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We have constructed an algorithm to treat quantum mechanical dynamics, such as the
nonadiabatic transitions in a dissipative environment, by making use of the formula of re-
duced density matrix, i.e., Quantum Master Equation (QME). We applied the method to
investigate dynamics of magnetization of nanoscale magnets, such as Mn12 and Fe8, in a
time dependent field. Due to the discreteness of the energy levels in small systems the res-
onating tunneling phenomena play an important role. At relatively high temperatures the
excited levels contribute to the transition and the transition rate depends significantly on the
temperature. On the other hand, at very low temperatures the magnetization process does
not depend on the temperature. Even at such a low temperature, the effect of environments
is still relevant. We demonstrate such a process with the method of QME. We also analyze
temperature dependent phenomena of hysteresis of the nanoscale magnets.

§1. Introduction

Relaxation phenomena of metastable state have been one of the most interesting
topics of statistical physics. Mechanisms of the hysteresis phenomena of ferromagnets
have been understood in the picture of free energy function in the mean-field analysis,
which is very intuitively understandable. For real processes of relaxation in bulk
system, however, microscopic analyses are necessary, i.e. from the view point of the
critical nucleation and motion of the domain wall. 1) - 3)

Recently, phenomena of real time dynamics of quantum mechanics are attracting
much interest, because of the developments of microscopic design technique and
methods to synthesize micro-size molecular magnets. Indeed, in many experiments,
saturation of the relaxation time at low temperatures has been reported, which
suggests that some temperature independent mechanism of relaxation exists. The
quantum fluctuation is one of the most attractive candidate for such a mechanism,
although there are other mechanisms which could give temperature independent
relaxation. 4)

Evidences of quantum mechanical dynamics have been found in processes of the
magnetization of uniaxial micro-size molecules under sweeping the magnetic field. In
small magnets such as Mn12

5) - 10) or Fe8
11) - 13) which have S = 10, the discreteness

of the energy levels causes interesting phenomena. At low temperatures, it is almost
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impossible to jump up the energy barrier. But the system can relax to state at
every avoided crossing point of the energy levels where a kind of quantum tunneling
occurs.

We have investigated the dynamics of the quantum state numerically by simply
solving the Schrödinger equation to study pure quantum mechanical motion. Here
the higher order decomposition of exponential operator introduced by Suzuki 14) is
very useful. In order to change the state quantum mechanically, we change the field
with a finite speed. The resonant tunneling is quite naturally explained from the
viewpoint of the nonadiabatic transition (NAT). 15) - 17)

In real experiments, however, we cannot neglect the effect of thermal environ-
ment, because the energy scale of the magnetic material is very low. The tem-
perature dependence of such quantum mechanical process became an important
topics. 18) - 20), 23) We have constructed an algorithm to treat quantum mechanical
dynamics, such as the nonadiabatic transitions in a dissipative environment. First
we study effects of random field on the quantum dynamics by simulating quantum
dynamics with time dependent random filed. Next we introduce an equation of
motion of reduced density matrix making use of the projection method. 21), 22) Here
we assume that the thermal bath consists of infinite number of independent bosons
which contacts with the system very weakly.

At relatively high temperatures the excited levels contribute to the transition
and the transition rate depends significantly on the temperature. On the other
hand, at very low temperatures the magnetization process does not depend on the
temperature. 10) Even at such a low temperature, the effect of environments is still
relevant. 23)

We have found that the dissipative effect cause additional relaxation which
changes the amount of jumps of the magnetization at the resonant points ∆Mi. 23)

But taking this effect into account, we can estimate the quantum mechanical tran-
sition probability.

We also point out some general features of the thermally assisted resonant tun-
neling, such as the parity effect of the amount of relaxations. 5)

§2. Nonadiabatic Transition

Nanoscale molecular magnets, such as Mn12
6) - 9), Fe8

11), 12), consist of small
number of atoms forming an effective S = 10 spin and interactions among molecules
are very small. Thus each atom can be regarded as an S = 10 single spin. The
Hamiltonian of such model is generally given by

H = −DS2
z −HSz +Q, (2.1)

where Sz = −10,−9, · · · 10 and Q denotes a term which causes the quantum fluc-
tuation, such as Sx, S

2
x − S2

y , or (S+)4 + (S−)4. In these systems the energy levels
as a function of the field have a discrete structure (Fig.1(a)) such that very explicit
quantum mechanical dynamics can be expected.

