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Quantum Dynamics in Nanoscale Magnets in Dissipative Environments
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In discrete energy structure of nanoscale magnets, nonadiabatic transitions at avoided level
crossings lead to fundamental processes of dynamics of magnetizations. The thermal environ-
ment causes dissipative effects on these processes. In this paper we review the features of the
nonadiabatic transition and the influence of the thermal environment. In particular we dis-
cuss the temperature independent stepwise structure of magnetization at very low temperatures
(deceptive nonadiabatic transition), the alternate enhancement of relaxation in the sequence of
resonant tunneling points (parity effects), and processes caused by combinations of nonadiabatic
transitions and disturbance due to external noises.
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§1. Introduction

Hysteresis phenomena of ferromagnets have been one
of the most interesting problems in the magnetism and
statistical physics. Mechanism of the coercive force has
been investigated by studying the processes that lead to
the critical nucleation and motion of the domain wall.1,2)

From the point of view of free energy of the system, the
hysteresis phenomena have been discussed in terms of
the relaxation process of the metastable state to the true
equilibrium state in the picture shown in Fig. 1 (a).
Usually the end point of hysteresis is related to the so-
called spinodal point where the metastability disappears
(see Fig. 1 (b)).

However there is some probability of relaxation from
the metastable state B to the equilibrium state A. For
example at finite temperatures the probability of ther-
mal excitation to the top of barrier C is proportional to
exp(−∆EB/kBT ) and thus the relaxation rate pth of the
metastable state through this activation process is given
by

pth =
1
τ0

e
−∆EB

kBT , (1.1)

i.e., the Arrhenius law. At low temperatures the relax-
ation time τ = 1/pth of this process diverges exponen-
tially.
The shapes of the free energy in Fig. 1 are given by

the mean field theory, which gives a good intuitive pic-
ture of the metastability. Here it should be noted that
∆EB should be a microscopic quantity. Because in a
bulk system ∆EB is of order the system size, the activa-
tion rate vanishes, i.e., pth = 0. For a more quantitative
understanding, we must look at the system microscopi-
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Fig. 1. Potential pictures of relaxation: (a) metastable (b) spin-
odal.

cally. There the system is not uniform and we have to
consider a microscopic break through of the metastable
state. Such break through occurs as a process of creating
the critical nucleus.2) For this microscopic process, Figs.
1(a)-(b) represent effective potentials of the size of the
nucleus. The relaxation time of metastable states has
been classified according to the size of system and the
generating rate of the critical nuclei. There are two re-
gions, i.e., a single nucleation region (stochastic region)
and a multi nucleation region (Avrami region).3)

When the size of the magnets becomes smaller than
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the width of the domain wall, the nucleus can not be
defined. In such cases, the magnetization of the sys-
tem changes uniformly and this process of breakdown of
the metastable state is called ”coherent process”. Re-
laxations in this situation also have been studied exten-
sively.4)

It has been pointed out that quantum fluctuation may
play an important role in such small systems. In order
to detect such quantum processes, several experiments
have been proposed.5) However distribution of particle
sizes prevents to analyze their processes in simple ways.6)

Studies on single magnetic particles have been also per-
formed but clear evidence of quantum processes has not
yet been found.7)

In this respect, nanoscale molecular magnets such as
Mn12,8–13) Fe8,14–16) and V15

17) etc. are more promising.
These molecules Mn12 and Fe8 consist of small number of
atoms. The low energy state of the system is represented
by an effective S = 10 spin. Because interactions among
molecules are very small, each atom can be regarded as
a S = 10 single spin. The Hamiltonian of the spin is
generally given by

H = −DS2
z −HSz +Q, (1.2)

where Sz = −10,−9, · · · 10 and Q denotes a term which
causes the quantum fluctuation, such as Sx, S

2
x − S2

y , or
(S+)4 + (S−)4. In these systems the energy levels as a
function of the field have a discrete structure (Fig.2(a)).
There we expect an explicit quantum mechanical dynam-
ics.
Due to the term Q, a small energy gap is formed at

each crossing point as shown in Fig.2. This structure
is called avoided level crossing. When the field is swept
through an avoided level crossing point, so called nona-
diabatic transition occurs. Nonadiabatic transition plays
important roles in microscopic quantum dynamics such
as level dynamics of semiconductor, chemical reaction
and optics. Nonadiabatic transitions in various cases
have been reviewed by Nakamura.18)

