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Inspired by Einstein–Podolsky–Rosen–Bohm experiments with photons, we construct an event-based
simulation model in which every essential element in the ideal experiment has a counterpart. The model
satisfies Einstein’s criterion of local causality and does not rely on concepts of quantum and probability
theory. We consider experiments in which the averages correspond to those of a singlet and product state
of a system of two S ¼ 1=2 particles. The data is analyzed according to the experimental procedure,
employing a time window to identify pairs. We study how the time window and the passage time of the
photons, which depends on the relative angle between their polarization and the polarizer’s direction,
influences the correlations, demonstrating that the properties of the optical elements in the observation
stations affect the correlations although the stations are separated spatially and temporarily. We show
that the model can reproduce results which are considered to be intrinsically quantum mechanical.
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1. Introduction

Recently, there has been increasing interest in new ways
of information processing that exploit quantum mechanical
correlations. In general, quantum theory describes the state
of the system by the wavefunction from which we obtain the
ensemble averaged value of quantities. Quantum theory
successfully describes the averaged value of a quantity that
is obtained in experiments by macroscopic observations.
However, when we consider quantum mechanical correla-
tions we have to be careful. For example, if we consider
the expectation value of a product of two quantities A and
B, we have to measure AB. It is not sufficient to measure A

and B separately. When we have to measure the correlation
AB experimentally, we need a proper definition of the
correlation. In experiments, we observe ai and bi in the i-th
measurement for A and B. Likewise, we must properly
define the meaning of a ‘‘pair’’ of data ðai; biÞ that
corresponds to AB. If we overlook this point, the interesting
nature of quantum correlation may disappear. This point is
most clearly illustrated by the famous Einstein–Podolsky–
Rosen (EPR) paradox.

In 1935, EPR proposed a gedanken experiment, which led
them to the conclusion that quantum theory is not a complete
theory.1) Their reasoning was based on notions about
completeness, physical reality and locality. Einstein later
expressed the principle of locality as ‘‘The real factual
situation of the system S2 is independent of what is done with
the system S1, which is spatially separated from the
former’’,2) an ontological definition of locality that is now
known as Einstein’s criterion of local causality. The question
arose whether certain apparently paradoxical predictions of
quantum theory could be experimentally tested.

Bohm reformulated in 1951 the EPR gedanken experi-

ment into a form which is conceptually equivalent but easier
to treat mathematically.3) In Bohm’s model, a source emits
pairs of particles with opposite magnetic moments. The two
particles separate spatially and propagate in free space to
an observation station in which they are detected. As the
particle arrives at one of the two observation stations it
passes through a Stern–Gerlach magnet.4) The Stern–
Gerlach magnet deflects the particle, depending on the
orientation of the magnet and the magnetic moment of the
particle. The deflection defines the spin S ¼ �1=2 of the
particle.4) As the particle leaves the Stern–Gerlach magnet,
it generates a signal in one of the two detectors placed
behind the Stern–Gerlach magnet. The firing of the detector
corresponds to a detection event.

Inspired by Bohm’s proposal, Bell derived in 1964 an
inequality that imposes restrictions on the correlations
between the results of the measurements on the two spin-
1/2 particles.5) Bell demonstrated that the correlation
function for the singlet state violates his inequality. Hence,
quantum theory is in conflict with at least one of the
assumptions that were used in the derivation of Bell’s
inequality. The demonstration of the discrepancy between
certain quantum mechanical expectation values and Bell’s
inequality is known as Bell’s theorem.2) Bell concluded that
quantum theory is not compatible with Einstein’s criterion of
local causality and that no physical theory of local hidden
variables can reproduce all of the predictions of quantum
theory.5)

Originally, Bell derived the inequality under the condition
that the probability distribution of the observation of A is
independent of that of B. This is a more restrictive condition
than the requirement that the physical experimental proce-
dures which are used to measure A and B, are independent.
In fact, the inequality may be violated if there is some
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relation between the observations of A and B, regardless
whether this relation is of quantum mechanical origin or not.
In this sense, the popular statement ‘‘a classical system
cannot violate the Bell inequality’’ is misleading. One has to
be very careful and check if the system under study satisfies
all the conditions that are necessary to derive the inequal-
ity.6–8) Indeed, it has been pointed out that under certain,
physically reasonable assumptions, a system not relying on
any concept of quantum theory and that obeys Einstein’s
criterion of local causality can also violate the original Bell
inequality.6,9) The common feature of these models is the
presence of a time window to identify the single two-particle
systems, as in real EPRB experiments.10–17) From these
observations, it is clear that a violation of Bell’s inequality is
not enough to conclude that there are quantum correla-
tions.6,9) In this paper, we study the two-particle correlations
with one of these, what might be called, classical models
and we demonstrate that their key feature, the dependence
of the correlation on the time window that is used to
identify the pair, allows us to reproduce the correlations that
are characteristic for a quantum system of two S ¼ 1=2
particles.

For this purpose, we construct a computer model that
satisfies Einstein’s criterion of local causality and use this
model to simulate the experiment with optical switches, as
performed by Aspect et al.11) The sources used in EPRB
experiments with photons emit photons with opposite but
otherwise unpredictable polarization. We refer to this
experimental set-up as Experiment I. Inserting polarizers
between the source and the observation stations changes the
pair generation procedure such that the two photons have a
fixed polarization. We refer to this set-up as Experiment II.
As a result of the fixed polarization of the photons the
photon intensity measured in the detectors behind the
polarizers in each observation station obeys Malus’ law.
Our simulation model reproduces the correct quantum
mechanical behavior for the single–particle and two-particle
correlation function for both types of experiments. The

difference between this model and the model described in
ref. 9, is the algorithm to simulate the polarizer. In ref. 9 we
used a model for the polarizers that is too simple to correctly
describe experiments of type II.

This paper is organized as follows. In §2 we describe the
experimental set-up, the data gathering method and the data
analysis procedures used in EPRB experiments with pho-
tons, and in particular in the timing experiment with optical
switches by Aspect et al.11) In Appendix A we present an
analysis of real experimental data of another EPRB experi-
ment with photons15) that is the successor of the experiment
by Aspect et al.11) We make a distinction between experi-
ments of type I and II. A brief review of the analysis of the
experiments in the framework of quantum theory is given in
§3. We give explicit expressions for the single- and two-
particle expectation values for both types of experiments and
we introduce Bell’s inequality. We discuss the fundamental
problem of relating quantum theory with the data set
recorded in the experiment. In §4 we describe our computer
simulation model of EPRB experiments with photons. We
give an explicit description of the algorithm to simulate the
photons, the observation stations containing the polarizers
and detectors, and the data analysis procedure. Every
essential element of the experiment has a counterpart in
the algorithm. For some model parameters we can compute
the two-particle correlation function analytically, as shown
in Appendix B. In §5 we discuss our simulation and
analytical results and where appropriate we compare them
to the results obtained from quantum theory. Section 6
presents a summary and a discussion of our results.

