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Abstract. – We present staircase magnetization curves for single-spin models of uniaxial
magnets as obtained from the numerically exact solution of the time-dependent Schrödinger
equation. Steps are shown to correspond to field-tuned tunnelling between different pairs of
nearly degenerate energy levels. The role played by second-order and fourth-order transverse
anisotropy, the transverse field and the orientation and sweep speed of the applied field are
studied. Magnetization curves for excited and non-saturated initial states are also presented.
These results are discussed in relation to recent experiments on high-spin compounds.

The study of quantum tunnelling of the magnetization (QTM) [1] in small magnetic sys-
tems addresses the intriguing problem of how quantum mechanics underlies classical physics.
Magnetization tunnelling in mesoscopic systems has been semiclassically studied by several
authors [2]-[4]. More recently, quantum-dynamical calculations for models of nano-magnets
such as the Heisenberg model [5] and the single-spin quantum model [6] have shown the
occurrence of resonant coherent QTM at zero temperature. Also theoretically, several authors
have studied the problem of spin tunnelling in a swept magnetic field [7]-[9].

Recents experiments in magnetic macromolecules arrayed in a crystal [10] have shown steps
in the magnetic hysteresis at values of the magnetic field where the energy levels cross. At
these values, the magnetization changes at a much shorter time scale than at other values of
the field. The experimental observations have been attributed to thermally assisted resonant
tunnelling between quantum states in magnetic macromolecules [10]. This interpretation is
based on a single-spin S = 10 model with strong uniaxial anisotropy, H = −DS2

z − gµBSH,
where D is the uniaxial anisotropy energy. The energy levels of this model (|Sm〉 for H‖ẑ,
where Sz|Sm〉 = m|Sm〉) coincide at regularly spaced magnetic field values, gµBHn = nD, and
the separation between the steps observed in experiments leads to reasonable values of D. For
QTM to occur this model has to be extended to include symmetry breaking terms such as those

c© EDP Sciences



474 EUROPHYSICS LETTERS

originated from dipolar interaction, interaction with nuclear spins or phonons, etc. [11]-[13].

In this letter we present quantum-mechanical calculations for a single-spin quantum model
with uniaxial anisotropy for S = 10. We have analysed the effect of a second-order and
fourth-order transverse anisotropy, a transverse field (which might have a hyperfine or dipolar
origin) and the orientation and sweep speed of the applied magnetic field. The most general
Hamiltonian for a single quantum spin including all these interactions is

H = −KxS
2
x −KyS

2
y −KzS

2
z − CxS

4
x − CyS

4
y − CzS

4
z − ΓSx −H(t)S , (1)

where Kz, Kx and Ky are the anisotropy constants along the easy, medium and hard axes,
respectively, S = (Sx, Sy, Sz) is the vector representing the magnetization, Cx, Cy , Cz are
the fourth-order anisotropy constants, Γ is the transverse field and H(t) = H(t)(sin θ, 0, cos θ)
denotes the time-dependent applied magnetic field.

The time-evolution of the magnetization at T = 0 is obtained from the exact numerical
solution of the time-dependent Schrödinger equation (TDSE), ih̄∂|Ψ(t)〉/∂t = H|Ψ(t)〉, where
|Ψ(t)〉 denotes the wave function of the spin system at time t. We study the following situation:
First we set the applied magnetic field to its minimum value H(t = 0) = −H0 and put the
system in the corresponding ground state, i.e. |Ψ(0)〉 = |Φ0(0)〉, where H(−H0)|Φ0(0)〉 =
E0(−H0)|Φ0(0)〉. The time-evolution of the wave function is then calculated by means of
|Ψ(t+ τ)〉 = exp[(−iτH)|Ψ(t)〉], where τ is the time-step used to integrate the TDSE. During
the integration of the TDSE, the applied field changes from −H0 to H0 with a given speed,
which is defined by the field step ∆H between two consecutive field values and the amount of
time τH the system feels each constant field. The temporal evolution of the α-th (α = x, y, z)
component of the spin can be calculated from 〈Sα(t)〉 = 〈Ψ(t)|Sα|Ψ(t)〉. For each constant field
value we compute the expectation value of Sα averaged over time, S̄α = 1/τH

∫ τH
0

dt 〈Sα(t)〉.
In the following we will refer to M = S̄z/S as the magnetization. The energy of the system is
given by E(H(t)) = 〈Ψ(t)|H|Ψ(t)〉.

