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Abstract. Data produced by laboratory Einstein-Podolsky-Rosen-Bohm (EPRB) experiments is
tested against the hypothesis that the statistics of this data is given by quantum theory of this
thought experiment. Statistical evidence is presented that the experimental data, while violating
Bell inequalities, does not support this hypothesis. It is shown that an event-based simulation model,
providing a cause-and-effect description of real EPRB experiments at a level of detail which is not
covered by quantum theory, reproduces the results of quantum theory of this thought experiment,
indicating that there is no fundamental obstacle for a real EPRB experiment to produce data that can
be described by quantum theory.
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INTRODUCTION

In the scientific and popular literature, it is common to find statements that Einstein-
Podolsky-Rosen-Bohm (EPRB) experiments show violations of a Bell inequality and
that the experimental results [1–13] are in favour of quantum theory [3, 14, 15]. While
there can be little doubt that the former is a firmly established fact, it is remarkable
that, at least to our knowledge, there seems to be no record of an hypothesis test that
the experimental data gathered in EPRB experiments is indeed complying with the
predictions of quantum theory for this particular experiment.

One reason for deeming such a test unnecessary may be rooted in the widespread
believe that Bell [14, 16] would have proven that a violation of one of his inequalities
implies that the experimental findings rule out any explanation in terms of classical
(Hamiltonian as well as non-Hamiltonian) models that satisfy Einstein’s criteria for
local causality. Although the general validity of Bell’s result has been questioned by
many workers [17–48], even if the result were valid, it still remains to be shown that the
experimental data is in concert with the predictions of quantum theory.

In this paper, we report on such an hypothesis test applied to data produced by
the EPRB experiment of Weihs et al. [7, 8]. We present compelling evidence that the
experimental data, while violating Bell inequalities, does not support the hypothesis that
the data complies with the predictions of quantum theory for the EPRB experiment.
We also demonstrate that classical, locally causal models which generate the same kind
of data sets as the laboratory EPRB experiments can reproduce the results of quantum
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FIGURE 1. Schematic diagram of an EPRB experiment with photons [7, 8].

theory, suggesting that in the real experiments there are processes at work which deserve
to be identified and studied further.

The data sets generated by the experiment of Weihs et al. have been scrutinized
earlier [13, 40, 49–51]. A. Hnilo et al. focused on ruling out certain types of local realist
models and searched for non-ergodic features in the time-stamped data [13, 49, 51].
G. Adenier and A. Khrennikov tested the hypothesis that the data of the experiment of
Weihs et al. supports the fair sampling assumption [40]. They showed that the relative
frequencies of single-particle counts exhibits “non-local” dependencies on the applied
bias and interpret this finding as evidence that the fair sampling assumption may be
violated in the experiments of Weihs et al. [40]. Their conclusions were criticized by
J.H. Bigelow [50] who showed that, with additional assumptions, the violation of the
non-signaling criterion, found by G. Adenier and A. Khrennikov, can be removed by
modelling the data as a fair sample drawn from a set of sixteen coincidence counts that
obey the no-signaling criterion.

EPRB LABORATORY EXPERIMENT

In Fig. 1, we show a schematic diagram of the EPRB experiment with photons [7, 8],
the data of which we analyze. In this experiment, the polarization of each photon is
used as the spin-1/2 degree-of-freedom in Bohm’s version [52] of the EPR gedanken
experiment [53].

The source is emitting pairs of photons. The statistical properties of a large set of these
photons are a priori unknown and have to be inferred from the analysis of the recorded
detection events. As the photon arrives at station i = 1,2 (i = 1,2 denotes Alice’s and
Bob’s station, respectively), it passes through an electro-optic modulator (EOM). The
EOM in observation station i rotates the polarization of the photon that passes through
it by an amount that is controlled by a voltage applied to the EOM [7, 8]. In turn,
this voltage is controlled by a binary variable Ai, which is chosen at random [7, 8].



