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Abstract. A quantum molecular dynamics technique is pre-wherec; , and¢; ; are the creation and annihilation oper-
sented to compute the static and dynamic properties of ators, respectively, for an electron with spin=T, | at the
system of fermions coupled to classical degrees of freedomgeneralized site index u; is the phonon coordinatg; is the
The method is employed to investigate the properties ofcorresponding momentum and denotes the mass of the
the Su-Schrieffer-Heeger model, an electron-phonon mOdebsciIIators.ﬂ(j?({uk},u) specifies the free-electron energy
which is often used to describe the electronic propertiesor a fixed lattice deformation (e.g. the hopping matrix ele-
of conjugated polymers. The Su-Schrieffer-Heeger modelents (ifi # j) as well as the local potential (if= 5)), and

is shown to exhibit a metal-insulator transition away from is assumed to be a linear function of the phonon coordinates
half-filling. In the metallic phase the electron transport is {v;}. As we will work in the grand canonical ensemble
collective and shows the features characteristic @hlich  nroughout, it is convenient to absorb T*) the term pro-
conductivity. Our simulation data for the optical absorption hortional to the chemical potential. Kijl’ls the matrix of

at room-temperature are in good agreement with eXpe”mengscillator spring constants. Bom(Sj) and}(iﬁj are Hermitian

matrices. The number of lattice sites will be denotedZby
Hamiltonian (1) describes the interaction of electrons and
lattice deformations, and is sufficiently general to encompass
all standard electron-phonon models such as the Holstein
model, the Su-Schrieffer-Heeger (SSH) model, etc.. The pur-
pose of this work is to demonstrate that for models of type
(1) one can compute tldynamicalproperties of the quantum
éi[egrees of freedom directly with roughly the same accuracy

step, be modelled in terms of quantum mechanical degree S the time-in_dependent quantities. A key point thereby is
of freedom interacting with a set of classical variables. Mod-f[ € abs_ence, in (1), of terms representing electron-electron
els of this kind are used to describe for example, Solvatednteractmns.

electrons [1], metallic clusters [2], the electronic properties

of polymers [3-5],f- and d-electron systems [6], crystal- 2. Static properties

lization [7, 8], etc. Usually the classical environment itself

displays complicated dynamical behavior and one often haé straightforward application of standard Quantum Monte
to resort to a Molecular Dynamics or Monte Carlo simula- Carlo (QMC) methods [11], although feasible in principle, is
tion to unravel its properties. Methods have been developedraught with difficulties in particular for the applications we
to compute the time-independent properties of the quanturill discuss below (see Sect. 4). This is due to the fact that
mechanical system embedded in the classical environmeri) for the temperature range of interest the standard QMC

PACS: 71.10.+x; 71.38.+i; 74.20.-z

1. Introduction

There is a vast class of physical systems that may, as a fir

[1,9,10]. methods suffer from severe numerical instabilities and (ii)
In this paper we will focus on models described by theit is extremely difficult to compute the dynamic properties
Hamiltonian at these temperatures. Therefore we take a different route

which is tailored to the situation at hand and is based on the
following rigorous results.

H = ZZCZSTZ-(,?({W}’M)CJ*,S To study the statistical mechanical properties of the
ij s model, an expression is needed for the grand-canonical par-
L1 Zp';_z L1 ZuiKi,juj, 1y  fition fupctlonZ = trexp(-H) = [i,,,, P{w}), B denot-. .
2M = 24 r ing the inverse temperature. An upperbound to the partition

function can be found by decomposing Hamiltonian (1) as
Dedicated to Prof. Wolfgang @ze on the occasion of his 60th birthday =~ H = H, + H,, where
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Hy = ZL pr
H; = ZZ ¢ T Cur}, pe; , + ;Zuzfﬁyuy :
ij

Application of inequality [12—-14]

(2)

7 < 7 = Tre PH1—BH:

— —BH,/2_—BH, —(BH./2
—Tl’e’gl/eﬁzeﬁl/,

3)

yields for the partition function

L/2
7 < ( M ) / / —ﬁz Cui K jug /2
- 271'677,2 {uk}
xtr exp ﬁzz

Expression (4) directly follows from the path-integral rep-
resentation ofZ if one neglects the imaginary-time depen-
dence of the phonon coordinates. Sinfeis a quadratic
form in the fermionic degrees of freedom, the tracever

t T ur}, w)e; @)

the fermions can be performed analytically, yielding for the

partition function

L/2
271'[377, {ur}

<[Lcet(a e ®

A lower bound to the partition function can be found us-

ing the linearity of the electron-phonon interaction. Writing
Hamiltonian (1) asH = Hz + H4 with

u;) K; J ( “j)