Figure 1 shows an example of staircase magnetization curves for model (1) in the case of
second-order transverse anisotropy, a transverse field and for an external applied magnetic
field with a misalignment of 1 degree. Curves (i) correspond to sweeping the field from −H0

to H0 and curves (ii) to the opposite case. In both cases the system starts from its ground
state. For equidistant field values and only when the field is increasing in absolute value,
several steps in the magnetization curve can be clearly observed. In this case Hn = ±n0.6Kz,
where n = 0, 1, 2, 3 and 4. In order to understand this result it is necessary to look at
the spectrum. In fig. 2 we present the energy levels scheme corresponding to fig. 1 exhibiting
level crossings at regularly spaced values of the field. Steps can only occur at values of the
field where the energy levels are nearly degenerate. The probability for QTM to occur or
equivalently, the size of the step, depends on the energy-level splitting of the participating
levels, the weight of the corresponding eigenstates in the current state of the system, the
field sweep speed and the value of the magnetization itself. If the system is in an eigenstate
(Φi) that approaches another one (Φi+1) without crossing it, as in the inset of fig. 2, there
are three possibilities: 1) The field changes slowly enough and the energy splitting is not
too small. Then the adiabatic theorem applies and the system will stay in the eigenstate it
started from. In this case the probability for QTM is one and a maximum step results. 2)
The energy splitting is very small or the field sweep speed is too high. Then the probability of
staying in the same eigenstate, pi, becomes negligible. The system is scattered into the other
eigenstate and there is no step in the magnetization curve. 3) The intermediate situation in
which the system tunnels from Φi to Φi+1. The final state is a linear combination of both
eigenstates with weights pi and 1− pi. In this case, the step of the magnetization is given by
∆M = Mfinal −M initial = piM

final
i + (1 − pi)Mfinal

i+1 −M
initial
i , where the superscripts initial
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Fig. 1. – M vs. H for model (1) with S = 10, Kx = 0.6, Ky = 0.1, Kz = 1.0, Cx = Cy = Cz = 0,
Γ = 0.02 and θ = 1◦ when the field goes i) from −H0 to H0 and ii) from H0 to −H0 for H0 = 9.6,
starting from Φ0(∓H0), respectively. Field sweep parameters: thick lines, ∆H = 0.0012, τH = 105;
thin lines, ∆H = 2.86× 10−7, τH = 24.

Fig. 2. – Energy levels (Ei) scheme corresponding to the case of fig. 1. Dashed lines represent the
system energy. The inset shows a schematic picture of the “crossing” of two energy levels.

and final refer to before and after the crossing. If the field step is small enough, this process
can be viewed as a Landau-Zener (LZ) transition [14], [15], the staircase magnetization curves
resulting from the succession of these events [9]. In this case the probability of staying in the
same eigenstate is well estimated by pi = 1− exp[−π∆E2τH/4M

final
i ∆H]. However, if ∆H is

too large, LZ theory does not apply and the size of the steps depends in a non-trivial way on
∆H, τH and ∆E. Thin lines in fig. 1 (∆H = 2.9× 10−7) agree with LZ predictions while the
thick ones (∆H = 0.0012) do not.

In fig. 1 (thick lines), field-tuned tunnelling occurs between low-energy levels: The first step
(at H = 0) corresponds to tunnelling between the ground state and the first excited level,
the second to tunnelling between the first and second excited levels, and so on. Since the
system is initially in the ground state Φ0 and the energy levels scheme as a function of the
magnetic field is such that E0 only crosses another level at zero field, it is obvious that no step
can appear when |H| decreases. After the first crossing and if a step takes place as in fig. 1,
the system state has components in both the ground (E0) and first excited (E1) states. The
weight of Φ0 is then fixed. As the field changes a new step can result when E1 becomes almost
degenerate with the second excited level (E2), after which the weight of Φ1 is also fixed. This
process continues until the probability of a new step becomes negligible. In the calculations,
M cannot reach the saturation value even for H →∞ since the system can only gain or lose
energy through the time-dependent field but not through interaction with the environment.
There is an exception and that is when the system stays in the ground state when crossing
H = 0. Then the maximum step from M = −1 to M = +1 is found.

