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Abstract. A quantum molecular dynamics technique is pre-
sented to compute the static and dynamic properties of a
system of fermions coupled to classical degrees of freedom.
The method is employed to investigate the properties of
the Su-Schrieffer-Heeger model, an electron-phonon model
which is often used to describe the electronic properties
of conjugated polymers. The Su-Schrieffer-Heeger model
is shown to exhibit a metal-insulator transition away from
half-filling. In the metallic phase the electron transport is
collective and shows the features characteristic of Fröhlich
conductivity. Our simulation data for the optical absorption
at room-temperature are in good agreement with experiment.

PACS: 71.10.+x; 71.38.+i; 74.20.-z

1. Introduction

There is a vast class of physical systems that may, as a first
step, be modelled in terms of quantum mechanical degrees
of freedom interacting with a set of classical variables. Mod-
els of this kind are used to describe for example, solvated
electrons [1], metallic clusters [2], the electronic properties
of polymers [3–5],f - and d-electron systems [6], crystal-
lization [7, 8], etc. Usually the classical environment itself
displays complicated dynamical behavior and one often has
to resort to a Molecular Dynamics or Monte Carlo simula-
tion to unravel its properties. Methods have been developed
to compute the time-independent properties of the quantum
mechanical system embedded in the classical environment
[1,9,10].
In this paper we will focus on models described by the
Hamiltonian

H =
∑
i,j

∑
s

c+
i,sT

(s)
i,j ({uk}, µ)cj,s

+
1

2M

∑
i

p2
i +

1
2

∑
i,j

uiKi,juj , (1)

Dedicated to Prof. Wolfgang G̈otze on the occasion of his 60th birthday

where c+
i,s and ci,s are the creation and annihilation oper-

ators, respectively, for an electron with spins =↑, ↓ at the
generalized site indexi, ui is the phonon coordinate,pi is the
corresponding momentum andM denotes the mass of the
oscillators.T (s)

i,j ({uk}, µ) specifies the free-electron energy
for a fixed lattice deformation (e.g. the hopping matrix ele-
ments (ifi /= j) as well as the local potential (ifi = j)), and
is assumed to be a linear function of the phonon coordinates
{uk}. As we will work in the grand canonical ensemble
throughout, it is convenient to absorb inT (s)

i,j the term pro-
portional to the chemical potentialµ. Ki,j is the matrix of
oscillator spring constants. BothT (s)

i,j andKi,j are Hermitian
matrices. The number of lattice sites will be denoted byL.

Hamiltonian (1) describes the interaction of electrons and
lattice deformations, and is sufficiently general to encompass
all standard electron-phonon models such as the Holstein
model, the Su-Schrieffer-Heeger (SSH) model, etc.. The pur-
pose of this work is to demonstrate that for models of type
(1) one can compute thedynamicalproperties of the quantum
degrees of freedom directly with roughly the same accuracy
as the time-independent quantities. A key point thereby is
the absence, in (1), of terms representing electron-electron
interactions.

2. Static properties

A straightforward application of standard Quantum Monte
Carlo (QMC) methods [11], although feasible in principle, is
fraught with difficulties in particular for the applications we
will discuss below (see Sect. 4). This is due to the fact that
(i) for the temperature range of interest the standard QMC
methods suffer from severe numerical instabilities and (ii)
it is extremely difficult to compute the dynamic properties
at these temperatures. Therefore we take a different route
which is tailored to the situation at hand and is based on the
following rigorous results.

To study the statistical mechanical properties of the
model, an expression is needed for the grand-canonical par-
tition functionZ ≡ tr exp(−βH) =

∫
{uk} ρ({uk}), β denot-

ing the inverse temperature. An upperbound to the partition
function can be found by decomposing Hamiltonian (1) as
H = H1 +H2, where
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H1 =
1

2M

∑
i

p2
i

H2 =
∑
i,j

∑
s

c+
i,sT

(s)
i,j ({uk}, µ)cj,s +

1
2

∑
i,j

uiKi,juj . (2)

Application of inequality [12–14]

Z ≤ Z̃ ≡ Tr e−βH1e−βH2

= Tr e−βH1/2e−βH2e−βH1/2 , (3)

yields for the partition function

Z ≤
(

M

2πβ~2

)L/2 ∫
{uk}

e
−β
∑

i,j
uiKi,juj/2

×tr exp

−β∑
i,j

∑
s

c+
i,sT

(s)
i,j ({uk}, µ)cj,s

 . (4)

Expression (4) directly follows from the path-integral rep-
resentation ofZ if one neglects the imaginary-time depen-
dence of the phonon coordinates. SinceH is a quadratic
form in the fermionic degrees of freedom, the tracetr over
the fermions can be performed analytically, yielding for the
partition function