LRSS0 S
Y

(uz u;) K ju +u1Kz,
H4=Z 5] ] 2 J

+Z Zcz s z(sg)({uk? - uk} /’L)cj El

G @Tz(sy)({uk}v .u)cj,s
(uj — ;)

(6)

- i K jug/2
Z > Zp maxXe ﬁzuu s/
Uk

<[] det(l +e’5T(S)({“*"}’F‘)) : (8)
where
Z, =t ﬁHP, (9a)
Hy = M sz ZuiKi,jUj ; (9b)
1,7

are the partition function and Hamiltonian of the free phonon
system respectively.

Combining (5) and (8), the upper and lower bounds to the
ground-state energy read
Eo< Ep < Ec()p) + Ey (10)
where EY” is the ground-state energy of the phonon system
and

ui I ju;

Eo = min 5

{ur}

2

2,

— lim Spin (1+ fﬁT(S><{uk},u)) 7
Bﬁoozs: P ¢

whereSpX denotes the trace of the x L matrix X.
In general for models of type (1), the approximation

(11)

6_[3H =~ e_ﬂHl/ze_ﬁHze_BHl/z 5 (12)
is expected to be accuratedfis small (high temperature) or
the massV/ of the oscillators is large. Approximation (12) is

tantamount to a semi-classical treatment of the phonon coor-
dinates [16]. From (10) it follows that iEép) < |Ep|, treat-

ing the phonon degrees of freedom as classical variables will
be a good approximation. At zero temperature, taking this
limit is equivalent to making the adiabatic approximation in
which the phonon coordinates are determined by minimizing
the expectation value dff,.

Expressions for any static property of interest can be
derived in a manner similar to the one used to obtain (5).
Expectation values of static quantities are calculated as fol-
lows: For a particular configuratiofiu;} we diagonalize
the L x L matrix T', compute the product of determinants

n (5), and multiply the latter by the exponential prefactor,

application of a generalized form of Jensen 's inequality [15]to obtain the weight of the configuratiofu,}. This weight

Tre PH3(—3Hy)
Tre—FHs
ﬁHz7

Tre Pt =BH > exp (

)

xTre™

(7)

yields for the partition function

is strictly positive and can be used directly in a Metropolis
Monte Carlo simulation of the variablea., } to calculate

the averages of time-independent quantities. Our algorithm
samples the full phase space and is, by construction, free
of minus-sign problems or numerical instabilities [11]. The
latter enables us to cover a much wider range of tempera-
tures than the one which is usually accessible to other QMC
methods [17].
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3. Dynamic properties

= (s)
For models of type (1), the time-dependent quantities car (7) = ZZZZTM ({ux},0) (16)
be calculated directly, in thesal-time domain, without in- 7kl
voking procedures [17] to extrapolate imaginary-time data » (eiTT(5>({uk},M)) (e—iTT(S)({uk},u)) e
to the real-time axis. ki g1 TosClis

= (T ) (im0} C;—,sck,s:| .
l,j i,k

The analytical expression for the expectation value of the
The single-particle density of states (DQOSjw) is the prob-  commutator appearing in (15) reads
ability for removing or adding a single electron from or to
the system and is defined as

3.1. Single-particle density of states

(7 J()) = ~2i2 /{ YA @ Ly
Uks 4.5 s

x sint(\j — A)(STTO({ur.},0)S):

Using the fact that (1) is a quadratic form of the fermion X(STTO({ur}, 0)8) (17)

operators, the time evolution of the annihilation operator inwhere the matrixS diagonalizes the matrig"®({uy}, 1)

(13) can be worked out analytically, yielding in the semi- and \; are the eigenvalues @) ({uy}, 1).

classical limit The second term in (15) can be worked out analytically and
reads

1 oo TWT +
N =y X[ areed 63

-1 + — 7—1
L §<{cl,s(r>,cl,s}> =77y /{ ey

!
Z2D 3 Ol I (U5 P ST
Xspe,iTT(S)({uk}_’p,) ) (14) ij s {ur} J 7
-1 B
Since, in the simulation, we already know the eigenval- % (1+€B/\L) (ST )({“’“}’O)S)i’j
ues and eigenvectors @f*)({us}, p), it is straightforward  x(STT®)({u.},0)S); , (18)
to compute the real and imaginary part ofi™7" ({uc}.0)
for arbitrary . For each choice of-, the calculation of
Spe—i"T{ur}.1) takes of the order ofL operations per
configuration{uy;}, the statistical errors being comparable
to those of the static quantities. In practice we choose a set
of 7-values (typically 512) such that, after all samples have
been taken, the integral in (14) can be computed by Fas
Fourier Transformation.