In fig. 3 we present results for the Hamiltonian H = −KzS
2
z−H(t)S, with H‖ẑ and S = 10,

i.e. the model used to explain the recent experimental data [10], supplemented by terms that
allow for tunnelling processes, i.e. model (1). All these cases have in common that for some
specific fields Hn, pairs of energy levels become almost degenerate. If Φ0(−H0) is the initial
state, the levels involved in the crossing at Hn are En and En+1. As shown in fig. 3(a), the
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Fig. 3. – M vs. H for model 1) with S = 10, Kz = 1, θ = 0◦ and a) a transverse field term for Γ
equal to 1) 0.046, 2) 0.1, 3) 0.25, 4) 0.5, 5) 1, 6) 2, 7) 5, 8) 6.35 and 9) 10; b) second-order anisotropy
terms with Kx = 0.6 and Ky equal to 1) 0.5, 2) 0.2, 3) 0.1, and 4) 0.0; and c) fourth-order anisotropy
terms with C = Cx = Cy = Cz equal to 1) 0.0001, 2) 0.001, 3) 0.003, 4) 0.004, 5) 0.005, 6) 0.007.
Field sweep parameters: a) ∆H = 0.005, τH = 2 × 105; b) ∆H = 0.0025, τH = 105; c) ∆H = 0.005,
τH = 1.5× 105.

transverse field Γ breaks the rotational symmetry about the z-axis, leading to the occurrence
of field-tuned QTM and the corresponding steps in the magnetization. Γ allows all transitions
∆m = ±1. At resonance Hn = nKz = n, and the values of n for which steps appear depend
on Γ . Thus, for Γ = 0.046Kz = 0.046 we find n = 16, 17; for Γ = 0.25, n = 13, . . . , 16; for
Γ = 2, n = 6, . . . , 11; and for Γ = 6.35, n = 0, . . . , 5. The presence of second-order transverse
anisotropy terms can also induce QTM. In fig. 3(b) results are shown for Kz = 1, Kx = 0.6
and several values of Ky. For Ky = Kx, the energy and Sz commute and no tunnelling occurs.
These transverse anisotropy terms change the spacing between resonant fields although they
remain regularly spaced as in case a). These terms allow transitions that obey the selection
rule ∆m = ±2. For Ky = 0.5, n = 8, 10, 12 and 14; for Ky = 0.2, n = 0, 4, 6 and 8; and
for Ky = 0.1, n = 0, 2, 4, 6 and 8. Fourth-order anisotropy terms allow the occurrence of
field-tuned tunnelling between levels satisfying ∆m = ±4. In this case, the fields at which
pairs of energy levels cross are not equally spaced. Figure 3(c) shows results for different values
of Cx = Cy = Cz = C. For instance, for C = 0.0001Kz = 0.0001, n = 16; for C = 0.001,
n = 12 and 16; and for C = 0.005, n = 0, 4, 8 and 12. Another parameter in this problem is the
field orientation. Calculations for several values of θ show that the time-dependent transverse
component Hx can also induce tunnelling. The component that must be tuned to match the
level crossings is Hz . The field sweep rate is another important paramater as the probability
of QTM depends on it. The lower the sweep rate, the larger the size of the step.

Let us now consider the case of an initial state which is not the ground state but a linear
combination of several eigenstates. Unlike the ground state, the excited levels can become
nearly degenerate with other levels for H 6= 0, and therefore there is a non-zero probability of
finding steps when |H| decreases, as illustrated in fig. 4(a). Moreover, if the field is reversed
after one sweep from −H0 to H0 (fig. 4(b)), the system restarts from a linear combination of
several eigenstates (corresponding to a non-saturated state in an experiment) and the situation
is similar to that of fig. 4(a). As shown in fig. 4(b), there is some probability of finding steps
when |H| decreases and of getting both negative and positive steps. The same reasoning applies
to QTM from thermally populated excited levels. Although the tunnelling probability increases
with the excitation level, and smaller off-diagonal terms are required to induce field-tuned
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Fig. 4. – a) M vs. H for model (1) with S = 10, Kx = 0.6, Ky = 0.1, Kz = 1.0, C = Γ = 0 and θ = 0◦

when the field goes i) from −H0 to H0 and ii) from H0 to −H0 for H0 = 10.0, starting from the initial

states: Ψ
ii)

i) (0) = c0Φ0(∓H0) + c1Φ1(∓H0) + c2Φ2(∓H0), respectively, where c0 = 0.7, c1 = 0.22 and

c2 = 0.08. Field sweep parameters: ∆H = 0.0025, τH = 105. Arrows point at steps for decreasing
|H|. b) Same as a) for an initial state in the ground state Φ0(−H0) and when the field goes from
−H0 to H0 and then, before reaching saturation, back to −H0, for H0 = 10.0. At H = H0, where
the field is reversed, Ψ(H0) =

∑
n
c2nΦ2n(H0), where c0 = 0.168, c2 = 0.653, c4 = 0.038, c6 = 0.111,

c8 = 0.027 and c10 = 0.002.