Z ≤
(

M

2πβ~2

)L/2 ∫
{uk}

e
−β
∑

i,j
uiKi,juj/2

×
∏
s

det
(

1 + e−βT
(s)({uk},µ)

)
. (5)

A lower bound to the partition function can be found us-
ing the linearity of the electron-phonon interaction. Writing
Hamiltonian (1) asH = H3 +H4 with

H3 =
1

2M

∑
i

p2
i +
∑
i,j

(ui − ui)Ki,j

(
uj − uj

)
2

+
∑
i,j

uiKi,juj
2

+
∑
i,j

∑
s

c+
i,sT

(s)
i,j ({uk}, µ)cj,s

H4 =
∑
i,j

(ui − ui)Ki,juj + uiKi,j

(
uj − uj

)
2

+
∑
i,j

∑
s

c+
i,sT

(s)
i,j ({uk − uk}, µ)cj,s , (6)

application of a generalized form of Jensen ’s inequality [15]

Tr e−βH3eβH3e−βH ≥ exp

(
Tr e−βH3(−βH4)

Tr e−βH3

)
×Tr e−βH3, (7)

yields for the partition function

Z ≥ Zp max
uk

e
−β
∑

i,j
uiKi,juj/2

×
∏
s

det
(

1 + e−βT
(s)({uk},µ)

)
, (8)

where

Zp ≡ tr e−βHp , (9a)

Hp =
1

2M

∑
i

p2
i +

1
2

∑
i,j

uiKi,juj , (9b)

are the partition function and Hamiltonian of the free phonon
system respectively.
Combining (5) and (8), the upper and lower bounds to the
ground-state energy read

Ẽ0 ≤ E0 ≤ E(p)
0 + Ẽ0 , (10)

whereE(p)
0 is the ground-state energy of the phonon system

and

Ẽ0 = min
{uk}

∑
i,j

uiKi,juj
2

− lim
β→∞

∑
s

Spln
(

1 + e−βT
(s)({uk},µ)

)]
, (11)

whereSpX denotes the trace of theL× L matrix X.
In general for models of type (1), the approximation

e−βH ≈ e−βH1/2e−βH2e−βH1/2 , (12)

is expected to be accurate ifβ is small (high temperature) or
the massM of the oscillators is large. Approximation (12) is
tantamount to a semi-classical treatment of the phonon coor-
dinates [16]. From (10) it follows that ifE(p)

0 � |Ẽ0|, treat-
ing the phonon degrees of freedom as classical variables will
be a good approximation. At zero temperature, taking this
limit is equivalent to making the adiabatic approximation in
which the phonon coordinates are determined by minimizing
the expectation value ofH2.

Expressions for any static property of interest can be
derived in a manner similar to the one used to obtain (5).
Expectation values of static quantities are calculated as fol-
lows: For a particular configuration{uk} we diagonalize
the L × L matrix T , compute the product of determinants
in (5), and multiply the latter by the exponential prefactor,
to obtain the weight of the configuration{uk}. This weight
is strictly positive and can be used directly in a Metropolis
Monte Carlo simulation of the variables{uk} to calculate
the averages of time-independent quantities. Our algorithm
samples the full phase space and is, by construction, free
of minus-sign problems or numerical instabilities [11]. The
latter enables us to cover a much wider range of tempera-
tures than the one which is usually accessible to other QMC
methods [17].
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3. Dynamic properties

For models of type (1), the time-dependent quantities can
be calculated directly, in thereal-time domain, without in-
voking procedures [17] to extrapolate imaginary-time data
to the real-time axis.

3.1. Single-particle density of states

The single-particle density of states (DOS)N (ω) is the prob-
ability for removing or adding a single electron from or to
the system and is defined as

N (ω) =
1

2πL

∑
l,s

∫ +∞

−∞
dτeiωτ 〈{cl,s(τ ), c+

l,s}〉 . (13)

Using the fact that (1) is a quadratic form of the fermion
operators, the time evolution of the annihilation operator in
(13) can be worked out analytically, yielding in the semi-
classical limit

L−1
∑
l,s

〈{cl,s(τ ), c+
l,s}〉 = Z−1

∑
s

∫
{uk}

ρ({uk})

×Spe−iτT
(s)({uk},µ) . (14)

Since, in the simulation, we already know the eigenval-
ues and eigenvectors ofT (s)({uk}, µ), it is straightforward
to compute the real and imaginary part ofe−iτT

(s)({uk},µ)

for arbitrary τ . For each choice ofτ , the calculation of
Spe−iτT

(s)({uk},µ) takes of the order ofL operations per
configuration{uk}, the statistical errors being comparable
to those of the static quantities. In practice we choose a set
of τ -values (typically 512) such that, after all samples have
been taken, the integral in (14) can be computed by Fast
Fourier Transformation.

