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Phase separation in models for correlated electrons
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It is shown that the low-temperature phase diagram of the ferromagnetic Kondo model and of the simplified
Hubbard model with correlated hopping are very similar. A regime is identified where phase separation occurs
between hole undoped antiferromagnetic and hole-rich ferromagnetic regsi63-18209)02304-9

In a recent LettérYunoki et al. reported on the presence Z=Z(t,t'",U,u,y)
of phase separation between hole undoped antiferromagnetic
(AFM) and hole-rich ferromagneti@M) regions in th_e FM —Tre A=Y de(l_l_e—ﬁM({si})]exr{ BuY Si)1 ©)
Kondo model at low temperature. In thel model a similar 5=01 i
kind of phase separation is fouRd.The purpose of this _ _
report is to draw attention to the similarities in the phaseWhere 8 denotes the inverse temperature avig({si}) is
diagram of the FM Kondo model and that of another, purelydiven byM;; with D; replaced bys; , the eigenvalues of the

electronic model, the simplified Hubbard matfewith cor- ~ OPeratorD;. Exact expressions for any static property of
related hopping SHMCH).® interest can be derived in a similar manner. Expectation val-

The Hamiltonian of the SHMCH can be writtenfa® ues of stati_c qua_ntities are galculatgd as follows: For a par-
ticular configuratior{s;} we diagonalize the matriki, com-
pute the determinant in EqR) and multiply the latter by the
exponential prefactor, to obtain the weight of the configura-

H:Z ArMijAj—MZ D;, ) tipn {si}_. This weight. is strictly positi_ve anq can be usgd
i i directly in a Metropolis Monte Carlo simulation of the vari-
ables {s;} to calculate the averages of time-independent
_ _ quantities’~1%In this paper, however, we only present results
where the matrix elements dil are given byM;j=UD;  gptained by the exact diagonalization method for one-
—pm, Mjj=t=t'(Di+D;—yDiD) for i,j nearest neighbors gimensional systems with 20 sites.
on a lattice withL sites andMl;; =0 otherwise. Herd\" ,A; , The thermodynamics of the FM Kondo model has been
with N;=A;"A;, represenmobile fermions i.e., the fermi-  calculated using the approach sketched above, the occupa-
ons have kinetic energyand B, ,B;, with D;=B; B;, rep-  tion numbersD; playing the role of the spin§ in Ref. 1.
resentimmobilefermions(i.e., the fermions have no kinetic For the SHMCH the single-particle density of states and the
energy, t is the hopping parametet, is the correlated hop- ©Optical conductivity have been call%ulaﬁe‘d? yielding the
ping parametery) is the on-site Coulomb interactiop, the ~ full-phase diagram of the SHMCFT-. These functions can
chemical potential, andy a real number that controls the be evaluated directly, in the real-time domain, without in-

relative amplitude of the allowed hopping processes. voking procedure'S to extrapolate imaginary-time data to
From Eq.(1) it is clear that the SHMCH can be inter- the real-time axis. The method described in Refs. 7-10

preted aq1) a model for mixed-valence states in rare-eartheqqalIIy applies o the single-particle density of states and the
compounds, i.e., an extended spinless-symmetric Falicoﬁpt'c"’.II conductivity of the FM Kondo model. .
Kimball model™ where the moving particleg,'s) play the Evidence for phase separation can be found by studying
role ofselectrc’)ns and the localized oné&:'s) sltand for the the particle densityr as a function of the chemical potential

f el > del f led bi I tor M- A first-order phase transition is characterized by steps in
e ectrpns.,( )Zalsr_no e. or an annealed binary "’} Oy orior yq ,u.16 The results shown in Fig. 1, for some valuesond
crystallizatiort?*3in which the electrons are described by thet,, clearly demonstrate that phase separation occurs in the

Ai’s and the ions by th@;'s; and (3) the simplified Hirsch  HMCH. For each curvé) andt’ are kept constant. In the
model, i.e., the one obtained by applying to the Hirschiegion wheregu/an|,=0 two phases coexist. The small
modet* Hubbard's approximatidhof localizing one of the  steplike structures in=n(x) are due to finite-size effects.
spin species. In this interpretation the mobile fermignsan As shown in Fig. 1, fort’=0 and U=6 (squarey
be considered as having spin up and the immobile fermionﬁ:n(ﬂ) exhibits a plateau of sizA=A(U) atn=1. For
Bi as having spin down. As usual, information about thethis range ofu values the immobile particles are ordered into
distribution of magnetic moments in the system is obtainedh chessboard configuration. When< (U —A)/2, there are
from the spin-density correlation function. only mobile particles in the system. At=(U—A)/2,