Optionally, a bias voltage is added to the randomly varying voltage [7, 8]. The relation
between the voltage applied to the EOM and the resulting rotation of the polarization
is determined experimentally, hence there is some uncertainty in relating the applied
voltage to the rotation angle [7, 8]. Keeping in mind that the experimentally relevant
variable is the applied voltage, to simplify the presentation and the interpretation in terms
of quantum theory, we characterize the rotation of the polarization by the angle θi, as in
Refs. [7, 8]. As the photon leaves the EOM, a polarizing beam splitter directs the photon
to one of the two detectors, producing a signal xn,i =±1 where the subscript n labels the
nth detection event (see Fig. 1). Each station has its own clock that assigns a time-tag
to each signal generated by one of the two detectors [7, 8]. Effectively, this procedure
discretizes time in intervals, the width of which is determined by the time-tag resolution
τ . In the experiment, the time-tag generators are synchronized before each run [7, 8].
The firing of a detector defines an event. At the nth event at station i, the dichotomic
variable An,i (see Fig. 1), controlling the rotation angle θn,i, the dichotomic variable xn,i
designating which detector fires, and the time tag tn,i of the detection event are written
to a file on a hard disk, allowing the data to be analyzed long after the experiment has
terminated [7, 8]. The set of data collected at station i may be written as

ϒi = {xn,i, tn,i,θn,i|n = 1, . . . ,Ni} , (1)

where we allow for the possibility that the number of detected events Ni at stations i =
1,2 need not (and in practice is not) to be the same and we have used the rotation angle
θn,i instead of the corresponding dichotomic variable An,i to facilitate the comparison
with the quantum theoretical description. The data sets {ϒ1,ϒ2}, kindly provided to us
by G. Weihs, are the starting point for the analysis presented in this paper.

A laboratory EPRB experiment requires some criterion to decide which detection
events are to be considered as stemming from a single or two-particle system. In EPRB
experiments with photons, this decision is taken on the basis of coincidence in time [7,
54]. Here we adopt the procedure employed by Weihs et al. [7, 8]. Coincidences are
identified by comparing the time differences tn,1 − tm,2 with a window W [7, 8, 54],
where n = 1, . . . ,N1 and m = 1, . . . ,N2. By definition, for each pair of rotation angles
a and b, the number of coincidences between detectors Dx,1 (x = ±1) at station 1 and
detectors Dy,2 (y =±1) at station 2 is given by

Cxy =Cxy(a,b) =
N1

∑
n=1

N2

∑
m=1

δx,xn,1δy,xm,2δa,θn,1δb,θm,2Θ(W −|tn,1 − tm,2|), (2)

where Θ(t) is the Heaviside step function. In Eq. (2) the sum over all events has to
be carried out such that each event (= one detected photon) contributes only once.
Clearly, this constraint introduces some ambiguity in the counting procedure as there
is a priori, no clear-cut criterion to decide which events at stations i = 1 and i = 2 should
be paired. One obvious criterion might be to choose the pairs such that Cxy is maximum
but as we explain later, such a criterion renders the data analysis procedure (not the
data production!) acausal. It is trivial though (see later) to analyse the data generated by
the experiment of Weihs et al. such that conclusions do not suffer from this artifact. In
general, the values for the coincidences Cxy(a,b) depend on the time-tag resolution τ
and the window W used to identify the coincidences.



The single-particle averages and correlation between the coincidence counts are de-
fined by

E1(a,b) =
∑x,y=±1 xCxy

∑x,y=±1Cxy
=

C++−C−−+C+−−C−+

C+++C−−+C+−+C−+

E2(a,b) =
∑x,y=±1 yCxy

∑x,y=±1Cxy
=

C++−C−−−C+−+C−+

C+++C−−+C+−+C−+

E(a,b) =
∑x,y=±1 xyCxy

∑x,y=±1Cxy
=

C+++C−−−C+−−C−+

C+++C−−+C+−+C−+
, (3)

where the denominator Nc = C++ +C−− +C+− +C−+ in Eq. (3) is the sum of all
coincidences. In practice, coincidences are determined by a four-step procedure [8]:

1. Compute a histogram of time-tag differences tn,1− tm,2 of pairs of detection events.
2. Determine the time difference ΔG for which this histogram shows a maximum.
3. Add ΔG to the time-tag data of Alice, thereby moving the position of the maximum

of the histogram to zero.
4. Determine the coincidences using the new time-tag differences, each photon con-

tributing to the coincidence count at most once.

The global offset, denoted by ΔG, may be attributed to the loss of synchronization of the
clocks used in the stations of Alice and Bob [8].