3.2. Optical conductivity and Drude weight

When a pulse of electric field is applied in a particular di-
rection the linear response in this direction is given byσ(τ )
= −i〈[P (−τ ), J ]〉, where J = i[H,P ] = i

∑
k/=l

∑
s T

(s)
k,l

({uk}, µ)
(
c+
k,scl,s − c+

l,sck,s

)
is the current operator and

P =
∑

l lnl is the polarization operator. The time evo-
lution of the polarization operator is defined asP (τ ) =
eiτHPe−iτH . In the semi-classical limit σ(τ ) =
−i〈[e−iτH2PeiτH2, J ]〉 = −i〈[P, eiτH2Je−iτH2]〉.
The Kubo formula for the optical conductivity reads [18]

σ (ω) = lim
ε→0

1
ω + iε

{
−i
∑
l,s

〈[lc+
l,scl,s, J

]〉
+i
∫ ∞

0
eiωτe−ετ 〈[J, J (τ )]〉dτ

}
. (15)

The time evolution of the current operatorJ(τ ) = eiτH2

Je−iτH2 can be worked out analytically, yielding

J(τ ) = i
∑
i/=j

∑
k,l

∑
s

T (s)
i,j ({uk}, 0) (16)

×
[(
eiτT

(s)({uk},µ)
)
k,i

(
e−iτT

(s)({uk},µ)
)
j,l
c+
k,scl,s

−
(
eiτT

(s)({uk},µ)
)
l,j

(
e−iτT

(s)({uk},µ)
)
i,k

c+
l,sck,s

]
.

The analytical expression for the expectation value of the
commutator appearing in (15) reads

〈[J, J(τ )]〉 = −2iZ−1
∫
{uk}

∑
i,j

∑
s

ρ({uk})
(
1 + eβλi

)−1

× sinτ (λj − λi)(S
TT (s)({uk}, 0)S)i,j

×(STT (s)({uk}, 0)S)j,i , (17)

where the matrixS diagonalizes the matrixT (s)({uk}, µ)
andλi are the eigenvalues ofT (s)({uk}, µ).
The second term in (15) can be worked out analytically and
reads

2Z−1
′∑
i,j

∑
s

∫
{uk}

ρ({uk})
λj − λi

(ε− iω)2 + (λj − λi)2

× (1 + eβλi
)−1

(STT (s)({uk}, 0)S)i,j

×(STT (s)({uk}, 0)S)j,i , (18)

where
∑′

i,j denotes a summation overi and j such that
λi /= λj . The computation ofσ(ω) takes of the order ofL2

operations. The statistical noise onσ(ω) is of the same order
of magnitude as for the DOS and the static quantities.

In general, the real part of the conductivity may be
written asσ(ω) = Dδ(ω) + σreg(ω) [19]. The coefficient
D of the delta function is called the Drude weight and
serves as a direct and sensitive measure of a metal-insulator
transition [19–21]. If D = 0 the system is an insula-
tor and otherwise it is a conductor. From (15) it imme-
diately follows that the Drude weight cannot be larger
than the absolute value of the hopping energy:|D| ≤
2|∑i/=j

∑
s〈T (s)({uk}, µ)i,jc+

i,scj,s〉|. From (15) and (18) it
can be seen that the Drude weight is given by

D = −2Z−1
∫
{uk}

∑
i/=j

∑
s

ρ({uk}, µ)T (s)({uk}, 0)i,j

×
(

1 + eβT
(s)({uk},µ)

)−1

i,j

+2Z−1
∫
{uk}

′∑
i,j

∑
s

1
λj − λi

(
1 + eβλi

)−1

×(STT (s)({uk}, 0)S)i,j(STT (s)({uk}, 0)S)j,i . (19)

4. The Su-Schrieffer-Heeger model

A detailed investigation of the properties of one-dimensional
electron-phonon models is important to elucidate the connec-
tion between the models and various quasi-one-dimensional
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real materials. One of the principal motivations for research
on quasi-one-dimensional conductors has been the possibil-
ity of obtaining high-temperature superconductivity or at
least very high conductivity from moving charge-density-
waves (Fr̈ohlich conductivity) [22].