2. EPRB Experiment with Photons

A schematic diagram of the type I timing experiment with
optical switches is shown in Fig. 1 (see also Fig. 2 in
ref. 11). A source emits pairs of photons with opposite
polarization. Each photon of a pair propagates to an
observation station in which it is manipulated and detected.
The two stations are separated spatially and temporally. This
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Fig. 1. (Color online) Schematic diagram of an EPRB experiment with photons.11)

J. Phys. Soc. Jpn., Vol. 76, No. 10 H. DE RAEDT et al.

104005-2



arrangement prevents the observation at station 1 (2) to
have a causal effect on the data registered at station 2 (1).

As the photon arrives at station i ¼ 1 and 2, it passes
through an optical switch that directs the photon to one of
the two polarizers with a fixed orientation (see Fig. 1). The
orientation of the two polarizers in each observation station
is characterized by the angles �i and �0i. As the photon leaves
the polarizer, it generates a signal in one of the two
detectors. Each station has its own clock that assigns a time-
tag to each signal generated by one of the two detectors.
Effectively, this procedure discretizes time in intervals of
a width that is determined by the time-tag resolution �.
The time-tag generators are synchronized before each run.
This procedure is necessary because in time, the clocks may
become unsynchronized. Furthermore, in real experiments,
some photons may not be detected. In this paper, we
consider ideal experiments only. Hence, our simulation
procedure does not allow for practical loopholes, such as the
detection loophole (lost photons and registration of acci-
dental signals), the ‘‘fair sampling’’ loophole, and synchro-
nization problems, that might be present in real optical
experiments.

In the experiment, the firing of a detector is regarded as an
event. At the nth event, the data recorded on a hard disk (not
shown) at station i ¼ 1; 2 consists of �n;i ¼ �n;i; �0n;i, depend-
ing on the state of the optical switches, xn;i ¼ �1, specifying
which of the two detectors behind the selected polarizer fired
and the time tag tn;i indicating the time at which a detector
fired. Hence, the set of data collected at station i ¼ 1; 2
during a run of N events may be written as

�i ¼ xn;i ¼ �1; tn;i; �n;ij n ¼ 1; . . . ;N
� �

: ð1Þ

Any experimental procedure requires some criterion to
decide which detection events are to be considered as
stemming from a single two-particle system. In EPRB-type
experiments with photons, this decision is taken on the basis
of coincidence in time.15,18) Coincidences are identified by
comparing the time differences ftn;1 � tn;2j n ¼ 1; . . . ;Ng
with a time window W .15) Thus, for each pair of rotation
angles � ¼ �1; �01 and � ¼ �2; �02, the number of coincidences
between detectors Dx;1 (x ¼ �1), D0x;1 (x ¼ �1) at station 1
and detectors Dy;2 (y ¼ �1), D0y;2 (y ¼ �1) at station 2 is
given by

Cxy ¼ Cxyð�; �Þ

¼
XN
n¼1

�x;xn;1�y;xn;2��;�n;1��;�n;2�ðW � jtn;1 � tn;2jÞ;
ð2Þ

where �ðtÞ is the Heaviside step function. The correlation
Eð�; �Þ between the coincidence counts is then given by

Eð�; �Þ ¼
Cþþ þ C�� � Cþ� � C�þ

Cþþ þ C�� þ Cþ� þ C�þ
; ð3Þ

where the denominator in eq. (3) is the sum of all
coincidences. In practice, the data f�1;�2g are analyzed
long after the data has been collected. In general, the
numerical values for the coincidences Cxyð�; �Þ and corre-
lation Eð�; �Þ depend on the time-tag resolution and the time
window used to identify the coincidences.

In Experiment II, extra polarizers are inserted between
the source and the observation stations.11) We denote

the orientations of these polarizers by the angles �1

and �2.

2.1 Role of the time window
As we already mentioned, in our simulation we leave no

room for practical loopholes such as detection and ‘‘fair
sampling’’ loopholes that may be used to invalidate the
conclusions drawn from real experiments. The point of view
taken in this paper is that we want to perform a simulation of
ideal experiments and show that we can reproduce the
results of quantum theory.

Most theoretical treatments of the EPRB experiment
assume that the correlation, as measured in experiment, is
given by5)

Cð1Þxy ¼
XN
n¼1

�x;xn;1�y;xn;2 ; ð4Þ

where we assume that the pairs are well defined. This
expression, however, is obtained from eq. (2) by taking the
limit W !1, hence the notation Cð1Þxy . An argument that
might justify taking the limit W !1 and hence the
expectation that the correlation does not strongly depend on
W (disregarding statistical fluctuations), is the hypothesis
that the time differences originate from some random
processes that do not depend on the polarization of the
photons and on the settings of the polarizers. However, the
assumption that the time differences are independent random
variables may not be correct and in fact, in experiments, a
lot of effort is made to reduce (not increase) W15) (see also
Appendix A). As we will see later, our simulation results
agree with the results of quantum theory if we assume that
the time differences are random variables that depend on the
settings of the polarizers and the polarization and if we keep
all contributions of first order in W only.

3. Quantum Theory

As is well known, quantum theory itself has nothing to say
about the individual events as they are observed in experi-
ments (quantum measurement paradox), but it provides a
framework to compute the probability for the various
possible events to occur.2,19) In this section, we give a brief
account of the quantum mechanical calculation of the
averages obtained in the EPRB experiment described earlier,
strictly staying within the axiomatic framework that quan-
tum theory provides.

In the quantum mechanical description of Experiment I,
the source is assumed to emit two photons of which the
polarization is described by the state

j�i ¼
1ffiffiffi
2
p jHi1jVi2 � jVi1jHi2

� �
¼

1ffiffiffi
2
p jHVi � jVHið Þ; ð5Þ

where H and V denote the horizontal and vertical polar-
ization and the subscripts refer to photon 1 and 2,
respectively. The state j�i cannot be written as a product
of single-photon states, hence it is an entangled state.

In Experiment II, the photons have a definite polarization
when they enter the observation station. The polarization
of the two photons is described by the product state

j�i ¼ ðcos �1jHi1 þ sin �1jVi1Þ
� ðcos �2jHi2 þ sin �2jVi2Þ:

ð6Þ
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Each of the polarizers in the observation stations splits
the beam of incoming photons. Using the fact that the
two-dimensional vector space with basis vectors fjHi; jVig
is isomorphic to the vector space of spin-1/2 particles,
we may use the quantum theory of the latter to describe
the action of a polarizer as a rotation about its angle of
orientation (�1, �01, �2, or �02), followed by the measurement
of the z-component of the Pauli spin matrix. More
specifically, a polarizer with orientation � changes the states
jHi and jVi according to

jHi ! cos�jHi þ sin�jVi;
jVi ! � sin�jHi þ cos�jVi: ð7Þ

Hence, the polarizers at station 1 and 2 with orientation � ¼
�1; �

0
1 and � ¼ �2; �02, respectively, change the state j�i into

j�i ¼ Rð�ÞRð�Þj�i; ð8Þ

where it is implicitly understood that Rð�Þ and Rð�Þ operate
on the spin of particle 1 and 2, respectively. The rotation
matrix Rð�Þ is given by

