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We review the data gathering and analysis procedure used in real Einstein-Podolsky-Rosen-Bohm
experiments with photons and we illustrate the procedure by analyzing experimental data. Based
on this analysis, we construct event-based computer simulation models in which every essential
element in the experiment has a counterpart. The data is analyzed by counting single-particle events
and two-particle coincidences, using the same procedure as in experiments. The simulation models
strictly satisfy Einstein’s criteria of local causality, do not rely on any concept of quantum theory or
probability theory, and reproduce all results of quantum theory for a quantum system of two S= 1/2
particles. We present a rigorous analytical treatment of these models and show that they may yield
results that are in exact agreement with quantum theory. The apparent conflict with the folklore on
Bell’s theorem, stating that such models are not supposed to exist, is resolved. Finally, starting from
the principles of probable inference, we derive the probability distributions of quantum theory of the
Einstein-Podolsky-Rosen-Bohm experiment without invoking concepts of quantum theory.
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1. INTRODUCTION

As nanofabrication technology is advancing from the
stage of scientific experiments to the stage of building
nanoscopic systems that perform useful tasks, it is impor-
tant to have computational tools that allow the designer
to assess, with adequate reliability, how the system will
behave.1 Quantum theory provides the foundation for
developing these tools. However, just like any other theory,
quantum theory has its own limitations. If the successful
operation of the device depends on individual events rather
than on the statistical properties of many events, quantum
theory can no longer be used to describe the behavior of
the device. Indeed, as is well-known from the early days
in the development of quantum theory, quantum theory
has nothing to say about individual events.2–4 Reconciling
the mathematical formalism that does not describe individ-
ual events with the experimental fact that each observation
yields a definite outcome is referred to as the quantum
measurement paradox and is the most fundamental prob-
lem in the foundation of quantum theory.3

Computer simulation is widely regarded as complemen-
tary to theory and experiment.5 If computer simulation is
indeed a third methodology, it should be possible to sim-
ulate quantum phenomena on an event-by-event basis. In
view of the fundamental problem alluded to above, there is
little hope that we can find a simulation algorithm within
the framework of quantum theory. However, if we think of
quantum theory as a recipe to compute probability distribu-
tions only, there is nothing that prevents us from stepping
outside the framework that quantum theory provides.

To head off possible misunderstandings, it may be
important to rephrase what has been said. Of course,
we could simply use pseudo-random numbers to gener-
ate events according to the probability distribution that
is obtained by solving the time-independent Schrödinger
equation. However, that is not what we mean when we
say that within the framework of quantum theory, there is
little hope to find an algorithm that simulates the individ-
ual events and reproduces the expectation values obtained
from quantum theory. The challenge is to find algorithms
that simulate, event-by-event, the experimental observa-
tions that, for instance, interference patterns appear only
after a considerable number of individual events have
been recorded by the detector,6�7 without first solving the
Schrödinger equation.

In a number of recent papers,8–13 we have demonstrated
that locally-connected networks of processing units with a
primitive learning capability can simulate event-by-event,
the single-photon beam splitter and Mach-Zehnder inter-
ferometer experiments of Grangier et al.6 Furthermore, we
have shown that this approach can be generalized to sim-
ulate universal quantum computation by an event-by-event
process.9�11�13 Therefore, at least in principle, our approach
can be used to simulate all wave interference phenom-
ena and many-body quantum systems using particle-like

processes only. This work suggests that we may have
discovered a procedure to simulate quantum phenomena
using causal, Einstein-local, event-based processes. Our
approach is not an extension of quantum theory in any
sense nor is it a proposal for another interpretation of
quantum mechanics. The probability distributions of quan-
tum theory are generated by local, causal processes.

According to the folklore about Bell’s theorem, a proce-
dure such as the one that we discovered should not exist.
Bell’s theorem states that any local, hidden variable model
will produce results that are in conflict with the quantum
theory of a system of two S = 1/2 particles.14 However,
it is often overlooked that this statement can be proven
for a (very) restricted class of probabilistic models only.
Indeed, minor modifications to the original model of Bell
lead to the conclusion that there is no conflict.15–17 In fact,
Bell’s theorem does not necessarily apply to the systems
that we are interested in as both simulation algorithms
and actual data do not need to satisfy the (hidden) condi-
tions under which Bell’s theorem hold.18–20 Furthermore,
we have given analytical proofs that two-particle corre-
lations of the simulation models agree exactly with the
quantum theoretical expression.21�22

1.1. Aim of This Work

In this paper, we take the point of view that the funda-
mental problem, originating from the work of Einstein,
Podolsky, and Rosen (EPR),23 reformulated by Bohm2 and
studied in detail by Bell,14 is to explain how individual
events, registered by different detectors in such a way that
a measurement on one particle does not have a causal
effect on the result of the measurement on the other par-
ticle (Einstein’s criterion of local causality), exhibit the
correlations that are characteristic for a quantum system in
the entangled state. We assume that:
• The experimental data, including the (post) processing
of it, constitutes the set of facts
• The experimental facts are a faithful representation of
the results of the ideal experiment
• Quantum theory is compatible with these facts. In
the quantum physics community, it is generally accepted
that the results of Einstein-Podolsky-Rosen-Bohm (EPRB)
experiments agree with the predictions of quantum
theory24–32

In this paper, we review constructive proofs that there
exist (simple) computer simulation algorithms that satisfy
Einstein’s criterion of local causality and exactly repro-
duce the results of the quantum theoretical description of
real EPRB experiments.21�22�33–35 These algorithms gener-
ate the same type of data as experiments and employ the
same procedure as used in experiments to analyze the data.
In view of the quantum measurement paradox,3�4 the latter
prohibits the use of algorithms that rely on (concepts of)
quantum theory. In addition, for the reasons explained
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later, these simulation algorithms do not rely on techniques
of inductive inference (probability theory) to draw con-
clusions from the data. In this paper, we also discuss the
apparent conflict with Bell’s theorem.

To appreciate the fundamental issues that are involved,
it is necessary to understand well the logical relation
between computer simulation, experiment and theory on
the one hand and data and theory on the other hand. There-
fore, we first elaborate on these relationships.

1.2. Computer Simulation Versus
Experiment and Theory

In general, and in the analysis of real EPRB
experiments2�23 in particular, it is important to recognize
that there are fundamental, conceptual differences between
the set of experimental facts, their interpretation in terms
of a mathematical model, and a computer simulation of
the facts.

Obviously, because of limited precision of the instru-
ments, any record of experimental facts is just a set of
integer numbers (floating point numbers have a finite num-
ber of digits and can therefore be regarded as integer
numbers). Theories that describe Newtonian mechanics
or electrodynamics assign real numbers to experimentally
observable quantities. The relation between theory and
experimental data is one-to-one: The experimental accu-
racy determines the number of significant digits of the real
numbers. These theories have a deductive character.

Quantum theory assigns a probability, a real number
between zero and one, for an event (=experimental fact) to
occur.4�14�36 However, we can always use an integer num-
ber to represent the event itself (in any real experiment the
number of events is necessary finite). By assigning proba-
bilities to events, we change the character of the theoretical
description on a fundamental level: Instead of deduction,
we (have to) use inductive inference to relate a theoretical
description to the facts.4�37

Although probability theory provides a rigorous math-
ematical framework to make such inferences, there
are ample examples that illustrate how easy it is to
make the wrong inference, also for mundane, every-day
problems37–40 that are not related to quantum mechan-
ics at all. Subtle mistakes such as dropping some of the
conditions,41 or mixing up the meaning of physical inde-
pendence and logical independence, can give rise to all
kinds of paradoxes.19�20�36�42–46

In general, a computer simulation approach does not
need the machinery of probability theory to relate simula-
tion data to the experimental facts. A digital computer can
generate sets of integer numbers only. We can compare
these numbers to the experimental data directly, without
recourse to inductive inference. On the one hand, this puts
computer simulation in the luxury position that it cannot
suffer from mistakes of the kind alluded to earlier, simply

Quantum theory

Probability theory
+ minimum 

Fisher information

Event-by-event
simulation
algorithms

Einstein-Podolsky
Rosen-Bohm
experiments

Average of 
detector and

coincidence counts

Single-spin and
two-spin

expectation values
Raw data

Crossing this line
requires several

assumptions

Probability theoryFrequencies
of events

Numbers

Data
analysis

Model spaceData space

Fig. 1. Logical relationship between data and theory.

because there is no need to use inductive inference. On the
other hand, using the computer, we are strictly bound to
the elementary rules of logic and arithmetic. Therefore, it
is not legitimate to use arguments such as “in an experi-
ment it is impossible to repeat the experiment twice and
get exactly the same answer.” While this statement is cor-
rect with very high probability, when we use a digital com-
puter it is logically false because we can always exactly
repeat the same calculation (we exclude the possibility that
the computer is malfunctioning). Therefore, in a computer
simulation, it should be possible to explain the facts with-
out invoking “loopholes” such as detection efficiency or
counterfactual reasoning.

A graphical representation of the point of view taken
in this paper is given in Figure 1. On the left, we have
processes that generate events. Each event is represented
by one or more numbers, which we call raw data. Expe-
rience or a new idea provide inspiration to choose one or
more methods to analyze the data. Typically, this analysis
maps the raw data onto a few numbers (called averages
and coincidence counts in Fig. 1), that is the raw data is
being compressed. On the right hand side, we have sev-
eral candidate mathematical models, “theories,” that may
“explain” the results of the data analysis.

But, how do we relate data to (quantum) theory? It is
essential to recognize that before we can address this ques-
tion, we have to make the hypothesis that there exists some
process that gives rise to the observed data. Otherwise, we
cannot go beyond the description of merely giving the data
as it is. Furthermore, a useful theoretical model should
give a description of the data that is considerably more
compact than the data itself.

Crossing the line that separates the model space from
the data space requires making the fundamental hypothesis
that the process that gives rise to the data can be described
within the framework of probability theory. Only then, we
are in the position that we can use probability theory to
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relate the mathematical model to the observed frequencies.
Of course, this is consistent with the fact that quantum the-
ory does not describe the individual events themselves.3�4

In this paper, the rules of probability theory are
mainly used as a tool to reason in a logically consistent
manner,37�47 to make logical inferences about the frequen-
cies that we can compute from the observed data.37�39

These inferences concern logical relations which may or
may not correspond to causal physical influences.37 As we
will see later, much of the mysticism surrounding Bell’s
theorem can be traced back to the failure to recognize that
probability theory is not defined through frequencies.

To avoid misunderstandings of what we are aiming to
accomplish here, it may be useful to draw an analogy with
methods for simulating classical statistical mechanics.5

According to the theory of equilibrium statistical mechan-
ics, the probability that a system is in the state with label
n is given by

pn =
e−�En∑N
n=1 e

−�En
(1)

where N is the number of different states of the sys-
tem, which usually is very large, En is the energy of the
state, and � = 1/kBT where kB is Boltzmann’s constant
and T is the temperature. Disregarding exceptional cases
such as the two-dimensional Ising model, for a nontrivial
many-body system the partition function Z = ∑N

n=1 e
−�En

is unknown. Hence, pn is not known.
Can we construct a simulation algorithm that generates

states according to the unknown probability distribution

p1� � � � � pN �? An affirmative answer to this question was
given by Metropolis et al.5�48�49 The basic idea is to design
an artificial dynamical system, a Markov chain or master
equation that samples the space of N states such that in
the long run, the frequency with which this system visits
the state n approaches pn with probability one.5�49

Looking back at Figure 1, if we replace “event-by-
event simulation algorithm(s)” by “Metropolis Monte Carlo
Method,” “Average � � � counts” by “Average energy � � � ,”
and “Quantum theory” by “Equilibrium Statistical Mechan-
ics,” the status of simulation algorithms and theoretical
models in these two different fields of physics is the same.

Although in applications to statistical mechanics, the
Markov chain dynamics is of considerable interest in itself,
there obviously is no relation to the Newtonian dynamics
of the particles involved.5 The same holds for the dynami-
cal processes that reproduce the results of quantum theory:
If an event-by-event simulation algorithm generates the
same type of raw data as the experiment does and the data
analysis yields results that agree with quantum theory we
should be pleased with this achievement and not ask for
this dynamics to be “unique.” In fact, in our earlier work
we have already shown that there exist both deterministic
and pseudo-random processes that reproduce equally well
the probability distributions obtained from quantum theory
and experiments.8–13

1.3. Disclaimer

The work reviewed here is not concerned with the inter-
pretation or extension of quantum theory. The fact that
there exist simulation algorithms that reproduce the results
of quantum theory has no direct implications to the foun-
dations of quantum theory: The algorithm describes the
process of generating events on a level of detail about
which quantum theory has nothing to say (quantum mea-
surement paradox).3�4 The average properties of the data
may be in perfect agreement with quantum theory but the
algorithms that generate such data are outside of the scope
of what quantum theory can describe. This may sound a
little strange but it is not if one recognizes that probabil-
ity theory does not contain nor provides an algorithm to
generate the values of the random variables either, which
in a sense, is at the heart of the quantum measurement
paradox.

1.4. Structure of the Paper

The paper is organized as follows. In Section 2, we review
the EPRB gedanken experiment with magnetic particles
and its experimental realization using the photon polar-
ization as a two-state system. We elaborate on the data
gathering and analysis procedures. An essential ingredi-
ent of the data analysis procedure is the time window that
is used to identify coincidences. In constrast to textbook
treatments of EPRB experiments in which the window is
implicitly assumed to be infinite, in real experiments the
time window is made as small as possible. We illustrate the
importance of the choice of the time window by analyzing
a data set of a real EPRB experiment with photons.29

Section 3 briefly recalls the essentials of the quantum
theoretical description of the EPRB experiment in terms
of a system of two S = 1/2 particles.

Section 4 addresses the problem of relating quantum
theory and real data. In Section 4.1, we discuss how
to generate individual events from the solution of the
quantum theoretical problem and how to relate the quan-
tum theoretical expectation values to the actual data.
Section 4.3 deals with the inverse problem: How do we
relate data to (quantum) theory? We elaborate on the fun-
damental difference between probabilities (quantities that
appear in the mathematical theory) and frequencies (num-
bers obtained by counting events).

Section 5 introduces deterministic and pseudo-random
event-based computer simulation models that satisfy
Einstein’s criteria of local causality and reproduce all the
results of the quantum theory of two S = 1/2 particles. We
also prove that these models can exhibit correlations that
are stronger than those obtained from the quantum theory
of two S = 1/2 particles.

In Section 6, we resolve the apparent conflict between
the fact that there exist event-based simulation models that
satisfy Einstein’s criteria of local causality and reproduce
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all the results of the quantum theory of two S = 1/2 par-
ticles and the folklore about Bell’s theorem, stating that
such models are not supposed to exist. We show that
Bell’s extension of Einstein’s concept of locality implic-
itly assumes that the absence of a causal influence implies
logical independence,36 an assumption which, in general,
leads to logical inconsistencies.36�37

In Section 7, we use standard Kolmogorov probability
calculus to analyze the probabilistic version of our simu-
lation models. We give a rigorous proof that these models
can reproduce exactly all the results of the quantum theory
of two S = 1/2 particles.

In Section 8, we propose a principle to derive the proba-
bility distributions of quantum theory of the EPRB experi-
ment by using the algebra of probable inference,37�47 that is
the axioms of probability theory, without making recourse
to quantum theory. Our conclusions are summarized in
Section 9.

2. EPRB EXPERIMENTS

2.1. Spin 1/2 Particles

Many experimental realizations and quantum theoretical
descriptions of the EPR gedanken experiment23 adopt the
model proposed by Bohm.2 A schematic diagram of the
EPRB experiment is shown in Figure 2. A source emits
charge-neutral pairs of particles with opposite magnetic
moments. The two particles separate spatially and propa-
gate in free space to an observation station in which they
are detected. As the particle arrives at station i = 1�2,
it passes through a Stern-Gerlach magnet.50 The mag-
netic moment of a particle interacts with the inhomo-
geneous magnetic field of a Stern-Gerlach magnet. The
Stern-Gerlach magnet deflects the particle, depending on
the orientation of the magnet and the magnetic moment of
the particle. The Stern-Gerlach magnet divides the beam
of particles in two, spatially well-separated parts.50 The
observation that the beam splits into two, and not in a
continuum of beams is interpreted as evidence that the

D+,2

D–,2

D+,1

D–,1

Source

Stern-Gerlach
magnet

a2

Coincidence logic

a1

– –

Two-particle
correlations

++

Stern-Gerlach
magnet

Station 1 Station 2

+S –S

Fig. 2. Schematic diagram of an EPRB experiment with magnetic
particles.2

particles carry a magnetic moment that can take two dis-
crete values; it is quantized.50 In quantum theory, we
describe such a magnetic moment using S= 1/2 operators.
By changing the orientation of the Stern-Gerlach magnet,
we change the direction of the plane that divides the two
beams of particles. In quantum theory language, we say
that the quantization axis is determined by the orientation
of the Stern-Gerlach magnet. As the particle leaves the
Stern-Gerlach magnet, it generates a signal in one of the
two detectors. The firing of a detector corresponds to a
detection event.

Charge-neutral, magnetic particles that pass through a
Stern-Gerlach magnet not only change their direction of
motion but also experience a time-delay, depending on
the direction of their magnetic moment, relative to the
direction of the field in the Stern-Gerlach magnet. The
time-delays in Stern-Gerlach magnets are used to perform
spectroscopy of atomic size magnetic clusters51 and atomic
interferometry.52

Real experiments require a criterion to decide which
events, registered in stations 1 and 2, correspond to the
detection of particles belonging to a pair (a single two-
particle system). In EPRB experiments, this criterion is the
coincidence in time of the events,29�32�53 as is most clearly
illustrated by the EPRB experiments that use the photon
polarization as a two-state system.24–31

2.2. Photon Polarization

In Figure 3, we show a schematic diagram of an EPRB
experiment with photons (see also Fig. 2 in Ref. [29]).
Here, a source emits pairs of photons with opposite polar-
ization. Each photon of a pair propagates to an observa-
tion station in which it is manipulated and detected. The
two stations are separated spatially and temporally.29 This
arrangement prevents the observation at station 1 (2) to
have a causal effect on the data registered at station 2 (1).29

As the photon arrives at station i = 1�2, it passes through
an electro-optic modulator that rotates the polarization of
the photon by an angle depending on the voltage applied
to the modulator. These voltages are controlled by two
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D–,1 D–,2
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modulator
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Random number
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c
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– –

+

tn,1 tn, 2

{xn,1 = ±1, tn,1, An,1} {xn, 2 = ±1, tn, 2, An, 2}

Station 1 Station 2

Fig. 3. Schematic diagram of an EPRB experiment with photons.29
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independent binary random number generators. As the
photon leaves the polarizer, it generates a signal in one of
the two detectors. The station’s clock assigns a time-tag
to each generated signal. Effectively, this procedure dis-
cretizes time in intervals of a width that is determined by
the time-tag resolution � .29 In the experiment, the firing of
a detector is regarded as an event.