where Z;J denotes a summation overand j such that

\i # A;. The computation of(w) takes of the order of.?
operations. The statistical noise efw) is of the same order
f magnitude as for the DOS and the static quantities.
In general, the real part of the conductivity may be
ritten aso(w) = Dé(w) + 0" (w) [19]. The coefficient
of the delta function is called the Drude weight and
serves as a direct and sensitive measure of a metal-insulator
transition [19-21]. If D = 0 the system is an insula-
tor and otherwise it is a conductor. From (15) it imme-
diately follows that the Drude weight cannot be larger
than the absolute value of the hopping energlp| <
2 Sz S (TOun}, )iyt yc; )| From (15) and (18) it
can be seen that the Drude weight is given by

3.2. Optical conductivity and Drude weight

When a pulse of electric field is applied in a particular di-
rection the linear response in this direction is givendfy)

= —i([P(~7), 1), where J = i[H,P] = i ¥, 5, T{}
{urt, 1) (CZ,S%S *Cisck,s) is the current operator and
P = 3", ln; is the polarization operator. The time evo-
lution of the polarization operator is defined &Xr)
e™pe~imH In the semi-classical limit o(r)
_,L'<[ef7/erpez'rH2’ J]> - —’L<[P, ez‘rHZJefz'erD_

The Kubo formula for the optical conductivity reads [18]

e _22_1/{ }Z >}, T ({ur}, 00y

i# s

X (1 + eﬁT(s)({uk}w))

-1
2%

I
1 -1
+22—1/ 1+ePN
{uk}zz,j:ZAji/\i( )

S

. 1 , +
ow=lm {—z > Alici e 1) < (STT ({ur},0)9); (ST ({ur},0)9);: . (19)
) l,s
+¢/Oo e“Te ([, J(T)]>d7—} . (15) 4. The Su-Schrieffer-Heeger model
0

_ A detailed investigation of the properties of one-dimensional
The time evolution of the current operatd(r) = eiTHz electron-phonon models is important to elucidate the connec-
Je~™H2 can be worked out analytically, yielding tion between the models and various quasi-one-dimensional
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real materials. One of the principal motivations for research
on gquasi-one-dimensional conductors has been the possibil-
ity of obtaining high-temperature superconductivity or at

0.04

least very high conductivity from moving charge-density- Aooa |

waves (Fohlich conductivity) [22].

We apply the method described above to calculate thef\
single-particle and two-particle (optical, magnetic, super- L
conducting) excitations for the Su-Schrieffer-Heeger (SSH)
model, an electron-phonon model which is often used to
describe the electronic properties of conjugated polymers _p.o2

[3-5]. The SSH model Hamiltonian reads [3-5, 23-26]

T = — Z Z (t -« (u’i*‘l - ul)) (C;,scﬁl,s + C;l,sci,s)
7 S
1 2
K
+ 5 21: (wivs — u)? (20)
wherec; , and¢; ; are the creation and annihilation opera-

tors, respectlvely, for ar-electron with spins =T, | at the

i-th CH group,n, s denotes the number operator at group

i, 1 is the chemical potential which fixes the numberref

electrons,u; is the coordinate describing the displacement
of the i-th CH group along the molecular symmetry axis,

p; is the corresponding momentuimis the hopping integral
for the undimerized chainy is the electron-phonon coupling
constant,K is the effectiveo-spring constant and/ is the
total mass of the CH group [3-5, 23-26].