Rð�Þ ¼
cos � sin �

� sin � cos �

� �
: ð9Þ

According to quantum theory, the expectation value of
counting photons at the þ (�) detector behind the polarizer
with orientation � ¼ �1; �01 (� ¼ �2; �02) is given by2)

Pþð�Þ ¼ h�j1þ 	z1j�i=2 ¼ 1=2þ h�jR�1ð�Þ	z1Rð�Þj�i=2
¼ 1=2þ h�j	z1 cos 2�þ 	x1 sin 2�j�i=2;

P�ð�Þ ¼ h�j1� 	z2j�i=2 ¼ 1=2� h�jR�1ð�Þ	z2Rð�Þj�i=2
¼ 1=2� h�j	z2 cos 2�þ 	x2 sin 2�j�i=2; ð10Þ

where 	1 ¼ ð	x1; 	
y
1; 	

z
1Þ and 	2 ¼ ð	x2; 	

y
2; 	

z
2Þ are the Pauli

spin-1/2 matrices for particles 1 and 2, respectively.2)

The expectation values of the z-components of the Pauli-
spin matrices are given by

E1ð�Þ ¼ h�j	z1j�i ¼ Pþð�Þ � P�ð�Þ;
E2ð�Þ ¼ h�j	z2j�i ¼ Pþð�Þ � P�ð�Þ: ð11Þ

The main objective of EPRB experiments is to measure
the two-particle correlation

Eð�; �Þ ¼ h�j	z1	
z
2j�i

¼ h�jR�1ð�Þ	z1Rð�ÞR
�1ð�Þ	z2Rð�Þj�i:

ð12Þ

Table I gives the explicit expressions for the expectation
values defined by eqs. (10)–(12) for the two different types
of experiments. From Table I, it is clear that measuring
E1ð�Þ, E2ð�Þ, and Eð�; �Þ for various � and � suffices to
distinguish between systems in the entangled state (Experi-
ment I) or in the product state (Experiment II).

Data of EPRB experiments are often analyzed in terms
of the function15,20)

Sð�; �0; �; �0Þ
¼ Eð�; �Þ � Eð�; �0Þ þ Eð�0; �Þ þ Eð�0; �0Þ;

ð13Þ

because it provides clear evidence that the system is
described by an entangled state. The idea behind this
reasoning is that for any product state

� 2 � Sð�; �0; �; �0Þ � 2; ð14Þ

an inequality known as one of Bell’s generalized inequal-
ities.20) This can be seen as follows. For any product state
j�i, we have Eð�; �Þ ¼ E1ð�ÞE2ð�Þ. Let us denote a ¼
E1ð�Þ, b ¼ E1ð�0Þ, c ¼ E2ð�Þ, and d ¼ E2ð�0Þ. Clearly,
a; b; c; d 2 ½�1; 1�. For any a; b; c; d 2 ½�1; 1� we have21)

jac� ad þ bcþ bdj � jac� adj þ jbcþ bdj
� jajjc� dj þ jbjjcþ dj
� jc� dj þ jcþ dj � 1� cd þ 1þ cd

� 2; ð15Þ

hence eq. (14) follows. Thus, we conclude that if j�i can be
written as a product state, we must have

Smax � max
�;�0 ;�;�0

jSð�; �0; �; �0Þj � 2: ð16Þ

Furthermore, it can be shown that22)

jSð�; �0; �; �0Þj � 2
ffiffiffi
2
p
; ð17Þ

independent of the choice of j�i. In other words, if
2 < Smax � 2

ffiffiffi
2
p

, the quantum system is in an entangled
state.

For later use, we introduce the function

Sð�Þ � Sð�; �þ 2�; �þ �; �þ 3�Þ; ð18Þ

where we have fixed the relation between the angles
� ¼ �þ �, �0 ¼ �þ 2�, �0 ¼ �þ 3� through the angle �.
Because of rotational invariance, Sð�Þ does not depend on �
and therefore, we set � ¼ 0 to simplify matters a little. In the
case of Experiment I, Eð�; �Þ ¼ � cos 2ð�� �Þ and we find

Sð�Þ ¼ 3 cos 2� � cos 6�; ð19Þ

which reaches its maximum value Smax ¼ max� Sð�Þ ¼ 2
ffiffiffi
2
p

at � ¼ 
=8þ j
=2, where j is an integer number.
Analysis of the experimental data,10–17,23) yields results

that are in good agreement with the expressions in Table I,
leading to the conclusion that in a quantum mechanical
description of Experiment I, the state does not factorize, in
spite of the fact that the particles are spatially and temporally
separated and do not interact. Our analysis of the exper-
imental data for Experiment I that is publicly available24)

supports this conclusion (see Appendix A).

3.1 From quantum theory to data
According to the formalism of quantum theory, the result

of a measurement is an eigenvalue of the dynamical variable
that is being measured.2) Applied to the case of the EPRB
experiment, each measurement yields an eigenvalue of the
matrices A ¼ R�1ð�Þ	z1Rð�Þ, B ¼ R�1ð�Þ	z2Rð�Þ, and C ¼
R�1ð�ÞR�1ð�Þ	z1	

z
2Rð�ÞRð�Þ. Obviously, the nth measure-

ment of A, B, or C yields an eigenvalue an ¼ �1, bn ¼ �1,
or cn ¼ �1, respectively.

Table I. The single- and two-particle expectation values defined by

eqs. (10)–(12) for the two experiments described by the states eqs. (5)

and (6), respectively.

Experiment I Experiment II

Pþð�Þ 1/2 cos2ð�� �1Þ
P�ð�Þ 1/2 sin2ð�� �2Þ
E1ð�Þ 0 cos 2ð�� �1Þ
E2ð�Þ 0 cos 2ð�� �2Þ
Eð�; �Þ � cos 2ð�� �Þ cos 2ð�� �1Þ cos 2ð�� �2Þ
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The conventional interpretation of quantum theory asserts
that the outcome of each measurement constitutes a
Bernoulli trial, that is we assign the same probability to an
outcome, independent of which trial is considered and
independent of what happened in any of the other measure-
ments. In other words, the probability to observe for instance
an is logically independent from the probability to observe
am for all n 6¼ m.

For simplicity, we now focus on the case where all
photons are directed towards the polarizers with orientation
�i. Let us then inquire how we can simulate the quantum
mechanical results of the EPRB experiment (see Table I)
without leaving the framework of quantum theory. Evident-
ly, this is a nearly trivial exercise. All we have to do is set up
three Bernoulli processes that generate sets of data fan ¼
�1; bn ¼ �1; cn ¼ �1j n ¼ 1; . . . ;Ng such that

1

N

XN
n¼1

an � E1ð�1Þ;

1

N

XN
n¼1

bn � E2ð�2Þ;

1

N

XN
n¼1

cn � Eð�1; �2Þ;

ð20Þ

for all �i and large N. However, this line of reasoning brings
out the fundamental problem of relating the set of data

Q ¼ fan; bn; cnj n ¼ 1; . . . ;Ng; ð21Þ

obtained from quantum theory with the set of data

E ¼ fxn;1; xn;2; tn;1; tn;2j n ¼ 1; . . . ;Ng; ð22Þ

recorded in the experiment.
In the case that we measure a property of a single particle,

we may identify xn;1 with an and xn;2 with bn, yielding

1

N

X0
N

n¼1

xn;1 � E1ð�1Þ;
1

N

X0
N

n¼1

xn;2 � E2ð�2Þ; ð23Þ

where the prime indicates that the sum runs over all events
that yield a coincidence, that is for all events for which
�ðW � jtn;1 � tn;2jÞ ¼ 1.