As all D; commute with allA; andA;" and becausé( is  gu/on|,;=0 and the system separates into a phase with no
a quadratic form in theé\;’s, the grand canonical partition immobile particles and a phase in which unpaired mobile and
function can be written 4s*° immobile particles are ordered into a nearly perfect chess-
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FIG. 1. Particle densityn as a function of the chemical potential for a ring of 20 sites fot=1, y=2, and 8=1000. Squares,
t'=0,U=6; trianglest’'=0.7,U=3; diamondst’'=0.3,U=1. The lines are guides to the eye.

board configuration. On the other hand, fer>(U+A)/2,  each lattice site is occupied by an immobile parjiclat
each lattice site is occupied by an immobile particle. Atu=U/2, du/dn|y=0 and the system separates into a phase
u=(U+A)/2 the system separates into a phase wifimn-  with no immobile particles and a phase withimmobile
mobile particles and a phase in which unpaired mobile angbarticles. The qualitative behavior of phase separation exem-
immobile particles are ordered into a nearly perfect chessplified in Fig. 1 was also observed at other values’oand
board configuration. These features are present for all.l

t’=0 andU>0. For the examples =0.7,U =3 (triangles Figure 2 shows the phase diagram of the SHMCH for
andt’'=0.3,U=1 (diamond$, du/dn|,>0 for u#U/2and y=2 (i.e., when the system is invariant for particle-hole
hence the system is in a stable state. WhenU/2, there are  symmetry™9, t=1, U>0, andn>1 for rings of L=20

no immobile particles in the system. On the other hand, fosites at a temperaturé=t/1000. For G<t’'<t, U>0, and
u>U/2, there ard. immobile particles in the systelfi.e.,, n<1 the system is always metallic. FOr=0 there are two

Ui

Al, B1, C1, D1

FIG. 2. Low-temperature phase diagram of the SHMCH. In regiihsB1, C1, andD1 there are no immobile fermions in the system.
Different phase boundaries are represented by lines with different markers. Only in régipB&, C2, D2, B3, andC3 there is phase
separation. Solid lines are guides to the eyes. Dotted line: Phase boundaty: forinset: Low-temperatureld,n,t’) phase diagram for
y=2,t=1, —1<U/6<1, O=n<1 and O<t’'<t(t=1). Top plane: phase diagram for=0.6. The different gray scales indicate regions
where two phases coexist.
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distinct phasesgsee also the description in Fig): There are
no immobile particles in the system up to some filling
(phaseAl). Hence the system is fully polarizdthere are
only mobile (spin-up fermions present in the systgnBe-
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immobile particles. Phasé83 andC3 are FM(spin polar-
ized). Fort'=0.3 (t'=0.7) the phase boundaries are repre-
sented by solid lines marked with trianglésquares For
t' =t there are only two distinct phases: Phésk which has

yond this filling the system separates into two distinct phasethe same properties as phas#, up to some fillingn, and
(A2): A first phase with no immobile particles and anotherbeyond this filling phas®2, which has the same properties
where unpaired mobile and immobile particles are orderedis B2 and C2. Disregarding finite-size effects the phase
into a nearly perfect chessboard configuration. The formeboundary fort’ =t is given by —4 cosgmn), shown as the
phase is FM and the latter exhibits AFM long-range correladotted line. The structure of the phase diagram does not seem
tions in the magnetization. The solid line marked with starsto depend on the dimensionality of the systéitfIt is clear

indicates the phase boundary, steplike structures being due
finite-size effects.

tieat the structure of the phase diagram of Ref. 1 and the one
of the SHMCH are very similar.

For 0<t’<t there are three distinct phases, as shown in Finally, it is of interest to note that far =t the qualita-

Fig. 2 for the case of’ =0.3 andt’=0.7: PhaseB1 (C1)
fort’=0.3 (t'=0.7) with the same characteristics &%, up

to some fillingn, and beyond this filling and depending bin
phaseB3 (C3) with the same properties &2, or phasd32
(C2) for t'=0.3 (t'=0.7) in which the system separates
into a phase with no immobile particles and a phase With

tive form of the low-temperature phase diagram of the
SHMCH is similar to the one of the model in which both
fermion species are mobilé.e., the Hubbard model with
correlated hopping'’~*° Also, in this case the dimensional-
ity of the lattice does not seem to affect the structure of the
phase diagrarf’
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