At half-filling one has for the ground-state energy [4,5]

) 2,2
EO:min 4¢ S 22+ Ktz 7
z 20&2

L
where & '(x) denotes the complete elliptic integral of the
second kind and

EY) 1 [4K
L 7V M-
For trans-polyacetylene we use a set of model parame
ters which is often adopted in model calculations [3-5]:
=256V, a = 41 eV/A, K = 21 eV/A® and M =
3145 evV1/A%
For this set of parameters one has [4,Bh/L =

—3.170 eV andE((f’)/L = 0.052 eV. From (10) it follows
that

(21)

(22)

~3.170 eV< Eo/L < —3.118 eV, (23)

—0.04

0.04

—0.02

1
50 100
i

Fig. 1. a Lattice distortions for a ring of 128 sites for = 0.016 and

T = 29K. The line is a guide to the ey®. Same asa, but the small-
est wave numbers are filtered out. Bullets: Simulation results; solid line:
uotanh (i — io)/!]

materials [27-29]. Energies will be measured in units of
t = 2.5 eV. Disregarding the statistical errors (which are too
small to be visible on the figures presented below) the results
for the static and dynamic properties (as obtained from a few
statistically independent runs of 1000 samples each) are, for
all practical purposes, numerically exact.

5.1. Low-temperature

First we demonstrate that our method reproduces the known
features of the model at low-temperature (in practice we
setT = 29K, corresponding tg3t = 10000) [3-5, 23—
26]. At half-filling the configuration{u;} with equal spac-

giving support to the idea [3-5, 23-26] that a semi-classicaing between the CH groups is unstable with respect to a
treatment of the phonons may be a good starting point fodimerization distortion, the Peierls instability [30], in which
the description of the electronic properties of polyacetyleneadjacent CH groups move toward each other forming al-

5. Results

ternately short and long bonds. Our numerical results for
half-filled CH chains of 64, 128 and 256 sites show that the
equilibrium bond alternation amplitude, = 0.04093. This

indicates that,p does not strongly depend on system size for

The results reported in this paper have been obtained frorthe chain lengths considered in this work. In Fig. 1a we show
simulations of even-site rings containing up to 256 sites andhe pattern of the lattice displacement for the case in which
256 electrons, exceeding the length of most chains in actuaivo electrons are taken away from a half-filled 128-site ring.
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Fig. 3. Equilibrium bond alternation amplitude; as a function of dopant
! ! concentratiory for a ring of 128 sites and” = 2.9K. The line is a guide
0.0z & to the eye
A_0.01 F g
3
Y%
0
~— O - -
<
-0.01 -
-0.02 | 1 1 =
50 100
i
Fig. 2. a Lattice distortions for a ring of 128 sites fgy = 0.078 and

T = 29K. The line is a guide to the ey®d. Same asa, but the small- —2 1 0 1 2

est wave numbers are filtered out. Bullets: Simulation results; solid line: w

ug sin [2wm(i — i) /L
Fig. 4. Electron densityn as a function of the chemical potentialfor a

ring of 128 sites and” = 2.9K. The line is a guide to the eye

The dopant concentratian= 1—n = 0.016, wheren is the

density of electrons in the chain. The small oscillations onthat solitons (soliton-antisoliton pairs) are only present for
top of the superstructure can easily be removed by standardopant concentrationg < 0.031 and that the transition from
filtering procedures. The result is depicted in Fig. 1b. Thethe soliton lattice to the sinusoidal modulation is continuous.
solid curve in Fig. 1b is given by,; = ugtanh[¢ — i0)/(] This also implies (and is corroborated by our simulation data
whereio is a fitting parameter], = 8 determines the extent (not shown)) that systems of 64 sites or less cannot support
of the defect anduy = 0.0409. The hyperbolic tangent soliton—antisoliton pairs because the removal of two elec-
is characteristic of the bond-length alternation associatedrons from the half-filled system corresponds to a dopant
with the geometric distortion due to a soliton on an infi- concentration that exceeds the critical value of 3.1%.

nite chain [3-5, 23—-26]. Variational calculations suggest a  The equilibrium bond-length alternation amplitudgas
value ofl =~ 7 [3-5, 24-26]. As expected, Fig. 1 shows that a function of the concentratiop is shown in Fig. 3. For

for the case in which two electrons are taken away fromy < 0.031 the value ofup is the same as for the half-

a half-filled 128-site ring, two solitons are being created.filled band. Fory > 0.031,uo decreases from its half-filled
Simulations for the case in which four electrons are takernband value and reaches a minimum valye~ O. 01A for
away from a half-filled 256-site chainy(= 0.016) show y ~ 0.2. Thereaften increases with increasing and for
that four solitons are created and also give 8, indicat- y > 0.58, ug becomes even larger than its half-filled band
ing that the extent of the defect does not strongly dependalue. Hence, this increase @f is not due toy approaching

on the size of the system. Upon doping the 128-site ring0.5, a concentration that corresponds to a modulation that is
further the soliton lattice evolves toward a sinusoidal mod-commensurate with the underlying lattice [31].

