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We study energy gap formation at the level-crossing point due to the hyperfine interac-
tion. In contrast to the energy gap induced by the Dzyaloshinskii-Moriya interaction, the
gap induced by the hyperfine interaction is independent of the direction of the magnetic
field. We also study the dynamics of the magnetization under a time dependent field that
changes at a constant rate.

§1. Introduction

Recently, adiabatic magnetic transitions in nanoscale magnets have attracted
a great deal of interest. Among many interesting problems in this context is the
search for the origin of the transition or, in other words, to determine how an energy
gap is formed at the level-crossing point. 1) The Dzyaloshinskii-Moriya interaction
(DMI) has been proposed as one of the possible origins of this energy gap. 2)– 5)

Very recently, however, it was shown that, on a triangular lattice with three spins
and for a 15-spin model of the V15 molecule, the gap formed due to the DMI is
inevitably dependent on the magnetic field direction. 6) Thus, for some directions of
the applied magnetic field, an adiabatic transition cannot be realized. Even if the
extended DMI 7) or an interaction taking the form of the scalar product of three
spins is considered, the directional dependence of the gap cannot be removed.

In this paper, we study the formation of an energy gap due to the hyperfine inter-
action. Because the magnetic moments of the electron and nuclear spins are differ-
ent, the Zeeman interaction does not commute with the interaction of the Heisenberg
model. Therefore, quantum mixing, or an adiabatic change of the magnetization, can
be realized when the magnitude of the magnetic field is changed smoothly. The gap
caused by the hyperfine interaction is independent of the direction of the applied
magnetic field. The behavior we study is of particular interest because quantum
mixing due to the hyperfine interaction has been observed experimentally in a single
crystalline 0.2% holmium doped LiYF by Giraud et al. 8)

To this time, the hyperfine interaction has been treated as noise that broadens
the energy levels of electron spin systems. In this paper, we study gap formation due
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to the hyperfine interaction in two simple systems: a dimer consisting of one electron
and one nuclear spin, and a triangular system consisting of three such dimers. For
both systems, we investigate how the magnetization changes when the magnitude of
the magnetic field changes at a finite rate.

If we consider coupling to nuclear spins, the energy levels no longer consist
simply of the levels of the electron spin system, and the system possesses sets of
many closely-spaced levels. When considering the crossing of such a set of energy
levels, we cannot simply estimate the probability of the adiabatic change of a state
using the Landau-Zener-Stückelberg (LZS) formula, 1), 9)

P = 1 − exp

(
−π(∆E)2

2h̄v

)
, (1.1)

where ∆E is the energy gap at the crossing point and v is the rate at which the
Zeeman energy changes. Hereafter, we use units in which h̄ = 1. For the triangular
system, we study how the rate of the adiabatic change of the magnetization, starting
from the ground state, depends on the rate of change of the magnetic field strength.
We also study the dynamics of the magnetization of a thermally populated system.
The dependence of the magnetization on the rate of change of the field strength is
analyzed using an effective LZS formula.

§2. Gap formation due to the hyperfine interaction

First, we consider the simplest case of a dimer consisting of one electron spin S
and one nuclear spin I. The Hamiltonian for this system is given by

H = aS · I − (gµBS + g′µNI) · H , (2.1)

where a denotes the strength of the hyperfine interaction between spins S and I,
µB and µN represent the magnetic moments and g and g′ the gyromagnetic ratios
of S and I, respectively, and H denotes the external magnetic field. We assume
|I| = |S| = 1/2. Because gµB � g′µN, we assume g′µN � 0. Then, taking the
magnetic field along to be the z-direction, Eq. (2.1) finally reduces to

H = aS · I − hSz, (2.2)

where h denotes the strength of the external magnetic field. The energy levels of
this Hamiltonian read

E1 = −1
4a − 1

2

√
a2 + h2,

E2 = 1
4a + 1

2h,

E3 = −1
4a + 1

2

√
a2 + h2,

E4 = 1
4a − 1

2h. (2.3)

For h ≈ 0, the energy level diagram is depicted in Fig. 1. Here and hereafter, we set
a = 1 and gµB = 1, which determine the units employed here. Two types of level
crossing structures are seen: Levels E2 and E4 simply cross, while levels E1 and E3
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Fig. 1. Energy level diagram of the Hamiltonian (2.2) with a = 1 and gµB = 1.

form an avoided level crossing structure. Note that the energy level diagram does
not depend on the direction of the H-field.