We apply the method described above to calculate the
single-particle and two-particle (optical, magnetic, super-
conducting) excitations for the Su-Schrieffer-Heeger (SSH)
model, an electron-phonon model which is often used to
describe the electronic properties of conjugated polymers
[3–5]. The SSH model Hamiltonian reads [3–5, 23–26]

H = −
∑
i

∑
s

(t− α (ui+1 − ui))
(
c+
i,sci+1,s + c+

i+1,sci,s
)

−µ
∑
i

∑
s

ni,s +
1

2M

∑
i

p2
i

+
K

2

∑
i

(ui+1 − ui)
2 , (20)

wherec+
i,s and ci,s are the creation and annihilation opera-

tors, respectively, for aπ-electron with spins =↑, ↓ at the
i-th CH group,ni,s denotes the number operator at group
i, µ is the chemical potential which fixes the number ofπ-
electrons,ui is the coordinate describing the displacement
of the i-th CH group along the molecular symmetry axis,
pi is the corresponding momentum,t is the hopping integral
for the undimerized chain,α is the electron-phonon coupling
constant,K is the effectiveσ-spring constant andM is the
total mass of the CH group [3–5, 23–26].
At half-filling one has for the ground-state energy [4,5]

Ẽ0

L
= min

z

(
−4t
π

E (1− z2) +
Kt2z2

2α2

)
, (21)

where E (x) denotes the complete elliptic integral of the
second kind and

E(p)
0

L
=

1
π

√
4K
M

. (22)

For trans-polyacetylene we use a set of model parame-
ters which is often adopted in model calculations [3–5]:
t = 2.5 eV, α = 4.1 eV/Å, K = 21 eV/Å

2
and M =

3145 eV−1/Å
2
.

For this set of parameters one has [4,5]̃E0/L =
−3.170 eV andE(p)

0 /L = 0.052 eV. From (10) it follows
that

−3.170 eV≤ E0/L ≤ −3.118 eV , (23)

giving support to the idea [3–5, 23–26] that a semi-classical
treatment of the phonons may be a good starting point for
the description of the electronic properties of polyacetylene.

5. Results

The results reported in this paper have been obtained from
simulations of even-site rings containing up to 256 sites and
256 electrons, exceeding the length of most chains in actual

Fig. 1. a Lattice distortions for a ring of 128 sites fory = 0.016 and
T = 2.9K. The line is a guide to the eye.b Same asa, but the small-
est wave numbers are filtered out. Bullets: Simulation results; solid line:
u0 tanh

[
(i− i0)/l

]
materials [27–29]. Energies will be measured in units of
t = 2.5 eV. Disregarding the statistical errors (which are too
small to be visible on the figures presented below) the results
for the static and dynamic properties (as obtained from a few
statistically independent runs of 1000 samples each) are, for
all practical purposes, numerically exact.

5.1. Low-temperature

First we demonstrate that our method reproduces the known
features of the model at low-temperature (in practice we
set T = 2.9K, corresponding toβt = 10000) [3–5, 23–
26]. At half-filling the configuration{ui} with equal spac-
ing between the CH groups is unstable with respect to a
dimerization distortion, the Peierls instability [30], in which
adjacent CH groups move toward each other forming al-
ternately short and long bonds. Our numerical results for
half-filled CH chains of 64, 128 and 256 sites show that the
equilibrium bond alternation amplitudeu0 = 0.0409Å. This
indicates thatu0 does not strongly depend on system size for
the chain lengths considered in this work. In Fig. 1a we show
the pattern of the lattice displacement for the case in which
two electrons are taken away from a half-filled 128-site ring.
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Fig. 2. a Lattice distortions for a ring of 128 sites fory = 0.078 and
T = 2.9K. The line is a guide to the eye.b Same asa, but the small-
est wave numbers are filtered out. Bullets: Simulation results; solid line:
u0 sin

[
2πm(i− i0)/L

]

The dopant concentrationy ≡ 1−n = 0.016, wheren is the
density of electrons in the chain. The small oscillations on
top of the superstructure can easily be removed by standard
filtering procedures. The result is depicted in Fig. 1b. The
solid curve in Fig. 1b is given byui = u0 tanh[(i − i0)/l]
wherei0 is a fitting parameter,l = 8 determines the extent
of the defect andu0 = 0.0409Å. The hyperbolic tangent
is characteristic of the bond-length alternation associated
with the geometric distortion due to a soliton on an infi-
nite chain [3–5, 23–26]. Variational calculations suggest a
value ofl ≈ 7 [3–5, 24–26]. As expected, Fig. 1 shows that
for the case in which two electrons are taken away from
a half-filled 128-site ring, two solitons are being created.
Simulations for the case in which four electrons are taken
away from a half-filled 256-site chain (y = 0.016) show
that four solitons are created and also givel = 8, indicat-
ing that the extent of the defect does not strongly depend
on the size of the system. Upon doping the 128-site ring
further the soliton lattice evolves toward a sinusoidal mod-
ulation as shown in Fig. 2 fory = 0.078. The solid curve
in Fig. 2b is given byui = u0 sin[2πm(i − i0)/L], where
i0 andm are fitting parameters. Additional simulations for
64 and 256-site rings (results not shown) strongly suggest