ulation as shown in Fig. 2 foy = 0.078. The solid curve There is strong experimental evidence that upon doping
in Fig. 2b is given byu; = ugsin[2rm(i — ip)/L], where  trans-polyacetylene a first-order metal-insulator phase tran-
10 andm are fitting parameters. Additional simulations for sition occurs at a dopant concentration of approximately 6%
64 and 256-site rings (results not shown) strongly suggesf29, 32]. A first-order phase transition is characterized by
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Fig. 5. Drude weightD as a function of the number of sitds. Bullets:

D calculated from (27) withug = 0.04A, circles: Quantum molecular Fig. 6. Drude weightD as a function of the dopant concentratigrfor

dynamics results fofl’ = 2.9K, corresponding t@¢ = 10000. The lineis T = 2.9K. Bullets: L = 128, number of electron®d’ = 4m + 2; circles:

a guide to the eye L = 128, number of electron®’ = 4m; squares:L = 256, number of
electronsN = 4m + 2. The lines are guides to the eye

plateaus and steps in versusy [33]. Our numerical re-

sults, depicted in Fig. 4, show thatvaries smoothly as a our simulation technique also reproduces the exact values
function of 11, strongly suggesting that the SSH model doesyf (.) as given by (25) (data not shown).
not exhibit a first-order phase transition as a function of The behavior of the Drude weight as a function of

doping. The small steps in versusy indicate that at low- ¢ dopant concentratiop, is shown in Fig. 6 for rings of
temperature only states with an even number of electrons ar

) . £28 sites. As seen above, at low temperature the system is
_therrr;_Ed?/namlcally stable and that the formation of polaronsgtaple with respect to the removal (addition) of an odd
is unlikely.

. number of electrons from (to) the half-filled system contain-
To explore the occurrence of a metal-insulator as a funcs

. . X " 7ing an even number of sites. Hence the number of electrons
tion of doping, we calculate the Drude weight and the optical g

ductivity. Fi d h hod in the systemN is given by 4n or 4m + 2 wherem is
conductivity. First we demonstrate that our method repro-,, integer number. At zero and low dopant concentration

duces th(_e optical conductivity and the insulating fea.ture' of(y < 0.06) the Drude weight is zero. In the doping regime
the half-filled system at zero-temperature. The Ham|lton|an0.06 < y < 0.5 the Drude weight is strictly negative if the
which describes a completely dimerized chain is given by mper of electrons is divisible by four and strictly positive
H=t, Z (C§j+1,s Cojins + e c.) othervwse._ Physmally a negative value fér cor(esponds

to a negative inductance, or orbital paramagnetism [34]. Or-

7 bital paramagnetism also arises in a noninteracting dimerized
+_ Z (cjs2.5Coj43.s + hoc.) (24)  model with 4n-sites [35] and negative values fd@ have
Jys also been found in half-filled Hubbard rings withndsites
wheret, = —t + 2auo. The optical conductivity for model [34, 36]. At very high dopant concentrations> 0.5 the
(24) can be worked out analytically, yielding system becomes again insulating & 0). Comparing the
results forL = 128 (bullets) and foi. = 256 (squares), we
o (w) = lim 1 _ expect for infinite chains the Drude weight to be zero for all
e—0w + € dopant concentrations.
2 422 Figure 7 shows a series of calculated optical absorption
X {—Zek +4Z ( T ;) 3 } ) (25) spectra for various dopant concentrations. The optical ab-
k R ek (€ — W)+ dey sorption for the undoped case (thick solid line) has a gap.

For dopant concentrations below 6%, a midgap absorption

— 2 H
where ey, = *\/’5gr +12 + 26,1 cos(4rk/L). Extraction of  heay annears. The intensity of the midgap absorption peak

the Drude weight gives for the dimerized chain comes from the interband transitions over the whole spectral
_ 2 242 3 range. Fory < 0.031, i.e. the range of dopant concentrations
D=- Z e+ (t+ o t—) Z /ey - (26)  for which the system supports solitons, the intensity of the
k k

midgap absorption is proportional to the dopant concentra-
In Fig. 5 the Drude weight for the half-filled system is shown tion. In the intermediate doping regime031 < y < 0.06

as a function of system size. Our quantum molecular dynamthe doping dependence of the intensity of the midgap ab-
ics results (circles) agree very well with the results obtainedsorption changes. In the heavily doped regime>( 0.06)
from (26) (bullets). The Drude weight fdt = 4m-site rings  the interband transition has completely disappeared. For all
is negative and goes to zero as the number of lattice sites irdopant concentrations the optical conductivity exhibits a gap
creases. Systems with more than 64 sites are needed to obtaihlow frequencies. Hence for@b < y < 0.5 the system is

