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Phase separation in models for correlated electrons
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It is shown that the low-temperature phase diagram of the ferromagnetic Kondo model and of the simplified
Hubbard model with correlated hopping are very similar. A regime is identified where phase separation occurs
between hole undoped antiferromagnetic and hole-rich ferromagnetic regions.@S0163-1829~99!02304-8#
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In a recent Letter1 Yunoki et al. reported on the presenc
of phase separation between hole undoped antiferromag
~AFM! and hole-rich ferromagnetic~FM! regions in the FM
Kondo model at low temperature. In thet-J model a similar
kind of phase separation is found.2,3 The purpose of this
report is to draw attention to the similarities in the pha
diagram of the FM Kondo model and that of another, pur
electronic model, the simplified Hubbard model4,5 with cor-
related hopping~SHMCH!.6

The Hamiltonian of the SHMCH can be written as6–10

H5(
i , j

Ai
1Mi j Aj2m(

i
Di , ~1!

where the matrix elements ofM are given byMii 5UDi

2m, Mi j 5t2t8(Di1D j2gDiD j ) for i,j nearest neighbors
on a lattice withL sites andMi j 50 otherwise. HereAi

1 ,Ai ,
with Ni5Ai

1Ai , representmobile fermions ~i.e., the fermi-
ons have kinetic energy! andBi

1 ,Bi , with Di5Bi
1Bi , rep-

resentimmobilefermions~i.e., the fermions have no kineti
energy!, t is the hopping parameter,t8 is the correlated hop
ping parameter,U is the on-site Coulomb interaction,m the
chemical potential, andg a real number that controls th
relative amplitude of the allowed hopping processes.

From Eq. ~1! it is clear that the SHMCH can be inte
preted as~1! a model for mixed-valence states in rare-ea
compounds, i.e., an extended spinless-symmetric Falic
Kimball model,11 where the moving particles~Ai ’s! play the
role of s electrons and the localized ones~Bi ’s! stand for the
f electrons,~2! a model for an annealed binary alloy or fo
crystallization12,13in which the electrons are described by t
Ai ’s and the ions by theBi ’s; and ~3! the simplified Hirsch
model, i.e., the one obtained by applying to the Hirs
model14 Hubbard’s approximation4 of localizing one of the
spin species. In this interpretation the mobile fermionsAi can
be considered as having spin up and the immobile fermi
Bi as having spin down. As usual, information about t
distribution of magnetic moments in the system is obtain
from the spin-density correlation function.

As all Di commute with allAi andAi
1 and becauseH is

a quadratic form in theAi ’s, the grand canonical partition
function can be written as7–10
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Z5Z~ t,t8,U,m,g!

5Tre2bH5 (
si50,1

det@11e2bM ~$si %!#expS bm(
i

si D , ~2!

where b denotes the inverse temperature andMi j ($si%) is
given byMi j with Di replaced bysi , the eigenvalues of the
operatorDi . Exact expressions for any static property
interest can be derived in a similar manner. Expectation v
ues of static quantities are calculated as follows: For a p
ticular configuration$si% we diagonalize the matrixM, com-
pute the determinant in Eq.~2! and multiply the latter by the
exponential prefactor, to obtain the weight of the configu
tion $si%. This weight is strictly positive and can be use
directly in a Metropolis Monte Carlo simulation of the var
ables $si% to calculate the averages of time-independ
quantities.7–10 In this paper, however, we only present resu
obtained by the exact diagonalization method for on
dimensional systems with 20 sites.

The thermodynamics of the FM Kondo model has be
calculated1 using the approach sketched above, the occu
tion numbersDi playing the role of the spinsSi in Ref. 1.
For the SHMCH the single-particle density of states and
optical conductivity have been calculated,7–10 yielding the
full-phase diagram of the SHMCH.7–10 These functions can
be evaluated directly, in the real-time domain, without
voking procedures15 to extrapolate imaginary-time data t
the real-time axis. The method described in Refs. 7–
equally applies to the single-particle density of states and
optical conductivity of the FM Kondo model.