As we know from the work of Bell and others,5,25) simple
assignments of the form cn $ xn;1xn;2 cannot reproduce the
result of quantum theory for Eð�1; �2Þ. However, as we need
to identify pairs for measurements that involve properties
of two particles, there is no simple a-priori rule to relate cn
to the data fxn;1; xn;2; tn;1; tn;2g. In EPRB experiments with
photons the correlation Eð�1; �2Þ is calculated according to
eq. (3), using the coincidences eq. (2). That is, we adopt
the assignment

cn $
xn;1xn;2�ðW � jtn;1 � tn;2jÞ
XN
n¼1

�ðW � jtn;1 � tn;2jÞ
N: ð24Þ

In eq. (24), the coincidence window W enters because it is
necessary to have a criterion to decide which particles
belong to a single two-particle system, an essential ingre-
dient in any real EPRB experiment. As this choice is, in
a sense, ad hoc, we have to study the significancy and
implications of this choice, as we will do in the next
sections.

4. Simulation Model

We now take up the main challenge, the construction of
processes that generate the data sets eq. (1) such that they
reproduce the results of quantum theory, summarized in
Table I. A concrete simulation model of the EPRB experi-
ment sketched in Fig. 1 requires a specification of the
information carried by the particles, of the algorithm that
simulates the source and the observation stations, and of the
procedure to analyze the data. From the specification of the
algorithm, it will be clear that it complies with Einstein’s
criterion of local causality on the ontological level: Once the
particles leave the source, an action at observation station 1
(2) can, in no way, have a causal effect on the outcome of the
measurement at observation station 2 (1).

4.1 Source and particles
The source emits particles that carry a vector Sn;i ¼
ðcosð�n þ ði� 1Þ
=2Þ; sinð�n þ ði� 1Þ
=2ÞÞ, representing the
polarization of the photons. The ‘‘polarization state’’ of a
particle is completely characterized by �n, which is dis-
tributed uniformly over the interval ½0; 2
�. We use uniform
random numbers to mimic the apparent unpredictability
of the experimental data. However, from the description of
the algorithm, it trivially follows that instead of uniform
random number generators, simple counters that sample
the interval ½0; 2
� in a systematic, but uniform, manner
might be employed as well. This is akin to performing
integrals by the trapezium rule instead of by Monte Carlo
sampling.

4.2 Observation stations
The input–output relation of a polarizer is rather simple:

For each input event, the algorithm maps the input vector S
onto a single output bit x. The value of the output bit
depends on the orientation of the polarizer a ¼ ðcos�; sin�Þ.
According to Malus’ law, for fixed S ¼ ðcos �; sin �Þ and
fixed a, the bits xn are to be generated such that

lim
N!1

1

N

XN
n¼1

xn ¼ cos 2ð�� �Þ; ð25Þ

with probability one. If, as in Experiment I, the input vectors
S are distributed uniformly over the unit circle, the sequence
of output bits should satisfy

lim
N!1

1

N

XN
n¼1

xn ¼ 0; ð26Þ

with probability one, independent of the orientation a of the
polarizer.

As we work under the hypothesis of ideal experiments,
the algorithm to simulate each of the four different polarizers
in Fig. 1 should be identical. Evidently, for the present
purpose, if we switch from Experiment I to Experiment II,
it is not permitted to change the algorithm for the polarizer.

In this paper, we use a deterministic model for a polarizer.
Elsewhere, we have demonstrated that simple deterministic,
local, causal and classical processes that have a primitive
form of learning capability can be used to simulate quantum
systems, not by solving a wave equation but directly through
event-by-event simulation.26–30) The events are generated
such that their frequencies of occurrence agree with the
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quantum mechanical probabilities. In this simulation ap-
proach, the basic processing unit is called a deterministic
learning machine (DLM).26–30) A DLM learns by processing
successive events but does not store the data contained in the
individual events. Connecting the input of a DLM to the
output of another DLM yields a locally connected network
of DLMs. A DLM within the network locally processes the
data contained in an event and responds by sending a
message that may be used as input for another DLM. DLMs
process messages in a sequential manner and only commu-
nicate with each other by message passing. In a simple
physical picture, a DLM is a device that exchanges
information with the particles that pass through it. It learns
by comparing the message carried by an event with
predictions based on the knowledge acquired by the DLM
during the processing of previous events. The DLM tries to
do this in an efficient manner, effectively by minimizing the
difference of the data in the message and the DLM’s internal
representation of it.26–30) We now describe the DLM that
simulates the operation of a polarizer.26,30)

Let us focus on the polarizer with orientation �1. The
DLM has an internal two-dimensional unit vector Rn ¼
ðxn; ynÞ and a parameter 0 < l < 1 that controls the pace of
learning (to be discussed later). The orientation a ¼
ðcos �1; sin �1Þ of the polarizer is also part of the input to
the DLM. The DLM receives as input, the sequence of
unit vectors Sn ¼ ðcos �n; sin �nÞ for n ¼ 1; . . . ;N where N is
the total number of events, generated by the source. We
know that the output signal of a polarizer depends on the
difference between the polarization and the orientation of
the polarizer only (Malus’ law). This is taken into account
by rotating Sn about �1. We denote the resulting vector by
Yn ¼ ðcosð�n � �1Þ; sinð�n � �1ÞÞ. For each input event, the
DLM computes eight trial vectors according to the following
rules26,30)

x̂xn ¼ ls0xn
1þ�

2
þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 þ l2x2

n

q 1��

2
;

ŷyn ¼ ls0yn
1��

2
þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 þ l2y2

n

q 1þ�

2
; ð27Þ

where s; s0 ¼ �1 are variables that allow us to generate the
trial vectors in each of the four quadrants and � ¼ �1

determines whether the trial vector is obtained by rescaling
the x-coordinate (� ¼ 1) or the y-coordinate (� ¼ �1).
Note that each of the eight rules generates a unit trial vector.

The final step in the DLM algorithm consists of compar-
ing the vector Yn with each of the eight trial vectors ðx̂xn; ŷynÞ.
The DLM updates its internal vector Rn by choosing the trial
vector, that is the triple ð�; s; s0Þ, for which the Euclidian
distance kYn � ðx̂xn; ŷynÞk is minimal. If the trial vector was
obtained by applying a � ¼ þ1 rule, the DLM generates a
þ1 output event. Otherwise it generates a �1 output event.

Elsewhere, we have shown by means of simulations and
analytical methods that the DLM described above generates
�1 and þ1 events, that are distributed according to Malus’
law if the input vector Sn ¼ ðcos �n; sin �nÞ does not change
during a sufficiently long sequence of events.26,30) If the
input vector Sn ¼ ðcos �n; sin �nÞ is uniformly distributed
over the unit circle, the dynamics of the DLM generates
events according to the function signðcos 2ð�n � �1ÞÞ (results
not shown).