Role of the time window and acausal data processing

Most theoretical, local-realistic treatments of the EPRB experiment assume that the
correlation, as measured in the experiment, is given by [14]

C(∞)
xy (a,b) =

N

∑
n=1

δx,xn,1δy,xn,2δa,θn,1δb,θm,2, (4)

which is obtained from Eq. (2) by taking the limit W → ∞ and omitting events such that
N = N1 = N2. A naive argument that might justify taking this limit is the hypothesis that
for ideal experiments, the value of W should not matter because the time window only
serves to identify pairs. However, this argument does not apply to real experiments: The
analysis of the data of the experiment of Weihs et al. shows that the average time between
pairs of photons is of the order of 30 μs or more, much larger than the typical values (of
the order of a few nanoseconds) of the time-window W used in the experiments [8].
In other words, in practice, the identification of photon pairs does not require the use
of W ’s of the order of a few nanoseconds in which case the use of a time-coincidence
window does not create a “loophole”. A narrow time window mainly acts as a filter that
selects pairs, the photons of which experienced time delays that differ by the order of
nanoseconds.

The use of a global offset ΔG, determined by maximizing the number of coincidences,
introduces an element of non-causality in the analysis of the experimental results (but



not in the original data itself): Whether or not at a certain time, a pair contributes to
the number of coincidences depends on all the coincidences, also on those at later
times. This is an example of an acausal filtering [55]: The output (coincidence or not)
depends on both all previous and all later inputs (the detection events and corresponding
time-tags). Therefore, data analysis of EPRB experiments that employs a global offset
ΔG to maximize the number of coincidences, is intrinsically acausal: The notion of
coincidences happening inside or outside the light cone becomes irrelevant.

In spite of this caveat, very useful information can be extracted from data sets pro-
duced by the experiment of Weihs et al., the reason being that the results of the analysis
become independent of ΔG if the time-window W is taken to be sufficiently large (but
much smaller than the average time between successive events). As it is our aim to test
whether the data of the experiment of Weihs et al. comply with quantum theory, not
to find the maximum violation of some inequality, we will not dwell on this issue any
further and simply discard conclusions that depend on the use of a non-zero ΔG.

HYPOTHESIS TEST

According to quantum theory of the EPRB thought experiment, the results of repeated
measurements of the system of two S = 1/2 particles in the spin state |Φ〉 are given by
the single-spin expectation values

Ê1(a) = 〈Φ|S1 ·a|Φ〉= 〈Φ|S1|Φ〉 ·a,
Ê2(b) = 〈Φ|S2 ·b|Φ〉= 〈Φ|S2|Φ〉 ·b, (5)

and the two-particle correlations Ê(a,b) = 〈Φ|S1 ·a S2 ·b|Φ〉= a · 〈Φ|S1 S2|Φ〉 ·b where
a = (cosa,sina) and b = (cosb,sinb) specify the directions of the analyzers (corre-
sponding to the rotations of the polarization due to the EOM’s). We have introduced the
notation ̂ to distinguish the quantum theoretical prediction from the results obtained by
analysis of the experimental data sets.

Quantum theory of the EPRB thought experiment assumes that |Φ〉 does not depend
on a or b. Therefore, from Eq. (5) it follows immediately that Ê1(a) does not depend
on b and that Ê2(b) does not depend on a. Under the hypothesis that quantum theory
describes the data collected in the laboratory EPRB experiment, we may expect that
E1(a,b) ≈ Ê1(a) and E2(a,b) ≈ Ê2(b), exhibit the same independencies. This is the
basis of our test.

In practice, we are dealing with real data and not with mathematical expressions such
as Eq. (5) and therefore, we need a criterion to decide whether or not the data is in
agreement with the value predicted by quantum theory of the EPRB experiment. In line
with standard statistical hypothesis testing, we adopt the following criterion:

The data for E1(a,b) (E2(a,b)) are considered to be in conflict with the prediction
of quantum theory of the EPRB experiment if it shows a dependency on b (a) that
exceeds five times the upper bound 1/

√
Nc to the standard deviation σNc .

