parallel volume reads

v��	(P
�
)"�r� . (C.7)
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Hence,

=��	


(P)"=��	



(Px )"0, =��	

�
(P)"!=��	

�
(Px )"0 ,

=��	
�
(P)"=��	

�
(Px )"� (C.8)

and

A(P)"A(Px )"0, ;(P)"!;(Px )"0, �(P)"�(Px )"1 . (C.9)

A 3D image contains closed cubes C, each being the union of its interior Cx , its six open faces Qx , its
twelve open edges x̧ and its eight vertices P.
For the closed cube C3�� of edge length a the parallel volume reads

v��	(C
�
)"a�#6a�r#3a�r�#

4�
3

r� , (C.10)

from which it follows that

=��	


(C)"=��	



(Cx )"a�, =��	

�
(C)"!=��	

�
(Cx )"2a� ,

=��	
�
(C)"=��	

�
(Cx )"�a, =��	

�
(C)"!=��	

�
(Cx )"

4�
3

, (C.11)

and

<(C)"<(Cx )"a�, S(C)"!S(Cx )"6a� ,

B(C)"B(Cx )"�
�
a, �(C)"!�(Cx )"1 . (C.12)

The parallel volume for the closed square Q3�� of edge length a is given by

v��	(Q
�
)"2a�r#2�ar�#

4�
3

r� , (C.13)

which implies

=��	


(Q)"!=��	



(Qx )"0, =��	

�
(Q)"=��	

�
(Qx )"�

�
a� ,

=��	
�
(Q)"!=��	

�
(Qx )"

2�a
3

, =��	
�
(Q)"=��	

�
(Qx )"

4�
3

(C.14)
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and

<(Q)"!<(Qx )"0, S(Q)"S(Qx )"2a� ,

B(Q)"!B(Qx )"a, �(Q)"�(Qx )"1 . (C.15)

For the closed line ¸3�� of length a the parallel volume can be obtained from

v��	(¸
�
)"�ar�#

4�
3

r� . (C.16)

This yields for the Minkowski functionals

=��	


(¸)"=��	



( x̧ )"0, =��	

�
(¸)"!=��	

�
( x̧ )"0 ,

=��	
�
(¸)"=��	

�
( x̧ )"

�a
3
, =��	

�
(¸)"!=��	

�
( x̧ )"

4�
3

(C.17)

and hence

<(¸)"<( x̧ )"0, S(¸)"!S( x̧ )"0 ,

B(¸)"B( x̧ )"
a
2
, �(¸)"!�( x̧ )"1 . (C.18)

Finally, for the vertices P3�� we have for the parallel volume

v��	(P
�
)"

4�
3

r� , (C.19)

which leads to

=��	


(P)"!=��	



(Px )"0, =��	

�
(P)"=��	

�
(Px )"0 ,

=��	
�
(P)"!=��	

�
(Px )"0, =��	

�
(P)"=��	

�
(Px )"

4�
3

, (C.20)

and

<(P)"!<(Px )"0, S(P)"S(Px )"0 ,

B(P)"!B(Px )"0, �(P)"�(Px )"1 . (C.21)

Appendix D. Proof of (47)

The aim is to compute the mean value ofM��	� (A
�
), i.e. the con"gurational average with respect to

the product density element [11]

d�(g
�
,2, g

�
)"

1
����

�
�
���

dg
�
, (D.1)

where �dg
�
"��� denotes the volume of �.
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We "rst consider the con"gurational average of a single grain. We rewrite (46) as

A
�

"A
���

�g
�

A
�

(D.2)

and make use of the properties of additivity and motion invariance of the Minkowski functionals,
and of the kinematic formula (28). The con"gurational average for the single grain A

�
reads

�M��	� (A
�
)
dg

�
���

"M��	� (A
���

)#M��	� (A
�
)!�M��	� (A

���
�g

�
A

�
)
dg

�
���

"M��	� (A
���

)#M��	� (A
�
)!

1
���

�
�
��

�
�


�M��	���(A�
)M��	� (A

���
) . (D.3)

At this point it is expedient to switch to a matrix notation. For d"3 and with the notation
M�,M��	� , (D.3) reads

�M
�

dg
�

���
"Q

�
M

���
#R

�
, (D.4)

where the matrices M
�
, Q

�
and R

�
are given by

M
�

"�
M



(A

�
)

M
�
(A

�
)

M
�
(A

�
)

M
�
(A

�
)�, R

�
"�

M


(A

�
)

M
�
(A

�
)

M
�
(A

�
)

M
�
(A

�
)� , (D.5a)

Q
�

"�
�
�

0 0 0

�
�

�
�

0 0

�
�

2�
�

�
�

0

�
�

3�
�

3�
�

�
�
� (D.5b)

with

�
�

"1!