In the uniaxial magnets, the nonadiabatic transition as
shown in Fig.2(b) occurs. Here the population coming
in from the channel A is scattered to the channels B and
C with probabilities p and 1 − p, respectively. Here the
channel B is the ground state. Thus the scattering to B
is an adiabatic change and corresponds to the tunneling.
On the other hand, 1− p is a probability to jump up to
the channel C. This process corresponds to the case to
stay in the metastable state (un-tunneling).
The states of the channels A and C are the same state

when there is no quantum fluctuation i.e., Q = 0. This
unperturbed state is called the diabatic state. These
channels A and C have similar states even in the pres-
ence of Q. The probability p was studied by Landau,19)

Zener20) and Stückelberg21) (LZS) and is given by

p = 1− exp
(
− π(∆E)2

2ch̄gµB∆m

)
, (1.3)

where ∆E is a gap at the avoided level crossing and
∆m is the difference of magnetization of the levels, c the
speed of the sweeping field c = dH/dt. Thus the term
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Fig. 2. Energy structure of S = 10. Uniaxial magnet as functions
of the external field H. (a) global structure and (b) avoided level
crossing.

gµB∆mc is the changing rate of the Zeeman energy.22–24)

The probability p plays an important role in quantum
mechanical relaxation of the present system.
In this LZS type nonadiabatic transition the transition

occurs only in the vicinity of the crossing points. The
first property is an essential ingredient for the relaxation
at discrete points of the magnetic field in the molecu-
lar magnets.24) Making use of this dependence we can
estimate ∆E from the change of magnetization ∆M .
Let the crossing levels have magnetizations of the cor-
responding adiabatic states m and m′. The change of
magnetization is given by

∆M = pm′ + (1− p)m−m = p(m′ −m). (1.4)

In the cases where ∆E is observed by other methods such
as AC-susceptibility, this sweeping dependence of ∆M
would give a method to confirm that ∆E really comes
from the tunneling gap.23) However such confirmation
has not yet been observed in small magnetic particles
such as magnetic dots and ferritin. On the other hand
the two characteristics have been observed in molecu-
lar magnets at least qualitatively. As a more peculiar
property of the nonadiabatic transition, it has also been
pointed out that the application of an alternate field at
the resonant points will cause a nontrivial oscillation of
magnetization due to phase interference.25)
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In order to study experimental data quantitatively,
we need to incorporate the effects of environments. Ef-
fects of noise on the LZS transition have been studied
by Kayanuma.26) The dynamics of molecular magnets
in dissipative environments has also been investigated
quite extensively.27)

A thermal bath causes enhancement of the relaxation,
e.g. the thermally assisted resonant tunneling, where
resonant tunnelings of excited states play an important
role.
In this paper we study the characteristics of the reso-

nant tunneling affected by thermal disturbance. In par-
ticular, we study the effect of environment at very low
temperatures such that relaxation process does not de-
pend on the temperature. Even at such low tempera-
tures, contact with the bath causes relaxation between
levels which have magnetizations of the same sign. These
states belong to the same valley in the potential picture
of Fig. 1(a). The energy barrier does not exist between
them. It is found that the relaxation between them easily
occurs even with very weak disturbance. In pure quan-
tum mechanical motion, transitions between these levels
are almost prohibited except near the avoided level cross-
ing points. Thus the magnetization curve with the dissi-
pative effect is different from the one of a pure quantum
case, although it does not depend on the temperature.
We call such a process ”deceptive nonadiabatic transi-
tion”.28)

At higher temperatures, excitation levels begin to con-
tribute to the relaxation phenomena. At higher temper-
atures, alternate enhancements of relaxation at resonant
points are observed,8) which is called ’the parity effect’.
We consider the mechanism of such an alternation in a
view point of nonadiabatic transition of excited states
and find it as a general property of resonant tunneling of
excited states reflecting the structure of energy levels.29)

We also discuss the
√
t-dependence of initial decay at

resonant points. Furthermore we study various cases of
the LZS process in fluctuating random environments.