Data that does not satisfy our criterion exhibits a spurious kind of “non-locality” that
cannot be explained by the quantum theoretical description of the EPRB experiment.
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FIGURE 2. Analysis of the data set newlongtime2. Left: |S|= |E(a,b)−E(a,b′)+E(a′,b)+E(a′,b′)|
as a function of the time window W and a = 0, a′ = π/4, b = π/8 and b′ = 3π/8. The dashed lines
represent the maximum value for a quantum system of two S = 1/2 particles in a separable (product) state
(|S|= 2) and in a singlet state (|S|= 2

√
2), respectively. Blue crosses: ΔG = 0. Red bullets connected by

the red solid line: ΔG = 0.5ns. Right: Selected single-particle averages as a function of W and for ΔG = 0.
The error bars correspond to 2.5 standard deviations. For small W , the total number of coincidences is
too small to yield statistically meaningful results. For W > 20ns the change of some of these single-spin
averages observed by Bob (Alice) when Alice (Bob) changes her (his) setting, systematically exceeds five
standard deviations, suggesting it is highly unlikely that the data is in concert with quantum theory of the
EPRB experiment.

A key feature of our test is that it does not rely on any particular property of the state
|Φ〉. For instance, if in a laboratory EPRB experiment we find that E1(a,b) shows a
dependence on b that exceeds five times the standard deviation, this dependence cannot
be attributed to |Φ〉 deviating from the singlet state.

Figure 2(left) shows the typical results of the Bell function S as a function of W . For
W < 150ns, the Bell inequality |S| ≤ 2 is clearly violated. For W > 200ns, much less
than the average time (> 30 μs) between two coincidences, the Bell inequality |S| ≤ 2 is
satisfied, demonstrating that the “nature” of the emitted pairs is not an intrinsic property
of the pairs themselves but also depends on the choice of W made by the experimenter.
For W > 20ns, there is no significant statistical evidence that the “noise” on the data
depends on W but if the only goal is to maximize |S|, it is expedient to consider
W < 20ns. From these experimental results, it is clear that the time-coincidence window
does not constitute a “loophole”. Not only is it an essential element of these EPRB
experiments, it also acts as a filter that is essential for the data to violate a Bell inequality.

Figure 2(right) shows results of a selection of single-particle expectations as a func-
tion of W . It is clear that these results violate our criterion for being compatible with
the prediction of quantum theory of the EPRB model. According to standard practice
of hypothesis testing, the likelyhood that this data set can be described by the quantum
theory of the EPRB experiment should be considered as extremely small. This finding
is not an accident: Our analysis of 23 data sets produced by the experiment of Weihs et
al. shows that none of these data sets satisfies our hypothesis test for being compatible
with the predictions of quantum theory of the EPRB model.



TABLE 1. Results of the numerical solution of the set of three groups of equations such as Eq. (7)
for data taken from the experimental data set newlongtime2 at W = 50ns. The pair of settings that
has not been included corresponds to the entry indicated with the –. For instance, the results of the
first row have been obtained by excluding the data for the setting (a′,b′). Consistency demands that
the numbers in each column are close to each other. The fact that the four solutions are inconsistent
suggests that the data is incompatible with quantum theory for the EPRB thought experiment.

r1 r2 Ê1(a) Ê1(a′) Ê2(b) Ê2(b′) Ê(a,b) Ê(a,b′) Ê(a′,b) Ê(a′,b′)
+0.17 −0.01 −0.17 −0.23 +0.11 −0.13 −0.72 +0.47 −0.52 –
−0.06 −0.01 +0.06 +0.03 −0.05 −0.03 −0.69 +0.45 – −0.71
+0.17 −0.16 −0.29 −0.32 +0.27 +0.31 −0.83 – −0.62 −0.87
−0.06 −0.17 +0.13 −0.08 +0.16 +0.13 – +0.46 −0.50 −0.72

ROLE OF THE DETECTION EFFICIENCY

For the experimental set up of Weihs et al., the dependence of E1(a,b) (E2(a,b)) on b
(a) cannot be attributed to detection efficiencies of the detectors at station (1), assuming
the latter as constant during the time the data is collected. This can be seen as follows.

As photons may be absorbed when passing through the EOM and as detectors do not
register all incident photons, we may write

Cxy(a,b) = κ1(a)κ2(b)η1(x)η2(y)NP(xy|ab), (6)

where 0 < κi(.)≤ 1 and 0 < ηi(.)≤ 1 represent the efficiency of the EOM and detectors
at station i = 1,2 respectively, N is the number of photon pairs emitted by the source
and P(xy|ab) = (1+ xÊ1(a) + yÊ2(b) + xyÊ(a,b))/4 is the most general form of the
probability for a pair x,y = ±1, compatible with quantum theory of the EPRB thought
experiment. Note that the experiment of Weihs et al. uses polarizing beam splitters,
and therefore the detectors receive photons with fixed polarization. Hence the detection
efficiencies η1(x) and η2(y) are not expected to depend on the polarization of the
photons that leave the EOMs [8]. After some elementary algebra, we find

E1(a,b) =
r1 + Ê1(a)+ r1r2Ê2(b)+ r2Ê(a,b)

1+ r2Ê1(a)+ r1Ê2(b)+ r1r2Ê(a,b)
.