M


(A

�
)

���
, �

�
"!

M
�
(A

�
)

���
,

�
�

"!

M
�
(A

�
)

���
, �

�
"!

M
�
(A

�
)

���
. (D.6)

Repeating the steps that lead to (D.4) the con"gurational average over two grains A
�

and
A

���
reads

��M
�

dg
�
dg

���
����

"�Q
�

M
���

dg
���
���

#R
�

"Q
�

Q
���

M
���

#M
�

R
���

#R
�

(D.7)
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and the average over all possible con"gurations can be written as

�2�M
�

dg
�2dg

�
����

"Q
�2Q

�
R

�
#Q

�2Q
�
R

�
#2#Q

�
R
���

#R
�
. (D.8)

Exact result (D.8) is of little practical value unless we make additional assumptions about the
properties of the individual grains. If all grains are identical we have Q"Q

�
and R"R

�
for

i"1,2,N. Likewise if the distribution of size and shape of the grains is the same for all grains,
averaging (D.8) over this distribution also yields Q"Q

�
and R"R

�
for all i. Evidently, the latter

case contains the former. Hence averaging (D.8) over the size and shape of the grains yields

�M�
�

,�2�M
�

dg
�2dg

�
����

"(1#Q#2#Q���)R . (D.9)

By mathematical induction it can be shown that

1#Q#2#Q���"�
a
���

0 0 0

b
���

a
���

0 0

c
���

2b
���

a
���

0

d
���

3c
���

3b
���

a
���

� , (D.10)

where

a
���

"

1!��

1!��
, b

���
"�

Ra
���
R� ,

c
���

"��
R�a

���
R��

#�
Ra

���
R� ,

d
���

"��
R�a

���
R��

#3��
R�a

���
R��

#�
Ra

���
R� (D.11)

and

�"1!

m



���
, �"!

m
�

���
,

�"!

m
�

���
, �"!

m
�

���
(D.12)

and where m�,M� (A�
) denote the averages over size and shape of the Minkowski functional for

a single grain A
�
.

With expressions (D.10)}(D.12) we obtain from (D.9)

�M


�
�

"m


a
���

, (D.13a)

�M
�
�
�

"!

m
�
m



���

Ra
���
R� #m

�
a
���

, (D.13b)
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�M
�
�
�

"

m�
�
m



����

R�a
���
R��

!

1
���

(2m�
�
#m



m

�
)
Ra

���
R� #m

�
a
���

, (D.13c)

�M
�
�
�

"!

m�
�
m



����

R�a
���
R��

#

m
�

����
(m�

�
#3m

�
m



)
R�a

���
R��

!

1
���

(6m
�
m

�
#m



m

�
)
Ra

���
R� #m

�
a
���

, (D.13d)

where �M���
denote themean values of theMinkowski functionals of the ensemble with density �.

The expressions in (D.13) may be further simpli"ed by putting

z,(1!�)a
���

"1!�� . (D.14)

We "nd

Rz
R�"(1!�)

Ra
���
�

!a
���

"!N���� , (D.15a)

R�z
R��

"(1!�)
R�a

���
��

!2
Ra

���
R� "!N(N!1)���� , (D.15b)

R�z
R��

"(1!�)
R�a

���
��

!3
R�a

���
R��

"!N(N!1)(N!2)���� . (D.15c)

Substituting (D.14), (D.15) and m


/���"1!�, in (D.13) "nally gives

�M


�
�

"���(1!��) , (D.16a)

�M
�
�
�

"m
�
N���� , (D.16b)

�M
�
�
�

"!

m�
�

���
N(N!1)����#m

�
N���� , (D.16c)

�M
�
�
�

"

m�
�

����
N(N!1)(N!2)����!3

m
�
m

�
���

N(N!1)����#m
�
N���� . (D.16d)

In the bulk limit N, �PR with �"N/��� "xed, we have

lim
���

��" lim
���

�1!

m



����
�
"e���
 (D.17)

and

�M


/N�

�
"(1!e���
)/� , (D.18a)

�M
�
/N�

�
"m

�
e���
 , (D.18b)

�M
�
/N�

�
"(m

�
!m�

�
�)e���
 , (D.18c)

�M
�
/N�

�
"(m�

�
��!3m

�
m

�
�#m

�
)e���
 . (D.18d)

Note that the expressions in (D.18) are valid for any dimension d.
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