As light is supposed to consist of non-interacting pho-
tons, it is not unreasonable to assume that the individual
photons experience a time delay as they pass through the
electro-optic modulators or polarizers. Indeed, according
to Maxwell’s equation, in the optically anisotropic materi-
als used to fabricate these devices, plane waves with dif-
ferent polarization propagate with different velocity and
are refracted differently.54

It is clear that, at least conceptually, the EPRB experi-
ments with photons or massive S = 1/2 particles are very
similar.

2.3. Idealized Experiments

As it is one of the goals of this paper to demonstrate
that it is possible to reproduce the results of quantum the-
ory (which implicitly assumes idealized conditions) for the
EPRB gedanken experiment by an event-based simulation
algorithm, it would be logically inconsistent to “recover”
the results of the former by simulating nonideal experi-
ments. Therefore, in this paper, we consider ideal experi-
ments only, meaning that we assume that detectors operate
with 100% efficiency, clocks remain synchronized forever,
the “fair sampling” assumption is satisfied,55 and so on.
We assume that the two stations are separated spatially and
temporally such that the manipulation and observation at
station 1 (2) cannot have a causal effect on the data reg-
istered at station 2 (1). Furthermore, to realize the EPRB
gedanken experiment on the computer, we assume that the
orientation of each Stern-Gerlach magnet or electro-optic
modulator can be changed at will, at any time. Although
these conditions are very difficult to satisfy in real experi-
ments, they are trivially realized in computer experiments.

2.4. Particle Source

In general, on logical grounds (without counterfactual rea-
soning), it is impossible to make a statement about the
directions of the spin (or polarization) of particles emitted
by the source unless we have performed an experiment
to determine these directions. Of course, in a computer
experiment we have perfect control and we can select
any direction that we like. Conceptually, we should dis-
tinguish between two extreme cases. In the first case, we
assume that we know nothing about the direction of the
spin (or polarization). We mimic this situation by using
pseudo-random numbers to select the directions. This is
the case that is typical for an EPRB experiment and we
will refer to it as Case I. In the second case, refered to

as Case II, we assume that we know that the directions of
both spins (or polarizations) are fixed (but not necessarily
the same). A simulation algorithm that aims to reproduce
all the results of quantum theory of two S = 1/2 particles
should be able to reproduce these results for both Case I
and II, without any change to the simulation algorithm
except for the part that simulates the source.

2.5. Data Gathered in an EPRB Experiment

Here and in the sequel, we use the EPRB experiment with
S = 1/2 particles as the primary example. The case of
EPRB experiments that use the photon polarization can
be treated in exactly the same manner, replacing three-
dimensional unit vectors by two-dimensional ones, and
so on.

In the experiment, the firing of a detector is regarded as
an event. At the nth event, the data recorded on a hard disk
at station i = 1�2 consists of xn� i = ±1, specifying which
of the two detectors fired, the time tag tn� i indicating the
time at which a detector fired, and the unit vector an� i that
specifies the direction of the magnetic field in the Stern-
Gerlach magnet. Hence, the set of data collected at station
i = 1�2 during a run of N events may be written as

�i = �xn� i = ±1� tn� i�an� i � n= 1� � � � �N � (2)

In the (computer) experiment, the data ��1��2� may be
analyzed long after the data has been collected.29 Coin-
cidences are identified by comparing the time differences
�tn�1 − tn�2 � n= 1� � � � �N � with a time window W .29 Intro-
ducing the symbol

∑′ to indicate that the sum has to be
taken over all events that satisfy ai = an� i for i = 1�2,
for each pair of directions a1 and a2 of the Stern-Gerlach
magnets, the number of coincidences Cxy ≡ Cxy
a1�a2�
between detectors Dx�1 (x=±1) at station 1 and detectors
Dy�2 (y = ±1) at station 2 is given by

Cxy =
N∑′

n=1

�x�xn�1
�y�xn�2

�
W −�tn�1 − tn�2�� (3)

where �
t� is the Heaviside step function. We emphasize
that we count all events that, according to the same crite-
rion as the one employed in experiment, correspond to the
detection of pairs.

The average single-particle counts are defined by

E1
a1�a2�=
∑

x� y=±1 xCxy∑
x� y=±1Cxy

and

E2
a1�a2�=
∑

x� y=±1 yCxy∑
x� y=±1Cxy

(4)

where the denominator is the sum of all coinci-
dences. According to standard terminology, the correlation
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between x = ±1 and y = ±1 events is defined by38

�
a1�a2�

=
∑
x�y xyCxy∑
x�y Cxy

−
∑
x�y xCxy∑
x�y Cxy

∑
x�y yCxy∑
x�y Cxy√(∑

x�y x
2Cxy∑

x�y Cxy
−
(∑

x�y xCxy∑
x�y Cxy

)2)(∑
x�y y

2Cxy∑
x�y Cxy

−
(∑

x�y yCxy∑
x�y Cxy

)2)
(5)

The correlation �
a1�a2� is +1 (−1) in the case that x= y
(x =−y) with certainty. If the values of x and y are inde-
pendent, the correlation �
a1�a2� is zero, but the converse
is not necessarily true.

In the case of dichotomic variables x and y, the cor-
relation �
a1�a2� is entirely determined by the average
single-particle counts Eq. (4) and the two-particle average

E
a1�a2� =
∑

x� y xyCxy∑
x� y Cxy

= C++ +C−− −C+− −C−+
C++ +C−− +C+− +C−+

(6)

For later use, it is expedient to introduce the function

S
a�b� c�d�= E
a� c�−E
a�d�+E
b� c�+E
b�d� (7)

and its maximum

Smax ≡ max
a�b� c�d

S
a�b� c�d� (8)

In general, the values for the average single-
particle counts E1
a1�a2� and E2
a1�a2� the coinci-
dences Cxy
a1�a2�, the two-particle averages E
a1�a2�,
S
a�b� c�d�, and Smax not only depend on the directions
a1 and a2 but also on the time-tag resolution � and the
time window W used to identify the coincidences.

2.6. Role of the Time Window

Most theoretical treatments of the EPRB experiment
assume that the correlation, as measured in the experiment,
is given by14

C

�
xy =

N∑′

n=1

�x�xn�1
�y�xn�2

(9)

which we obtain from Eq. (3) by taking the limit W →
.
Although this limit defines a valid theoretical model, there
is no reason why this model should have any bearing on
the real experiments, in particular because experiments pay
considerable attention to the choice of W . A rational argu-
ment that might justify taking this limit is the hypothesis
that for ideal experiments, the value of W should not mat-
ter. However, in experiments a lot of effort is made to
reduce (not increase) W .29�56

As we will see later, using our model it is relatively
easy to reproduce the experimental facts and the results

of quantum theory if we consider the limit W → 0. Fur-
thermore, keeping W arbitrary does not render the math-
ematics more complicated so there really is no point of
studying the simplified model defined by Eq. (9): We may
always consider the limiting case W → 
 afterwards.

2.7. Case Study: Analysis of Experimental EPRB Data

It is remarkable that all textbook treatments of the EPRB
experiment assume that the experimental data is obtained
by using Eq. (9). This is definitely not the case.29�56 We
illustrate the importance of the choice of the time win-
dow W by analyzing a data set (the archives Alice.zip and
Bob.zip) of an EPRB experiment with photons that is pub-
lically available.57

In the real experiment, the number of events detected at
station 1 is unlikely to be the same as the number of events
detected at station 2. In fact, the data sets of Ref. [57] show
that station 1 (Alice.zip) recorded 388455 events while
station 2 (Bob.zip) recorded 302271 events. Furthermore,
in the real EPRB experiment, there may be an unknown
shift � (assumed to be constant during the experiment)
between the times tn�1 gathered at station 1 and the times
tn�2 recorded at station 2. Therefore, there is some extra
ambiguity in matching the data of station 1 to the data of
station 2.

A simple data processing procedure that resolves this
ambiguity consists of two steps.56 First, we make a histo-
gram of the time differences tn�1 − tm�2 with a small but
reasonable resolution (we used 0.5 ns). Then, we fix the
value of the time-shift � by searching for the time differ-
ence for which the histogram reaches its maximum, that
is we maximize the number of coincidences by a suit-
able choice of �. For the case at hand, we find �= 4 ns.
Finally, we compute the coincidences, the two-particle

1

1.5

2

2.5

3

0 50 100 150 200 250 300

S
m

ax

W [ns]

Fig. 4. Smax as a function of the time window W , computed from the
data sets contained in the archives Alice.zip and Bob.zip that can be
downloaded from Ref. [57]. Bullets (red): Data obtained by using the
relative time shift �= 4 ns that maximizes the number of coincidences.
Crosses (blue): Raw data (�= 0). Dashed line at 2

√
2: Smax if the system

is described by quantum theory (see Section 3). Dashed line at 2: Smax if
the system is described by the class of models introduced by Bell.14
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Fig. 5. Same as Figure 4 except for the range of W . Bullets (red): Data
obtained by using the relative time shift � = 4 ns that maximizes the
number of coincidences. The maximum value of Smax ≈ 2�73 is found
at W = 2 ns. Crosses (blue): Raw data � = 0. The maximum value of
Smax ≈ 2�89 is found at W = 3 ns.

average, and Smax using the expressions given earlier. The
average times between two detection events is 2.5 ms and
3.3 ms for Alice and Bob, respectively. The number of
coincidences (with double counts removed) is 13975 and
2899 for (� = 4 ns, W = 2 ns) and (� = 0, W = 3 ns),
respectively.

In Figures 4 and 5 we present the results for Smax as a
function of the time window W . First, it is clear that Smax

decreases significantly as W increases but it is also clear
that as W → 0, Smax is not very sensitive to the choice
of W .56 Second, the procedure of maximizing the coinci-
dence count by varying � reduces the maximum value of
Smax from a value 2.89 that considerably exceeds the max-
imum for the quantum system (2

√
2, see Section 3) to a

value 2.73 that violates the Bell inequality and is less than
the maximum for the quantum system.

The fact that the “uncorrected” data (�= 0) violate the
rigorous bound for the quantum system should not been
taken as evidence that quantum theory is “wrong:” As we
explain later, it merely indicates that the way in which the
data of the two stations has been grouped in two-particle
events is not optimal. Put more bluntly, there is no reason
why a correlation between similar but otherwise unrelated
data should be described by quantum theory. In any case,
the analysis of the experimental data shows beyond doubt
that a model which aims to describe real EPRB exper-
iments should include the time window W and that the
interesting regime is W → 0, not W →
 as is assumed in
all textbook treatments of the EPRB experiment. In Sec-
tions 5 and 8, we show that our simulation models repro-
duce the salient features of Figures 4 and 5 quite well if
W → 0.

3. QUANTUM THEORY

In this section we briefly review some well-known results
for the quantum theory of a system of two S = 1/2

particles and we give a brief account of the quantum
theoretical description of Case I and Case II. In quantum
theory, the state of a system of two S = 1/2 objects is
described by a 4×4 density matrix �.4 The average value
of a dynamical variable, represented by the 4×4 matrix X
is �X� = Tr�X.4 According to the axioms of quantum
theory,4 repeated measurements on the two-particle system
described by the density matrix � yield statistical estimates
for the single-particle expectation values

�Ei
a�= �!i ·a� (10)

for i = 1�2 and the two-particle correlations

�E
a�b�= �!1 ·a!2 ·b� (11)

where !i = 
!xi �!
y
i �!

z
i � are the Pauli spin-1/2 matrices

describing the spin of particle i = 1�2,4 and a and b are
unit vectors. We introduce the notation � to distinguish the
quantum theoretical results from the results obtained by
analysis of the data ��1��2�.

If the density matrix of the quantum system factor-
izes, � = �1 ⊗�2, where �i is the 2×2 density matrix of
particle i, then �E
a�b� = �E1
a� �E2
b� and the correlation
�̂
a1�a2�= �E
a�b�− �E1
a� �E2
b�= 0. Hence, the particles
1 and 2 are uncorrelated and the state �= �1 ⊗�2 is called
the uncorrelated quantum state.

Let us denote a = �E1
a�, b = �E1
b�, and c = �E2
c�,
d = �E2
d�, such that S
a�b� c�d� = ac− ad+ bc+ bd.
Clearly, a�b� c�d ∈ '−1�1(. For any a�b� c�d ∈ '−1�1(
we have42

�ac−ad+bc+bd� ≤ �ac−ad�+ �bc+bd�
≤ �a��c−d�+ �b��c+d�
≤ �c−d�+ �c+d�
≤ 1− cd+1+ cd
≤ 2 (12)

Thus, we conclude that if the quantum system is in the
uncorrelated state we must have

�Smax ≡ max
a�b� c�d

�S
a�b� c�d�≤ 2 (13)

If the density matrix � does not factorize, the upper-
bound to Smax can be found as follows.58 Using the
algebraic properties of the Pauli-spin matrices, a simple
calculation yields,


!1 ·a!2 · c−!1 ·a!2 ·d+!1 ·b!2 · c+!1 ·b!2 ·d�2

= 4+4!1 · 
a×b�!2 · 
c×d� (14)

Noting that Tr�X†Y defines an inner product on the vector
space of 4× 4 matrices X and Y , making use of the fact
that � is positive semi-definite and that Tr�= 1, we have

�Tr�X�2 = �Tr�1/2�1/2X�2
≤ Tr
�1/2�†�1/2Tr
�1/2X�†�1/2X

= Tr�X†X (15)
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For X = X† = !1 · a!2 · c−!1 · a!2 ·d+!1 ·b!2 · c+!1 ·
b!2 ·d, Eq. (15) becomes

' �E
a� c�− �E
a�d�+ �E
b� c�+ �E
b�d�(2
≤ 4+4 �E
a×b� c×d� (16)

As the eigenvalues of !1 ·a!2 ·b are ±a ·b, and since a, b,
c, and d are unit vectors, we have �E
a×b� c×d�� ≤ 1.
Hence58

� �S
a�b� c�d�� ≤ 2
√

2 (17)

independent of the quantum state �. According to Eqs. (13)
and (17), if 2< �Smax ≤ 2

√
2 the quantum system is in a cor-

related state, that is � �= �1⊗�2. For pure states (Tr�2 = 1),
the converse is also true59 but, for general states � it is
not.60–62 If, in an experiment or simulation, we would find
that Smax > 2

√
2, the results of this experiment or sim-

ulation cannot be described by the quantum theory of a
system of two S = 1/2 particles.

We now examine the examples of a maximally cor-
related (entangled) quantum state (called Case I) and
the uncorrelated quantum state (called Case II) in more
detail.

3.1. Case I: Singlet State

The quantum theoretical description of the EPRB exper-
iment assumes that the state of the two spin-1/2 parti-
cles is described by the singlet state � = �- ��- � where
�- � = 
� ↑↓�−� ↓↑��/√2 and � ↑� (� ↓�) is the eigenstate
of !z with eigenvalue +1 (−1). For the singlet state, the
single-particle expectation values and the two-particle cor-
relations are given by

�Ei
ai�= �- �!i ·ai�- � = 0. i = 1�2 (18)

and

�E
a1�a2�= �- �!1 ·a1!2 ·a2�- � = −a1 ·a2 (19)

respectively. A simple calculation shows that Smax = 2
√

2,
in other words, the singlet state satisfies Eq. (17) with
equality.

For the singlet state, the probability P
x� y � a1�a2� that
we observe a pair of events x� y = ±1 under the (fixed)
condition 
a1�a2� is given by

P
x� y � a1�a2�=
1−xya1 ·a2

4
(20)

from which it follows that

P
x � a1�a2� =
∑
y=±1

P
x� y � a1�a2�= 1/2�

P
y � a1�a2� =
∑
x=±1

P
x� y � a1�a2�= 1/2
(21)

Table I. Quantum system of two S = 1/2 objects: The expectation val-
ues in the singlet state (Case I) and in the product state (Case II).

Case I Case II

�E1
a1� 0 a1 ·S1�E2
a2� 0 a2 ·S2�E
a1�a2� −a1 ·a2 
a1 ·S1�
a2 ·S2�

and ∑
x� y=±1

P
x� y � a1�a2� = 1

∑
x� y=±1

xP
x� y � a1�a2� = 0

∑
x� y=±1

yP
x� y � a1�a2� = 0

∑
x� y=±1

xyP
x� y � a1�a2� = −a1 ·a2

(22)

in agreement with the second column of Table I.
In the quantum theoretical description, the state of

the two spin-1/2 particles may be correlated (�
a1�a2� =�E
a1�a2�), even though the particles are spatially and tem-
porally separated and do not necessarily interact.

3.2. Case II: Spin-Polarized State

In Case II, � = �1 ⊗ �2 where �j = �1j2j��1j2j � and
�1j2j� = cos1j � ↑�+ei2j sin 1j � ↓� for j = 1�2. A straight-
forward calculation shows that

�Ei
ai�= ai ·Si. i = 1�2 (23)

�E
a1�a2�= �E1
a1� �E2
a2� (24)

where Si = 
cos2i sin 1i� sin2i sin 1i� cos1i�.
For the product state, the probability P
x� y � a1�a2�

S1�S2� that we observe a pair of events x� y = ±1 under
the (fixed) condition 
a1�a2�S1�S2� is given by

P
x� y � a1�a2�S1�S2�=
1+xa1 ·S1

2
1+ya2 ·S2

2
(25)

and yields expectation values that are in agreement with
the third column of Table I. Obviously, for the spin-
polarized state �
a1�a2� = �E
a1�a2�− �E1
a1� �E2
a2� = 0,
hence there is no correlation in this case.