E2(a,b) =
r2 + r1r2Ê1(a)+ Ê2(b)+ r1Ê(a,b)

1+ r2Ê1(a)+ r1Ê2(b)+ r1r2Ê(a,b)
,

E(a,b) =
r1r2 + r2Ê1(a)+ r1Ê2(b)+ Ê(a,b)

1+ r2Ê1(a)+ r1Ê2(b)+ r1r2Ê(a,b)
, (7)

where −1 ≤ ri = (ηi(+1)−ηi(−1))/(ηi(+1)+ηi(−1))≤ 1 parameterizes the relative
efficiencies of the detectors at stations i = 1,2. The parameters r1, r2 and the state of
the quantum system (fully described by Ê1(a), Ê2(b), Ê(a,b)) can be determined by
considering the set of nine equations for the three pairs of settings. Taking for instance
the data for the set of settings {(a,b),(a,b′),(a′,b)}, yields three times three equations
of the form Eq. (7) with nine unknowns which are easily solved numerically. As an



illustrative example, we examine the data at W = 50ns taken from the experimental
data set newlongtime2, see also Fig. 2. The results of the numerical solution of the nine
equations is given by the first row of Table 1. Similarly, we can construct three additional
sets of nine equations. Their solutions are also presented in Table 1. Clearly, there is no
way in which these four solutions can be considered as compatible. Needless to say,
the full set of 12 equations has no solution at all. This incompatibility is not accidental,
it is generic. Using a different approach of analyzing the data, J.H. Bigelow came to a
similar conclusion [50]. Apparently, including a model for the detector efficiency does
not resolve the conflict between the experimental data of Weihs et al. and quantum theory
of the EPRB thought experiment.

DISCRETE EVENT SIMULATION

The fact that the data produced by the EPRB experiment of Weihs et al. cannot be
brought in harmony with the predictions of quantum theory for this experiment raises
the question whether there exist (simulation) models of this experiment that produce the
same kind of data sets as the real experiment and do not rely on concepts of quantum
theory, yet reproduce the results of quantum theory of the EPRB experiment.

The possibility that such models exist was, to our knowledge, first pointed out by A.
Fine [19]. The key of Fine’s so-called synchronization model is the use of a filtering
mechanism, essentially the time-coincidence window employed in laboratory EPRB
experiments. Fine pointed out that such a filtering mechanism may lead to violations
of the inequality |S| ≤ 2, opening the route to a description in terms of locally causal,
classical models. A concrete model of this kind was proposed by S. Pascazio who
showed that his model approximately reproduces the correlation of the singlet state [56]
with an accuracy that seems far beyond what is experimentally accessible to date. Later,
Larson and Gill showed that Bell-like inequalities need to be modified in the case that
the coincidences are determined by a time-window filter [57]. Finally, a time-tag model
that exactly reproduces the results of quantum theory for the singlet and uncorrelated
state was found [58–61].

A minimal, discrete-event simulation model of the EPRB experiment by Weihs et al.
(see Fig. 1) requires a specification of the information carried by the particles, of the
algorithm that simulates the source and the observation stations, and of the procedure to
analyze the data.

• Source and particles: The source emits particles that carry a vector
Sn,i = (cos(ξn + (i − 1)π/2),sin(ξn + (i − 1)π/2)), representing the polariza-
tion of the photons. This polarization is completely characterized by ξn and the
direction i = 1,2 to which the particle moves. A uniform pseudo-random number
generator is used to pick the angle 0 ≤ ξn < 2π . Clearly, the source emits two
particles with a mutually orthogonal, hence correlated but otherwise random
polarization.