If the temperature is sufficiently low and if mainly the lowest level E1 is occu-
pied, simple adiabatic motion is expected. Such adiabatic motion is realized without
introducing an asymmetric interaction, such as the DMI, which is necessary for gap
formation in an electron spin system with time-reversal symmetry. 4) The hyper-
fine interaction does not break the time-reversal symmetry and does not introduce
geometrical anisotropy. However, because of the difference between the magnetic
moments, even for a uniform field, the Hamiltonian does not commute with the
Zeeman energy, and this leads to the opening of a gap. Thus, the hyperfine interac-
tion provides a mechanism for the formation of a gap that does not depend on the
direction of the field.

Let us now consider the change in magnetization at finite temperature when
the strength of the field is changed continuously from a large negative value to a
large positive value. For negative values of h, the energy difference between levels
E1 and E2 is of the same order of magnitude as the energy gap at h = 0, which
is caused by the hyperfine interaction a. Thus, at a temperature of order a, the
energy levels E1 and E2 are almost equally occupied, if we assume that the system
started from an equilibrium distribution. When the strength of the magnetic field is
slowly changed from negative to positive values, the population p1 of level E1 remains
unchanged, and the magnetization of the state changes smoothly from −1/2 to 1/2.
The population p2 of level E2 also remains unchanged. In this case, the magnetization
of the state does not change adiabatically and remains −1/2 for any rate of change
of the field strength, as long as we consider only quantum mechanical motion. When
the sign of the field changes, the state becomes metastable, and thermal noise can
cause relaxation of the metastable magnetization from −1/2 to 1/2. Then the state
changes from level E2 to level E4 or E1. Although this relaxation process depends
on how the system is coupled to the thermal bath, the relaxation always occurs after
the field passes the crossing point at h = 0.
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In the whole process, half of the population with m = −1/2 changes adiabatically
to m = 1/2, and the other half relaxes through a thermal process to m = 1/2.
Therefore, we can imagine that the magnetization changes from −1/2 to 0 just after
the field changes sign, and this is followed by slow relaxation from 0 to 1/2. In
this process, we expect a plateau in the magnetization just after the field changes
sign. This effect is reminiscent of the magnetic plateau phenomena observed in
magnetic iron clusters 10), 11) and in the V15 molecule, which appear as the result
of a continuously changing magnetic field. 2) These phenomena can be understood
from the point of view of the magnetic Föhn effect (MFE); 12)– 14) that is, a small
heat inflow that occurs during the adiabatic change at the crossing region causes
a temperature increase after the crossing. In this mechanism, when the sweeping
velocity becomes slow, more heat flows in, and the height of the magnetization
plateau decreases.

It is important to note that the system studied above has two different types
of crossings. A fast rate of change of the magnetic field causes a large deviation
of the population of E2 from its value in the equilibrium state. This is due to the
non-adiabatic LZS transition, not the thermal effect (MFE).

A change of the magnetization due to a combination of both mechanisms, i.e.,
MFE for the population of E1 and the LZS transition for the population of E2,
generally leads to a complicated dependence of the magnetization on the temperature
and the rate of change of the magnetic field strength.

§3. Triangular system

We consider the case of three electron spins on a triangular lattice in the presence
of a DMI. The Hamiltonian for this system reads

H = J(S1 · S2 + S2 · S3 + S3 · S1) +
∑
i>j

Dij · (Si × Sj). (3.1)

The antiferromagnetic Heisenberg interactions of strength J generate doubly degen-
erate doublets, and the DMI can cause an energy gap. 2) – 4) Taking into account the
symmetry of the lattice (C3), the vectors of the DMI satisfy the relations

Dz
12 = Dz

23 = Dz
31 (3.2)

and(
Dx

12

Dy
12

)
=

(
−1/2

√
3/2

−√
3/2 −1/2

)(
Dx

23

Dy
23

)
=

(
−1/2

√
3/2

−√
3/2 −1/2

)2(
Dx

31

Dy
31

)
.

(3.3)
If a magnetic field is applied along the x-direction, the system has degenerate avoided
level crossings. 3) However, it has been found that when the above relations hold
among the DM vectors, the energy levels do not form an avoided level crossing
structure when the field is applied along the z-direction. 6) A similar dependence of
the energy gap on the direction of the magnetic field has been found in the 15-spin
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system modeling the V15 molecule. 6) This type of dependence of the gap on the
magnetic field direction seems to be intrinsic to the DMI.