The DLM is a machine with elementary learning
capabilities: It is an adaptive system that learns from the
input events.26,27,30) The parameter 0 < l < 1 controls the
speed of the learning process and the accuracy with which
the internal vector can represent input vectors. If l is close to
one, the DLM learns slow and gives an accurate response but
it also ‘‘forgets’’ slow, that is if the DLM is offered different
input vectors, it may take long before its internal vector has
adapted to the new situation. In a sense, l controls the
‘‘coherence’’ of the system.26,27,30) As the DLM, operating
according to the rules eq. (27), can reproduce both Malus’
law and the function signðcos 2ð�n � �1ÞÞ, all that is left to do
to completely specify the model of the polarizer is to add the
mechanics for the time tagging.

To assign a time-tag to each event, we assume that as a
particle passes through the detection system, it may
experience a time delay. This is a key assumption in the
construction of the simulation model. In principle, the
time-delay of the individual photons cannot be derived from
the Maxwell equations because they describe waves, not
particles. Thus, to find an a-priori justification for the
assumption that the particle experiences a time-delay we are
limited to making inferences from experimental data.
Empirical evidence is provided in Appendix A where we
analyze experimental data of an EPRB experiment with
photons and demonstrate that the average time-of-flight of
the photons depends on the orientation of the polarizer.
Thus, there is experimental evidence that supports the
assumption that the photons experience a time delay as they
pass through the polarizers. It is unfortunate that the
experimental data that is publicly available is far too scarce
to allow a detailed analysis of the time-delay mechanism.
Therefore, as a model of the time delay, we will choose a
specific model that is as simple as possible, is in concert with
empirical knowledge, is capable of reproducing the results
of quantum theory and allows an analytical treatment in
particular limiting cases.

In our model of the time delay, tn;i for a particle is
assumed to be distributed uniformly over the interval
½t0; t0 þ T�. In practice, we use uniform random numbers
to generate tn;i. As in the case of the angles �n, the random
choice of tn;i is merely convenient, not essential. From
eq. (2), it follows that only differences of time delays matter.
Hence, we may put t0 ¼ 0. The time-tag for the event n is
then tn;i 2 ½0;T�.

We now come to the point that we have to specify T

explicitly. In fact, there are not many options. Is is an
experimental fact that the output intensities of the two light
beams emerging from a polarizer depend on the direction of
polarization of the incident light, relative to the angle of the
main optical axis of the polarizer crystal.31) Thus, at least
macroscopically, the system consisting of a polarized light
beam and polarizer is invariant for rotations about the
direction of propagation of the light wave. Assuming
that this invariance carries over to the individual particles,
we can construct only one number that depends on the
relative angle: Sn 	 a, implying that T ¼ Tð�n � �1Þ can
depend on �n � �1 only. Furthermore, consistency with
classical electrodynamics requires that functions that depend
on the polarization have period 
.31) Thus, we must have
Tð�n � �1Þ ¼ FððSn;1 	 aÞ2Þ. Of course, the arguments that
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have been used to arrive at this form are not sufficient
to uniquely fix the form of FððSn;1 	 aÞ2Þ. As explained
earlier, the available experimental data does not suffice
to determine the form of FððSn;1 	 aÞ2Þ. Therefore we use
simplicity as a criterion to select a specific form. By trial and
error, we found that Tð�n � �1Þ ¼ T0Fðj sin 2ð�n � �1ÞjÞ ¼
T0j sin 2ð�n � �1Þjd yields useful results. Here, T0 ¼
max� Tð�Þ is the maximum time delay and defines the unit
of time, used in the simulation and d is a free parameter of
the model. In our numerical work, we set T0 ¼ 1. As we
demonstrate later, our model reproduces the quantum results
of Table I under the hypothesis that the time tags tn;1 are
distributed uniformly over the interval ½0; j sin 2ð�n � �1Þjd�
with d ¼ 2. Needless to say, we do not claim that our choice
is the only one that reproduces the results of quantum theory
for the EPRB experiments.

A last point left to address on the algorithm for the
polarizer is the deterministic character of the output
sequences generated by the DLMs. In fact, it is easy to
change this deterministic process into a random process
without changing the distribution of þ1 and �1 events. A
simple way to do this is to attach to the particles, a random
bit zn ¼ �1, generated by the source. Then, we modify the
algorithm for the polarizer such that instead of selecting
output channel �, it selects output channel zn�. This
procedure has no effect on the DLM dynamics and the
single- and two-particle counts but, it renders the outputs
of the detectors unpredictable. This technical finesse does
not affect the final result for the expectation values and
therefore we disregard it in what follows.

4.3 Data analysis
For fixed N and fixed angles �i and �0i of the polarizers

in the observation stations, the algorithm described earlier
generates the data sets �i, just as experiment does. In order
to count the coincidences, we choose a time-tag resolution �
and a time window W such that 0 < � < T0 and � � W . We
set the single particle counts Pxð�Þ, Pyð�Þ and the coinci-
dence counts Cxyð�; �Þ with � ¼ �1; �01 and � ¼ �2; �02, to zero
for all x; y ¼ �1. Then, we make a loop over all events
xn;i ¼ �1 in the data sets and we read off �n;i ¼ �n;i; �0n;i. To
count the coincidences, we first compute the discretized time
tags kn;i ¼ dtn;i=�e for all events in both data sets. Here dxe
denotes the smallest integer that is larger or equal to x,
that is dxe � 1 < x � dxe. According to the procedure
adopted in the experiment,15) an entangled photon pair is
observed if and only if jkn;1 � kn;2j < k ¼ dW=�e. Thus, if
jkn;1 � kn;2j < k, we increment the count Cxn;1;xn;2ð�; �Þ and
we increment the corresponding single particle counts
Pxn;i ð�n;iÞ.

We emphasize that the simulation procedure counts all
events that, according to the same criterion as the one
employed in experiment, correspond to the detection of
single two-particle systems.

5. Simulation Results

We use the computer model, described earlier to simulate
the experiment depicted in Fig. 1. Each polarizer in Fig. 1 is
simulated by the same algorithm. The procedure to direct the
particles to the polarizers is the same as in the laboratory
experiment.11) For each particle that enters station 1 (2), a

random number generator at station 1 (2) determines which
of the two polarizers will receive the particle. In practice, we
use two different random number generators for station 1
and 2 (we have never seen any statistically significant effect
of using the same one for both stations). The source always
sends out two particles with orthogonal, random polar-
ization. Unless we insert additional polarizers between the
source and stations 1 and 2, this setup simulates Exper-
iment I. Inserting additional polarizers between the source
and stations 1 and 2 is the same as sending the particles with
fixed polarization to stations 1 and 2. In this case, we
simulate Experiment II.

The simulation proceeds in the same way as in the
experiment, that is we first collect the data sets �1 and �2

for various settings of the polarizers (various �n;i), and then
compute the single particle counts eq. (10), the coincidences
eq. (2) and the correlation eq. (3), from which we can
calculate the function Sð�Þ [see eq. (18)].