§2. Numerical Method

The most standard method to study quantum dynam-
ics in dissipative environments is the quantum master
equation (QME) which describes the equation of motion
of the reduced density matrix of the system ρ(t) which is
derived by tracing out the degrees of the freedom of the
environment from the density matrix of the total system.
The total system consists of a system HS, a thermal bath
HB and an interaction between them HI:30)

H = HS +HI +HB. (2.1)

The reduced matrix is given by

ρ(t) = TrBe−βH. (2.2)

We have the following equation of motion for ρ(t) in
the limit of weak coupling, assuming that the correla-
tion time of the bath variable is very short (Markovian
approximation)

d

dt
ρ(t) =

1
ih̄

[H, ρ(t)] + Γρ(t), (2.3)

where Γ is a linear operator acting on ρ(t). This equation
has been used to study quantum dynamics of optical
process, etc. In most cases Γρ has the so-called Lindblad
form31)

Γρ = A†Aρ+ ρA†A+A†ρA+AρA†, (2.4)

where A is an operator of the system. However in mul-
tileveled phenomena Γρ has a more general form.

In the cases where the bath consists of an infinite num-
ber of bosons, a general expression can be derived.32)

∂ρ(t)
∂t

= −i [H, ρ(t)]− λ
(
[X,Rρ(t)] + [X,Rρ(t)]†

)
,

(2.5)
where

〈k̄|R|m̄〉 = ζ(
Ek̄ − Em̄

h̄
)nβ(Ek̄ − Em̄)〈k̄|X|m̄〉,

ζ(ω) = I(ω)− I(−ω), and nβ(ω) =
1

eβω − 1
.

Here β is the inverse temperature of the reservoir 1/T ,
and we set h̄ to be unity. |k̄〉 and |m̄〉 are the eigenstates
of H with the eigenenergies Ek̄ and Em̄, respectively.
I(ω) is the spectral density of the boson bath. Here we
adopt the form I(ω) = I0ω

α. When α = 1, it corre-
sponds to the so called Ohmic bath and when α = 2,
it corresponds to the phonon bath (super-Ohmic). As a
more realistic bath for the experimental situation at very
low temperature, we may take the dipole-field from other
molecules and interactions with the nuclear spins.33) X
is an operator of system which is attached to bosons
of the reservoir linearly, representing the interaction be-
tween the system and the thermal bath. In the present
study we take X = 1

2 (Sx + Sz). The relaxation process
depends on the form of X. Generally the coupling with
the transverse component X = Sx is more efficient than
that of the longitudinal one X = Sz for the relaxation.
Detailed comparisons among choices of the form of the
coupling will be presented elsewhere.
For strong noise caused by fluctuating forces we can

simulate quantum dynamics by solving the Schrödinger
equation in random fields.34)

§3. Quantum Dynamics in Dissipative Environ-
ment

3.1 Deceptive nonadiabatic transition
In the lowest avoided level crossing point (−S, S) the

change of magnetization ∆M is given by (1.4) . However
at higher crossing points (m,m′) with m′ < S, the popu-
lation scattered from m to m′ is found to decay easily to
the ground state, i.e., m′ → S, even when the dissipative
effect is so small that the population at the metastable
level of m hardly decays. This difference can be easily
understood from the intuitive picture of Fig. 1(a). That
is, the relaxation in the same valley, i.e., m′ → S, is easy
while the relaxation over the barrier m → S is hard. In
this situation, we can not apply the relaxation (1.4) di-
rectly to estimate the LZS probability p. However we can
still estimate p using ∆M because the relaxation from
the level of m occurs with the LZS probability and the
relaxation to the ground state occurs in a rather short
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time. Taking these points into account, we modify the
relation (1.4) by replacing the final magnetization m′ by
S:

∆M = pS − (1− p)m−m = p(S −m). (3.1)

In order to confirm these processes we performed simula-
tions using the QME. First we confirmed that relaxation
from the metastable point is unlikely to occur when the
coupling between the bath and system is weak and the
temperature is low. On the other hand, a fast relax-
ation is observed between levels with magnetizations of
the same sign, which are in the same valley in Fig. 1(a).
Furthermore when we sweep the field we find a step-wise
magnetization curve whose step heights do not depend
on the temperature but are definitely different from the
pure quantum case. In Fig. 3, we show an example of
magnetization process for T = 0.1,Γ = 0.5 with very
small effects of environment (λ = 0.00001: a solid line)
and that of pure quantum system (λ = 0: dashed line).
Both of them are not temperature dependent within this
temperature range. We call this stepwise structure in dis-
sipative environments ‘the deceptive nonadiabatic tran-
sition’. We find that we can correctly estimate the pure
quantum transition probabilities using the relation (3.1).
Thus even at very low temperatures the effect of the en-
vironment can not be excluded, but quantum mechanical
processes and dissipative effects due to environments can
be disentangled, and the information on the LZS proba-
bilities can be extracted.
For the phenomena described above, the existence of