Now, we consider a system with the hyperfine interaction instead of DMI. As
shown in the previous section, the hyperfine interaction can provide a gap that is
independent of the field direction. The hyperfine interaction provides a mechanism
to generate energy gaps that differs from that of DMI.

We consider a model of three dimers consisting of an electron spin S and a
nuclear spin I [see Fig. 2(a)]. The Hamiltonian is given by

H = J(S1 · S2 + S2 · S3 + S3 · S1) + a(S1 · I1 + S2 · I2 + S3 · I3)

−
3∑

i=1

(gµBSi + g′µNIi) · H . (3.4)

We set gµB = 1 and g′µN = 0.001. Each of the 8 energy levels of the electron spin
interactions is split into 8 levels, due to the hyperfine interaction. Hence, in total
there are 64 energy levels. In order to make the effect of the hyperfine interaction
clearly visible, we use a rather large value for its strength, a, choosing a = 1 and
J = 10. The energy level diagram of the model given in (3.4) is depicted in Fig. 2(b).

In the figure, two degenerate doublets (S = 1/2) and quartet (S = 3/2) struc-
tures of the electron spin interaction are seen to persist, although each level of the
electron interaction is broadened, due to the degree of freedom of the nuclear spins.

J

a
0 10 20

−20

−10

0

10

E(H)

H

(a) (b)

Fig. 2. (a) A system of three dimers, each consisting of one electron (unfilled circle) and one nuclear

(filled circle) spin on a triangular lattice. The electron spins interact with each other via an

antiferromagnetic Heisenberg interaction of strength J . The electron and nuclear spins interact

via the hyperfine interaction a. (b) The energy level diagram of the Hamiltonian given in (3.4)

with J = 10, a = 1, gµB = 1 and gµN = 0.001. The dotted curve represents the magnetization

of the ground state, which is multiplied by a factor of 4 for the sake of clarity.
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The width of the splitting is O(a). Each group of levels in the figure consists of 8
levels. In the present model, the system has two-fold degenerate doublets. Thus,
the group of levels of magnetization M = 1/2, i.e., the group with the lowest energy
for H = 4, consists of 16 levels. At H = 0, the groups with M = ±1/2 merge, and
as a result, 32 levels form a nest of levels around E = −8J . Instead of the simple
level crossing structure seen in systems with only electron spins, this system exhibits
crossings of groups of levels. At each crossing, there is complicated level structure.

It should be noted that the ground state level does not cross any other level.
Hence, the magnetization of the ground state level can be changed adiabatically
from −3/2 to 3/2 by slowly changing the magnetic field strength from negative to
positive values. This contrasts with the behavior that is observed for the model
given in (3.1). 6) In that model, at least two levels have to cross at H = 0 to form a
Kramers doublet. 4) Thus, the ground state for negative values of the magnetic field
becomes the second lowest state after the field has changed sign. The magnetization,
starting from −3/2, cannot be caused to reach 3/2 adiabatically by slowly changing
the magnetic field. This is one of the peculiar consequences of the energy structure
of a triangular antiferromagnetic system with DMI. 4)

§4. Dynamical properties of a triangular antiferromagnet
with the hyperfine interaction

As the number of nuclear spins increases, the energy levels of the electron spin
broaden. Usually, this broadening is considered to be an effect of noise. In what
follows, we study the quantum mechanical dynamics of such broadened levels and
investigate whether the picture of the LZS transition still holds. For this purpose,
we study the dynamical properties of the triangular system (3.4).

First, we study the magnetization process in a continuously changing magnetic
field. Choosing the initial field strength to be H = −20, we obtain all the eigenstates
of the model with this field strength and label them |i〉 (i = 1, 2, · · · , 64). For each
of these 64 states, we solve the time-dependent Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉, (4.1)

where H(t) is the Hamiltonian (3.4) and the three components of the time-dependent
field read

H = (0, 0,−20 + vt). (4.2)

For each state {|i(t)〉}, we calculate the magnetization

mi(t) = 〈i(t)|
3∑

j=1

(gµBSz
i + g′µNIz

j)|i(t)〉. (4.3)

Here, we set a = 1, J = 10 and v = 0.5. In Fig. 3, we depict {mi(t)} for i = 1
– 64. Various types of evolution of the magnetization can be seen. For the chosen
parameter set, the magnetization starting from the ground state behaves almost
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Fig. 3. Time evolution of the magnetization for each of the 64 eigenstates of the Hamiltonian (3.4),

with a = 1, J = 10 and v = 0.5. The bold curve represents the magnetization change starting

from the ground state.

adiabatically when the field is changed from −H0 (= −20) to H0 (see the bold
curve).