In Fig. 2 (left), we present our simulation data for
Experiment I, that is for the case that the source emits
particles with an opposite, random polarization, correspond-
ing to the singlet state in the quantum mechanical descrip-
tion. The parameters in these simulations are k ¼ 1,
d ¼ 0; 2, � ¼ 0:00025, l ¼ 0:999, and N ¼ 106. The results
are not sensitive to the choice of these parameters. For
instance, the figures (not shown) with the results for k ¼ 1,
d ¼ 0; 2, � ¼ 0:25, l ¼ 0:999, and N ¼ 106 are barely
distinguishable from those of Fig. 2 and, as can be expected
on general grounds, increasing the number of events N

simply reduces the fluctuations. The parameter l controls the
accuracy with which we can resolve differences in the
angles: The closer l is to one, the higher the accuracy. We
have chosen l such that, with the resolution used to plot
the data, the effect of l on the results cannot be noticed. The
main reason for showing the data for k ¼ 1, d ¼ 0; 2,
� ¼ 0:00025, l ¼ 0:999, and N ¼ 106 is that it allows us to
demonstrate that our simulation results are in excellent
agreement with the analytical results of Appendix B.

It is clear that for d ¼ 2, the simulation model reproduces
the results of quantum theory for the single–particle ex-
pectation values P�ð�Þ and P�ð�Þ (see Table I) and Sð�Þ [see
eq. (19)]. Indeed, the frequency with which each detector
fires is approximately one-half and Sð�Þ agrees with the
expression eq. (19) for the singlet state. Also shown in
Fig. 2 (left) are the results for Sð�Þ if we disable the time-
delay mechanism. Effectively, this is the same as letting the
time window W !1 or setting d ¼ 0. Then, our simu-
lation model generates data that satisfies jSð�Þj � 2, which is
what we expect for the class of models studied by Bell.5)

In Experiment II, the source emits particles with a fixed
(not necessarily opposite) polarization. In the right panel of
Fig. 2, we present results, obtained by the same simulation
algorithm as for Experiment I, for the case �1 ¼ �01 ¼ � ¼
�0 ¼ � and �2 ¼ �02 ¼ � ¼ �0 ¼ � þ 
=4. The angle � of
the particles is 
=6 (corresponding to �1 ¼ 
=6 and
�2 ¼ 
=6þ 
=2 in the quantum mechanical description).
For this choice, we have Pþð�Þ ¼ cos2ð� � 
=6Þ, Pþð�Þ ¼
cos2ð� � 
=6� 
=4Þ, Eð�; �Þ ¼ 2�1 sin 4ð
=6� �Þ, and
Sð�Þ ¼ sin 4ð
=6� �Þ. Except for the properties of the
particles, the model parameters for Experiment I and II are
the same.
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From Fig. 2, it is clear that the event-by-event simulation
reproduces the single- and two-particle results of quantum
theory for both Experiment I and II, without any change to
the algorithm that simulates the polarizers.

Having established that the data generated by our ‘‘non-
quantum’’ system agrees with quantum theory, it is of
interest to explore if these dynamical, adaptive systems can
generate data that is not described by quantum theory or by
the simple, locally causal probabilistic models introduced by
Bell.5) We can readily give an affirmative answer to this
question by repeating the simulations for Experiment I [see
Fig. 2 (left)] for different values of the time-delay parameter
d, all other parameters being the same as those used to obtain
the data presented in Fig. 2.

For d ¼ 0, simulations with or without time-delay
mechanism yields data that, within the usual statistical
errors, are the same (results not shown) and satisfy
jSð�Þj � 2. Figure 3 shows the simulation data for d ¼ 1

and d ¼ 4. For 0 < d < 2 our model yields two-particle
correlations that are stronger than those of the Bell-type
models but they are weaker than in the case of the singlet
state in quantum theory. Therefore, the maximum of Sð�Þ is
less than 2

ffiffiffi
2
p

but larger than two. For d 
 3, we find that the
two-particle correlations are significantly stronger than in
the case of the singlet state in quantum theory. From Fig. 3 it
can be seen that for d ¼ 1 and d ¼ 4 there is good agreement
between the results obtained with our event-based simulation
model and the analytical result for jSð�Þj obtained from
eqs. (B·6) and (B·7), respectively (see Appendix B). For
d ¼ 1, the simulation results show larger fluctuations than
for d ¼ 4, but in all cases they can be reduced by increasing
N (results not shown).

The simulation results presented in Figs. 2 and 3 have
been obtained for W=� ¼ 1 and small � (recall that the unit
of time in our numerical work is set equal to one). In general,
in experiment the two-particle correlation depends on both
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Fig. 3. (Color online) Left: Same as Fig. 2 (left) except that d ¼ 1. Dotted line: Sð�Þ calculated from eq. (B·6). Right: Same as Fig. 2 (left) except that

d ¼ 4. Dotted line: Sð�Þ calculated from eq. (B·7).
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Fig. 2. (Color online) Left: Computer simulation of Experiment I in which the source emits photons with opposite random polarization (EPRB

experiment). Right: Computer simulation of Experiment II in which the source emits photons with fixed polarization. Solid circles (red): Simulation

results using DLMs with the time-delay mechanism (d ¼ 2) for the polarizers. Open circles (black): Simulation results using DLMs but without using

the time-tags (equivalent to d ¼ 0 or W !1) to compute the two-particle correlation. Other markers: Average single–particle counts on the detectors

(see Fig. 1). Squares (green): Pþð�1Þ ¼ Pþð�01Þ; Diamonds (green): P�ð�1Þ ¼ P�ð�01Þ; Plusses (blue): Pþð�2Þ ¼ Pþð�02Þ; Crosses (blue): P�ð�2Þ ¼ P�ð�02Þ.
In Experiment I (left), these four symbols lie on top of each other. In Experiment II (right), these markers show the typical Malus law behavior. Solid

line: Quantum theory for Sð�Þ. Dashed line at Sð�Þ ¼ 2
ffiffiffi
2
p

: Maximum of Sð�Þ if the system is described by quantum theory. Dashed line at Sð�Þ ¼ 2:

Maximum of Sð�Þ if the system is described by the class of models introduced by Bell;5) Dashed line at Sð�Þ ¼ 1=2: Expected number of þ1 and �1

events recorded by the detectors if the input to the polarizers consist of photons with random polarization. Dotted lines: Quantum theory for

Pþð�1Þ ¼ Pþð�01Þ, P�ð�1Þ ¼ P�ð�01Þ, Pþð�2Þ ¼ Pþð�02Þ, and P�ð�2Þ ¼ P�ð�02Þ.
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W and �. Our simulation model makes definite predictions
for this dependence. This can be seen from Fig. 4 which
shows Smax ¼ max�;�0;�;�0 Sð�; �0; �; �0Þ as a function of W=�
for various values of d. Smax is calculated numerically using
eqs. (B·1) and (B·2) (see Appendix B). The numerical
results agree with the values of Smax that have been obtained
analytically to first order in W ¼ �, d ¼ 0, 2 and W !1.
For d < 2, 2 � Smax < 2

ffiffiffi
2
p

for any value of W=�. Hence,
for d < 2 our model cannot produce the correlations of the
singlet state. For d ¼ 2, 2 � Smax � 2

ffiffiffi
2
p

and our model
produces the correlations of the singlet state to first order in
W ¼ �. For d > 2, 2 � Smax � 4, and for a range of W=�,
Smax > 2

ffiffiffi
2
p

, implying that our model exhibits correlations
that cannot be described by the quantum theory of two
spin-1/2 particles.