• EOM: The EOM rotates the polarization of the incoming particle by an angle
ζ , that is αn,i ≡ EOMi(ξn + (i− 1)π/2,ζi) = ξn + (i− 1)π/2− ζi symbolically.
Mimicking the experiment of Weihs et al., we generate two binary uniform pseudo-



random numbers Ai = 0,1 and use them to choose the value of the angles ζi, that is
ζ1 = a(1−A1)+A1(a+π/4) and ζ2 = b(1−A2)+A2(b+π/4).

• Polarizing beam splitter: The simulation model for a polarizing beam splitter is
defined by the rule

xn,i =

{
1 if rn ≤ cos2 αn,i

0 if rn > cos2 αn,i
, (8)

where 0 < rn < 1 are uniform pseudo-random numbers. It is easy to see that for
fixed polarization αn,i = αi, this rule generates events such that

lim
N→∞

1
N

N

∑
n=1

xn,i = cos2 αn,i, (9)

with probability one, showing that the distribution of events complies with Malus
law.

• Time-tag model: The time-tag model of Pascazio is based on the assumption
that the interaction between the photon and the detector follows an exponential
probability law [56]. This model assumes that as the photon enters the detector at
time t = 0, it generates an electrical signal between t and t + dt with probability
p(t)dt = λ (αn,i)e−λ (αn,i)tdt [56] or, in the notation used in the present paper, that
the time tag is given by

tn,i = −λ (αn,i) lnr, (10)

where λ (αn,i) is the inverse “life-time” of the photon-detector interaction which is
assumed to depend on the polarization αn,i [56], and r is a uniformly distributed
random number (which changes with each event).
As is well-known, as light passes through an EOM (which is essentially a tuneable
wave plate), it experiences a retardation depending on its initial polarization and the
rotation by the EOM. On the level of individual particles, in our time-tag model,
we hypothesize that this delay is represented by the time tag

tn,i = λ (αn,i)r, (11)

that is, the time tag is distributed uniformly over the interval [0,λ (αn,i)] [58]. It
has been shown that for λ (αn,i) = T0 sin4 2αn,i this model, in combination with the
model of the polarizing beam splitter, exactly reproduces the results of quantum
theory of the EPRB experiments in the limit W → 0 [59, 60]. We therefore adopt
the expression λ (αn,i) = T0 sin4 2αn,i for both time-tag models, leaving only T0 as
an adjustable parameter.

• Data analysis: The simulation algorithm generates the data sets ϒi, just as experi-
ment does. We analyse these data sets in exactly the same manner as in the case of
the experimental data.

This algorithm fully complies with Einstein’s criterion of local causality on the onto-
logical level: Once the particles leave the source, an action at observation station 1 (2)
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can, in no way, have a causal effect on the outcome of the measurement at observation
station 2 (1).

In Fig. 3 we present some typical simulation results for the two-particle correlation
E(a,b) and the distribution of time-tag differences, as obtained by using time-tag model
Eq. (11). The single-particle averages E1(a) and E2(b) (data not shown) are zero up to
the usual statistical fluctuations and do not show any statistically relevant dependence on
b or a, respectively, in concert with a rigorous probabilistic treatment of this simulation
model [60].

For W = 2ns, the results for E(a,b) fit very well to the prediction of quantum
theory for the EPRB experiment. From these data (not shown), we extract |S| = 2.89
and |S| = 2.82 for Pascazio’s and our time-tag model respectively. Note that for both
models, the maximum value of |S| is not limited by the quantum theoretical result and
can, depending on the choice of λ (αn,i), reach values that are very close to 4 [62]. For
W = 50ns, the two models yield |S| = 2.63 and |S| = 2.62, respectively. Both results
compare very well with the values extracted from the experimental data of Weihs et
al., which for W = 50ns, are between 2 and 2.57. In all cases, the distribution of time-
tag differences is sharply peaked and displays long tails, in qualitative agreement with
experiment [8].

CONCLUSION

It is highly unlikely that quantum theory describes the data of the EPRB experiment
that we have analyzed. This suggests that in the real experiment, there may be processes
at work which have not been identified yet. On the other hand, event-based simulation
models provide a cause-and-effect description of real EPRB experiments at a level of
detail which is not covered by quantum theory, such as the effect of the choice of the



time-window. Some of these simulation models exactly reproduce the results of quantum
theory of the EPRB experiment, indicating that there is no fundamental obstacle for an
EPRB experiment to produce data that can be described by quantum theory. In any case,
the popular statement that EPRB experiments agree with quantum theory does not seem
to have a solid scientific basis yet.
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