Fig. 3. Equilibrium bond alternation amplitudeu0 as a function of dopant
concentrationy for a ring of 128 sites andT = 2.9K. The line is a guide
to the eye

Fig. 4. Electron densityn as a function of the chemical potentialµ for a
ring of 128 sites andT = 2.9K. The line is a guide to the eye

that solitons (soliton-antisoliton pairs) are only present for
dopant concentrationsy < 0.031 and that the transition from
the soliton lattice to the sinusoidal modulation is continuous.
This also implies (and is corroborated by our simulation data
(not shown)) that systems of 64 sites or less cannot support
soliton–antisoliton pairs because the removal of two elec-
trons from the half-filled system corresponds to a dopant
concentration that exceeds the critical value of 3.1%.

The equilibrium bond-length alternation amplitudeu0 as
a function of the concentrationy is shown in Fig. 3. For
y < 0.031 the value ofu0 is the same as for the half-
filled band. Fory > 0.031,u0 decreases from its half-filled
band value and reaches a minimum valueu0 ≈ 0.01Å for
y ≈ 0.2. Thereafteru0 increases with increasingy and for
y > 0.58, u0 becomes even larger than its half-filled band
value. Hence, this increase ofu0 is not due toy approaching
0.5, a concentration that corresponds to a modulation that is
commensurate with the underlying lattice [31].

There is strong experimental evidence that upon doping
trans-polyacetylene a first-order metal-insulator phase tran-
sition occurs at a dopant concentration of approximately 6%
[29, 32]. A first-order phase transition is characterized by
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Fig. 5. Drude weightD as a function of the number of sitesL. Bullets:
D calculated from (27) withu0 = 0.04Å, circles: Quantum molecular
dynamics results forT = 2.9K, corresponding toβt = 10000. The line is
a guide to the eye

plateaus and steps inn versusµ [33]. Our numerical re-
sults, depicted in Fig. 4, show thatn varies smoothly as a
function ofµ, strongly suggesting that the SSH model does
not exhibit a first-order phase transition as a function of
doping. The small steps inn versusµ indicate that at low-
temperature only states with an even number of electrons are
thermodynamically stable and that the formation of polarons
is unlikely.

To explore the occurrence of a metal-insulator as a func-
tion of doping, we calculate the Drude weight and the optical
conductivity. First we demonstrate that our method repro-
duces the optical conductivity and the insulating feature of
the half-filled system at zero-temperature. The Hamiltonian
which describes a completely dimerized chain is given by

H = t+
∑
j,s

(
c+

2j+1,sc2j+2,s + h.c.
)

+t−
∑
j,s

(
c+

2j+2,sc2j+3,s + h.c.
)
, (24)

wheret± = −t± 2αu0. The optical conductivity for model
(24) can be worked out analytically, yielding

σ (ω) = lim
ε→0

1
ω + iε

×
{
−
∑
k

εk + 4
∑
k

(
t2+ − t2−

)2

εk (ε− iω)2 + 4ε3
k

}
, (25)

where εk = −
√
t2+ + t2− + 2t+t− cos(4πk/L). Extraction of

the Drude weight gives for the dimerized chain

D = −
∑
k

εk +
(
t2+ − t2−

)2∑
k

1/ε3
k . (26)

In Fig. 5 the Drude weight for the half-filled system is shown
as a function of system size. Our quantum molecular dynam-
ics results (circles) agree very well with the results obtained
from (26) (bullets). The Drude weight forL = 4m-site rings
is negative and goes to zero as the number of lattice sites in-
creases. Systems with more than 64 sites are needed to obtain
D = 0, as expected for a semiconductor at low-temperature.

Fig. 6. Drude weightD as a function of the dopant concentrationy for
T = 2.9K. Bullets:L = 128, number of electronsN = 4m + 2; circles:
L = 128, number of electronsN = 4m; squares:L = 256, number of
electronsN = 4m + 2. The lines are guides to the eye

Our simulation technique also reproduces the exact values
of σ(ω) as given by (25) (data not shown).

The behavior of the Drude weightD as a function of
the dopant concentrationy, is shown in Fig. 6 for rings of
128 sites. As seen above, at low temperature the system is
unstable with respect to the removal (addition) of an odd
number of electrons from (to) the half-filled system contain-
ing an even number of sites. Hence the number of electrons
in the systemN is given by 4m or 4m + 2 wherem is
an integer number. At zero and low dopant concentration
(y < 0.06) the Drude weight is zero. In the doping regime
0.06< y < 0.5 the Drude weight is strictly negative if the
number of electrons is divisible by four and strictly positive
otherwise. Physically a negative value forD corresponds
to a negative inductance, or orbital paramagnetism [34]. Or-
bital paramagnetism also arises in a noninteracting dimerized
model with 4m-sites [35] and negative values forD have
also been found in half-filled Hubbard rings with 4m-sites
[34, 36]. At very high dopant concentrationsy > 0.5 the
system becomes again insulating (D = 0). Comparing the
results forL = 128 (bullets) and forL = 256 (squares), we
expect for infinite chains the Drude weight to be zero for all
dopant concentrations.