6. Discussion

We have pointed out that a violation of Bell’s inequality is
not an absolute criterion for having quantum correlations.
The fact that our event-based model can produce correla-
tions that violate the Bell inequality, by itself, is not a
surprise, because the expression for the coincidences eq. (2)
cannot be written in a form that allows a derivation of the
Bell inequality.6) Given the two data sets, recorded at the
two observation stations as described in §2, we may find
correlations between the data of both sets that may or may
not violate the Bell inequality: Mathematically such corre-
lations cannot be excluded.6) Our results do not contradict
the folklore about Bell’s theorem. Bell’s notion of locality is
an attempt to incorporate Einstein’s criterion of local
causality on the ontological level in probabilistic theories.32)

In fact, in the derivation of Bell’s inequality a strong
mathematical (in terms of probability theory) assumption
was made, namely that any logical relation between both
data sets is prohibited. Physically, this assumption is usually
erronously associated with the independence of operations at
distant positions. Thus the presence of any physical relation,
which could be classical or quantum in origin, can lead to a
violation of the bounds in Bell’s inequality.

The time-delay mechanism is an example of such a

physical relation. In our event-based model, the expression
for the coincidences is the key ingredient to reproduce the
quantum mechanical results for the two-particle correlation
of the EPRB experiment. This expression, based on the time
tags of the detection events, is the same as the one employed
in EPRB laboratory experiments with photons. With this
example, we may say that a simulation model that strictly
satisfies Einstein’s criterion of local causality can reproduce
the quantum theoretical results for EPRB experiments,
without using any concept from quantum theory. That is,
although our event generating and measurement processes
are of classical origin, they still lead to a violation of the
original Bell inequality. This fact must be considered
seriously in any real experiment. Instead of the time-delay,
we may consider various other mechanisms which can cause
a similar effect. In fact, there may be many ‘‘unpaired
signals’’. This means that many photons are destroyed by
some reason. So far the destruction is considered to happen
randomly. But if it would depend on the relative angle
between the photon polarization an the direction of the
polarizer, similar effects as those studied in the present
paper could occur. In any case, we have to be careful in
eliminating those possibilities while studying the appearance
of quantum correlations. The dependence on the time
window is a good check of this fact.

We have shown that in our model, in the case of
Experiment I, the two-particle correlation depends on the
value of the time window W . By reducing W from infinity to
zero, this correlation changes from typical Bell-like to
singlet-like, without changing the procedure by which the
particles are emitted by the source. Thus, the character of the
correlation not only depends on the whole experimental
setup but also on the way the data analysis is carried out.
Hence, from the two-particle correlation itself, one cannot
make any definite statement about the character of the
source. Thus, the two-particle correlation is a property of the
whole system (which is what quantum theory describes), not
a property of the source itself. It is of interest to note that if
we perform a simulation of Experiment II the single- and
two-particle correlations do not depend on the value of the
time window W . In this case, the observation stations always
receive particles with the same polarization and although the
number of coincidences decreases with W (and the statistical
errors increase), the functional form of the correlation does
not depend on W .

We have also presented a rigorous proof that our
simulation model reproduces the two-particle correlation
that is characteristic for the singlet state. Furthermore, our
model also allows us to explore phenomena that cannot be
described by quantum theory of two S ¼ 1=2 particles.

Finally, we also examined the effect that the pair
identification criterion has on the two-particle correlations
for a set of experimental data that is publicly available. The
results, presented in Appendix A, show a tendency that is
similar to the predictions of our simulation model, namely
that the time window, used as a criterion to identify photon
pairs based on the time-tag data of single photon events,
should be chosen as small as possible in order to find results
for the single–particle counts and two-particle correlations
that agree with the quantum theoretical expectation values
for a system of two S ¼ 1=2 particles.
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Appendix A

We illustrate the importance of the choice of the time
window W by analyzing a data set (the archives Alice.zip
and Bob.zip) of an EPRB experiment with photons that is
publicly available.24) Technically, the experiment of refs. 15
and 33 is different from the one sketched in Fig. 1, but
conceptually both experiments are the same. The data in the
archives Alice.zip and Bob.zip are data for Experiment I in
which �1 ¼ 0, �01 ¼ 
=4, �2 ¼ 
=8, and �02 ¼ 3
=8.

In the real experiment, the number of events detected at
station 1 is unlikely to be the same as the number of events
detected at station 2. In fact, the data sets of ref. 24 show
that station 1 (Alice.zip) recorded N1 ¼ 388455 events
while station 2 (Bob.zip) recorded N2 ¼ 302271 events.
Furthermore, in the real EPRB experiment, there may be an
unknown shift � (assumed to be constant during the
experiment) between the times ftn;1j n ¼ 1; . . . ;N1g gathered
at station 1 and the times ftm;2jm ¼ 1; . . . ;N2g recorded at
station 2. Therefore, there is some extra ambiguity in
matching the data of station 1 to the data of station 2.

A simple data processing procedure that resolves this
ambiguity consists of two steps.33) First, we make a
histogram of the time differences tn;1 � tm;2 with a small
but reasonable resolution (we used 0.5 ns). Then, we fix the
value of the time-shift � by searching for the time difference
for which the histogram reaches its maximum, that is we
maximize the number of coincidences by a suitable choice of
�. For the case at hand, we find � ¼ 4 ns. Finally, we
compute the coincidences, the two-particle average, and Smax

using the same expressions as the ones used to analyze the
computer simulation data. The average times between two
detection events is 2.5 and 3.3 ms for Alice and Bob,
respectively. The number of coincidences (with double
counts removed) is 13975 and 2899 for (� ¼ 4 ns, W ¼
2 ns) and (� ¼ 0, W ¼ 3 ns) respectively.

In Fig. A·1 we present the results for Smax as a function of
the time window W . First, it is clear that Smax decreases as W
increases. Second, the procedure of maximizing the coinci-
dence count by varying � reduces the maximum value of
Smax from a value 2.89 (� ¼ 0) that considerably exceeds
the maximum for the quantum system (2

ffiffiffi
2
p

, see §3) to a
value 2.73 (the value cited in ref. 15) that violates the Bell
inequality and is less than the maximum for the quantum
system. The optimized experimental results (bullets in Fig.
A·1) and the results of our simulation model (see Fig. 4,
third line from the bottom) are qualitatively very similar.

The fact that the ‘‘uncorrected’’ data (� ¼ 0) violate the
rigorous bound for the quantum system should not been
taken as evidence that quantum theory is ‘‘wrong’’: It merely
indicates that the way in which the data of the two stations
has been grouped in two-particle events is not optimal.