3.3. Photon Polarization

In the quantum theoretical description of Case I, the whole
system is described by the state

�- � = 1√
2

�H�1�V �2 −�V �1�H�2�

= 1√
2

�HV �− �VH�� (26)
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Table II. Quantum system of two photon polarizations: The expectation
values in the singlet state (Case I) and in the product state (Case II)
where cos11 = a1 ·S1, cos12 = a2 ·S2, and cos11�2 = S1 ·S2.

Case I Case II

�E1
a1� 0 cos 211�E2
a2� 0 cos 212�E
a1�a2� − cos 211�2 cos 211 cos 212

where H and V denote the horizontal and vertical polar-
ization and the subscripts refer to photon 1 and 2, respec-
tively. The state �- � cannot be written as a product of
single-photon states, hence it is an entangled state.

In Case II, the photons have a definite polarization 51

and 52 when they enter the observation station. The polar-
ization of the two photons is described by the product state

�- � = 
cos51�H�1 + sin51�V �1�

· 
cos52�H�2 + sin52�V �2� (27)

Using the fact that the two-dimensional vector space with
basis vectors ��H�� �V �� is isomorphic to the vector space
of spin-1/2 particles, we may use the quantum theory of
the latter to describe the EPRB experiments with photons.
The resulting expressions for the averages are given in
Table II. They are similar to those of the genuine S = 1/2
problem except for the restriction of a1 and a2 to lie in
planes orthogonal to the direction of propagation of the
photons and the factor of two that multiplies the angles.
The latter reflects the fact that the polarization is defined
modulo 6, not 26 as in the case of S = 1/2.

4. RELATING QUANTUM THEORY AND DATA

There is no doubt that quantum theory is very success-
ful in describing a vast amount of phenomena in which
we observe the ensemble average of many measurements
that are repeated under the same external conditions.3�4

The EPRB experiments seem to be no exception: The
analysis of the experimental data according to the pro-
cedure discussed earlier, demonstrates that E
a1�a2� ≈�E
a1�a2�.

24–31

On the other hand, as is well known from the early days
of quantum mechanics, quantum theory itself has nothing
to say about the individual events (quantum measurement
paradox).3�4 The very concept of an event cannot be rec-
onciled with quantum theory.3�4

In this section, we elaborate on the relation between
quantum theory and (experimental) data.

4.1. From Quantum Theory to Experimental Data

The fundamental problem of relating the object in the
mathematical formalism of quantum theory to experimen-
tal facts may be solved by (1) interpreting the state of

the system as the probability distribution for events to
occur and by (2) supplementing quantum theory by a
Bernouilli process37�38 that generates logically independent
events according to the prescribed probability distribution,
the so-called measurement postulate. Thus, we have

Quantum theory+Bernouilli process ⇒ Events (28)

All treatments of quantum theory that we are aware of
turn the logical implication Eq. (28) around, without any
justification and declare all quantum events to be uncor-
related random. Of course, it might be the case that the
analysis of experimental data supports the hypothesis that
the events are generated as Bernoulli trials. However, there
is rather compelling experimental evidence that succes-
sive events are correlated.63 Notwithstanding this, using
Eq. (28) we are in the position to use quantum theory and
discuss events in a mathematically well-defined context.

For simplicity, in the example of the EPRB experiment,
we focus on the case where a1 and a2 are fixed in time.
Let us then inquire how we can simulate the quantum the-
oretical results of the EPRB experiment (see Table I) using
the procedure laid out by Eq. (28).

According to the axioms of quantum theory, in each
event we observe only one of the eigenvalues of the
dynamical variable that is being measured.4 For the case
at hand, the eigenvalues of !1 ·a1, !2 ·a2, and !1 ·a1!2 ·a2

are ±1. Then, according to Eq. (28), what is left to do is
to imagine three Bernoulli processes that generate sets of
data �= �an =±1� bn =±1� cn =±1 � n= 1� � � � �N � such
that for a sufficiently large number of events N ,

1
N

N∑
n=1

an ≈ �E1
a1�

1
N

N∑
n=1

bn ≈ �E2
a2� (29)

1
N

N∑
n=1

cn ≈ �E
a1�a2�

for all a1 and a2, the expressions for �E1
a1�, �E2
a2�, and
�E
a1�a2� being given in Table I. The fact that we use
Bernouilli processes in which every trial is drawn from
the same probability distribution guarantees, by the law
of large numbers, that the average over all events con-
verges with probability one to the ensemble average,37�38

which in the present case is given by quantum theory. Note
that quantum theory does not impose any relation (corre-
lation) between the numbers an, bn, and cn, other than that
Eq. (29) should hold.

In general, generating data 
x� y� according to the prob-
ability distributions Eqs. (20) and (25) is a nearly trivial
exercise. Once we have solved the quantum mechanical
problem, that is, once we have the explicit form of the
wave function, constructing a Bernoulli process that gen-
erates events according to the explicit form is a simple
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task. In practice, we assume that the pseudo-random num-
ber generator that we employ produces Bernoulli trials,
a hypothesis that cannot be justified in a mathematically
strict sense.

4.2. Fundamental Problem

Let us now try to relate the quantum theoretical expecta-
tion values that appear in Eqs. (10) and (11) to the actual
data. In general, the probability for observing a pair of
dichotomic variables �x� y� can be written as

�P
x� y � a�b�= 1+x �Ex
a�b�+y �Ey
a�b�+xy �Exy
a�b�
4

(30)
from which, by the standard rules of probability theory, it
follows that

�Py
x � a�b�≡ ∑
y=±1

�P
x� y � a�b�= 1+x �Ex
a�b�
2

(31)

�Px
y � a�b�≡ ∑
x=±1

�P
x� y � a�b�= 1+y �Ey
a�b�
2

(32)

By definition, x and y are logically independent if and
only if �P
x� y � a�b� = �Py
x � a�b� �Px
y � a�b�.4�37�38 If x
and y are logically independent it is easy to show that
�Exy = �Ex �Ey . In general, the converse is not true4�37�38

but in this particular case it is. Indeed, if �Exy = �Ex �Ey ,
if follows directly from Eq. (30) that �P
x� y � a�b� =
�Py
x � a�b� �Px
y � a�b�. Thus, for the case we are treat-
ing here, �Exy �= �Ex �Ey if and only if x and y are logically
dependent.

In quantum theory, we have two different cases also.
If the density matrix of the two spin-1/2 particle quan-
tum system factorizes (Case II), we have �!1 · a!2 ·b� =
�!1 · a��!2 ·b� and the state of the system is completely
characterized by �E1
a� and �E2
b�. However, if the density
matrix does not factorize (Case I), a complete character-
ization of this entangled state requires the knowledge of
�E1
a�, �E2
b�, and �E
a�b�. Upto this point, it seems that
there is full analogy with the probabilistic model of the
data, but we still have to relate the quantum theoretical
expressions to the observed data.

To this end, we invoke the postulate that states that the
possible values of a dynamical variable in quantum theory
are the eigenvalues of the linear operator that corresponds
to this variable.4 For the case at hand, the operators are
!1 · a, !2 · b, and !1 · a!2 · b, with eigenvalues x̂ = ±1,
ŷ = ±1, and ẑ= ±1, respectively.

It is evident that the triples �x̂� ŷ� ẑ� cannot represent
the data Eq. (2) that is recorded and analyzed in real
EPRB experiments:24�26–31 The quantum mechanical model
is trivially incomplete in that it has no means to describe
the time-tag data. But, quantum theory is incomplete in a
more fundamental sense.2�23

First, let us consider an experiment that produces z only.
In general, the probability to observe z can be written as

�P
z � a�b�= 1+ z �Ez
a�b�
2

(33)

A consistent application of the postulates of quantum the-
ory yields

P
ẑ � a�b�= 1+ ẑÊ
a�b�
2

(34)

and we would use �E
a�b� = �Ez
a�b� to relate the theo-
retical result to the data. Likewise, we could imagine an
experiment that produces x (y) and use �E1
a� = Ex
a�b�
( �E2
b� = Ey
a�b�) to relate the theoretical description to
the data.

Second, we ask whether it is possible to describe by
quantum theory, an experiment that yields the data �x� y�.
According to the postulates of quantum theory, the prob-
abilities for the eigenvalues to take the values �x̂� ŷ� are
given by

P
x̂ � a�b�= 1+ x̂ �E1
a�
2

(35)

P
ŷ � a�b�= 1+ ŷ �E2
b�
2

(36)

where x̂, and ŷ are logically independent random vari-
ables, that is each measurement of a dynamical variable
constitutes a Bernouilli trial.4 Then, we would use �E1
a�=
Ex
a�b� and �E2
b� = Ey
a�b� to relate the theory to the
data.

But the real data is �x� y�, not the logically independent
random variables �x̂� ŷ� of the mathematical model. There-
fore the quantum theoretical description of an experiment
that yields �x� y� is necessarily incomplete if the data is
such that Exy �= ExEy .

The fact that EPRB experiments show good agreement
with the quantum theory of two S = 1/2 objects is not
in conflict with this reasoning: In real EPRB experiments,
the coincidences are computed according to Eq. (3), which
includes the time-tag information, about which quantum
theory has nothing to say. Hence there is no logical
inconsistency.

4.3. From Experimental Data to Quantum Theory

Let us now turn things around and ask the much more
interesting question how we, as observers, relate the
observed data of an EPRB experiment to quantum theory.
To simplify the discussion, we assume that the directions
a1 and a2 are fixed. Thus, we start from the data set

� = �xn�1� xn�2� tn�1� tn�2 � n= 1� � � � �N � (37)

and ask the question how to relate these numbers to the
set of data

�= �an� bn� cn � n= 1� � � � �N � (38)

that we obtained by adopting the procedure Eq. (28).
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It is not difficult to see that there are no a-priori rules.
How could there be rules? In general, there is no guarantee
that the data � that resides on the hard disk of the experi-
menter’s computer has been produced by a physical system
and not by, for instance, a bug in the operating system
that is controlling the computer. Moreover, for bonafide
experimental data, it should not matter who carries out the
data analysis: Once the data has been recorded and there is
agreement on the procedure to analyze this data, the results
(but not necessarily the subjective conclusions) should not
depend on whether or not the individual that performs the
data analysis “knows” about quantum theory. The follow-
ing example may be useful to understand the conceptual
problem.

4.3.1. Relating Frequencies to Probabilities

Let us consider the experiment in which we toss a coin N
times. The set of N observations looks like �H�H�T � � � ��
where H and T denote head and tails, respectively. From
the set of data, we find that the number of times that the
coin ends up with tails on the floor is h. Thus, the fre-
quency with which we observe head is then f = h/N ,
which clearly is a well-defined number. Little thought
shows that without any further knowledge/assumption
about the experiment, that is all we can say (of course, we
could calculate correlations between events and so on but
this does not change the essential point of the discussion).

Imagining that we can continue the experiment forever
does not help either because limN→
 h/N is not well-
defined.37–39 Indeed, it may happen that we never observe
heads or always observe heads. If, in our description of
the experiment, we would like to go beyond just giving
the numbers 
hi�Ni� for i = 1� � � � �M repetitions of the
experiment, we have to make additional assumptions.

Implicit in the interpretation of most scientific exper-
iments is the assumption that there is some underlying
process that generates the data. In the simple case of the
coin, assuming Newton’s law holds, solving the equations
of motion allows us to predict the outcome of each indi-
vidual toss.37 This outcome depends on how well we know
the initial conditions, the precise form of the force field
and so on.

If a description on the level of individual events seems
too complicated, or if we do not have enough knowledge
to describe the whole experimental situation (as in the case
of the coin), it is customary to postulate that there is some
underlying probabilistic process that determines the fre-
quency with which the events will be observed.

It is instructive to see how the process of reasoning
works in the case of the coin (the use of quantum theory to
describe observed phenomena requires the same logic). As
usual, the simplest probabilistic model for the outcome of
the experiment of tossing the coin, assumes that (1) there
is a probability p to observe heads and that (2) this prob-
ability is logically independent of what happens at other

tosses. Now, these are nice words but, in the absence of
any experimental data, what do they mean?

The probability p is a mathematical concept that we
use to encode, by a real number in the interval '0�1(,
our state of knowledge about the problem.37�39 The state-
ment that this probability is logically independent of what
happens at other tosses cannot be expressed in terms of
frequencies.37–39 It is an hypothesis that we make without
knowing what the frequencies and correlations between the
events will be. Once we have collected the experimental
data, we may compute the probability for this hypothe-
sis to be true or not and we may also use the observed
frequency to assign a value to the probability p.37–39

From a logical and conceptual point of view, it is
extremely important to realize that the first step is to define
the concept of “probability” through the Kolmogorov set
of axioms or through the more general inductive logic
approach (see also Section 6).37 Then, and only then, it
may make sense to use the observed frequency to assign a
number to the probability for an event to occur. We con-
tinue with the example of the coin to illustrate this point.

Now imagine a thought experiment (=a mental con-
struct) in which we toss the coin N times. Note that
in a strict mathematical sense, the mathematical model
cannot be simulated by an algorithm on a digital com-
puter, which by construction is a deterministic machine.
Of course, using pseudo-random numbers, we can simu-
late events that are unpredictable to anyone who does not
know the initial state or the pseudo-random number gener-
ator algorithm. The mathematical model can then be used
to test whether it describes the global features (but not the
individual events) well.

A direct, constructive proof that probabilities are defined
through frequencies would be to invent a practical proce-
dure (algorithm) that simulates the tossing of the coin such
that the probability for head is exactly p and such that
each toss is logically independent from all others. Such an
algorithm does not exist: The concept of probability is a
mental construct and has no meaning in the realm of algo-
rithms that generate events but, that does not imply that
the concept of probability would be useless for describ-
ing some of the features of the data generated by these
algorithms.

In essence, we are repeating what has been said in the
introduction. Looking back at the diagram in Figure 1,
the mathematical model is located at the right hand side
(model space). The mathematical model itself does not
“produce” events. This is done by some algorithm (data
space). We can test the various hypotheses that underpin
the mathematical model by calculating expectation values
(ensemble averages in the case of the coin) and, using the
mathematical machinery of probability theory, compute the
probability that these hypotheses are correct. Let us now
see how this works in the case of the coin.

According to the assumed mathematical model, the
probability to observe k heads and N −k tails in a thought
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experiment involving N tosses is given by37–39

P
k � N�Z�= N !
k!
N −k�!p

k
1−p�N−k (39)

where Z represents all other knowledge about the experi-
ment not contained in k and N .37�39 If m denotes the num-
ber of heads such that P
m � N�Z� = maxk P
k � N�Z�,
we have

P
m � N�Z�
P
m+1 � N�Z� = 
m+1�

N −m
1−p
p

≥ 1 (40)

and
P
m � N�Z�

P
m−1 � N�Z� = N −m+1
m

p

1−p ≥ 1 (41)

from which it follows that

m

N +1
≤ p ≤ m+1

N +1
(42)

and (
1+ 1

N

)
p− 1

N
≤ m

N
≤
(

1+ 1
N

)
p (43)

According to our mathematical model, of all k= 0� � � � �m,
the value of k that has the largest probability to occur
is m and from Eq. (43) it follows that as N increases,
m/N → p. Of course, we can easily calculate other
useful quantities such as the ensemble average �k/N � =
N−1 ∑N

k=0 kP
k � N�Z� = p and the variance �
k/N�2�−
�k/N �2 = N−1p
1−p�.

We now consider the real experiment in which we toss
the coin and assign the value xn = 0�1, if at the nth toss,
we observe tail or head, respectively. The frequency of
heads is then f = N−1 ∑N

n=1 xn. The next logical step is to
assume that the mathematical model, described above, is
valid. Then, for the most likely experiment (the one with
the largest probability to occur) we have 
1 +N−1�p−
N−1 ≤ f ≤ 
1+N−1�p. Furthermore, the ensemble aver-
age of each event xn becomes a meaningful concept and,
if we compute the ensemble average of the frequency, we
find �f � = p as naively expected. Thus, it makes sense to
use the observed frequency f for assigning a number to
the symbol p in the mathematical theory. At this point, the
mathematical theory has been “connected” to the observed
phenomena. Once this connection has been made, we can
(and should) use the tools of probability theory to compute
the probability that the assumptions of the mathematical
model are correct by confronting the mathematical results
for various ensemble averages to the corresponding aver-
ages of the observed data.

From this simple example, we see that in order to attach
a meaning to the observed frequencies, we first need to
introduce a mathematical model, probability theory in this
case, and make the hypothesis that the outcome of the toss
is determined by a Bernouilli process with probability p.
Only when this hypothesis has been made, it can be proven
that the observed frequency approaches p as N →
 with

probability one.37–39 Thus, the concept of probability and
probability theory have to be introduced first. Only then
we can use probability theory to relate the variables in the
probabilistic model (p in the example of the coin) to the
observed data.

This simple example clearly shows that frequencies and
probabilities have a different logical status.4�37�39 Frequen-
cies are the things that we observe (data space in Fig. 1)
and exhibit a causal dependence on the conditions under
which the data is recorded. Probability theory is a well-
defined mathematical model (model space in Fig. 1) that
allows us to think in a rational, logical manner.37�39 Prob-
abilities express logical relationships. A problem with the
conceptual difference is that in many instances, simply
using the frequency to assign a value to the probability
works so well that we may be inclined to forget that there
is a fundamental difference between the two. Although
it is generally recognized that logical implication is not
the same as physical causation, mixing up frequencies and
probabilities leads to bizarre conclusions.4�37�39 As we dis-
cuss later, the mysteries surrounding the EPR paradox and
Bell’s theorem dissolve if one recognizes that physical
cause and logical dependence are fundamentally different
concepts.37

4.3.2. Relating EPRB Data to Quantum Theory

In the case of the EPRB experiment, we immediately see
that we face the same fundamental problem if we go
beyond the description of merely giving the data collected
in the experiment. To make progress in understanding the
behavior of the system as it is revealed to us by our (exper-
imental) method of questioning, we have three options:
(1) Use the established mathematical framework of prob-
ability theory to relate the quantities that appear in this
theory (probabilities) to experimentally observed facts
(expected frequencies).
(2) Construct an event-based computer model that directly
generates the data set Eq. (37), with expectation values
that agree with those of quantum theory.
(3) Without relying on concepts of quantum theory, con-
struct a probabilistic model that predicts the expected fre-
quencies as observed in the experiment.

As quantum theory has nothing to say about individual
events,3�4 logically speaking option (2) cannot make any
reference to quantum theory. Sections 5 and 8 are devoted
to options (2) and (3), respectively. For now, we continue
with option (1).