the environment is important but the detailed nature is
not important as long as it leads to fast relaxation to the
ground state. If the environment causes a change of LZS
probability, which would be possible when the sweeping
rate is very slow, further consideration is necessary.26)
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Fig. 3. Magnetization processes in pure quantum dynamics (a
dashed line) and a weak dissipative environment(a solid line).

3.2 Parity effect
At higher temperatures, excitation levels begin to con-

tribute to the relaxation leading to temperature depen-

dent phenomena. These processes would depend on the
detailed characteristics of the bath and the ways of the
coupling between the system and the bath. Therefore
general description is difficult. However here we point
out a general property of relaxation under these condi-
tions.
As a characteristic of resonant tunneling at rather high

temperatures, it has been observed that the amount of
relaxation at the resonant points changes alternatively.8)

Along a diabatic line, the energy gap increases monotoni-
cally as the difference of magnetizations |m−m′| of levels
decreases. Thus the transition probabilities at the reso-
nant points increase monotonically. In a perturbational
treatment the energy gap depends on the difference as35)

∆E ∝
(
Γ
D

)|m−m′|
. (3.2)

Thus we have to consider a mechanism of the alternate
enhancements. Here we interpret it from the view point
of resonant tunneling of excited state. The transition
probabilities at resonant points with the same value of
|m − m′| are nearly the same. Those points are located
at the same horizontal level in Fig. 2. For example the
values of p given by (1.3) for the case of Γ = 0.45 with the
sweeping speed c = 0.0001 at the points, (−8, 5), (−9, 4),
and (−10, 3) are 0.91, 0.64 and 0.99, respectively. On
the other hand, those at (−8, 6), (−9, 5) and (−10, 4) are
0.72, 0.037 and 0.01, which are very small. Thus most of
the population at the levels m = −8,−9 and −10 decays
at the former points. These decays cause enhancements
of relaxation at H = 0.3, 0.5 and 0.7, which gives the
parity effect. In Fig. 4, we show the magnetization of
this case with its time derivative.
Because the energy structure shown in Fig. 2 is gen-

eral for uniaxial magnets, we expect that the alternate
enhancement of relaxation, i.e., the parity effect, is a gen-
eral property of resonant tunneling in the thermal envi-
ronment. We have also pointed out that if we change
the sweeping rate the enhanced sequence is shifted. For
example if we sweep much slower, the probabilities at
(−8, 6), (−9, 5) and (−10, 4) become large and popula-
tions on the lines decay there, which causes the shift of
the enhanced sequence at H = 0.2, 0.4 and 0.6.

3.3 Non-exponential decay at the resonant point
The magnetization which is initially polarized upward

decays rather fast at a resonant point. Here the field is
set at this point and is not swept. There are several paths
for the magnetization to relax at this point. First let us
consider relaxation by the nonadiabatic transitions at
the lowest resonant point. Because at the resonant point
the energy gap is very narrow, the field fluctuates around
the point as shown in Fig. 5(a). If we regard the motion
of the field as a Brownian motion, it is known that the
number of the times the field crosses the resonant point
is proportional to

√
t, i.e., the recurrence time of one-

dimensional Brownian motion.36)

At each crossing, the population moves to the other
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Fig. 5. (a) Random field near the resonant point and (b) Relax-
ation process through the excited state.

branch by the LZS transition probability

pi = 1− exp(−π(∆E)2

4ci
) 
 π(∆E)2

4ci
. (3.3)

In a pure quantum mechanical process, quantum me-
chanical interference occurs among the transitions.25)

But assuming a fast decoherence, the total transition
probability is expected to be given by

ptotal(t) 

∑

i

pi 

√
t

〈
1
ci

〉
π(∆E)2

4
≡ α

√
t. (3.4)

Thus we naturally expect that the magnetization decays
as

∆M = M0(1− 2α
√
t) (3.5)

at the initial stage.
For a longer time scale, the field does not fluctuate

freely but is confined near the resonant point. Thus
ptotal for long time is proportional to t. Therefore the
magnetization decays in exponentially

M(t) 
 e−t/τ , τ =
ptotal(t)

t
. (3.6)

This mechanism described above may give the simplest
explanation of the

√
t behavior. A more detailed analysis

has been given in the reference,33) taking into account
the explicit nature of the fluctuation of the external field.