Finally, we use the experimental data to show that the
time delays depend on the orientation of the polarizer. To
this end, we select all coincidences between Dþ;1 and Dþ;2
(see Fig. 1) and make a histogram of the coincidence counts
as a function of the time-tag difference, for fixed orientation
�1 ¼ 0 and the two orientations �2 ¼ 
=8, 3
=8 (other
combinations give similar results). The results of this
analysis are shown in Fig. A·2. The maximum of the
distribution shifts by approximately 1 ns as the polarizer at
station 2 is rotated by 
=4, a demonstration that the time-tag
data is sensitive to the orientation of the polarizer at
station 2. A similar distribution of time-delays (of about the
same width) was also observed in a much older experimental
realization of the EPRB experiment.34) The birefringent
properties of the optical elements (polarizers and electro-
optic modulators) might be responsible for this time delay. A
more detailed quantitative and exploratory analysis of this
time delay requires dedicated retardation measurements for
these specific optical elements in single-photon set-ups.

Appendix B

In the case of Experiment I and for some choices of the
model parameters, we can compute the correlation eq. (3)
analytically.9) In the limit N !1, eq. (3) can be written as
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Fig. A	1. (Color online) Smax as a function of the time window W ,

computed from the data sets contained in the archives Alice.zip and

Bob.zip that can be downloaded from ref. 24. Bullets (red): Data obtained

by using the relative time shift � ¼ 4 ns that maximizes the number of

coincidences. The maximum value of Smax � 2:73 is found at W ¼ 2 ns.

Crosses (blue): Raw data (� ¼ 0). The maximum value of Smax � 2:89 is

found at W ¼ 3 ns. Dashed line at jSð�Þj ¼ 2
ffiffiffi
2
p

: Smax if the system is

described by quantum theory (see §3). Dashed line at jSð�Þj ¼ 2: Smax if

the system is described by the class of models introduced by Bell.5)
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Fig. A	2. (Color online) Normalized coincidence counts as a function of

time tag difference tn;1 � tn;2, computed from the data sets contained in

the archives Alice.zip and Bob.zip,24) using the relative time shift � ¼
4 ns that maximizes the number of coincidences. Bullets (red): �1 ¼ 0 and

�2 ¼ 
=8; Crosses (blue): �1 ¼ 0 and �2 ¼ 3
=8.
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Eð�; �Þ ¼ �

Z 2


0

x1ð�; �Þx2ð�; �ÞPðT1;T2;WÞ d�
Z 2


0

PðT1;T2;WÞ d�
; ðB:1Þ

where PðT1;T2;WÞ is the density of coincidences for
fixed ð�; �Þ and polarization angle � (within a small interval
d�), T1 ¼ j sin 2ð�� �Þjd, T2 ¼ j sin 2ð�� �Þjd, x1ð�; �Þ ¼
signðcos 2ð�� �ÞÞ, and x2ð�; �Þ ¼ signðcos 2ð�� �ÞÞ.

Mathematically, expression eq. (B·1) can give rise to
almost any correlation. The density of coincidences appears
as a result of integrating over the distribution of time tags
and it is this integration that leads to the appearance of the
correlations. Of course, the specific form of the correlations
depends on the choice of the functional dependence of T1

and T2 on the angles.
The expression for PðT1; T2;WÞ can be derived as follows.

For a fixed time-tag resolution 0 < � < 1, the discretized
time-tag for the nth detection event is given by kn;i ¼
dtn;i��1e where dxe denotes the smallest integer that is larger
or equal to x. The discretized time-tag kn;i takes integer
values between 1 and Ki � d��1Tie, where Ki is the
maximum, discretized time delay for a particle with polar-
ization � and passing through the polarizer with orientation
�i, where �1 ¼ � and �2 ¼ �. If jkn;1 � kn;2j < k ¼ d��1We,
the two photons are defined to form a pair. For fixed �, �,
and �, we can count the total number of pairs, or
coincidences C, by considering the graphical representation
shown in Fig. B·1. After a careful examination of all
possibilities, we find that

C � CðK1;K2; kÞ
¼ ð2k0 � 1Þk12 � k0ðk0 � 1Þ=2
�maxð0; ðK12 � 1Þmaxð0;K12Þ=2Þ
þmaxð0; k � k0Þk0 �maxð0; kk12 � K1K2Þ; ðB:2Þ

where k0 ¼ minðK1;K2; kÞ, k12 ¼ minðK1;K2Þ, and K12 ¼
k12 �maxð0;maxðK1;K2Þ � kÞ.

It is clear that the result for the coincidences depends on
the time-tag resolution �, the time window W and the
number of events N, just as in real experiments.10–16,23)

Formula (B·2) greatly simplifies if we consider the case k ¼
1 (W ¼ �), yielding CðK1;K2; 1Þ ¼ minðK1;K2Þ as is evident
by looking at Fig. B·1. For fixed �, �, and �, and W ¼ �,
the density PðT1; T2; �Þ ¼ CðK1;K2; 1Þ=K1K2 that we register
two particles with a time-tag difference less than � is
bounded by

�
minðT1 þ �;T2 þ �Þ
ðT1 þ �ÞðT2 þ �Þ

< PðT1;T2; �Þ � �
minðT1;T2Þ

T1T2

: ðB:3Þ

Up to first order in W ¼ � and for d ¼ 2, eq. (B·1) reads

Eð�; �Þ

¼ �

Z 2


0

x1ð�; �Þx2ð�; �Þ
minðsin2ð�� �Þ; sin2ð�� �ÞÞ

sin2ð�� �Þ sin2ð�� �Þ
d�

Z 2


0

minðsin2ð�� �Þ; sin2ð�� �ÞÞ
sin2ð�� �Þ sin2ð�� �Þ

d�

¼ � cos 2ð�� �Þ; ðB:4Þ

in exact agreement with the quantum mechanical result
(see Table I).

For d ¼ 0, 1, and 4 we find

Eð�; �Þ ¼ �1þ
2j�� �jmod 




; ðB:5Þ

Eð�; �Þ ¼ �
ln

1þ j cosð�� �Þj
1� j cosð�� �Þj

1� j sinð�� �Þj
1þ j sinð�� �Þj

ln
1þ j cosð�� �Þj
1� j cosð�� �Þj

1þ j sinð�� �Þj
1� j sinð�� �Þj

; ðB:6Þ

and

Eð�; �Þ ¼ �
ð3� cos2 2ð�� �ÞÞ cos 2ð�� �Þ

2
; ðB:7Þ

respectively. The corresponding results for Sð�Þ are shown
in Fig. 3.

If W !1, �ðW � jtn;1 � tn;2jÞ ¼ 1, and PðT1;T2;WÞ ¼
1 such that eq. (B·1) reduces to5)

Eð�; �Þ ¼
1

2


Z 2


0

signðcos 2ð�� �ÞÞ signðcos 2ð�� �ÞÞ d�

¼ �1þ
2j�� �jmod 




: ðB:8Þ

Obviously, eq. (B·8) does not agree with the quantum
theoretical expression Eð�; �Þ ¼ � cos 2ð�� �Þ.
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