D =0, as expected for a semiconductor at low-temperaturenot a simple metal. For.06 < y < 0.5 the gap ino(w) first
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Fig. 7. Optical absorptiors(w) for a ring of 128 sites for various dopant
concentrations and’ = 2.9K. Thick solid line:y = 0, thick dashed line:
y = 0.016, thick dash-dotted line; = 0.031, thick dotted liney = 0.047,
thick dash-triple dotted liney = 0.063, thin solid line:y = 0.078, thin
dashed liney = 0.109, thin dash-dotted line; = 0.328.w is measured in
units oft = 2.5 eV

decreases with doping, becomes minimal there whBtes
maximal and then increases again.

To study the nature of the metal-insulator transition fur-
ther, we also calculate the DOS. The DOS for the SSH model
shows a gapA for all electron fillings and the chemical po-
tential always falls in the gap [31, 37]. This is confirmed
by the results shown in Fig. 8, where we shdww) for
a ring of 256 sites for various dopant concentrations. At
half-filling (y = 0), N(w) consists of two bands separated
by a gapA = 1.22 eV+ 0.02 eV [38]. The chemical po-
tential is located in the middle of the gap and the systems
is a dimerized semiconductor. At low dopant concentration—
(y < 0.06) there is a narrow, mid-gap band in the DOS.
For y < 0.031 this band is due to the presence of solitons
whereas for M31 < y < 0.06 it results from the sinusoidal
modulation. At high dopant concentratiop ¢ 0.06) the
midgap-band broadens. There is excellent qualitative agree-
ment between the results for the DOS obtained by a combi-
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ig. 8. Density of statesV(w) for a ring of 256 sites for various dopant
concentrationgy and 7' = 2.9K. The dashed line denotes the position of

nation of geometry optimization and the continued fractionte chemical potentials is measured in units af = 2.5 eV

technique [31, 37] and our numerically exact results.
The DOS has a gap and the chemical potential is located

within the gap even though the system is conducting forrange order (ODLRO) [41]. Bhlich conductivity requires
0.06 < y < 0.5. Therefore the system is not a conventional a periodic lattice distortion incommensurate with the lattice

conductor. In Fig. 9 we show the gapin N(w) as a func-
tion of dopant concentration for electron fillingé = 4m+2.
The gapA in N(w) equals the gap ia(w). Our results (not
shown) for the Pauli susceptibilityp (for L = 128 256

and an accompanying periodic distortion in the conduction
electron charge density: a charge-density-wave (CDW) [40].
Although a purely one-dimensional system with short-range
interactions cannot undergo a phase transition at any finite

and for all dopant concentrations) clearly demonstrate thatemperature [42], it may exhibit long-range orderZat 0.
xp = 0, as might be expected on the basis of the freeHowever, the question of order in a chain can be discussed

electron theory in whichyp is proportional to the DOS at

in terms of its tendency towards long-range ordefl'as> 0

the chemical potential [39]. Note however that in the SSHbecause even though there is no long-range ordér#0,

model the electrons interact.

it is possible for very-long-range (but finite) correlations to

The observation that the DOS has a gap and the chemicdluild up.
We first examine the possibility of having dtrlich con-
conducting for 006 < y < 0.5 does not have to be inconsis- ductivity in the SSH model. At half-filling the configuration

potential is located within the gap even though the system is

tent. Indeed, a BCS superconductor [39] and @hkch con-

with equal spacing between the sites is unstable with respect

ductor [40] exhibit the same characteristics. Superconducto a Peierls instability [30]. A dimerization distortion with
tivity is characterized by the existence of off-diagonal long- wavevectorg = 2gr with g = (7/2)(1 £ y) results. In the
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1o W T T T T T T 7 Table 1. Superfluid density for the half-filled one-dimensional free elec-
tron system as a function of system sizeand inverse temperatuy@
L #=10 (=100 [ =1000
16 —-0.626 —11.872 —124.37

- 18 0.386 0.640 0.639
> 32 -0.087 5615 —61.865
: 34 0.066 0.638 0.638

36 —0.052 —4.921 54921
64 —0.001 —2489 —-30.614

66 0.001 0.635 0.637
72 0.000 —2.141 -—-27.142
1024 0.000 0.000 —-1.312
1026 0.000 0.000 0.603
10000 0.000 0.000 0.000