At each crossing point, a small energy gap is formed due to Q (Fig.1(b)). This
local structure is called avoided level crossing. When the field is swept through such
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Fig. 1. Energy structure of S = 10 Uniaxial magnet as functions of the external field H. (a) global

structure and (b) avoided level crossing.

avoided level crossing points, so-called nonadiabatic transition occurs. The nona-
diabatic transition plays important roles in microscopic quantum dynamics such as
the level dynamics of semiconductor, chemical reaction and optics. The transition
probability in various cases of nonadiabatic transitions has been reviewed by Naka-
mura. 24)

In the present paper, nonadiabatic transition between two crossing levels as
shown in Fig.2(b) will be considered. That is, the population coming in from the
channel A is scattered to B and C with a probabilities p and 1 − p, respectively.
Here p is a probability to stay the same level, i.e. to behave adiabatically. This
process corresponds to tunnel. On the other hand, 1 − p is a probability to jump
up to the channel C. The states of channel A and C are the same state when the
perturbation Q = 0 and are similar in character. This unperturbed state is called
diabatic state. In this sense, 1 − p is a probability to stay in the diabatic state.
This process corresponds to un-tunnel. The probability p plays an important role
in quantum mechanical relaxation of the system. This probability was studied by
Landau 25), Zener 26) and Stückelberg 27) in 1932 and is given by

p = 1 − exp

(
− π(∆E)2

2ch̄gµB∆m

)
, (2.2)

where ∆E is a gap at the avoided level crossing and ∆m is the difference of magne-
tization of the levels. c is the speed of the sweeping field, c = dH/dt. Thus gµB∆mc
is the changing rate of the Zeeman energy. 15) - 17)

This LZS type nonadiabatic transition has two characteristics. One is the local-
ization of transition. That is, the transition occurs only in the vicinity of the crossing
point. The other is the sweeping rate dependence of the transition probability. It
has been also pointed out that the application of an alternate field at the resonant
points causes a nontrivial oscillation of magnetization due to phase interference. 28)
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For quantitative analysis of experimental data, we have to take into account the
effect of environment. It is found that even at very low temperatures where the
relaxation process does not depend on the temperature, the process is not a pure
quantum process. We call such a process ”deceptive nonadiabatic transition”. At
higher temperatures, excitation levels begin to contribute to the relaxation phenom-
ena. Alternative enhancements of relaxation at resonant points are observed, which
is called ’parity effect’. 5) This effect is also interpreted as NAT of the population of
excited levels.

§3. Numerical Method

In order to investigate quantum dynamics in dissipative environments, we have
used two kinds of numerical method. We have studied quantum dynamics with
temporally fluctuating external field by solving the Schrödinger equation. Statistical
properties are obtained by averaging over the distribution of the randomly fluctuating
field. 29)

Another method is to use the quantum master equation which describes the
equation of motion of the reduced density matrix of the system ρ(t). The equation
is derived by tracing out the degree of freedom of the environment from the density
matrix of the total system which consists of the system HS, the thermal bath HB

and interaction between them:

H = HS + HI + HB (3.1)

and
ρ(t) = TrBe−βH. (3.2)

In the limit of weak coupling, i.e. the second order of HI , and assuming that the
correlation time of the bath variable is very short (Markovian approximation), we
have an equation in the following form

d

dt
ρ(t) =

1
ih̄

[H, ρ(t)] + Γρ(t), (3.3)

where Γ is a linear operator acting on ρ(t). In the cases where the bath consists of
infinite number of bosons, a general expression can be derived. 22)

∂ρ(t)
∂t

= −i [H, ρ(t)] − λ
(
[X,Rρ(t)] + [X,Rρ(t)]†

)
, (3.4)

where

〈k̄|R|m̄〉 = ζ(
Ek̄ − Em̄

h̄
)nβ(Ek̄ − Em̄)〈k̄|X|m̄〉,

ζ(ω) = I(ω) − I(−ω), and nβ(ω) =
1

eβω − 1
.