Next, we study the dependence of the adiabatic change on the rate of change
of the field strength. We concentrate on the change of the magnetization around
H = 0. Here, we consider the magnetic field to change at a rate v from −H0 to H0

and choose H0 = 5.0.
Because we are interested in the dependence of the transition on v, we consider

the range of values of v from that for an almost diabatic transition (i.e. no change
of spin configuration) to that for an almost adiabatic transition. Although the LZS
formula (1.1) holds for any combination of parameters, the time over which H in-
creases, H0/v, should be larger than the precession time, ∼ O(2π/H), to estimate
the transition probability. Actually, in Fig. 3, we see the oscillation due to the pre-
cession clearly. We now consider the case a = 0.1 to make the energy gap small.
This is more convenient to study the effect of a non-adiabatic transition.

If we choose the unit of energy J to be 1K (=1kB = 1.38× 10−23J), taking into
account the values h̄ = 1.05 × 10−34Js and µB = 9.27 × 10−24 J/T, the velocity
v = 0.5 corresponds approximately to v0 = 1.0 × 1011[T/s].∗) Let the hyperfine
interaction be of order 10−4K. Then, a should be taken to be 10−4, which makes the
energy gap smaller by a factor of approximately 10−4. In this case, v must take a

∗) Explicitly, we have

v = 0.5 =
v0µBh̄

J2
=

v0T/s9.27 × 10−24J/T × 1.05 × 10−34Js

(1.38 × 10−23J)2
.
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Fig. 4. Time evolution of the magnetization starting from the ground state for v = 0.01, 0.05, 0.1

and 0.5 (from top to bottom) and a = 0.1, J = 10.

value in the range 0.01× 10−8 – 0.5× 10−8 in order to have the same change of the
transition probabilities as listed in Table I. This range corresponds v0 = 0.02 × 103

– 1.0 × 103[T/s].
We estimate the amount of adiabatic change by

P = |〈G(H0)|Ψ(tf)〉|2 , (4.4)

Table I. Probability P of adiabatic change,

(4.4), and the effective energy gap ∆E, es-

timated from the LZS formula (4.5) for var-

ious values of the rate of changing of the

field strength, v.

v P ∆E

0.500 0.08371 0.16681

0.250 0.16067 0.16697

0.100 0.35481 0.16702

0.050 0.58378 0.16704

0.025 0.82678 0.16704

0.010 0.98751 0.16704

where tf = 2H0/v, and G(H0) denotes
the ground state at H = H0. Typi-
cal time evolutions of the magnetization
starting from the ground state are de-
picted in Fig. 4 for various values of v.
Table I displays the dependence of P on
v. The effective energy gap ∆E can be
estimated from P by making use of the
LZS formula, 1), 9)

∆E =
√
−2v log(1 − P )/π. (4.5)

Values of ∆E are also given in Table I.
For a = 0.1, the energy gap between the ground state and the 32nd level is

0.20067, which is the maximum width of the lowest energy band at H = 0, as
mentioned in §2. We thus find that the LZS formula works well with an effective
energy gap (∆E ≈ 0.167), although the energy level structure is rather complicated.
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Fig. 5. Time evolution of the magnetization starting from an equilibrium state at temperature

T = 0.2. Here v = 0.01, 0.025, 0.05, 0.1, 0.25, 0.5 and 1.0 (from top to bottom).

If we assume that initially the states are distributed according to the canonical
distribution, we can calculate the magnetization as

〈m(t)〉 =
∑64

i=1 mi(t)e−βEi∑64
i=1 e−βEi

, (4.6)

where β = 1/kBT , kB denotes Boltzmann’s constant, and T is the temperature. The
dependence of 〈m(t)〉 on v is shown in Fig. 5. The effective transition probability
Peff is estimated using the thermal average of the overlap function as

Peff ≡ 〈P 〉 =
16∑
i=1

|〈i(tf)|Ψ(tf)〉|2 , (4.7)

where the states i = 1, · · · , 16 are those in the group for which mi � 1/2. We regard
this probability Peff as the rate of adiabatic change between the groups of levels with
m = ±1/2. The transition probability Peff and the effective gap estimated by (4.5)
are listed in Tables II and III, respectively.