If we measure a property of a single particle, from
Eq. (29) we naively expect that the assignment

�E1
a1� ←
∑

x� y=±1 xCxy∑
x� y=±1Cxy

�E2
a2� ←
∑

x� y=±1 yCxy∑
x� y=±1Cxy

(44)
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holds with probability one. Note that Eq. (44) contains
contributions from the events that fall within the coinci-
dence window only. As explained earlier, for the assign-
ments Eq. (44) to make sense mathematically, we have to
assume that there is an underlying probabilistic process
that generates the data �xn� i�. The fact that quantum theory
describes a very large variety of experimental data strongly
suggests that the assignment Eq. (44) makes a lot of sense.

As explained earlier, for the quantum dynamical variable
!1 · a!2 · b, it is not clear at all how to relate its eigen-
value cn to the data set Eq. (37). What does it mean to
measure a common property of a system of two particles?
Why is the time-tag data absent in the quantum theoretical
description while it is of vital importance for the experi-
ment? Evidently, we need a proper operational definition
of “a system of two particles” in terms of the observed
data.

As it is our aim to reproduce the experimental results
as well as the results of the quantum model for the
experiment, it would be logically inconsistent to adopt
a definition that is different from the one used in real
EPRB experiments. Therefore, we should consider the
assignment

�E
a1�a2�←
∑

x� y xyCxy∑
x� y Cxy

(45)

where the frequency to observe systems of two particles is
given by

f 
a1�a2�W� =
1
N

∑
x� y

Cxy

= 1
N

N∑
n=1

�
W −�tn�1 − tn�2�� (46)

In Eq. (46), the coincidence in time enters because it is an
essential ingredient in any EPRB experiment. The expres-
sion for the coincidence is an operational procedure to
define precisely, in terms of the observed data, the meaning
of the statement that two particles constitute a two-particle
system.

5. SIMULATION MODEL

In this section, we take up the main challenge, the con-
struction of locally causal (in Einstein’s sense) processes
that generate the data sets Eq. (2) such that they reproduce
the results of quantum theory, summarized in Table I.

A concrete simulation model of the EPRB experi-
ment sketched in Figure 2 requires a specification of the
information carried by the particles, the algorithm that
simulates the source and the observation stations, the
Stern-Gerlach magnets, and the procedure to analyze the
data. We now describe a computer simulation model that
generates the data ��1��2�, see Eq. (2). From the spec-
ification of the algorithm, it will be clear that it com-
plies with Einstein’s criterion of local causality on the

ontological level: Once the particles leave the source, an
action at observation station 1 (2) can, in no way, have a
causal effect on the outcome of the measurement at obser-
vation station 2 (1).

In this section, we limit the discussion to systems of
two S = 1/2 particles. The algorithm that simulates the
EPRB experiments with photons, as well as the results of
the simulations, are very similar to those presented here.
A detailed account of the simulations for the photon sys-
tem can be found elsewhere.33–35

5.1. Algorithm

5.1.1. Source and Particles

As in the quantum theoretical treatment of the problem,
we will consider two different cases. In Case I, the source
emits particles that carry a unit vector Sn� i = 
−1�i+1


cos:n sin 1n� sin:n sin 1n� cos1n�, representing the mag-
netic moment (or spin) of the particles. The spin of a par-
ticle is completely characterized by :n and cos1n, which
we assume to be distributed uniformly over the interval
'0�26' and '−1�1(, respectively. In Case II, the source
emits particles that carry fixed unit vectors Sn� i = Si.

5.1.2. Observation Station

Prior to the data collection, we fix the number M of differ-
ent directions of the Stern-Gerlach magnets. We use 4M
pseudo-random numbers to fill the arrays 
bi�1� � � � �bi�M�
for i= 1�2 (in the photon experiments of Aspect et al. and
Weihs et al., M = 2).26�29

5.1.3. Stern-Gerlach Magnet

The input-output relation of a Stern-Gerlach magnet is
rather simple: For a fixed direction ai of the field, the
Stern-Gerlach magnet deflects a particle with magnetic
moment Sn� i in a direction that we label by xn� i = ±1.
As the particle travels through the Stern-Gerlach magnet,
the magnetic moment of the particle changes from Sn� i to
Sn� i = xn� iai.

According to the simple quantum mechanical model of
the Stern-Gerlach experiment,4 for fixed S and fixed ai,
the probability to observe xn� i =±1 is 
1±S ·ai�/2. Thus,
in this case, the simulation algorithm should generate the
sequence xn� i = ±1 such that

lim
N→


1
N

N∑
n=1

xn� i = �xn� i� = S ·ai (47)

with probability one. However, if the input consists of
uniformly distributed Sn� i, the sequence of output bits
xn� i = ±1 should satisfy

lim
N→


1
N

N∑
n=1

xn� i = �xn� i� = 0 (48)
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with probability one, independent of the orientation ai of
the Stern-Gerlach magnet. We now consider two algo-
rithms, a deterministic and a pseudo-random one, that sim-
ulate the operation of a Stern-Gerlach magnet.
Deterministic Model. Elsewhere, we have demonstrated

that simple deterministic, local, causal, and classical pro-
cesses that have a primitive form of learning capability
can be used to simulate quantum systems, not by solv-
ing a wave equation but directly through event-by-event
simulation.8–11 The events are generated such that their
frequencies of occurrence agree with the probabilities of
quantum theory. In this simulation approach, the basic
processing unit is called a deterministic learning machine
(DLM).8–11�64

A DLM is a device that exchanges information with
the particles that pass through it. It learns by comparing
the message carried by an event with predictions based
on the knowledge acquired by the DLM during the pro-
cessing of previous events. The DLM tries to do this in
an efficient manner, effectively by minimizing the differ-
ence of the data in the message and the DLM’s internal
representation of it.8–11 A DLM learns by processing suc-
cessive events but does not store the data contained in the
individual events.

Connecting the input of a DLM to the output of another
DLM yields a locally connected network of DLMs. A
DLM within the network locally processes the data con-
tained in an event and responds by sending a message
that may be used as input for another DLM. Networks of
DLMs process messages in a sequential manner and only
communicate with each other by message passing: They
satisfy Einstein’s criterion of local causality.

For the present purpose, we only need the simplest ver-
sion of the DLM.8 The DLM that we use to simulate the
operation of the Stern-Gerlach magnet is defined as fol-
lows. The internal state of the ith DLM, after the nth event,
is described by one real variable un� i. Although irrele-
vant for what follows, this variable may be thought of
as describing the fluctuations of the applied field due to
the passage of an uncharged particle that carries a mag-
netic moment. As the particle with spin Sn� i communicates
(interacts) with the DLM (applied field), the latter updates
its internal state according to

un� i =
{
lun−1� i+1− l if Sn� i ·ai ≥ lun−1� i

lun−1� i−1+ l if Sn� i ·ai < lun−1� i

(49)

and the spin changes according to

Sn� i =
{+ai if Sn� i ·ai ≥ lun−1� i

−ai if Sn� i ·ai < lun−1� i

(50)

corresponding to spin up and spin down (relative to the
direction of the magnetic field ai), respectively. If the DLM
selects spin up (down), it generates a xn� i =+1 
xn� i =−1�
event. In Eqs. (49) and (50), 0 < l < 1 is a parameter

that controls the speed with which the DLM learns (and
forgets) about the incoming events.

The dynamic behavior of the DLM, defined by the rule
Eq. (49) is discussed in detail elsewhere8 and may be sum-
marized as follows:
(1) If the DLM receives particles with fixed spin Sn� i = S,
the sequence �xn� i� is periodic for all n> n0, n0 depending
on u0� i and l.8 For n > n0, the frequency N±/
N+ +N−)
of xn� i =±1 events is given by 
1+S ·ai�/2 and we have8

lim
N→


1
N

N∑
n=1

xn� i = S ·ai (51)

exactly. Note that the limit N → 
 in Eq. (51) is well-
defined because the sequence �xn� i� is periodic with a finite
periodicity.8

(2) If the DLM receives Sn� i, statistically independent and
uniformly distributed over the unit sphere, then the DLM
generates the sequence xn� i = sign
Sn� i ·ai� for all n > n0,
n0 depending on u0� i and l.8 In this case we have

lim
N→


1
N

N∑
n=1

xn� i = 0 (52)

In this case, the xn� i are Bernoulli variables and the law
of large numbers then guarantees that Eq. (52) holds with
probability one.38

Thus, depending on the nature of the input sequence Sn� i,
the DLM generates output sequences �xn� i =±1� and par-
ticles with spin Sn� i such that the time average of these
sequences agree with the experimental facts.
Pseudo-Random Model. The simplest algorithm that

performs the task of simulating a Stern-Gerlach magnet
reads

xn� i =
{+1 if rn ≤ Sn� i ·ai
−1 if rn > Sn� i ·ai

(53)

where −1 ≤ rn < 1 are uniform pseudo-random numbers
and the spin changes according to

Sn� i =
{+ai if xn� i = +1

−ai if xn� i = −1
(54)

It is easy to check that on average, the input-output behav-
ior is the same as the one of the idealized Stern-Gerlach
magnet.

5.1.4. Time Tags

When a charge-neutral, magnetic particle passes through
a Stern-Gerlach magnet it experiences a time-delay that
depends on the direction of its magnetic moment relative
to the direction of the field in the Stern-Gerlach magnet.
Experimentally, this time-delay is used to perform spec-
troscopy of atomic size magnetic clusters51 and atomic
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Fig. 6. Comparison between the event-based simulation results obtained by using a deterministic model for the Stern-Gerlach magnets and quantum
theory for Case I. Left: The two-particle correlation E
a1�a2� as a function of 1a1a2

≡ arccos
a1 ·a2�. The simulation results are for k = 1, � = 0�001,
l= 0�999, M = 10, N = 106, d= 3 (red bullets) and d= 0 (blue squares), the latter corresponding to discarding the time-tag data (equivalent to W >T0).
Solid line (black): �E
a1�a2�=− cos1a1a2

, as obtained from quantum theory. Right: Single-particle expectation value as a function of 1i ≡ arccos
ai ·z�,
where z is the unit vector in the z-direction. The simulation results are for k = 1, � = 0�001, l = 0�999, M = 10, N = 106, and d = 3. Bullets (red):
E1
a1�a2�; Squares (blue): E2
a1�a2�. Solid line (black): �E1
a1� = �E2
a2� = 0 for all orientations of the Stern-Gerlach magnets, as obtained from
quantum theory.

interferometry.52 As a simple simulation model for this
time delay mechanism, we assume that the time delay tn� i
of a particle with spin Sn� i is distributed uniformly over
the interval 't0� t0 +Tn� i(. Similarly, experimental evidence
that the time-of-flight of single photons passing through
an electro-optic modulator fluctuates considerably can be
found in Ref. [56]. The idea that these fluctuations might
be responsible for the observed “quantum correlations” has
been proposed in our earlier work.22

From Eq. (3), it follows that only differences of time
delays matter. Hence, we may put t0 = 0. The time-tag for
the event n is then tn� i ∈ '0� Tn� i(. We thus need an explicit
expression for Tn� i. The choice Tn� i = constant is too sim-
ple: In this case we recover the model considered by Bell,
which is known not to reproduce the correct quantum cor-
relation Eq. (19).14

Assuming that the particle only “knows” the direction
of its own spin relative to the direction of the magnetic
field in the Stern-Gerlach magnet, we can construct one
number that is rotationally invariant, namely Sn� i ·ai. Thus,
we assume Tn� i = F 
Sn� i ·ai�. As Sn� i ·ai = cos1Sn� iai deter-
mines whether the particle generates a +1 or −1 signal,
it is not unreasonable to expect that F is a function of
sin 1Sn� iai . After a few trials, we found that Tn� i = T0�1−

Sn� i · ai�2�d/2 = T0�Sn� i × ai�d, yields interesting results.
Here, T0 is the maximum time delay which defines the
unit of time and d is a free parameter in our model. In
the sequel, we express � , W , tn� i, and Tn� i in units of T0,
which for convenience we set equal to one.

5.1.5. Data Analysis

The algorithm described earlier generates the data sets
�i for spin-1/2 particles, just as experiment does for
photons.29 In order to count the coincidences, we strictly
follow the procedure adopted in the EPRB experiment with

photons.29 First, we choose a time-tag resolution 0 < � <
T0 and a coincidence window � ≤ W . We set the corre-
lation counts Cxy
?m��m′� to zero for all x� y = ±1 and
m�m′ = 1� � � � �M . We compute the discretized time tags
kn� i = �tn� i/� for all events in both data sets. Here �x 
denotes the smallest integer that is larger or equal to x, that
is �x −1< x ≤ �x . According to the procedure adopted
in the experiment,29 an entangled pair is observed if and
only if �kn�1 −kn�2� < k = �W/� . Thus, if �kn�1 −kn�2� <
k, we increment the count Cxn�1� xn�2


?m��m′�. After pro-
cessing all the data for the N events, we compute
the single-particle expectation values and the correlation
according to Eqs. (4) and (6), respectively.

5.2. Deterministic Model: Results

5.2.1. Simulation of Case I and II

We first demonstrate that the simulation model reproduces
the results of quantum theory in the case of the EPRB
experiment (Case I). In Figure 6 we show simulation data
for k = 1, d = 0�3, � = 0�001, l = 0�999, and M = 10,
N = 106 for 100 randomly chosen values of a1 ·a2, cover-
ing the interval '−1�+1(. At the nth event, two uniform
pseudo-random numbers 1 ≤m�m′ ≤M are used to select
the rotation angles an� i = bi�m. Within the statistical errors,
for the pseudo-random number generators that we use,65

the correlation between m and m′ is zero. The solid line
is the prediction of quantum theory, see second column of
Table I. It is clear that for d = 3 there is excellent agree-
ment between simulation and quantum theory. This is not
an accident. Simulations for d= 3 but with different values
of the other parameters (results not shown) confirm that
for sufficiently small � and sufficiently large N , the sim-
ulation model reproduces the quantum theoretical results
listed in the second column of Table I.

J. Comput. Theor. Nanosci. 4, 957–991, 2007 973



Delivered by Ingenta to:
hans de raedt

IP : 81.244.151.23
Mon, 24 Dec 2007 15:21:45R

E
V
IE
W

Event-by-Event Simulation of Quantum Phenomena De Raedt et al.

–1

–0.5

0

0.5

1

0 20 40 60 80 100 120 140 160 180

E
(a

1,
 a

2)

η

–1

–0.5

0

0.5

1

0 20 40 60 80 100 120 140 160 180

E
i(a

1,
a 2

)

η

Fig. 7. Same as in Figure 6 except that we simulate Case II with a1 = 
0�0�1�, a2 = 
1/2�1/2�1/
√

2�, Sn� i = 
−1�i+1
sin5�0� cos5� for 0 ≤ 5 ≤ 6,
and 1i ≡ arccos
ai ·Si� and that we plot the two-particle correlation and the single-particle expectation value as a function of 5.

Second, to simulate Case II, we let the source produce
particles with fixed polarization but we do not change
the algorithm that simulates the observation stations. In
Figure 7, we present simulation data for k = 1, d = 0�3,
� = 0�001, l = 0�999, and N = 106, a1 = 
0�0�1�, a2 =

1/2�1/2�1/

√
2�, and Sn� i = 
−1�i+1
sin5�0� cos5� for

0 ≤ 5 ≤ 6. For this choice of a1, a2, and Sn� i, quantum
theory predicts (see Table I)

�E1
a1� = cos5

�E2
a2� = − sin5+√
2 cos5

2
(55)

�E
a1�a2� = − 
sin5+√
2 cos5� cos5
2

and for d = 3, as shown in Figure 7, the simulation model
reproduces the quantum theoretical results very well.

Extensive tests (data not shown) lead to the conclu-
sion that for d = 3 and W → � → 0, our simulation
model reproduces all the results of quantum theory of two
S = 1/2 objects, for both Case I and Case II.

Also shown in the left panel of Figures 6 and 7 are
the results for E
a1�a2� if we ignore the time-delay data
(equivalent to d = 0 or W > T0). In Case I (see Fig. 6),
we obtain simulation results that agree very well with the
result that is obtained by considering the class of mod-
els studied by Bell. In Case II, E
a1�a2� is given by the
expression in Eq. (55) and up to the usual statistical fluc-
tuations, the simulation data (see Fig. 7) do not depend
on the value of the time-tag parameter d and the time
window W .

5.2.2. Case I: Numerical Treatment

As a check on the simulation results for Case I, we exam-
ine the limit N →
 and show that in the limit W → 0, the
simulation model yields the two-particle correlation that is
characteristic for the singlet state.22�33

In the case of Case I we may replace the DLM model
for the Stern-Gerlach magnet by the more simple model

that generates data according to xn� i = sign
Sn� i · ai�. For
N → 
, Eq. (6) can be written as

E
a1�a2�=
∫ 6

0

∫ 26
0 x1x2D
T1� T2�W� sin 1 d1 d:∫ 6

0

∫ 26
0 D
T1� T2�W� sin 1 d1 d:

(56)

where D
T1� T2�W� is the density of coincidences for
fixed ai and angles 
:�1� (within a small surface area
sin 1d1d:), Ti ≡ F 
Si · ai�, Si = Si
:� 1�, and xi =
sign
Si ·ai�.

An analytical expression for D
T1� T2�W� can be de-
rived as follows. For a fixed time-tag resolution 0< � < 1,
the discretized time-tag for the nth detection event is given
by kn� i = �tn� i�−1 where �x denotes the smallest integer
that is larger or equal to x. The discretized time-tag kn� i
takes integer values between 1 and Ki ≡ ��−1Ti , where Ki
is the maximum, discretized time delay for a particle car-
rying angles 
:�1� and passing through a Stern-Gerlach
magnet with orientation ai. If �kn�1 −kn�2�< k = ��−1W  ,
the two spin-1/2 particles are defined to form a pair. For
fixed ai and 
:�1�, we can count the total number of pairs,
or coincidences C
K1�K2� k�, by considering the graphical
representation shown in Figure 8. After a careful exami-
nation of all possibilities, we find that the density can be
written as D
T1� T2� ��= C
K1�K2�1�/K1K2 where

C
K1�K2�k� = 
2k0−1�k12−k0
k0−1�/2

−max
0�
K12−1�max
0�K12�/2�

+max
0�k−k0�k0−max
0�kk12−K1K2�

(57)

and k0 = min
K1�K2� k�, k12 = min
K1�K2�, and K12 =
k12 −max
0�max
K1�K2�−k�. After substituting Eq. (57)
into Eq. (56), the remaining integrals are easily calculated
numerically.