Evidence for phase separation can be found by study
the particle densityn as a function of the chemical potentia
m. A first-order phase transition is characterized by stepsn
vs m.16 The results shown in Fig. 1, for some values ofU and
t8, clearly demonstrate that phase separation occurs in
SHMCH. For each curveU and t8 are kept constant. In the
region where]m/]nuU50 two phases coexist. The sma
steplike structures inn5n(m) are due to finite-size effects

As shown in Fig. 1, for t850 and U56 ~squares!,
n5n(m) exhibits a plateau of sizeD5D(U) at n51. For
this range ofm values the immobile particles are ordered in
a chessboard configuration. Whenm,(U2D)/2, there are
only mobile particles in the system. Atm5(U2D)/2,
]m/]nuU50 and the system separates into a phase with
immobile particles and a phase in which unpaired mobile a
immobile particles are ordered into a nearly perfect che
4565 ©1999 The American Physical Society



4566 PRB 59BRIEF REPORTS
FIG. 1. Particle densityn as a function of the chemical potentialm for a ring of 20 sites fort51, g52, andb51000. Squares,
t850, U56; triangles,t850.7, U53; diamonds,t850.3, U51. The lines are guides to the eye.
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board configuration. On the other hand, form.(U1D)/2,
each lattice site is occupied by an immobile particle.
m5(U1D)/2 the system separates into a phase withL im-
mobile particles and a phase in which unpaired mobile
immobile particles are ordered into a nearly perfect che
board configuration. These features are present for
t850 andU.0. For the examplest850.7,U53 ~triangles!
andt850.3,U51 ~diamonds!, ]m/]nuU.0 for mÞU/2 and
hence the system is in a stable state. Whenm,U/2, there are
no immobile particles in the system. On the other hand,
m.U/2, there areL immobile particles in the system~i.e.,
t

d
s-
ll
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each lattice site is occupied by an immobile particle!. At
m5U/2, ]m/]nuU50 and the system separates into a ph
with no immobile particles and a phase withL immobile
particles. The qualitative behavior of phase separation ex
plified in Fig. 1 was also observed at other values oft8 and
U.10

Figure 2 shows the phase diagram of the SHMCH
g52 ~i.e., when the system is invariant for particle-ho
symmetry7–10!, t51, U.0, and n.1 for rings of L520
sites at a temperatureT5t/1000. For 0<t8<t, U.0, and
n,1 the system is always metallic. Fort850 there are two
.

ns
FIG. 2. Low-temperature phase diagram of the SHMCH. In regionsA1, B1, C1, andD1 there are no immobile fermions in the system
Different phase boundaries are represented by lines with different markers. Only in regionsA2, B2, C2, D2, B3, andC3 there is phase
separation. Solid lines are guides to the eyes. Dotted line: Phase boundary fort85t. Inset: Low-temperature (U,n,t8) phase diagram for
g52, t51, 21<U/6<1, 0<n<1 and 0<t8<t(t51). Top plane: phase diagram fort850.6. The different gray scales indicate regio
where two phases coexist.
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distinct phases~see also the description in Fig. 1!: There are
no immobile particles in the system up to some fillingn
~phaseA1!. Hence the system is fully polarized@there are
only mobile ~spin-up! fermions present in the system#. Be-
yond this filling the system separates into two distinct pha
(A2): A first phase with no immobile particles and anoth
where unpaired mobile and immobile particles are orde
into a nearly perfect chessboard configuration. The for
phase is FM and the latter exhibits AFM long-range corre
tions in the magnetization. The solid line marked with st
indicates the phase boundary, steplike structures being d
finite-size effects.

For 0,t8,t there are three distinct phases, as show
Fig. 2 for the case oft850.3 andt850.7: PhaseB1 (C1)
for t850.3 (t850.7) with the same characteristics asA1, up
to some fillingn, and beyond this filling and depending onU
phaseB3 (C3) with the same properties asA2, or phaseB2
(C2) for t850.3 (t850.7) in which the system separat
into a phase with no immobile particles and a phase witL
e
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immobile particles. PhasesB3 andC3 are FM~spin polar-
ized!. For t850.3 (t850.7) the phase boundaries are rep
sented by solid lines marked with triangles~squares!. For
t85t there are only two distinct phases: PhaseD1, which has
the same properties as phaseA1, up to some fillingn, and
beyond this filling phaseD2, which has the same propertie
as B2 and C2. Disregarding finite-size effects the pha
boundary fort85t is given by 24 cos(pn), shown as the
dotted line. The structure of the phase diagram does not s
to depend on the dimensionality of the system.7–10 It is clear
that the structure of the phase diagram of Ref. 1 and the
of the SHMCH are very similar.

Finally, it is of interest to note that fort85t the qualita-
tive form of the low-temperature phase diagram of t
SHMCH is similar to the one of the model in which bo
fermion species are mobile~i.e., the Hubbard model with
correlated hopping!.17–19 Also, in this case the dimensiona
ity of the lattice does not seem to affect the structure of
phase diagram.20
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