We conclude that when the temperature is of order a = 0.1, the LZS formula
seems to work well, and the estimated effective gap is equal to approximately half of
the maximum width of the lowest band at H = 0. Although more work is necessary
to provide more quantitatively precise arguments, we conclude that the LZS-type
dependence of the probability of the adiabatic change on the rate of change of the
magnetic field provides a good approximation and that we can estimate the size of
the energy gap from this dependence.
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Table II. Transition probability Peff , (4.7), for various rates of change of the field strength v and

temperatures T .

v T = 1.0 T = 0.5 T = 0.3 T = 0.2 T = 0.1 T = 0.05 T = 0.01

0.50000 0.03147 0.02555 0.02603 0.02666 0.02850 0.03165 0.03839

0.25000 0.05620 0.05113 0.05229 0.05378 0.05811 0.06566 0.08412

0.10000 0.12773 0.12556 0.12932 0.13404 0.14788 0.17271 0.24280

0.05000 0.20470 0.20349 0.20709 0.21156 0.22429 0.24557 0.28213

0.02500 0.34472 0.34911 0.35769 0.36834 0.39930 0.45362 0.58738

0.01000 0.51469 0.52541 0.53942 0.55681 0.60754 0.69735 0.93007

Table III. Effective gap ∆Eeff , estimated using the LZS formula, (4.5), for various rates of change

of the field strength v and temperatures T .

v T = 1.0 T = 0.5 T = 0.3 T = 0.2 T = 0.1 T = 0.05 T = 0.01

0.50000 0.10089 0.09077 0.09162 0.09275 0.09594 0.10117 0.11163

0.25000 0.09595 0.09140 0.09246 0.09380 0.09761 0.10397 0.11826

0.10000 0.09327 0.09242 0.09389 0.09572 0.10093 0.10986 0.13306

0.05000 0.08539 0.08510 0.08594 0.08698 0.08991 0.09471 0.10272

0.02500 0.08202 0.08267 0.08394 0.08551 0.09006 0.09808 0.11870

0.01000 0.06784 0.06888 0.07025 0.07198 0.07716 0.08723 0.13014

§5. Summary and discussion

In order to have an adiabatic change of the magnetization when the strength
of the magnetic field is changed continuously in time, it is necessary for there to
exist avoided level crossings. An avoided level crossing is caused by some interaction
that does not commute with the magnetization, such as the Dzyaloshinskii-Moriya
interaction (DMI). However, the effect of the DMI depends on the direction of the
magnetic field, and for certain directions of the applied field, the DMI does not
generate avoided level crossing structure.

As an alternative source of avoided level crossings, we have studied energy gap
formation due to the hyperfine interaction. For this mechanism, the gap is indepen-
dent of the direction of the applied field.

We found that adiabatic transitions that start from the ground state can be
analyzed using the Landau-Zener-Stückelberg (LZS) formula with an effective energy
gap. We studied the change of magnetization at finite temperature, assuming a
canonical distribution of the initial level occupation. The degree to which the change
was adiabatic was estimated from the change of the magnetization. We found that
this depends weakly on the temperature, as long as the temperature is of the same
order as the strength of the hyperfine interaction. Also, the dependence on the rate
of change of the field strength can be fitted using the LZS formula with an effective
energy gap.

Our results suggest that apparent LSZ transitions can occur even if the energy
level structure does not consist of pairs of repelling levels. Therefore it is necessary to
study whether the observed experimental results are due to a true LZS mechanism
of a well-defined energy structure or an apparent LSZ mechanism. Usually, the
gap due to the hyperfine interaction is believed to be much smaller than that due
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to the electron spin interaction. However, for an energy gap of order 10−2K, the
hyperfine interaction could play a significant role in opening the gap. With this in
mind, we have to reconsider the source of the adiabatic changes of magnetization,
i.e., temperature independent, smooth changes of the magnetization caused by a
continuously changing field strength. Actually, it has been pointed out that a simple
DM interaction cannot account for the adiabatic transitions in V15

6) and Fe6. 14)

The present study may help to resolve this problem.
Describing the coherence of the state in this apparent LSZ transition is an in-

teresting problem on which we will report elsewhere. Clarifying the effect of contact
with a thermal bath, in particular, the manner in which the magnetic Föhn effect
appears in this system, is another interesting problem, which is also left for future
research.
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