In Figure 9 we present results for S
1� = S
a�b� c�d�
for the case k = W = 1 and d = 0� � � � �5 and the choice
a ·c= b ·c= b ·d= cos1 and a ·d= cos 31.4 For d= 0 (or
W >T0), we find that S
1�≤ 2. Thus, we see that ignoring
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Fig. 8. Graphical representation of the process of counting pairs. The
time interval is divided in bins of size � , represented by the elementary
squares. The two parallel, 45! lines indicate the time window W , which
was chosen to be 2� in this example. In the limit N → 
, the total
number of pairs for fixed ai and 
:�1� is given by the number of whole
squares that fall within the time window and satisfy 1 ≤ ki < Ki for
i = 1�2. For K1 > K2, all filled squares contribute while for K ′

1 = K2,
the dark gray square does not contribute. For K1 < K2 we interchange
labels 1 and 2.

time-tag data automatically renders our model incapable
of producing data that violates the Bell inequalities.14 For
1 ≤ d < 3, 2< Smax < 2

√
2 and hence, the model violates

the Bell inequality but does not reproduce the correlations
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Fig. 9. Results for S
1�= S
a�b� c�d� where a ·c= b ·c= b ·d= cos1
and a ·d= cos 31,4 for the case k=W = 1 and d = 0� � � � �5, as obtained
by numerical evaluation of Eq. (56). Solid squares (gray): d = 0 (or
W > T0); Plusses (blue): d = 1; Crosses (green): d = 2; Bullets (red):
d = 3; Open squares (magenta): d = 4; Open diamonds (blue): d = 5.
Dashed horizontal lines at +2 (−2): Maximum (minimum) value if the
system is described by a factorizable two-particle probability distribution.
Solid horizontal lines at +2

√
2 (−2

√
2): Maximum (minimum) value if

the system is described by the quantum theory for two spin-1/2 particles.
Solid line: S
1�= cos 31−3 cos1, as obtained from quantum theory.
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Fig. 10. Maximum of S
a�b� c�d� as a function of the time window W

relative to the time-tag resolution � for a · c = b · c = b ·d = cos1 and
a ·d= cos 31. Curves from bottom to top: Results obtained from Eq. (56)
for d = 0�1� � � � �10. Dashed line: Value of Smax = 2

√
2 if the system is

described by quantum theory.

of the singlet state. As expected on the basis of our results
for E
a1�a2�, if d = 3, the numerical results produced by
our model are indistinguishable from the quantum theo-
retical result S
1� = cos 31− 3 cos1. For d > 3, 2

√
2 <

Smax ≤ 4, implying that our model exhibits correlations that
cannot be described by the quantum theory of two spin-1/2
particles, even though it rigorously satisfies Einstein’s cri-
teria for local causality.

It is clear that the result for the coincidences depends
on the time-tag resolution � , the time window W and the
number of events N , just as in real experiments,24–31 see
Section 2.7. Expression Eq. (56) allows us to easily study
the behavior of the model as a function of the time win-
dow W , relative to the time-tag resolution � . In Figure
10 we plot Smax as a function of W/� for various values
of d. Note that the numerical results agree with the values
of Smax that can be obtained analytically for the limiting
cases W = �→ 0, d= 0�3 and W >T0 (see Section 5.2.3).
From Figure 10, it is clear that for d = 3 and W = 0, the
model reproduces the result of the quantum system in the
fully entangled state. Furthermore, Figure 10 shows that,
for sufficiently small time-tag resolution � , increasing the
time window changes the nature of the two-particle cor-
relations. Since W is a parameter solely used in the data
analysis procedure and Smax is a decreasing function of W ,
the value of Smax and/or of the correlations are not suffi-
cient to make a definite statement about the nature of the
source or even the nature of the complete set-up.

5.2.3. Case I: Exact Solution

For some choices of the parameters, Eq. (56) can be
expressed in closed form. We first examine the caseW >T0

for which �
W −�tn�1 − tn�2�� = 1 and D
T1� T2�W� = 1.
Without loss of generality, we may choose the coordinate

J. Comput. Theor. Nanosci. 4, 957–991, 2007 975
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system such that a1 = 
1�0�0� and a2 = 
cos?� sin?�0�.
Then, Eq. (56) reduces to14

E
a1�a2� = − 1
26

∫ 6

0

∫ 26

0
x1x2sin 1 d1 d:

= −1+ 2� arccos
a1 ·a2��
6

(58)

Obviously, Eq. (58) does not agree with the quantum the-
oretical expression Eq. (19).

Second, we consider the case in which W → � . Formula
Eq. (57) greatly simplifies if we consider the case k = 1
(W = �), yielding C
K1�K2�1� = min
K1�K2� as is evi-
dent by looking at Figure 8. For W = � and fixed ai and

:�1�, the density D
T1� T2� ��= C
K1�K2�1�/K1K2 that
we register two particles with a time-tag difference less
than � is bounded by

�
min
T1 + �� T2 + ��

T1 + ��
T2 + ��

< D
T1� T2� ��≤ �
min
T1� T2�

T1T2
(59)

For W = �→ 0 and Ti = �Si×ai�3, the integrals in Eq. (56)
can be evaluated in closed form. Denoting y1 = sign
cos:�
and y2 = sign
cos
:−?�� and using the same coordinate
systems as above, we find

E
a1�a2� = −
∫ 26

0 y1y2
min
sin2 :�sin2
:−?��

sin2 : sin2
:−?� d:∫ 26
0

min
sin2 :�sin2
:−?��
sin2 : sin2
:−?� d:

= −a1 ·a2 (60)

which is exactly the same as the quantum theoretical result
Eq. (19). In retrospect, it is remarkable that we obtain
Eq. (60) by requiring that the results do not depend on W
and � , which in this case is very much the same as hypoth-
esis (3) of Section 8, used in the probabilistic modeling of
the EPRB experiment.

For other integer values of d, the integrals can be
worked out as well but the calculations are rather tedious
and the results are not very illuminating. As an example,
we give the expression for d = 5:

E
a1�a2� = −a1 ·a2

15−7
a1 ·a2�
2

11−3
a1 ·a2�
2

(61)

In Figure 11, we demonstrate that the simulation data for
d = 5 agree very well with the analytical result Eq. (61).
As shown in Figure 9, for d = 5, the data not only vio-
late the Bell inequality but also violate the rigorous upper-
bound Smax ≤ 2

√
2 for a quantum system of two S = 1/2

particles.

5.3. Pseudo-Random Model: Results

Using the simple pseudo-random model for the Stern-
Gerlach magnet yields results that are qualitatively the
same as those of the deterministic model. Therefore,
we present a few, representative simulation results only.
A detailed analytical treatment of the pseudo-random
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Fig. 11. Comparison between the event-based simulation results
obtained by using a deterministic model for the Stern-Gerlach magnets,
quantum theory and the exact solution for the analytical model in the
limit N →
. The two-particle correlation E
a1�a2� for Case I is shown
as a function of 1a1a2

≡ arccos
a1 ·a2�. Markers: Event-based simulation
results obtained by using a deterministic model for the Stern-Gerlach
magnets. The simulation parameters are k = 1, � = 0�001, l = 0�999,
M = 10, N = 106, d = 5 (red bullets) and d = 0 (blue squares), the lat-
ter corresponding to discarding the time-tag data (equivalent to W > T0).
Solid line (black): Quantum theory �E
a1�a2� = − cos1a1a2

. Dashed line
(black): Rigorous result Eq. (61) for the simulation model for d = 5 in
the limit W = � → 0.

model is given in Section 7 and fully supports the simula-
tion results described next.

In Figure 12, we demonstrate that the simulation results
for d= 7 are in excellent agreement with the quantum the-
oretical expression for the correlation in the singlet state.
However, as we prove in Section 7, if the number of events
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Fig. 12. Comparison between the event-based simulation results
obtained by using a pseudo-random model for the Stern-Gerlach magnets,
quantum theory and the exact solution for the analytical model in the
limit N →
. The two-particle correlation E
a1�a2� for Case I is shown
as a function of 1a1a2

≡ arccos
a1 ·a2�. Markers: Event-based simulation
results obtained by using a pseudo-random model for the Stern-Gerlach
magnets. The simulation parameters are k = 1, � = 0�00001, M = 10,
N = 109, d = 7 (red bullets) and d = 0 (blue squares), the latter corre-
sponding to discarding the time-tag data (equivalent to W > T0). Solid
line (black): Quantum theory �E
a1�a2�= − cos1a1a2

.
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Fig. 13. Same as Figure 12 except that bullets (red) are simulation
results for d = 5.

goes to infinity, there is no exact agreement: There is a
difference between the two curves of maximum 2%. Note
that in the case of the deterministic model exact agree-
ment is obtained for d = 3. Also notice that there is some
weak but systematic deviation from the exact results for
1a1a2

≈ 0 and 1a1a2
≈ 6. This is due to the pseudo-random

nature of the model: It reproduces the perfect (anti) corre-
lation at 1a1a2

= 0�6 in the limit N → 
 only, as shown
rigorously in Section 7.

The results for d= 5 and d= 9, presented in Figures 13
and 14, respectively, show the same trend as we observed
when using the deterministic model for the Stern-Gerlach
model: For d = 5 the correlation is less strong than for a
quantum system in the singlet state but for d ≥ 8 it is defi-
nitely stronger. Notice that for a fixed number of events N ,
the systematic deviation from the perfect (anti) correlation
at 1a1a2

= 0�6 increases with d.

5.4. Summary

Starting from the factual observation that experimental
realizations of the EPRB experiment produce the data
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Fig. 14. Same as Figure 12 except that bullets (red) are simulation
results for d = 9.

��1��2� (see Eq. (2)) and that coincidence in time is a
key ingredient for the data analysis, we have constructed
computer simulation models that satisfy Einstein’s condi-
tions of local causality and, in the case that we employ a
deterministic model for the Stern-Gerlach magnet, exactly
reproduce the correlation �E
a1�a2�=−a1 ·a2 that is char-
acteristic for a quantum system in the singlet state. In
this case, both the simulation and a rigorous mathematical
treatment of the model lead to the conclusion that for d= 3
and W → �→ 0, the model reproduces all the results (see
Table I) of quantum theory for a system of two S = 1/2
particles. The pseudo-random model for the Stern-Gerlach
magnet yields data that are qualitatively similar but, for
integer values of d, do not exactly agree with quantum
theory (see Section 7). It is of interest to mention here
that if we simulate EPRB experiments that use the photon
polarization as a two-state system, both the deterministic
and pseudo-random model exactly reproduce the quantum
theoretical results.22�35

Salient features of these models are that they generate
the data set Eq. (2) event-by-event, use integer arithmetic
and elementary mathematics to analyze the data, do not
rely on concepts of probability and quantum theory, and
provide a simple, rational and realistic picture of the mech-
anism that yields correlations such as Eq. (19).

One may wonder why particles emitted by a source with
definite spin orientations that are exactly opposite to each
other are not described by a density matrix that is a prod-
uct state. Of course, in this respect the description of our
model may be deceptive. In a naive picture one might think
that the whole system is described by a density matrix that
is a product state. The problem with this naive picture is
that it often works extremely well but in some cases leads
to all kinds of logical inconsistencies (see Ref. [4] for an
extensive discussion of this point) and it should not come
as a surprise that the EPR problem is the prime example
where the naive picture breaks down completely. Quan-
tum theory describes the system as a whole: It does not
describe a single pair of particles as they leave the source.

Another deceptive point may be that in our model, one
can compute the correlation of the particles right after
they left the source. This correlation is exactly minus one.
However, this correlation has no relevance to the exper-
iment: To measure the correlation of the particles, it is
necessary to put in the Stern-Gerlach magnets, detectors,
timing logic, and so on. We emphasize that the simulation
procedure counts all events that, according to the same cri-
terion as the one employed in experiment, correspond to
the detection of two-particle systems.

Our simulation results also suggest that we may have to
reconsider the commonly accepted point of view that the
more certain we are about a measurement, the more “clas-
sical” the system is. Indeed, according to experiments and
in concert with the prediction of our model, this point of
view is in conflict with the observation that the more we
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reduce this uncertainty by letting W → 0, the better the
agreement with quantum theory becomes. Both in experi-
ments and in our model, the uncertainty is in the time-tag
data and it is this uncertainty that affects the coincidences
and yields the quantum correlations of the singlet state
(if W → 0). Isn’t it then very remarkable that the agree-
ment between experiment and quantum theory improves
by reducing (not increasing!) the uncertainty by making
W as small as technically feasible?

We have shown that whether or not these simulation
models produce quantum correlations depends on the data
analysis procedure that is performed (long) after the data
has been collected: In order to observe the correlations of
the singlet state, the resolution � of the devices that gener-
ate the time-tags and the time window W should be made
as small as possible. Disregarding the time-tag data (d= 0
or W > T0) yields results that disagree with quantum the-
ory but agree with the models considered by Bell.14 Our
results show that increasing the time window changes the
nature of the two-particle correlations. This prediction can
easily be tested and is confirmed by re-analyzing avail-
able experimental data with different values of the time
window W , as we did in Section 2.7.

In Case I, the two-particle correlation depends on the
value of the time window W . By reducing W from infinity
to zero, this correlation changes from typical Bell-like to
singlet-like, without changing the procedure by which the
particles are emitted by the source. Thus, the character of
the correlation not only depends on the whole experimen-
tal setup but also on the way the data analysis is carried
out. Hence, from the two-particle correlation itself, one
cannot make any definite statement about the character of
the source. Thus, the two-particle correlation is a prop-
erty of the whole system (which is what quantum theory
describes), not a property of the source itself.

In contrast, in Case II, the observation stations always
receive particles with the same spin orientation and
although the number of coincidences decreases with W
(and the statistical fluctuations increase), the functional
form of the correlation does not depend on W : In Case II,
the single-particle and two-particle correlations do not
depend on the value of the time window W .

6. EINSTEIN’s LOCALITY VERSUS
BELL’s LOCALITY

Starting from the data gathering and analysis procedures
used in EPRB (gedanken) experiments, we have con-
structed an algorithm in which every essential element in
the experiment has a counterpart (see Section 2). The algo-
rithm generates the same type of data as recorded in the
experiments. The data is analyzed according to the exper-
imental procedure to count coincidences. The algorithm
satisfies Einstein’s criteria of local causality, does not rely
on any concept of quantum theory but nevertheless repro-
duces the two-particle correlation of the singlet state and

all other properties of a quantum system consisting of two
S = 1/2 particles.

At first sight, our results may seem to be in contra-
diction with the folklore on the EPR paradox, very often
formulated in terms of Bell’s theorem which states that
quantum theory cannot be described by a local hidden
variable model. In fact, there is no contradiction once one
recognizes that the concept of locality, as defined by Bell,
is different from Einstein’s definition of locality. Bell made
an attempt to incorporate Einstein’s concept of locality
(defined on the level of individual events) to probabilis-
tic theories, apparently without realizing that probabili-
ties express logical, not necessarily physical, relationships
between events. However, the assumption that the absence
of a causal influence implies logical independence leads to
absurd conclusions, even for very mundane problems36�39

and it is therefore not surprising that, when applied to the
quantum problems, this assumption can generate all kind
of paradoxes.36

The simulation model that we describe in this paper, and
similar models that we described elsewhere8–11�66 do not
rely on concepts of probability theory: They operate on
the ontological, event-by-event level. Therefore it would
be logically inconsistent to even attempt to apply Bell’s
notion of locality to these models. However, the fact that
we have proven that there exist event-based models that
satisfy Einstein’s criterion of locality and causality and
also reproduce all properties of a quantum system consist-
ing of two S = 1/2 particles, suggests that it may be of
interest to revisit the relation between locality à la Einstein
and locality à la Bell.

Before we address this issue, we want to make clear that
we do not question the validity of the Bell-type inequali-
ties. These inequalities are mathematical identities that are
useful to characterize the amount of (quantum) correla-
tion between two quantities. In this section, we focus on
the logic that is used to address the meaning of “local-
ity” in quantum physics. In the discussion that follows, we
assume that all processes are causal, that is they should be
physically realizable, and we implicitly exclude all others.

6.1. Einstein’s Locality Criterion

Einstein expressed the principle of locality as the real fac-
tual situation of the system S2 is independent of what is
done with the system S1, which is spatially separated from
the former.4 We formalize this by introducing

Definition: A theory is E-local if and only if it satisfies
Einstein’s principle of locality for each individual event.

Clearly, E-locality applies to each individual fact (onto-
logical level). Recall that quantum theory or probability
theory have nothing to say about individual events: They
describe phenomena on the epistemological level.

The simulation model that we describe in this paper is
a purely ontological model of the EPRB experiment that
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can reproduce the results of quantum theory. From the
description of the simulation algorithm, it is evident that
xn� i and tn� i depend on the variables 
:n� 1n� that represent
the magnetic moment of a particle, and on the orientation
an� i of the Stern-Gerlach magnets, which can be chosen at
will for each 
n� i�. Furthermore, the event n cannot affect
the data recorded for all n′ < n, implying that the algo-
rithm simulates a causal process. In addition, it is obvious
from the specification of the algorithm that xn�1, tn�1, or
an�1 do not depend (in any mathematical sense) on an�2

nor do xn�2, tn�2, or an�2 depend on an�1. This implies that
for each event, the numbers xn�1 and tn�1 (xn�2 and tn�2)
do not depend on whatever action is taken at observa-
tion station 2 (1). Summarizing: Our simulation model is
E-local and causal.

6.2. Bell’s Locality Criterion

To set the stage, we first recall the axioms of probability
theory.4�37�38 Let A, B, and Z denote some propositions
(events) that may be true (may occur) or false (may not
occur). The probability that A is true, conditional on Z
being true, is denoted by P
A � Z�.37�38 The axioms of
probability theory may be formulated as4�37

(1) 0 ≤ P
A � Z�≤ 1.
(2) P
A � Z�+P
Ā � Z�= 1, Ā denoting the logical nega-
tion of A.
(3) P
AB �Z�= P
A �BZ�P
B �Z�= P
B �AZ�P
A �Z�.
These three axioms are necessary and sufficient to define a
consistent mathematical framework for probability theory.