Figure 7 shows a series of calculated optical absorption
spectra for various dopant concentrations. The optical ab-
sorption for the undoped case (thick solid line) has a gap.
For dopant concentrations below 6%, a midgap absorption
peak appears. The intensity of the midgap absorption peak
comes from the interband transitions over the whole spectral
range. Fory < 0.031, i.e. the range of dopant concentrations
for which the system supports solitons, the intensity of the
midgap absorption is proportional to the dopant concentra-
tion. In the intermediate doping regime 0.031< y < 0.06
the doping dependence of the intensity of the midgap ab-
sorption changes. In the heavily doped regime (y > 0.06)
the interband transition has completely disappeared. For all
dopant concentrations the optical conductivity exhibits a gap
at low frequencies. Hence for 0.06< y < 0.5 the system is
not a simple metal. For 0.06< y < 0.5 the gap inσ(ω) first
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Fig. 7. Optical absorptionσ(ω) for a ring of 128 sites for various dopant
concentrations andT = 2.9K. Thick solid line:y = 0, thick dashed line:
y = 0.016, thick dash-dotted line:y = 0.031, thick dotted line:y = 0.047,
thick dash-triple dotted line:y = 0.063, thin solid line:y = 0.078, thin
dashed line:y = 0.109, thin dash-dotted line:y = 0.328.ω is measured in
units of t = 2.5 eV

decreases with doping, becomes minimal there where|D| is
maximal and then increases again.

To study the nature of the metal-insulator transition fur-
ther, we also calculate the DOS. The DOS for the SSH model
shows a gap∆ for all electron fillings and the chemical po-
tential always falls in the gap [31, 37]. This is confirmed
by the results shown in Fig. 8, where we showN (ω) for
a ring of 256 sites for various dopant concentrations. At
half-filling (y = 0), N (ω) consists of two bands separated
by a gap∆ = 1.22 eV± 0.02 eV [38]. The chemical po-
tential is located in the middle of the gap and the system
is a dimerized semiconductor. At low dopant concentration
(y < 0.06) there is a narrow, mid-gap band in the DOS.
For y ≤ 0.031 this band is due to the presence of solitons
whereas for 0.031< y < 0.06 it results from the sinusoidal
modulation. At high dopant concentration (y > 0.06) the
midgap-band broadens. There is excellent qualitative agree-
ment between the results for the DOS obtained by a combi-
nation of geometry optimization and the continued fraction
technique [31, 37] and our numerically exact results.

The DOS has a gap and the chemical potential is located
within the gap even though the system is conducting for
0.06< y < 0.5. Therefore the system is not a conventional
conductor. In Fig. 9 we show the gap∆ in N (ω) as a func-
tion of dopant concentration for electron fillingsN = 4m+2.
The gap∆ in N (ω) equals the gap inσ(ω). Our results (not
shown) for the Pauli susceptibilityχP (for L = 128, 256
and for all dopant concentrations) clearly demonstrate that
χP = 0, as might be expected on the basis of the free-
electron theory in whichχP is proportional to the DOS at
the chemical potential [39]. Note however that in the SSH
model the electrons interact.

The observation that the DOS has a gap and the chemical
potential is located within the gap even though the system is
conducting for 0.06< y < 0.5 does not have to be inconsis-
tent. Indeed, a BCS superconductor [39] and a Fröhlich con-
ductor [40] exhibit the same characteristics. Superconduc-
tivity is characterized by the existence of off-diagonal long-

Fig. 8. Density of statesN (ω) for a ring of 256 sites for various dopant
concentrationsy andT = 2.9K. The dashed line denotes the position of
the chemical potential.ω is measured in units oft = 2.5 eV

range order (ODLRO) [41]. Fröhlich conductivity requires
a periodic lattice distortion incommensurate with the lattice
and an accompanying periodic distortion in the conduction
electron charge density: a charge-density-wave (CDW) [40].
Although a purely one-dimensional system with short-range
interactions cannot undergo a phase transition at any finite
temperature [42], it may exhibit long-range order atT = 0.
However, the question of order in a chain can be discussed
in terms of its tendency towards long-range order asT → 0
because even though there is no long-range order atT /= 0,
it is possible for very-long-range (but finite) correlations to
build up.