0 I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 Q.7

y

Fig. 9. Gap A in the density of statesV(w) as a function of the dopant
concentratiory for a ring with 128 sites and’ = 2.9K. The line is a guide
to the eye

0.02

AE(9)

doping regime < y < 0.5 we also observe a CDW with

wave vectorg = 2qr. Fory > 0.5 a 7 CDW with higher
harmonics appears. Thus fof8 < y < 0.5 the finite Drude -0.02
weight may be explained by the@hlich conducting mech-
anism: The lattice and electronic charge distortion move as
one travelling wave.

Criteria which may be used to decide whether or not a
given model exhibits superconductivity is the occurrence of
flux quantization [41, 43] or a non-zero value of the super-
fluid densityps [21]_ To explore flux quantization we thread Eig. 10.AE(¢) fgr freg fermions at'zer.o temperature. Bullgts: '12—site ring,
a magnetic fluxy through the center of the ring. As a con- C|rcles:' 14-site ring; triangles: 36-site ring; squares: 128-site ring. The lines
sequence the hopping term in (20) acquires a constant phag‘{ae guides to the eye
expE2ri¢/ Loo) wheregg = he/e is the flux quantum [44].
Byers and Yang argue that, in the thermodynamic limit, the, _
functional form of the grand potentiab = —3-InZ as n Tabl? L. F_or all temﬁeraturg@ =0 for L = 4m an(rj].
a function of ¢ allows one to distinguish between a nor- P = 0 for L = 4m +2 whererm is an integer number. This

hange of sign op; with L is similar to the behavior found
mal metal and a superconductor [41, 43]. In the case of ;
a superconductor2(¢) is an even periodic function ab in the Drude weight [34, 36]. At very low temperatures very

wih i /I where . lands or the sum f charges (398 37T 5205 e neecero SO 0, 35 e
of the particles in the basic group [41]. The resulting flux Y : Y d

! o yield a vanishing grows with the inverse temperature, a
Fﬁﬁergﬁ?ﬁ: L?ﬂg:rizazattﬁeszﬂf\z?g)diusc';?;ﬁ);ht'ﬁgscg;LR eature which makes it difficult to decide whether or not the

of a normal metal. The superfluid densjty can be calcu- system is a superconductor. Therefore we decided to use flux

lated from the dependence of the grand potentiabarsing guantization to rule out superconductivity in this system.
s X L‘1(820(¢5/L)/8(¢/L)z)¢/L_0 [21, 45-48]. A feel- First we demonstrate that our method reproduces the flat

: ai ; £2(¢) curve for the free fermion system at zero-temperature
ing for the system-size dependenceqf can be obtained - :

by considering a free electron system. Evidently in that casé-- {2(#) = E(9), E(¢) being the ground-state energy). In
one expects to fing, = 0, independent of the dimension and F19- 10 we plot the energy differenca(¢) = E(¢) —

the temperature. For a one-dimensional free electron systeri(¢ = 0) for free fermions on a ring of 12 (bullets), 14
P y circles), 36 (triangles) and 128 (squares) sites. For small

—0.04

0212 Y " systemsAE(¢) clearly exhibits periodic behavior as a func-
ANO/LY |y 1m0 ;”k cos tion of ¢. This implies the presence of persistent currents
(J < O0E/90¢), a well-known phenomenon in mesoscopic
fZﬁthk(l —ng)Sirf k | (27) normal-metal rings [50-53]. Also clear from Fig. 10 is that
k the signal for flux quantization strongly depends on system-
with size: For aring of 128 sited E(¢) is flat (up to four digits at

least). Therefore the question of flux quantization can only
(28) be addressed by calculatin(¢) for sufficiently large sys-

tems. Our results for the SSH model fbr= 128 256 and
Numerical results for the r.h.s. of (27) for various systemfor all dopant concentrations lie on top of the squares in
sizes and inverse temperaturesfer 1 andn = 1 are given  Fig. 10, demonstrating thal E(¢) is perfectly flat. Hence

1

Nng = .
k eB(=2tcosk—p) 4 1
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Fig. 11. Optical absorptiorr(w) for a ring of 128 sites for various dopant
concentrations and” = 290K . Thick solid line:y = 0, thick dashed line:
y = 0.008, thick dash-dotted lingy = 0.016, thick dotted liney = 0.02,
thick dash-triple dotted liney = 0.031, thin solid line:y = 0.047, thin
dashed liney = 0.063, thin dash-dotted ling; = 0.078, thin dotted line:
y = 0.109.w is measured in units of = 2.5 eV