Here β is an inverse temperature of the reservoir 1/T , and we set h̄ to be unity. |k̄〉
and |m̄〉 are the eigenstates of H with the eigenenergies Ek̄ and Em̄, respectively. I(ω)
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is the spectral density of the boson bath. X is an operator of system which interacts
with the bosons linearly. Here we take X = 1

2 (Sx + Sz). The relaxation process can
be affected by the form of X. Generally X = Sx is more efficient than X = Sz for the
relaxation. A detailed comparison with other choices will be presented elsewhere.
The concrete form of Γρ depends on the way of coupling between the system and
the thermal bath, and also on the nature of the thermal bath, e.g., the spectrum
density, etc. However, here we discuss only natures which does not depend on the
detail of the model.

§4. Quantum Dynamics in Dissipative Environment

4.1. Deceptive nonadiabatic transition

In an avoided level crossing point (m,m′) the change of magnetization ∆M is
given by

∆M = pm′ − (1 − p)m−m = p(m′ −m). (4.1)

At the lowest point (−S, S), this relation should be applicable. 16) However at higher
crossing points (m,m′) with m′ < S, the population scattered from m to m′ is
unlikely to stay on the level of m′ and easily decays to the ground state, i.e., m′ → S,
even if the dissipative effect is so small that the population at the metastable level of
m hardly decays. This difference can be easily understood from the intuitive picture
of Fig. 1(a). That is, the relaxation in the same valley, i.e., m′ → S, is easy while
the relaxation over the barrier m → S is hard. In this situation, we can not apply
the relaxation (4.1) directly to estimate the LZS probability p. However we can still
estimate p from ∆M because the relaxation from the level of m occurs only by the
LZS probability and the following relaxation to the ground state occurs in a rather
short time. Taking these processes into account, we modify the relation (4.1) by
replacing the final magnetization m′ by S:

∆M = pS − (1 − p)m−m = p(S −m) (4.2)

We have confirmed that this relation works by performing simulations using the
QME. 23)

4.2. Parity effect

Experimentally it has been observed that the amount of relaxation at the reso-
nant points change alternatively. 5) The transition probabilities at the resonant points
increase monotonically as the difference of magnetizations |m−m′| of levels decreases.
Thus we expect that the transition probabilities at resonant points with the same
value of |m−m′| are nearly the same. At finite temperatures, there are some popu-
lations at excited states. When the field is swept, they also move with field until a
resonant point of appreciable transition rate. Those points are located at the same
horizontal level in Fig. 1(a). Because those points locate every second resonant
points and thus main relaxations occurs at these points which causes the alternate
change of the amount of relaxation. 30)
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20) F. Luis, J. Bartolomé, and F. Fernández, Phys. Rev. B 57 (1998) 505.
21) R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II (Springer-Verlag, New York,

1985). W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York,
1973). W. Weidlich and F. Haake, Z. Phys. 185 (1965) 30.

22) K. Saito, S. Takesue, S. Miyashita, Phys. Rev. E (2000) and cond-mat/9810069.
23) K. Saito, Miyashita, and H. De Raedt, cond-mat/9904323 and Phys. Rev B (1999).
24) H. Nakamura, in Dynamics of Molecules and Chemical Reactions ed. R. E. Wyatt and J.

Z. H. Zhang (Marcel Dekker, 1996) p.473.
25) L. Landau, Phys. Z. Sowjetunion 2 (1932) 46.
26) C. Zener, Proc. R. Soc. London, Ser. A137 (1932) 696.
27) E. C. G. Stückelberg, Helv. Phys. Acta 5 (1932) 369. and N. S. Dalal, Phys. Rev. B (1998)

330.
28) S. Miyashita, K. Saito, and H. De Raedt, Phys. Rev. Lett. 80 (1998) 1525.
29) S. Miyashita, BUTSURI 53 (1998) 259.
30) S. Miyashita, K. Saito and H. Kobayashi, cond-mat/9911148.