Fig. 5. – M vs. H for modelH = −KzS
2
z−CzS

4
z−C±(S4

++S4
−)−ΓSx−Hz(t)Sz with S = 10, Kz = 1,

Cz = 0.00198, C± = −0.000626 and Γ = 0.1 when the initial state is Φi(−H0), i = 0, 2, 3, 5, 6, 7, for
H0 = −15. Field sweep parameters: ∆H = 0.0015, τH = 3.6 × 103.

QTM, the fact that the tunnelling processes involve excited levels implies that some probability
of finding steps when |H| decreases exists, at variance with the experimental results. Moreover,
preliminary experimental results in which the field is reversed before saturation is reached show
that steps can appear when |H| decreases [16], in qualitative agreement with our findings.

As shown in this paper, T = 0 field-tuned QTM leads to staircase magnetization curves.
When comparing to experiments on Mn-12 the following points deserve attention: a) A
transverse field Γ allows ∆m = ±1 transitions and yields equally spaced steps, in agreement
with experiments [17]. However, the theoretical magnetization curves (with Γ as the only
off-diagonal term and Φ0(−H0) as the initial state) look similar to the experimental ones
(steps at the first energy level crossings gµBHn = nD, n small) for much larger values
(Γ ∼ 1–5D ≡ 0.44–2.2 T) than those estimated for dipolar (∼ 0.01 T) or hyperfine (∼ 0.05 T)
interactions [13]. b) Second-order transverse anisotropy terms are often discarded due to Mn-12
tetragonal symmetry, although local symmetries could affect the structure of the spectrum.
These terms are relevant for other systems as “Fe8” [18]. c) Fourth-order anisotropy terms
cannot account for all observed steps and lead to non-equally spaced steps. They can be
responsible for small deviations from ∆m = ±1 transitions and equally spaced steps. The
magnitude of these contributions have recently been estimated from experimental data yielding
the following zero-field splitting terms: H = αS2

z +βS4
z + γ(S4

+ +S4
−)+ constant terms, where

α = −0.39(3) cm−1, β = −7.7(7) × 10−4 cm−1, and γ = ±2.0(5) × 10−5 cm−1 [19]. The
corresponding energy level scheme shows crossings at fields comparable to the experimental
ones. Thus, for instance, levels En and En+1 cross at H = 0 for n = 0, 2, 4, . . .; at H =
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1.36, 1.17, 1.08α≡ 0.57, 0.49, 0.45 T for n = 1, 7, 11, respectively; or at H = 2.65, 2.29, 2.13α≡
1.11, 0.96, 0.90 T for n = 2, 8, 12, respectively. The crossings occur at smaller fields for higher
levels. Figure 5 shows simulation results using such model in a transverse field Γ = 0.1α ≡
0.04 T, for different initial states. The first observable positive steps for some initial states
(in brackets the pair of levels involved in the crossing) are: for Φ0(−H0), H = 14.46 (12,13),
H = 15.80 (13,14), H = 17.21 (14,15), etcetera; for Φ3(−H0), H = 4.46 (10,11), H = 5.52
(11,12), and H = 6.59 (12,13); for Φ5(−H0), H = 0 (10,11), H = 1.08 (11,12), and H = 2.13
(12,13); and for Φ6(−H0), H = −1.08 (11,12), and H = 0 (12,13). Larger than estimated
symmetry-breaking contributions when starting from the ground state or tunnelling from
higher levels (thermal assistance) are necessary to obtain steps at the first energy crossings as in
experiments. The latter possibility allows steps for decreasing |H| (as for Φ6, Φ7) and negative
(opposite to the field) steps (as for Φi, i ≥ 1) which had not been previously reported. Further
experimental work investigating the possibility of obtaining these types of steps could clarify
the effect of thermal activation. Recent experiments [17] have shown that resonant tunnelling
from the ground state can also occur. According to our calculations and in agreement with
their conclusions, this suggests larger off-diagonal matrix elements. d) Our results and some
experimental findings [17] could indicate that the single-spin model proposed for the Mn-12
molecule is too simple to mimic the actual energy spectrum: The single-spin S = 10 system
is described by 21 eigenstates whereas a proper description of the magnetic state of Mn-12
molecule requires 108 states.
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