We first examine the possibility of having Fröhlich con-
ductivity in the SSH model. At half-filling the configuration
with equal spacing between the sites is unstable with respect
to a Peierls instability [30]. A dimerization distortion with
wavevectorq = 2qF with qF = (π/2)(1± y) results. In the
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Fig. 9. Gap∆ in the density of statesN (ω) as a function of the dopant
concentrationy for a ring with 128 sites andT = 2.9K. The line is a guide
to the eye

doping regime 0≤ y < 0.5 we also observe a CDW with
wave vectorq = 2qF . For y > 0.5 a 2qF CDW with higher
harmonics appears. Thus for 0.06< y < 0.5 the finite Drude
weight may be explained by the Fröhlich conducting mech-
anism: The lattice and electronic charge distortion move as
one travelling wave.

Criteria which may be used to decide whether or not a
given model exhibits superconductivity is the occurrence of
flux quantization [41, 43] or a non-zero value of the super-
fluid densityρs [21]. To explore flux quantization we thread
a magnetic fluxφ through the center of the ring. As a con-
sequence the hopping term in (20) acquires a constant phase
exp(±2πiφ/Lφ0) whereφ0 = hc/e is the flux quantum [44].
Byers and Yang argue that, in the thermodynamic limit, the
functional form of the grand potentialΩ = −β−1 lnZ as
a function ofφ allows one to distinguish between a nor-
mal metal and a superconductor [41, 43]. In the case of
a superconductorΩ(φ) is an even periodic function ofφ
with period φ0/k where k stands for the sum of charges
of the particles in the basic group [41]. The resulting flux
dependence requires that a superconductor exhibits ODLRO
[41]. On the other hand, the curveΩ(φ) is flat in the case
of a normal metal. The superfluid densityρs can be calcu-
lated from the dependence of the grand potential onφ using
ρs ∝ L−1(∂2Ω(φ/L)/∂(φ/L)2)φ/L=0 [21, 45–48]. A feel-
ing for the system-size dependence ofρs can be obtained
by considering a free electron system. Evidently in that case
one expects to findρs = 0, independent of the dimension and
the temperature. For a one-dimensional free electron system

∂2Ω

∂(φ/L)2

∣∣∣∣
φ/L=0

= 2t
∑
k

nk cosk

−2βt
∑
k

nk(1− nk) sin2 k , (27)

with

nk =
1

eβ(−2t cosk−µ) + 1
. (28)

Numerical results for the r.h.s. of (27) for various system
sizes and inverse temperatures fort = 1 andn = 1 are given

Table 1. Superfluid densityρs for the half-filled one-dimensional free elec-
tron system as a function of system sizeL and inverse temperatureβ

L β = 10 β = 100 β = 1000
16 −0.626 −11.872 −124.37
18 0.386 0.640 0.639
32 −0.087 −5.615 −61.865
34 0.066 0.638 0.638
36 −0.052 −4.921 −54.921
64 −0.001 −2.489 −30.614
66 0.001 0.635 0.637
72 0.000 −2.141 −27.142

1024 0.000 0.000 −1.312
1026 0.000 0.000 0.603

10000 0.000 0.000 0.000

Fig. 10.∆E(φ) for free fermions at zero temperature. Bullets: 12-site ring,
circles: 14-site ring; triangles: 36-site ring; squares: 128-site ring. The lines
are guides to the eye

in Table 1. For all temperaturesρs ≤ 0 for L = 4m and
ρs ≥ 0 for L = 4m + 2 wherem is an integer number. This
change of sign ofρs with L is similar to the behavior found
in the Drude weight [34, 36]. At very low temperatures very
large system sizes are needed to obtainρs = 0, as expected
for the free electron system [49]. The system size required
to yield a vanishingρs grows with the inverse temperature, a
feature which makes it difficult to decide whether or not the
system is a superconductor. Therefore we decided to use flux
quantization to rule out superconductivity in this system.

First we demonstrate that our method reproduces the flat
Ω(φ) curve for the free fermion system at zero-temperature
(i.e. Ω(φ) = E(φ), E(φ) being the ground-state energy). In
Fig. 10 we plot the energy difference∆E(φ) ≡ E(φ) −
E(φ = 0) for free fermions on a ring of 12 (bullets), 14
(circles), 36 (triangles) and 128 (squares) sites. For small
systems∆E(φ) clearly exhibits periodic behavior as a func-
tion of φ. This implies the presence of persistent currents
(J ∝ ∂E/∂φ), a well-known phenomenon in mesoscopic
normal-metal rings [50–53]. Also clear from Fig. 10 is that
the signal for flux quantization strongly depends on system-
size: For a ring of 128 sites∆E(φ) is flat (up to four digits at
least). Therefore the question of flux quantization can only
be addressed by calculating∆E(φ) for sufficiently large sys-
tems. Our results for the SSH model forL = 128, 256 and
for all dopant concentrations lie on top of the squares in
Fig. 10, demonstrating that∆E(φ) is perfectly flat. Hence
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Fig. 11. Optical absorptionσ(ω) for a ring of 128 sites for various dopant
concentrations andT = 290K. Thick solid line:y = 0, thick dashed line:
y = 0.008, thick dash-dotted line:y = 0.016, thick dotted line:y = 0.02,
thick dash-triple dotted line:y = 0.031, thin solid line:y = 0.047, thin
dashed line:y = 0.063, thin dash-dotted line:y = 0.078, thin dotted line:
y = 0.109.ω is measured in units oft = 2.5 eV