By definition, two events A and B are logically inde-
pendent if and only if P
A � BZ� = P
A � Z�.37�38 If the
events A and B are logically dependent, we have

P
A � BZ�
P
A � Z� = P
B � AZ�

P
B � Z�
= P
B � AZ�P
A � Z�

P
B � Z�P
A � Z�
= P
AB � Z�
P
A � Z�P
B � Z� �= 1 (62)

showing that the assignment of the probability of the event
A (B� depends on the knowledge of the event B 
A�. From
Eq. (62), we see that P
A � BZ� �= P
A � Z� unless the
events A and B are logically independent (we may assume
P
A � Z� > 0 and P
B � Z� > 0 because of the fact that
we actually registered A and B). As we shall see shortly,
the definition of logical independence is of extreme impor-
tance for understanding the implications of Bell’s defini-
tion of locality.

Bell considers theories (see Ref. [14], Chap. 7) that
assign a probability for an event A to be registered,
given that the circumstances under which A is registered
are described by another event Z. The events A and

Z are propositions of the kind “the values of the vari-
ables (as recorded by m measurement devices) are A =
�A1� � � � �Am�” and “the values of the variables (as recorded
by n measurement devices) are Z = �Z1� � � � �Zn�.” Bell
considers the case that the events A and B are localized
in regions 1 and 2 respectively, and assumes that region
1 and 2 are separated in a space-like way such that events
in region 1 (2) have no causal influence on events in
region 2 (1).14

According to probability theory, we have37�38

P
ÂB̌ � âb̌z�= P
Â � B̌âb̌z�P
B̌ � âb̌z� (63)

where we introduced the notation �X and Y̌ to indicate that
event X (Y ) can have no causal effect on event Y (X). We
also made explicit that the condition Z= âb̌z under which
A and B have been registered may be written in terms of a
common condition z and conditions a and b that may have
a causal effect on the outcome of A and B, respectively.
Note that a, b, and z are propositions too.

According to Bell, since the events B and b can have
no causal effect on the event A, in a local causal theory14

P
Â � B̌âb̌z�= P
Â � âz� (64)

and, similarly,

P
B̌ � âb̌z�= P
B̌ � b̌z� (65)

yielding

P
ÂB̌ � âb̌z�= P
Â � âz�P
B̌ � b̌z� (66)

The steps that take us from Eq. (63) to Eq. (66) clearly
show that Bell believes that the absence of a causal influ-
ence implies logical independence. In fact, within proba-
bility theory, Eq. (66) is the formal statement that A (B)
is logically independent of b (a) (see Eq. (62)).

According to Bell, theories that do not satisfy Eq. (66),
such as quantum theory, are not locally causal.14 Theo-
ries that satisfy Bell’s criterion of locality, as expressed
by Eq. (64), will be called B-local. We formalize this by
introducing

Definition: A theory is B-local if and only if Eqs. (64)
and (65) are satisfied

or equivalently,

Definition: A theory is B-nonlocal if and only if Eqs. (64)
or (65) are not satisfied.

Clearly, B-locality is defined within the realm of prob-
abilistic theories only. Note that the folklore on the
EPR paradox generally does not distinguish between
B-locality and E-locality, a remarkable logical leap
because E-locality is defined on the level of individual
events whereas B-locality is defined in terms of probabil-
ities for events to occur.
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A possible explanation for not noticing that this is a
major logical step to take is that it is quite common to
mix up the meaning of frequencies and probabilities. The
former is a property that we measure by counting. It is
a property of the whole system under study. The latter is
a mental, mathematical construct that allows us to reason
about the former. The reader who has difficulties to grasp
this delicate but fundamental point may find it useful to
read Section 4.3.1 once more.

If the events A and B are represented by integer or
real variables A and B (a minor abuse of notation), the
expectation of the joint event AB conditional on ab is
defined by37�38

�AB�ab =
∑
A�B

ABP
AB � abz�� (67)

If Eq. (66) holds, we have

EB
a�b�= �ÂB̌�âb̌ = �Â�â�B̌�b̌ (68)

where we used the subscript B to indicate that we have
assumed that the theory is B-local. Let us focus on the
case that −1 ≤ Â≤ 1 and −1 ≤ B̌≤ 1. Denoting a= �Â�â,
b = � �B�b̂, c = � �C��c, a, b, and c all lie in the interval
'−1�1( and we have

�ab−ac� ≤ �b− c� ≤ 1−bc (69)

hence

�EB
a�b�−EB
a� c��+EB
b� c�≤ 1 (70)

which has the form of one of the Bell inequalities (other
inequalities can be derived in exactly the same manner)
but lacks the element of the hidden variables (see later).

A B-local theory can never violate the inequality
Eq. (70). If, we find that inequality Eq. (70) is violated
for some E
a�b�, the only conclusion that can be drawn
is that E
a�b� cannot be obtained from a B-local proba-
bilistic theory.

To appreciate the consequences of Bell’s definition of
a local theory, it is very instructive to apply it to exam-
ples that do not require concepts of quantum theory. We
first consider a very simple experiment that shows that
application of Bell’s definition of locality leads to the
conclusion that an urn filled with balls of two differ-
ent colors is described by a theory that is B-nonlocal.36

Second, we show that Bell’s assumption that the absence
of causal influence implies logical independence enforces
very strong conditions on the functional dependence of the
probability distributions, severely limiting the (classical)
phenomena that a B-local theory can describe.

6.2.1. Bernouilli’s Urn is B-Nonlocal

Let us take an urn filled with M red and N −M white balls
(it is sufficient to take N = 2 and M = 1 to see the conse-
quences of Bell’s definition of locality).36 A blind monkey,

having no knowledge about the position of the balls in the
urn, draws two balls without putting the first ball back into
the urn. We consider the events R1 = “the result of the
first draw is a red ball” and R2 = “the result of the second
draw is a red ball.” Denoting all other knowledge about
this experiment by Z, the probabilities for R1 and R2 are

P
R1 � Z�= P
R2 � Z�= M

N
(71)

If the result of the first draw is a red ball, the probability
that the result of the second draw is also a red ball is
given by

P
R2 � R1Z�=
M −1
N −1

(72)

Let us now assume that the monkey hides the first ball
from us but that it shows us the second ball, which turns
out to be red. As there can be no causal effect of the
second draw on the result of the first draw, application of
Bell’s reasoning to this experiment yields

P
R1 � R2Z�= P
 �R1 � Ř2Z�= P
 �R1 � Z�= M

N
(73)

which is obviously inconsistent with the basic rules of
probability theory. Indeed, from axiom 3, we have

P
R1 � R2Z�P
R2 � Z�= P
R2 � R1Z�P
R1 � Z� (74)

and using Eq. (71) we find

P
R1 � R2Z�= P
R2 � R1Z�=
M −1
N −1

(75)

which is definitely in conflict with Eq. (73). Thus, Bell’s
assumption that the absence of a causal influence implies
logical independence leads to inconsistent results in prob-
ability theory when applied to the simple physical system
of an urn filled with red and white balls.36

6.2.2. B-Local Hidden Variable Theories

We now demonstrate that a consistent application of Bell’s
definition of locality imposes severe constraints on the
functional form of the probabilities. Following Ref. [37],
let us introduce a new set of K exhaustive, mutually exclu-
sive events Hk (k = 1� � � � �K), exhaustive implying that
H1 +· · ·+HK is always true. Then, according to the rules
of probability theory37

P
AB � abz� = P
AB
H1 +· · ·+HK� � abz�

=
K∑
k=1

P
ABHk � abz�

=
K∑
k=1

P
AB �Hkabz�P
Hk � abz� (76)

To make contact to Bell’s work, we write D instead of Hk,
call them hidden variables and replace the summation by
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an integration. We have

P
ÂB̌ � âb̌z�=
∫
P
ÂB̌ � âb̌zD�P
D � âb̌z�dD (77)

The variables D may have a causal influence on the events
in regions 1 and 2, hence they may affect the events Â
and/or B̌. Invoking the product rule, we find37

P
ÂB̌ � âb̌z�=
∫
P
Â � B̌âb̌zD�P
B̌ � âb̌zD�P
D � âb̌z�dD

(78)
Following Bell,14 in his locally causal theory, Eqs. (64)
and (65) hold and therefore Eq. (78) simplifies to

P
ÂB̌ � âb̌z�=
∫
P
Â � âzD�P
B̌ � b̌zD�P
D � âb̌z�dD

(79)
Note that if there was a logical dependency between the
events Â and B̌, we definitely destroyed it by dropping B̌
in P
Â � B̌âb̌zD�.

Let us now make the (physically reasonable) assumption
that the events D are logically independent of â and b̌,
an assumption which is also implicit in the work of Bell
(because he ignored the difference between physical and
logical independence). In other words, it is assumed that

P
D � âb̌z�= P
D � âz�= P
D � b̌z�= P
D � z� (80)

Then, Eq. (79) simplifies to

P
ÂB̌ � âb̌z�=
∫
P
Â � âzD�P
B̌ � b̌zD�P
D � z�dD (81)

which is the expression for the joint probability P
ÂB̌ �
âb̌z� under the hypothesis of B-locality.14

The famous Bell inequality14 follows from Eq. (81) by
repeating the steps that lead to Eq. (70). We denote the
expectation value of AB by

EHB 
a�b� =
∫ ∑
Â� B̌

ÂB̌P
Â � âzD�P
B̌ � b̌zD�P
D � z�dD

=
∫
�Â�â� D�B̌�b̂� D dD (82)

where the superscript H indicates that we compute the
expectation using the “hidden variable” probability distri-
bution defined by Eq. (81). As before, we focus on the
case that −1 ≤ Â ≤ 1 and −1 ≤ B̌ ≤ 1. Then a
D� =
�Â�â� D, b
D�= � �B�b̂� D, c
D�= � �C�ĉ� D, all lie in the interval
'−1�1(. We have∣∣∣∣

∫
a
D�b
D�P
D � z�dD−

∫
a
D�c
D�P
D � z�dD

∣∣∣∣
≤

∫
�a
D�b
D�−a
D�c
D��P
D � z�dD

≤
∫

1−b
D�c
D��P
D � z�dD

= 1−
∫
b
D�c
D�P
D � z�dD (83)

hence

�EHB 
a�b�−EHB 
a� c��+EHB 
b� c�≤ 1 (84)

Logical consistency of a B-local theory demands that
we may first apply Eqs. (64) and (65) to P
ÂB̌ � âb̌z� and
then insert the events D. This gives

P
ÂB̌ � âb̌z� = P
Â � âz�P
B̌ � b̌z�
=

(∫
P
Â � â zD�P
D � âz�dD

)

×
(∫

P
B̌ � b̌zD�P
D � b̌z�dD
)

(85)

Then, Eqs. (81) and (85) yield

P
ÂB̌ � âb̌z� =
∫
P
Â � âzD�P
B̌ � b̌zD�P
D � z�dD

=
(∫

P
Â � âzD�P
D � z�dD
)

×
(∫

P
B̌ � b̌ zD�P
D � z�dD
)

(86)

and we see that in order for Bell’s local probabilistic
theory to be mathematically consistent, the probabilities
P
Â � âzD� and P
B̌ � b̌zD� should satisfy Eq. (86), for all
Â, B̌, â, and b̌, and for all P
D � âb̌z� satisfying Eq. (80).
Furthermore P
ÂB̌ � âb̌z� is completely determined by
P
Â � âzD� and P
B̌ � b̌zD�. Assuming, as is usually done,
that the two measuring devices are the same, we may write
Eq. (86) as the functional equation∫

F 
A�a�D�F 
B�b�D�p
D�dD

=
∫
F 
A�a�D�p
D�dD

∫
F 
B�b�D�p
D�dD (87)

where 0 ≤ F 
A�a�D� ≤ 1, 0 ≤ F 
B�b�D� ≤ 1, and 0 ≤
p
D�≤ 1.

It may be of interest to note that the quantum theoretical
expression for the single-particle probability

F 
A�a�S�= 1+xa ·S
2

(88)

describing a Stern-Gerlach magnet (for which A = ±1),
does not satisfy functional equation Eq. (87), assuming
Eq. (80) holds here too. Indeed, integrating over S over the
unit sphere yields 
1+ABa ·b/3�= 1 for the consistency
condition Eq. (87), which obviously leads to a nonsensical
conclusion (see also the Appendix).

Within probability theory, a mathematically consistent
application of B-locality severely limits the form of the
probabilities and, as in the case of the urn, leads to con-
clusions that defy common sense, even in the realm of
every-day experience.
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6.3. Reductio Ad Absurdum

We now address the logic of the reasoning that was used
by EPR and then apply the same logic to the reasoning
used by Bell. We emphasize that we consider the logic
of reasoning only. For instance, whether or not quantum
theory is a correct description of the experimental data is
not the issue here. We are concerned with logic only.

The argument put forward by EPR can be formalized as
follows
(1) Q is true is equivalent to the statement that quantum
theory is a correct description of the experimental data.
(2) C is true is equivalent to the statement quantum theory
is complete. Note that the precise definition of “complete”
is irrelevant as far as the logic of reasoning is concerned.

EPR use the formalism of quantum theory to prove that
quantum theory is incomplete. Thus, EPR show that if
quantum theory is a correct description of the experimental
data and quantum theory is complete then quantum theory
is incomplete. This reasoning is an example of reductio ad
absurdum: To disprove a statement, we assume it is true
and then prove that it leads to a logical contradiction.

In formal language, EPR prove that

Q∧C ⇒ %C (89)

where ∧, ⇒, and % denote the logical “and” opera-
tion, logical implication, and logical negation, respectively.
Equivalently, we can write

C ⇒ %Q∨ %C (90)

where ∨ denotes the logical “or” operation. From Eqs. (89)
or (90), it is clear that if we accept that statement Q is
true, statement C must be false if we do not want to run
into a contradiction.

We now apply the logic of the reasoning used by EPR
to the reasoning used by Bell. First, we introduce the sym-
bol E:
(3) E is true is equivalent to the statement that quantum
theory obeys Einstein’s criterion of local causality (the pre-
cise meaning of this criterion is irrelevant for the logic of
reasoning).

Bell’s extension of Einstein’s criterion for a locally
causal theory to probabilistic theories can be formalized
as follows:
(4) B is true if and only if Einstein’s criterion of local
causality is equivalent to the statement that if a variable b
has no causal effect on the variable A then, in a proba-
bilistic theory, P
A � bZ�= P
A � Z� must hold.

Assuming B is true, Bell derives inequalities that are vio-
lated by quantum theory. In formal language, Bell has
shown that

Q∧E∧B⇒ %E (91)

which is a logical contradiction. Assuming that quantum
theory gives a correct description of experimental data,

Q is true. Then, from Eq. (91), if follows that (1) B is
false or (2) E is false or (3) both B and E are false. Bell
apparently excluded the possibility that his probabilistic
interpretation of Einstein’s criterion of local causality was
wrong, hence he drew the conclusion that quantum the-
ory is E-nonlocal. However, Bell’s conclusion that quan-
tum theory is E-nonlocal has been drawn on the basis
of a logically incorrect argument: B-locality implicitly
assumes that the absence of a causal influence implies
logical independence36 but, in probability theory, it is
well-known that the assumption that the absence of a
causal influence implies logical independence leads to log-
ical inconsistencies.36�39 Hence, either B is false or the
mathematical framework of probability theory is logically
inconsistent.

Excluding the hypothesis that probability theory is log-
ically inconsistent, it follows that B is false but we cannot
rule out that E is false also. However, Bell’s general con-
clusion that an E-local, causal theory cannot be a candidate
for a more complete theory than quantum theory is based
on the wrong assumption that B is true. B-locality only
looks deceptively similar to E-locality but is fundamentally
different.

Thus, we are left with three options: (1) We adopt Bell’s
definition of locality, keep insisting that causal indepen-
dence implies logical independence and learn to live with
the fact that it leads to absurd conclusions such as an
urn with two balls being “nonlocal,” (2) we change the
rules of probability theory,67 or (3) we keep using proba-
bility theory as it is and reject Bell’s definition of locality
as a logically consistent extension of Einstein’s notion of
locality to the domain of probabilistic theories. We do not
believe that option (1) is worth considering any further,
nor that option (2) is a viable one, in particular because
quantum theory, being a very successful theory, requires
the established mathematical apparatus of probability the-
ory to make contact to experimental data.

6.4. Alice on Earth and Bob on Mars

For a logically local algorithm, such as the one described
in Section 5, the condition that the two observation sta-
tions must be spatially separated is irrelevant. To see this,
imagine the following scenario. We ask Bob to choose a
set of directions an�2 as he likes and we also ask him to
keep this set secret. Then we send Bob to Mars.

After Bob has arrived on Mars, we (still on Earth) pre-
pare data sets �Sn�1 � n= 1� � � � �N � and �Sn�2 =−Sn�1 � n=
1� � � � �N � for Case I and send the second set by a radio
link to an observation station 2 that is located on Mars.
Once this data has been sent (which takes a few seconds
at most), the link is destroyed. Then, we give the first data
set to Alice who is in charge of station 1 on planet Earth.
She processes her data for some set of directions an�1 that
she may choose as she likes and obtains the data set �1.
This also takes a few seconds.
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It takes at least five minutes before Bob, who controls
station 2 on Mars, starts to receive the data. Bob processes
this data, using a set of directions an�2 he chose before
leaving for the mission to Mars and which he kept secret
all the time, and obtains the data set �2. Then, Bob acti-
vates a radio link and sends the data set �2 to Alice (or a
third person). Alice analyses the data ��1��2� and com-
putes the correlations according to the procedure outlined
in Section 5 and draws the unescapable conclusion that the
data exhibit “quantum correlations.”

If we assume that Alice and Bob never had the chance to
communicate with each other, there is no way, other than
by telepathy, that Bob could have influenced Alice’s choice
of an�1. Alice, not aware of the existence of Bob before
Bob arrived on Mars could not influence Bob’s choice of
an�2 either. In this hypothetical procedure, at the time that
the data analysis was carried out, the two systems were
spatially and temporally separated and there is no physi-
cal mechanism known to man by which Bob could have
influenced Alice’s choice.

There is no point of sending Bob to Mars: If Bob would
have analyzed the data �Sn�2� on earth, the data ��1��2�
would be exactly the same and so would be the conclusion
that the data exhibit “quantum correlations.” This thought
experiment (which can in fact be realized) is just another
illustration that correlations express logical but not neces-
sarily physical dependencies.