Fig. 13. Lattice distortion for a ring of 256 sites far= 0.012 (3 electrons
removed from the half-filled ring) an@ = 290K. The line is a guide to
the eye

the midgap absorption peak comes from the interband tran-
' ' ' ' sition over the whole spectral range. The optical conductiv-
: ities for different dopant concentrationg £ 0.06) cross in
one point (the isosbestic point) at= 1.03 eV+ 0.13 eV.
R These features are also observed experimentally [54-56].
3r T e ) However, the calculated peak positions and isosbestic point
0 are at slightly lower energies than found in experiment. In
e Fig. 12 we show the intensity of the midgap absorption peak
2 r . (optical density) as a function of dopant concentration for
O{.O' y < 0.06. Our numerical results (bullets) indicate that for
P y < 0.031 the intensity of the midgap absorption peak in-
1 o . creases linearly with the dopant concentration. In the inter-
e mediate doping regime.031 < y < 0.06, the doping de-
pendence of the intensity of the midgap absorption changes.
0%’ 5 :)1 0'02 5 :)3 0'04 Similar behavior is seen in the optical absorption measure-
‘ ’ y‘ ’ ments of Feldblunet al. [55] (circles). However, our results
_ , _ _ , _show that for 031 < y < 0.06 the midgap absorption peak
Fig. 12..Conc§ntrat|on dependence of the midgap opt'lcal apsorptlon (@biyyacomes higher than the interband transition peak, in dis-
trary units). Circles: Experimental data [55]. Bullets: Simulation data taken . . .
from Fig. 11. The dotted lines are a guide to the eye agreement with some experiments [54—5.6] but in agreement
with others [57]. In the heavily doped regimg £ 0.06) the
low-energy absorption shrinks with increasing dopant con-
there is no flux quantization in the SSH model. This im- centration and the corresponding peak shifts toward lower
plies thatp, = 0 for all electron filings. Hence the SSH energy, while the interband transition completely disappears
model for 006 < y < 0.5 provides an example for which (see Fig. 11).
the DOS and the optical absorption spectrum have a gap and At low temperature a system containing an even num-
D # Lp, [21]. ber of sites has only states with an even number of elec-
trons. Moderate dopingy(< 0.031) results in the creation
of soliton-antisoliton pairs only [11]. At room temperature
5.2. Room-temperature this is no longer the case: The system is thermodynamically
stable with respect to the removal of a single (or odd number
To make contact with experimental work on trans-polyace-of) electron(s), independent of the filling. Our calculations
tylene we calculate the optical conductivity for the SSH show that for moderate doping and an odd number of elec-
model at room-temperature. The optical absorption spectrérons, the thermodynamically relevant states consist of con-
o(w) at room-temperature (in practice we set= 290K, figurations with a single polaron and/or soliton-antisoliton
corresponding tg3t = 100) for various dopant concentra- pairs, an example being shown in Fig. 13. From Fig. 11 it
tions y are depicted in Fig. 11 for rings of 128 sites. For is clear that the optical conductivity for systems containing
the undoped case (thick solid linejw) shows an interband a polaron (see the thick dashed and thick dotted line) does
transition peak at = 1.42 eV+ 0.13 eV. Upon doping and not show any extra features compared to the conductivity
for dopant concentrations below 6%, a midgap absorptiorof systems without a polaron. Further evidence for this is
peak appears ab = 0.64 eV+ 0.13 eV. The intensity of provided by the data shown in Fig. 12 (second and fourth

optical density
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bullet, counting from left to right). Our results for the density 23.
of states (not shown) indicate that both the polaron and the&4.

soliton-antisoliton pairs contribute to the weight.at 0 [4].

25.
26.
27.
28.

6. Summary

A simulation method has been presented to compute thé9.

static and dynamic properties of electron-phonon models,
The technique has been applied to the Su-Schrieffer-Heeg

model at low and room-temperature. We have demonstrate
that at low-temperature the Su-Schrieffer-Heeger model ex-

hibits a metal-insulator transition as a function of the doping.33.

The metallic state exhibits features characteristic 6hkch

conductivity. Our simulation data for the optical absorption 34

at room-temperature are in good agreement with experimeng5
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