3.4 Modification of the transition rate
When the amplitude of the external disturbance is

strong, we have to use another estimation of the tran-
sition probability. Kayamura and Nakayama have inves-
tigated LZS transition in fluctuating field and obtained
expression of the transition probability.26) In the case
where the sweeping rate is slow and the transient time
through the resonant point is much longer than the phase
coherence time, then they obtained the transition prob-
ability as

p = pSD =
1
2
(1− exp(−π(∆E)2/2ch̄gµB∆m)). (3.7)

On the other hand, when the transient time is very short,
transition probability does not change from that of the
pure LZS transition

p = pLZS = 1− exp(−π(∆E)2/4ch̄gµB∆m). (3.8)

They confirmed such dependences by numerical simula-
tion.
Next, let us consider a case where excited levels con-

tribute to the relaxation. If the frequency of contacts
between the system and the bath is high, a tunneling
through the excited state would enhance the relaxation
rate even the population at the excited state is very lit-
tle.37)

Let us consider the case where the LZS transition prob-
ability at the lowest level p0 is very small and the one at
the excited level p1 is of the order 1. Let us consider a
case where a state is excited to the exited level. In the
off-resonant region this excited state decays to the orig-
inal state very rapidly. The population at the excited
state nE is determined by the balance equation

nERE→G = nGRG→E, (3.9)

where nG is the population in the ground state and
RE→G and RG→E are transition rate from the excited
state to the ground state and vise versa. Although
nE = RG→E/RE→GnG is very small, RE→G and RG→E

themselves can be very large.
At the resonant point, small fluctuations of the field

would cause the crossing point as we see in Fig. 5(a).
Thus the population pumped to the excited state A’ can
be transferred to the state B’ and then it decays to B
instead of A. (Fig.5(b)) This path (A→ A’→ B’→ B)
becomes dominant when p1 � p0 and fluctuation of the
field is rather fast. The opposite path (B→ B’→ A’→ A)
is also larger. In the initial stage most of the population
is at A and therefore the population moves along the
former path. Thus the effective transition rate A → B is
enhanced very much.

peff 
 RG→Eνp1, (3.10)

where ν is the frequency of the crossing. For a short
time ν is proportional to

√
t and for a long time it is
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proportional to t as we saw above.
To study the transition probability in this case, the

correct information for RG→E and ν is necessary, but it
is generally difficult. However, if we could estimate these
quantities from the enhancement, it would yield detailed
knowledge of the bath. In nanoscale molecular magnets,
it would be possible to study such a detailed property,
which is a very interesting research area in the future.

§4. Summary and Discussion

Nanoscale molecular magnets display several phenom-
ena which originate from explicit quantum mechanical
transitions between discrete levels. In this paper we
studied effects of dissipative environment which smears
out the pure quantum processes. So far the relaxation
processes have been a kind of black-box and have been
treated only phenomenologically. But it would be pos-
sible to begin to study explicit processes of relation in
nanoscale magnets because of their simple form.
So far we studied the S = 10 spin representing the

low energy structure of magnetic energy levels. Let us
consider the structure of the full energy level. The molec-
ular magnets have complicated structures. For example
Mn12 includes 12 Mn molecules with many other atoms
which have nuclear spins. Thus the dimension of total
Hamiltonian is 58 ·44×I, where I comes from the degree
of freedom of nuclear spins. This degree of nuclear spins
causes random effects on each Mn atom. It would be an
interesting problem to study how this random field on
individual atoms causes changes of the energy levels at
low temperatures.
Even without the effects of nuclear spins, there are

dipole-dipole couplings among the molecules which cause
random noise on the whole molecule. Thus it should be
taken into account even in the view point of S = 10 spin.
Effects of this field are studied as ‘feedback-effect’ on the
LZS process of magnetization.38) It would be interesting
to study natures of noises explicitly in nanoscale molec-
ular magnets.
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