6.5. Summary

In an attempt to extend Einstein’s concept of a locally
causal theory to probabilistic theories, Bell implicitly
assumed that the absence of causal influence implies logi-
cal independence. In general, this assumption prohibits the
consistent application of probability theory and leads to all
kinds of paradoxes.37�39 However, if we limit our think-
ing to the domain of quantum physics, the violation of the
Bell inequalities by experimental data should be taken as
a strong signal that it is the correctness of this assump-
tion that one should question. Instead of calling quantum
mechanics (or an urn containing two balls) a nonlocal the-
ory, it would be more appropriate to reject the assumption
that the absence of causal influence implies logical inde-
pendence. This step is difficult to take unless one recog-
nizes that probabities are not defined by frequencies: Much
of the recent controversies about the correctness and/or
applicability of Bell’s theorem19�20�42–46�68�69 can be traced
back to the failure of keeping apart the concept of the
frequency of events and the concept of the probability to
observe this frequency.37�39

Most importantly, it is simply logically incorrect to use
probability theory to even make a statement about the
(non)existence of correlations in a set of experimental
data. At most, we can conclude that a probabilistic model
is compatible with the data, in which case we made a

significant step in describing the process that gave rise to
the data.

The simulation models that we describe in this paper
do not rely on concepts of probability theory: They are
purely ontological models of the EPRB experiment. The
expression for the coincidence Eq. (3) cannot be written
in terms of a product of two single-particle probabilities,
an essential feature of the restricted class of local models
examined by Bell.14 Hence, the fact that we have discov-
ered event-by-event simulation algorithms that
(1) generate the same type of data as recorded in the
experiments,
(2) analyze data according to the experimental procedure
to count coincidences,
(3) satisfy Einstein’s criteria of local causality,
(4) do not rely on any concept of quantum theory or prob-
ability theory, but nevertheless reproduce the two-particle
correlation of the singlet state and all other properties of
a quantum system consisting of two S = 1/2 particles can
never be in conflict with a theorem that has its roots in
probability theory.

7. PROBABILISTIC MODEL OF
THE SIMULATION ALGORITHM

In this section, we use the probabilistic (Kolmogorov)
approach to analyze the simulation model that we
described in Section 5. This section serves three purposes.
First, it provides a rigorous proof that for W → 0, the prob-
abilistic description of the simulation model can exactly
reproduce all the results of quantum theory for a sys-
tem of two S = 1/2 objects. Second, it illustrates how
the presence of the time-window introduces correlations
that cannot be described by a Bell-like “hidden-variable”
model. Third, it reveals a few hidden assumptions that are
implicit in the derivation of the specific, factorized form
of the two-particle correlation that is essential to Bell’s
work.

The first, fundamental step is to assume that the sim-
ulation algorithm can be replaced by an abstract mathe-
matical model in which the quadruple �x1� x2� t1� t2� is a
random variable and that the data occurs with probability
P
x1� x2� t1� t2 � a1�a2�. We then use the standard rules of
probability theory to write this probability such that it can
be evaluated analytically.

Using the product rule (see Eq. (76)), we may
always express the probability for observing the data
�x1� x2� t1� t2� as a sum over the mutual exclusive events.
Thus, we may write

P
x1� x2� t1� t2 � a1�a2�

= 1

462�2

∫
dS1 dS2 P
x1� x2� t1� t2 � a1�a2�S1�S2�

×P
S1�S2 � a1�a2� (92)
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where S1 and S2 denote the three-dimensional unit vec-
tor representing the spin of the particles. Representation
Eq. (92) is an exact expression for P
x1� x2� t1� t2 � a1�a2�.
In the simulation model, �x1� x2� t1� t2� are mutually inde-
pendent and �x1� t1� (�x2� t2�) do not depend on �a2�S2�
(�a1�S1�). This suggests that it is reasonable to assume
that �x1� x2� t1� t2� are mutually independent random vari-
ables and that �x1� t1� (�x2� t2�) are logically independent
of �a2�S2� (�a1�S1�). Then, we have

P
x1�x2�t1�t2 �a1�a2�

= 1

462�2

∫
dS1dS2P
x1�t1 �x2�t2�a1�a2�S1�S2�

×P
x2�t2 �a1�a2�S1�S2�P
S1�S2 �a1�a2�

= 1

462�2

∫
dS1dS2P
x1�t1 �a1�S1�P
x2�t2 �a2�S2�

×P
S1�S2 �a1�a2�

= 1

462�2

∫
dS1dS2P
x1 �a1�S1�P
t1 �a1�S1�P
x2 �a2�S2�

×P
t2 �a2�S2�P
S1�S2 �a1�a2�

= 1

462�2

∫
dS1dS2P
x1 �a1�S1�P
t1 �a1�S1�

×P
x2 �a2�S2�P
t2 �a2�S2�P
S1�S2� (93)

where, in the last step, we assumed that S1 and S2 are
logically independent of a1 and a2, which is reasonable
because in the simulation algorithm S1 and S2 are inde-
pendent of a1 and a2. Note that Eq. (93) gives the exact
probabilistic description of our simulation model.

The reader may wonder why in the present case it is
allowed to go from Eq. (92) to Eq. (93) while in Section 6,
we demonstrated that making these steps may lead to log-
ical inconsistencies. The difference is in the fact that in
Section 6, we use probability theory to make inferences
about logic dependencies whereas in the present case we
know for certain (by assumption) which variables are log-
ically dependent on others and which variables are not.
Thus, in the present case it is mathematically correct to
describe our simulation model by the probability Eq. (93).
However, if we analyze data for logical dependencies, it is
logically inconsistent to draw conclusions from an analysis
based on Eq. (93). In essence, we are repeating ourselves:
We can cross the line in Figure 1, separating model space
from data space from right to left because we know the
properties of our simulation model but crossing the line in
the opposite direction is impossible without making addi-
tional assumptions.

Up to this point, Eq. (93) has the same structure as
the expression that is used in the derivation of Bell’s
results and if we would go ahead in the same way, our
model also cannot produce the correlation of the singlet
state. However, the real factual situation in the experiment
is different: The events are selected using a time win-
dow W that the experimenters try to make as small as

possible.56 Accounting for the time window, that is multi-
plying Eq. (93) by the step function, and integrating over
all t1 and t2, the expression for the probability for observ-
ing the event 
x1� x2� reads

P
x1� x2 � a1�a2�

=
∫
dS1dS2 P
x1 � a1�S1�P
x2 � a2�S2�w
a1�a2�S1�S2�W�P
S1�S2�∑

x1� x2=±1

∫
dS1dS2 P
x1 � a1�S1�P
x2 � a2�S2�w
a1�a2�S1�S2�W�P
S1�S2�

=
∫
dS1dS2 P
x1 � a1�S1�P
x2 � a2�S2�w
a1�a2�S2�W�P
S1�S2�∫

dS1dS2 w
a1�a2�S1�S2�W�P
S1�S2�

(94)
where, in general, the weight function

w
a1�a2�S1�S2�W�

=
∫ +


−

dt1

∫ +


−

dt2 P
t1 � a1�S1�P
t2 � a2�S2�

×�
W −�t1 − t2�� (95)

will be less than one (because
∫ +

−
 dt1

∫ +

−
 dt2P
t1 � a1�S�,

P
t2 � a2�S� = 1) unless W is larger than the range of

t1� t2� for which P
t1 � a1�S1� and P
t2 � a2�S2� are
nonzero. Unless w
a1�a2�S1�S2�W� = w1
a1�S1�W�,
w2
a2�S2�W�, Eq. (94) cannot be written in the factorized
form P
x1� x2 � ?��� = ∫

P
x1 � ?�D�P
x2 � ��D��
D�dD
that is essential to derive the Bell inequalities (see
Section 6).

In the light of the discussion in Sections 1 and 4.3, it is
not without importance to note that Eq. (94) can be written
down directly (as we did in Section 5.2.3), without refer-
ence to concepts of probability theory. Indeed, it suffices
to replace the sums over the pseudo-random numbers by
discrete sums over equally spaced intervals and let these
intervals go to zero. Then the total number of events goes
to infinity and we recover Eq. (94), except that the P ’s
that appear in Eq. (94) do not have the meaning of proba-
bilities. Again, we see that the use of probabilistic models
requires additional assumptions, the correctness of which
can be established a-posteriori only.

First, let us consider Case II, that is we assume that the
source emits pairs of particles with fixed, known direc-
tions �1 and �2. Then, P
S1�S2�= �
S1 −�1��
S2 −�2�,
the weight function w
a1�a2��1��2�W� drops out and
Eq. (94) reduces to

P
x1� x2 � a1�a2�= P
x1 � a1��1�P
x2 � a2��2� (96)

which agrees with the expression for the quantum system
of two S = 1/2 particles in the product state.

Second, we put P
S1�S2�= �
S1 +S2�. Then, S1 =−S2

is a random variable that covers the unit sphere in a uni-
form manner, that is we are treating Case I. In our simu-
lation model, the time delays ti are distributed uniformly
over the interval '0� Ti( where Ti ≡ T0�1− 
ai ·Si�2�d/2 for
i = 1�2. Thus, P
ti � ai�Si�=�
ti��
Ti− ti�/Ti and

w
a1�a2�S1�S2�W�d�

= 1
T1T2

∫ T1

0
dt1

∫ T2

0
dt2�
W −�t1 − t2�� (97)
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where we added the parameter d to the list of variables to
make explicit that we adopted the time-tag model that we
employ in the simulation. The integrals in Eq. (97) can be
worked out analytically, yielding

w
a1�a2�S1�S2�W �d�

= 1
4T1T2

[
T 2

1 +T 2
2 +2
T1+T2�W+
W−T1��W−T1�

+
W−T2��W−T2�−
W−T1+T2��W−T1+T2�
−
W+T1−T2��W+T1−T2�

]
(98)

Clearly, Eq. (98) cannot be written in the factorized form
w1
a1�S1�W�w2
a2�S2�W�. Hence, it should not come as
a surprise that as soon as we want to model the real experi-
ment in which the time window is essential, we may obtain
correlations that cannot be described by Bell-like models.

We now consider the relevant limiting cases for which
we can easily derive closed-form expressions for the
expectation values. From Eq. (98), it follows that

w
a1�a2�S1�S2�W → 
�d�
= w
a1�a2�S1�S2�W ≥ T0�d�= 1 (99)

w
a1�a2�S1�S2�W < T0�d = 0�=W
2W −T0�/T
2

0

(100)

w
a1�a2�S1�S2�W → 0�d�= 2W
max
T1� T2�

+�
W 2�

(101)

If the weight function is a constant, as in Eqs. (99) and
(100), Eq. (94) reduces to

P
x1� x2 � a1�a2� =
∫
dS1dS2 P
x1 � a1�S1�P
x2 � a2�S2�

×P
S1�S2�. d = 0 or W ≥ T0

(102)

and takes the factorized form that is characteristic for
the probabilistic models considered by Bell.14 Hence, we
know that we cannot recover the results of quantum the-
ory in the limiting cases d = 0 or W ≥ T0 in which the
time-tag information plays no role.

From now on, we focus on the experimentally relevant
limit W → 0. We insert in Eq. (94), the probability
distributions P
x � a�S� = �
xa · S� or P
x � a�S� =

1 + xa · S�/2, corresponding to the deterministic and
pseudo-random model for the Stern-Gerlach magnet
respectively. By symmetry we have E1
a1�a2�W → 0� =
E2
a1�a2�W → 0� = 0 for all values of d, in agreement
with quantum theory (see the second column of Table I).
The two-particle correlations are given by

E
a1�a2�W → 0�

= −
∫
dS sign
a1 ·S�sign
a2 ·S�max−1
T1� T2�∫

dSmax−1
T1� T2�

and

E
a1�a2�W → 0�= −
∫
dSa1 ·Sa2 ·Smax−1
T1� T2�∫

dSmax−1
T1� T2�
(103)

for the deterministic and the pseudo-random model,
respectively.

Without loss of generality, we may choose the
coordinate system such that a1 = 
1�0�0� and a2 =

cos?� sin?�0�. Then, substitution of Ti = �Si× ai�d into
Eq. (103) yields

E
a1�a2�W→0�

=−
∫ +1
−1 dx

∫ 6/2+1/2
1/2 d2g
2�1�x�
sin22+x2 cos22�−d/2∫ +1

−1 dx
∫ 6/2+1/2
1/2 d2
sin22+x2 cos22�−d/2

(104)

where g
2�1�x�= sign
cos2 cos
2−1�� or g
2�1�x�=

1−x2� cos2 cos
2− 1� for the deterministic or pseudo-
random model for the Stern-Gerlach magnet, respectively.
Here and in the remainder of this section, we define
cos1 ≡ a1 ·a2.

For specific values of d, Eq. (104) can be written in
terms of elementary functions. In the case of the determin-
istic model for the Stern-Gerlach magnet, we find

E
a1�a2�W → 0�

=




−1+ 2
6

arccos
cos1�� d = 0

− cos1� d = 3

−15 cos1−7 cos3 1

11−3 cos2 1
� d = 5

−6890 cos1−895 cos 31+149 cos 51
5774+280 cos 21+90 cos 41

� d = 7

(105)

In the case of the pseudo-random model for the
Stern-Gerlach magnet, we obtain

E
a1�a2�W→0�

=




−1
3

cos1� d=0

− 8cos1
8+3sin1

� d=5

− 2992cos1+80cos31
2887+140cos21+45cos41

� d=7

− 84026cos1+8169cos31−35cos51
45666+16254cos21−1680cos41+3150cos61

�

d=9
(106)

All the d > 0 results in Eqs. (105) and (106) violate the
Bell inequalities but, as we already explained, this find-
ing has no significant consequences. From Eq. (105), we
conclude that for d= 3 and the deterministic model of the
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Stern-Gerlach magnet, the expression is identical to the
correlation of a system of two S = 1/2 particles in the sin-
glet state. The result for the pseudo-random model of the
Stern-Gerlach magnet and d = 7 (see Eq. (106)) is very
close (with a maximum error of less that 2%) to the sin-
glet correlation. Of course, there is no fundamental reason
why d should be an integer. Finally, we note the almost
trivial fact that for W → 0, the results are insensitive to
small variations in W , in agreement with the general idea,
explored in the next section, that quantum theory is one
out of the many probabilistic theories that has the special
feature that its predictions are insensitive to small changes
of the parameters of the model.

For completeness, we list the analytical results for the
case of the photon polarization. For the deterministic
model of a polarizer (which does not reproduce Malus
law), the probabilistic treatment yields33

E
a1�a2�W → 0�=




−1+ 2
6

arccos
cos 21�� d = 0

− ln 1+� cos1�
1−� cos1�

1−� sin 1�
1+� sin 1�

ln 1+� cos1�
1−� cos1�

1+� sin 1�
1−� sin 1�

� d = 1

− cos 21� d = 2

−3 cos 21− cos3 21
2

� d = 4

(107)
In the case that we adopt the pseudo-random model for the
polarizer that can reproduce Malus law, the probabilistic
model yields35

E
a1�a2�W → 0�

=




−1
2

cos 21� d = 0

6

4
sin 21 cos 21− cos 21+ ln'� tan 1�sin2 21/2(� d = 2

− cos 21� d = 4

−43 cos 21+5 cos 21 cos 41
38+10 cos 41

� d = 6

−53 cos 21+7 cos 61
39+21 cos 41

� d = 8

(108)

where we have omitted the expressions for odd d because
they cannot be written in terms of elementary functions.
In passing, we note that the mathematically rigorous result
for d = 4 disposes of the widespread believe14 that per-
fect correlation of the singlet state requires some form of
determinism.

8. DERIVATION OF THE QUANTUM THEORY
OF THE EPRB EXPERIMENT

In the quantum theoretical model, the choice of the state
that describes the EPRB experiment is an educated guess.

There is no underlying principle that guides us to this
choice other than that the particular averages (of time
series) that we compute from the experimental data agree
with the expectation values (ensemble averages) obtained
from the theory.

From the work of Cox and Jaynes in the early 60’s, we
know that once we have agreed to represent the degree
of the plausibility of a proposition by a real number, then
there is a unique set of rules, identical to the standard
rules of probability theory, that we must adhere to in order
that the logical inferences we make do not violate elemen-
tary desiderata of rationality and consistency.37�39�47 In this
case, the rules of probability theory are used as a vehicle
for carrying out probable inference37�39�47 and have a much
broader range of applications than the Kolmogorov theory
of probability. The latter is incorporated in the former. As
mentioned earlier, and as is most evident in Section 6, we
mainly use probability theory as a vehicle to make state-
ments about propositions, that is we use it in its extended
logic mode.

An intriguing question now arises: Would it be possi-
ble to derive the quantum theoretical description of the
EPRB experiment from the general principles of logical
inference and empirical knowledge about the results of
the experiment, not involving concepts from quantum the-
ory at all? Elsewhere, we have shown that Malus law
can be derived in this manner.66 In this section, we show
that the same approach yields the probability distributions
Eqs. (20) and (25) without making the detour via quantum
theory.

The approach that we take here is very much inspired
by the work of Frieden.70 Frieden has shown that one
can recover all the fundamental equations of physics by
finding the extremes of the Fisher information plus the
“bound” information.70 According to Frieden, the act of
measurement elicits a physical law and quantum mechan-
ics appears as the result of what Frieden calls “a smart
measurement,” a measurement that tries to make the best
estimate.70 Although our approach is similar to Frieden’s,
our line of reasoning is different. We do not invoke con-
cepts from estimation theory, such as the estimators and
the Cramér-Rao inequality, nor do we require the concept
of random noise.

The probabilistic model that we will develop is based
on the following four hypotheses:
(1) Each detection event constitutes a Bernouilli trial, that
is we assume that the events are logically independent.37–39

Note that the absence of statistical correlation in the data
recorded in an experiment is an indication but definitely
not a proof that the events are logically independent.37–39

On the other hand, if the data would exhibit correlations,
the events would be logically dependent.37–39

(2) The time series recorded during an experiment suggest
that the averages of the data are rotational invariant. This
observation we formalize by making the hypothesis that
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the expectation values (not necessarily the probabilities)
are invariant for rotations of the conditions under which
the experiments are carried out.
(3) The model operates according to the principle of effi-
cient data processing:66 It generates the events such that
the probability distribution is least sensitive to small varia-
tions in the conditions under which the experiment is car-
ried out. In other words, the probability distribution should
be as smooth as possible, for all values of the parameters
that determine these conditions.
(4) The time series that we observe is the one which
is most likely to be observed, that is its probability is
maximum.