Fig. 12. Concentration dependence of the midgap optical absorption (arbi-
trary units). Circles: Experimental data [55]. Bullets: Simulation data taken
from Fig. 11. The dotted lines are a guide to the eye

there is no flux quantization in the SSH model. This im-
plies thatρs = 0 for all electron fillings. Hence the SSH
model for 0.06 < y < 0.5 provides an example for which
the DOS and the optical absorption spectrum have a gap and
D /= Lρs [21].

5.2. Room-temperature

To make contact with experimental work on trans-polyace-
tylene we calculate the optical conductivity for the SSH
model at room-temperature. The optical absorption spectra
σ(ω) at room-temperature (in practice we setT = 290K,
corresponding toβt = 100) for various dopant concentra-
tions y are depicted in Fig. 11 for rings of 128 sites. For
the undoped case (thick solid line)σ(ω) shows an interband
transition peak atω = 1.42 eV± 0.13 eV. Upon doping and
for dopant concentrations below 6%, a midgap absorption
peak appears atω = 0.64 eV± 0.13 eV. The intensity of

Fig. 13. Lattice distortion for a ring of 256 sites fory = 0.012 (3 electrons
removed from the half-filled ring) andT = 290K. The line is a guide to
the eye

the midgap absorption peak comes from the interband tran-
sition over the whole spectral range. The optical conductiv-
ities for different dopant concentrations (y < 0.06) cross in
one point (the isosbestic point) atω = 1.03 eV± 0.13 eV.
These features are also observed experimentally [54–56].
However, the calculated peak positions and isosbestic point
are at slightly lower energies than found in experiment. In
Fig. 12 we show the intensity of the midgap absorption peak
(optical density) as a function of dopant concentration for
y < 0.06. Our numerical results (bullets) indicate that for
y < 0.031 the intensity of the midgap absorption peak in-
creases linearly with the dopant concentration. In the inter-
mediate doping regime 0.031 < y < 0.06, the doping de-
pendence of the intensity of the midgap absorption changes.
Similar behavior is seen in the optical absorption measure-
ments of Feldblumet al. [55] (circles). However, our results
show that for 0.031< y < 0.06 the midgap absorption peak
becomes higher than the interband transition peak, in dis-
agreement with some experiments [54–56] but in agreement
with others [57]. In the heavily doped regime (y > 0.06) the
low-energy absorption shrinks with increasing dopant con-
centration and the corresponding peak shifts toward lower
energy, while the interband transition completely disappears
(see Fig. 11).

At low temperature a system containing an even num-
ber of sites has only states with an even number of elec-
trons. Moderate doping (y < 0.031) results in the creation
of soliton-antisoliton pairs only [11]. At room temperature
this is no longer the case: The system is thermodynamically
stable with respect to the removal of a single (or odd number
of) electron(s), independent of the filling. Our calculations
show that for moderate doping and an odd number of elec-
trons, the thermodynamically relevant states consist of con-
figurations with a single polaron and/or soliton-antisoliton
pairs, an example being shown in Fig. 13. From Fig. 11 it
is clear that the optical conductivity for systems containing
a polaron (see the thick dashed and thick dotted line) does
not show any extra features compared to the conductivity
of systems without a polaron. Further evidence for this is
provided by the data shown in Fig. 12 (second and fourth
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bullet, counting from left to right). Our results for the density
of states (not shown) indicate that both the polaron and the
soliton-antisoliton pairs contribute to the weight atω = 0 [4].

6. Summary

A simulation method has been presented to compute the
static and dynamic properties of electron-phonon models.
The technique has been applied to the Su-Schrieffer-Heeger
model at low and room-temperature. We have demonstrated
that at low-temperature the Su-Schrieffer-Heeger model ex-
hibits a metal-insulator transition as a function of the doping.
The metallic state exhibits features characteristic of Fröhlich
conductivity. Our simulation data for the optical absorption
at room-temperature are in good agreement with experiment.

This work is supported by EEC contracts and a supercomputer grant of the
“Stichting Nationale Computer Faciliteiten (NCF)”.
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