In the remainder of this section, we will simplify the nota-
tion a little by omitting from the conditions that appear in
the probabilities, the proposition that expresses the knowl-
edge about the problem that we do not need to specify
explicitly.

We begin by demonstrating that these four assumptions
suffice to derive the probability distribution

P
x � a�S�= 1+xa ·S
2

(109)

of a single Stern-Gerlach magnet. Then, using the same
four assumptions, we derive the probability distribution

P
x� y � a1�a2�=
1−xya1 ·a2

4
(110)

for the EPRB experiment.

8.1. Stern-Gerlach Magnet

We consider the case that the direction a of the applied
field in the Stern-Gerlach magnet and the magnetic
moment S of the particles do not change with time.
The measuring apparatus (Stern-Gerlach magnet+particle
detector) transforms the input, N particles with magnetic
moment S, into a time series �xn � n= 1� � � � �N � of signals
xn =±1. By hypothesis (1), the probability P
x1� � � � � xN �
a�S�N � to observe the data record �xn � n= 1� � � � �N � can
be written as

∏N
n P
xn � a�S�. As x = ±1, P
x � a�S� is

completely determined by its first moment, that is we can
write

P
x � a�S�= 1+xE
a�S�
2

(111)

where E
a�S� = ∑
x=±1 xP
x � a�S�. By hypothesis (2),

E
a�S� = E
a ·S� and hence the probability for a single
event x is given by

P
x � a�S�= P
x � a ·S�= P
x � 1� (112)

and is conditional on the relative angle 1 between the mag-
netic moment S of the particle and the direction a of the
applied field. Denoting p
1�= P
x=+1 � 1�, the probabil-
ity for observing a time series �xn � n= 1� � � � �N � in which

m of the events xn take the value +1, that is
∑N

n=1 xn =
2m−N , is given by37–39

P
m � 1�N�= N !
m!
N −m�!p

m
1�'1−p
1�(N−m (113)

We now consider the likelihood that the observed
sequence of �xn� was generated by p
x � 1+ H� instead
of p
x � 1�, H being a small positive number. The log-
likelihood L that the data was generated by p
x � 1+ H�
instead of by p
x � 1� is given by37�39

L

N
= 1
N

ln
P
m � 1+ H�N �
P
m � 1�N�

= m

N
ln
p
1+ H�
p
1�

+
(

1− m

N

)
ln

1−p
1+ H�
1−p
1� (114)

According to hypothesis (3), the variation of L with H
should be minimal. Then, the results (averages over the
time-series) will be least sensitive to small variations of
the conditions under which the experiment is carried out.

We bring the problem of determining the function p
1�
in a mathematically trackable form by using the Taylor
expansion with respect to H. We find

L

N
= − H

2

2

p′
1��2


1−p
1��p
1� +
(
m

N
−p
1�

)

×
(
H

p′
1�

1−p
1��p
1� −

H2

2

1−2p
1��
p′
1��2 + 
1−p
1��p′′
1�


1−p
1��2p2
1�

)
(115)

Invoking hypothesis (4), m is the value that maximizes
P
x1� � � � � xN � a�S�N � and a simple calculation (see
Section 4.3.1) shows that(

1+ 1
N

)
p
1�− 1

N
≤ m

N
≤
(

1+ 1
N

)
p
1� (116)

Hence, for large N we may set m/N = p
1� in Eq. (115)
and then the second term of the right hand side vanishes.
Then, L will be least sensitive to changes in H if

IF = 1
p
1�
1−p
1��

(
Kp
1�

K1

)2

(117)

is minimal. The quantity IF is the Fisher information37�70�71

IF = 1
N

∑
x1�����xN=±1

1
P
x1� � � � � xN � 1�N�

×
(
KP
x1� � � � � xN � 1�N�

K1

)2

= ∑
x=±1

1
p
x � 1�

(
Kp
x � 1�
K1

)2

(118)

for this particular problem. Hypothesis (1) was used to
obtain the right hand side of Eq. (118), which upon sub-
stitution of p
x = +1 � 1� = p
1� and p
x = −1 � 1� =
1−p
1� turns into Eq. (117).
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We find the minimum of the Fisher information IF by
substituting p
1�= cos2 g
1� and obtain

IF = 4
[
Kg
1�

K1

]2

(119)

Rotational invariance requires that IF is independent of 1,
hence g
1� = a1+ b, where a and b are constants still
to be determined. Rotational invariance further requires
that p
1�= cos2
a1+b�= p
1+26�, hence a= k/2 and
IF = k2, with k an integer number. We may exclude the
case k= 0 because then p
1� does not depend on 1 and a
Stern-Gerlach magnet that operates according to this k= 0
model would not be a useful device. Thus, IF is minimal if
k = 1 and we may set the irrelevant phase factor b to zero.
Therefore, using the four hypotheses given earlier, we have
found that the probabilistic model for the Stern-Gerlach
magnet generates events with probabilities

P
x = +1 � a�S� = cos2 1

2
= 1+a ·S

2

P
x = −1 � a�S� = sin2 1

2
= 1−a ·S

2

(120)

which is in exact agreement with Eq. (109).

8.2. EPRB Gedanken Experiment

We consider the case that the directions a1 and a2 of the
applied fields in the Stern-Gerlach magnets do not change
with time (as in the quantum model) and that we have no
knowledge about the direction of the magnetic moments
S1 and S2 of the particles.

The measuring equipment (Stern-Gerlach magnets +
particle detectors+ time-coincidence logic) transforms the
input, N pairs of particles with unknown magnetic
moments into a time series �xn� yn � n= 1� � � � �N � of sig-
nals xn = ±1 and yn = ±1. By hypothesis (1), the prob-
ability P

x1� y1�� � � � � 
xN � yN � � a1�a2�N � to observe the
data �xn� yn � n= 1� � � � �N � can be written as

∏N
n P
xn� yn �

a1�a2�. As x� y = ±1, P
x� y � a1�a2� can be written as

P
x�y �a1�a2�=
1+xE1
a1�a2�+yE2
a1�a2�+xyE
a1�a2�

4
(121)

where E1
a1�a2�=
∑

x� y=±1 xP
x� y � a1�a2�, E2
a1�a2�=∑
x� y=±1 yP
x� y � a1�a2�, and E
a1�a2� = ∑

x� y=±1 xy
P
x� y � a1�a2�. Using the empirical (experimental) knowl-
edge that the averages are rotational invariant (hypoth-
esis (2)), we have E1
a1�a2� = E1
a1 · a2�, E2
a1�a2� =
E2
a1 ·a2�, and E
a1�a2�= E
a1 ·a2�. Furthermore, exper-
iments indicate that frequencies of the x = ±1 (y = ±1)
events (not of the correlated events!) are the same. We
formalize this knowledge by the hypothesis that

E1
a1 ·a2�= E2
a1 ·a2�= 0 (122)

from which it immediately follows that

P
x� y � a1�a2� =
1+xyE
a1 ·a2�

4
≡ p
x� y � 1�

= 1+xyE
1�
4

(123)

Thus, the probability p
x� y � 1� for a single-event 
x� y�
is conditional on the relative angle 1 between the two unit
vectors a1 and a2.

The probability that an experiment of N events yields
n
x� y� events of the type 
x� y� is given by

P
n
+1�+1�� n
−1�−1�� n
+1�−1�� n
−1�+1� � 1�N�

= N ! ∏
x� y=±1

p
x� y � 1�n
x�y�
n
x� y�! (124)

where n
+1�+1� + n
−1�−1� + n
+1�−1� +
n
−1�+1� = N . Adopting the same strategy as in the
case of the single Stern-Gerlach magnet, we consider the
log-likelihood

L

N
= 1
N

ln
P
n
+1�+1�� n
−1�−1�� n
+1�−1�� n
−1�+1� � 1+ H�N �
P
n
+1�+1�� n
−1�−1�� n
+1�−1�� n
−1�+1� � 1�N�

= ∑
x� y=±1

n
x� y�

N
ln
p
x� y � 1+ H�
p
x� y � 1� (125)

that the data was generated by p
x� y � 1+ H� instead of
p
x� y � 1�. Repeating the steps that lead from Eq. (114)
to Eq. (117), we find that for small H minimization of
L is tantamount to finding the probability p
x� y � 1� that
minimizes the Fisher information

IF = ∑
x� y=±1

1
p
x� y � 1�

(
Kp
x� y � 1�

K1

)2

(126)

Using Eq. (123), we can write Eq. (126) as

IF = 1
1−E2
1�

(
KE
1�

K1

)2

(127)

which, in essence, is the same expression as the one that
we obtained for the case of the Stern-Gerlach magnet. Of
course, the solution of the minimization problem is also
the same. Solving Eq. (127) for E
1�, we find

E
1�= sin
IF 1+b� (128)

In the case that one uses the magnetic moment of the par-
ticles, the experimental data indicates that E
1� is periodic
in 1 with a period of 26 (6 if the experiment measures
the polarization, as in EPRB experiments with photons).
This implies that IF should be an integer number. The
solution IF = 0 can be discarded because then E
1� would
not depend on 1, which would contradict the experimental
observations. Therefore, the nontrivial solution with mini-
mum Fisher information is IF = 1. Using the fact that the
solution of the minimization problem is determined up to
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an arbitrary phase b, the two-particle correlation can be
written as

E
a1�a2� = − cos1 = −a1 ·a2 (129)

in agreement with the expression of the correlation of two
S = 1/2 particles in the singlet state. Thus, we may con-
clude that we can derive the results of quantum theory
for the singlet state from a straightforward application of
probability theory, without making reference to concepts
of quantum theory.

8.3. Real EPRB Experiment

As explained in Section 2, real EPRB experiments produce
the data sets

�i = �xn� i = ±1� tn� i�an� i � n= 1� � � � �N � (130)

We assume that this data set can be described by
a probabilistic model that satisfies hypothesis (1). Let
P
x1� x2� t1� t2 � a1�a2� denote the probability for observing
the data �x1� t1� and �x2� t2� at stations 1 and 2, respec-
tively. Without loss of generality, we can use the exact
representation

P
x1� x2� t1� t2 � a1�a2�

= (
f0
t1� t2 � a1�a2�+x1f1
t1� t2 � a1�a2�

+x2f2
t1� t2 � a1�a2�+x1x2f3
t1� t2 � a1�a2�
)
/4 (131)

to express the single- and two-particle correlations in terms
of the functions fi
t1� t2 � a1�a2� for i = 0� � � � �3. Because
0 ≤ P
x1� x2� t1� t2 � a1�a2� ≤ 1, the functions fi
t1� t2 �
a1�a2� must satisfy the inequalities 0 ≤ f0
t1� t2 � a1�a2�±
f1
t1� t2 � a1�a2�+ f2
t1� t2 � a1�a2�± f3
t1� t2 � a1�a2� ≤
4 and 0 ≤ f0
t1� t2 � a1�a2�± f1
t1� t2 � a1�a2�− f2
t1� t2 �
a1�a2�± f3
t1� t2 � a1�a2� ≤ 4. The mathematical expecta-
tion of the coincidences Cxy (see Eq. (3)), that is the aver-
age computed with P
x1� x2� t1� t2 � a1�a2�, is given by

�Cxy� ≡ N
∫ +


−

dt1

∫ +


−

dt2 P
x� y� t1� t2 � a1�a2�

×�
W −�t1 − t2�� (132)

We find

E1
a1�a2�W�

=
∑

x� y=±1 x�Cxy�∑
x� y=±1�Cxy�

=
∫ +

−
 dt1

∫

−
 dt2�
W −�t1 − t2��f1
t1� t2 � a1�a2�∫ +


−
 dt1
∫ +

−
 dt2�
W −�t1 − t2��f0
t1� t2 � a1�a2�

�

E2
a1�a2�W�

=
∑

x� y=±1 y�Cxy�∑
x� y=±1�Cxy�

=
∫ +

−
 dt1

∫

−
 dt2�
W −�t1 − t2��f2
t1� t2 � a1�a2�∫ +


−
 dt1
∫ +

−
 dt2�
W −�t1 − t2��f0
t1� t2 � a1�a2�

�

E
a1�a2�W�

=
∑

x� y=±1 xy�Cxy�∑
x� y=±1�Cxy�

=
∫ +

−
 dt1

∫ +

−
 dt2�
W −�t1 − t2��f3
t1� t2 � a1�a2�∫ +


−
 dt1
∫ +

−
 dt2�
W −�t1 − t2��f0
t1� t2 � a1�a2�

(133)

At this point, we feel that we lack the necessary mathe-
matical tools for carrying out the procedure that we suc-
cessfully applied to the simpler cases treated earlier. First,
it is difficult to see how the empirical knowledge that
single-particle averages are zero and that the two-particle
average is rotational invariant leads to useful conditions
on the form of the fi
t1� t2 � a1�a2�. Second, the presence
in Eq. (133) of the step functions introduces nontrivial
correlations and prevents us from making further progress
in the mathematical treatment of this problem. Third, the
description now contains a new parameter (W to which
we should also apply hypothesis (3)) as well as extra vari-
ables (t1 and t2). We leave the problem of the analytical
treatment of the general case for future research.

8.4. Summary

The assumption that there is an underlying probabilistic
process that gives rise to the observation of the data as
obtained in Stern-Gerlach and EPRB experiments, together
with the very simple, plausible hypotheses (1)–(4) are suf-
ficient to derive the probability distributions of quantum
theory for the EPRB experiment, without using a single
concept of quantum theory. In addition, this derivation sug-
gests that quantum theory is the probabilistic model for
the set of data that is most likely to be observed.

From a more general perspective, this section demon-
strates, by way of a successful application to specific prob-
lems, how to formalize the process of inductive inference
and derive useful results (those of quantum theory) from
it. This derivation builds on prior, empirical knowledge
that we have acquired through experiments, the application
of probability theory as mathematical vehicle for rational
reasoning, and the metaphysical principle that we, human
observers, have great difficulties to interpret experimental
data that is not robust with respect to small changes in the
conditions under which the experiments are carried out.72

9. CONCLUSION

Starting from nothing more than the observation that
an EPRB experiment produces pairs of triples of data
��1��2�, we have constructed computer simulation mod-
els that reproduce the results of all single-particle and
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two-particle correlations of a quantum system of two S =
1/2 particles. Salient features of these models are that they
• Generate, event-by-event, the same kind of data set
��1��2� as the one recorded in real EPRB experiments
• Satisfy Einstein’s criteria of local causality
• Count all events in which systems of two particles have
been detected, using the same time-coincidence criterion
as used in real EPRB experiments
• Provide a simple, rational, and realistic picture of a
mechanism that yields the correlations of an “entangled
state”
• Do not rely on any concept of quantum theory or prob-
ability theory

A key ingredient of these models, not present in the
textbook treatments of the EPRB gedanken experiment, is
the time window W that is used to detect coincidences.
We have demonstrated (see Section 2.7) the importance of
the choice of the time window by analyzing a data set of
a real EPRB experiment with photons.29

The mathematical treatment of the models yields results
that are in exact agreement with quantum theory. The con-
dition under which an EPRB experiment yields results that
agree with quantum theory is evident: The resolution � of
the devices that generate the time-tags and the time window
W should be much smaller than the time delays, the range
which is determined by T0. Disregarding the timing data
yields a result that disagrees with quantum theory and with
experiment. The EPR paradox reappears when the experi-
ments are analyzed in terms of an incomplete set of data.

We have demonstrated that the event-by-event simula-
tion of EPRB experiments allows us to reproduce not only
the results of quantum theory but also allows us to consider
cases that are not described by quantum theory. There-
fore, for this type of experiments, the two-particle “world”
that we can simulate contains the two-particle “world”
described by quantum theory as a special case.

As our work shows that it is possible to construct event-
based simulation models that satisfy Einstein’s criteria of
local causality and reproduce the expectation values calcu-
lated by quantum theory it opens new routes to ontological
descriptions of microscopic phenomena.8–11�22�33–35

We have resolved the apparent conflict between the fact
that there exist event-based simulation models that satisfy
Einstein’s criteria of local causality and reproduce all the
results of the quantum theory of two S = 1/2 particles and
the folklore about Bell’s theorem, stating that such models
are not supposed to exist. The origin of this conflict has
been traced back to Bell’s extension of Einstein’s concept
of locality to the domain of probabilistic theories, the fun-
damental assumption being that the absence of a causal
influence implies logical independence.36 This leaves two
options:
• One accepts the assumption that the absence of a causal
influence implies logical independence and lives with the
logical paradoxes that this assumption creates

• One recognizes that logical independence and the
absence of a causal influence are different concepts37�39�47

and one searches for rational explanations of experimental
facts that are logically consistent, as we did in this paper

Finally, we have demonstrated that it is possible to
derive, without resorting to concepts of quantum theory,
the quantum theoretical description of the EPRB exper-
iment from the general principles of logical inference,
developed by Cox and Jaynes,37�39�47 and empirical knowl-
edge about the results of the experiment.

The computer models we have invented can be built
with macroscopic, say mechanical parts (in principle a dig-
ital computer can be built from mechanical parts). To the
experimenter who has no knowledge of what is going on
inside the building where the mechanical machine is oper-
ating, there is no way of telling whether the data he/she
receives is generated by a quantum system or not. In a
sense, this supports Bohr’s point of view that “There is no
quantum world. There is only an abstract quantum theo-
retical description.”73

APPENDIX

For the singlet state, the probability P
x� y � a�b� reads

P
x� y � a�b�= 1−xya ·b
4

(134)

where x� y =±1, a and b are unit vectors. Let us now try
to write Eq. (134) in the form

P
x� y � a�b�=
∫
F 
x�a�D�F 
y�b�D�dD (135)

where D denotes a set of auxiliary variables that may be
chosen at will.

A simple solution to this problem is given by

P
x� y � a�b�=
∫ 1+√

3xa ·S
2

1−√
3yb ·S
2

dS (136)

where S= 
sin 1 cos2� sin 1 sin2� cos1� and the integral is
over the unit sphere. In this case, the function F 
x�a�S�=

1+√

3xa ·S�/2 can take negative values and therefore it
does not qualify as a probability distribution.
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