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Abstract – Mainstream interpretations of quantum theory maintain that violations of the Bell
inequalities deny at least either realism or Einstein locality. Here we investigate the premises of the
Bell-type inequalities by returning to earlier inequalities presented by Boole and the findings of
Vorob’ev as related to these inequalities. These findings together with a space-time generalization
of Boole’s elements of logic lead us to a completely transparent Einstein local counterexample
from everyday life that violates certain variations of the Bell inequalities. We show that the
counterexample suggests an interpretation of the Born rule as a pre-measure of probability that
can be transformed into a Kolmogorov probability measure by certain Einstein local space-time
characterizations of the involved random variables.
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Introduction. – We discuss models of Einstein-
Podolsky-Rosen-Bohm type [1,2] of experiments as
used by John Bell [3] when presenting his celebrated
inequalities. These experiments result in outcomes of two
spin-values ±1 (in units of �/2 ) that in turn depend
on certain magnet settings a,b, c . . . and have been
linked to two-valued functions Aa(·), Ab(·), Ac(·) =±1 by
Bell and followers. Here (·) stands for the dependency
on some element of a set of mathematical representa-
tions of elements of reality that do not depend on the
magnet settings a,b, c . . . . This latter fact of indepen-
dence from magnet settings was deduced by Bell from
considerations of Einstein locality and the (physically
unjustified) assumption that the elements of reality
emanate exclusively from a distant source and not from
the measurement equipment (including the magnets).
There are numerous inequalities, delineated in the
physics literature that are related to Bell’s functions
Aa(·), . . . . These inequalities were first derived by
Boole [4] in a much more general context. Here we discuss
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mainly a variation of the inequalities as published by
Leggett and Garg [5], for which we also have developed a
transparent counterexample. More complex counterexam-
ples have been developed in the past for the more elaborate
inequalities [6] but have remained largely unappreciated
because of their lack of transparency. Nevertheless, strong
movements critical of Bell’s approach continue to grow as
demonstrated by contributions of Accardi, Fine, Rastal,
Khrennikov, Nieuwenhuizen and many others [7–11].
Here, however, we do not refer to non-Kolmogorovian
approaches [11] and we like to stress that we also do
not invoke detector inefficiencies or anything related to
fair sampling [12]. Instead, our counterexample is based
on a more complete characterization of Boole’s logical
elements.
The Leggett-Garg inequality reads

Aa(·)Ab(·)+Aa(·)Ac(·)+Ab(·)Ac(·)�−1. (1)

Inserting all possible values of ±1 for the functions A(·)
shows the correctness of this inequality. Because measure-
ment outcomes of Einstein-Podolsky-Rosen (EPR) exper-
iments [13] (that are closely related to such two-valued
functions A(·)) do violate this inequality, it is commonly
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concluded that either (·) cannot stand for any element of
reality and one must therefore abandon realism or if it
stands for an element of reality it must depend on the
magnet settings and thus violate Einstein locality. There
are, however, two important questions that have never
been answered satisfactorily. If (·) stands for an element
of reality, why does it have to appear identically for the
three magnet setting pairs? If, on the other hand, (·) is
just seen as a random variable, why do the functions A
not also depend on a measurement time label, as they are
introduced in the theory of stochastic processes [14]? We
give below a clear answer to these questions by means of
our counterexample but discuss first the different views
taken in the well-established probability theories of Boole
and Kolmogorov as well as quantum mechanical “proba-
bility” as introduced by the Born rule.
The probability theory of Boole and its generalization

and perfection by Kolmogorov reduce the actual exper-
iments to logical abstractions and establish a one to
one correspondence between the experiments and these
abstractions. For the case that interests us we have only
two possible experimental outcomes denoted by ±1 (or
equivalently 0, 1 or true and false). “Probability” is
defined by Boole and Kolmogorov by imposing a measure
(a real number of the interval [0, 1]) onto these elements
that is consistent with the experimental factors related to
both the single logical abstractions as well as the whole set
of these abstractions. This is the hallmark of modern prob-
ability theory and emphasizes the relation to set theory.
The one to one correspondence of mathematical abstrac-

tions to actual experiments and a measure on the set
of these abstractions are both necessary to give mean-
ing to the word probability in a set-theoretic sense. The
less familiar reader is encouraged to look at these defi-
nitions in the original work of Boole [4] or, for the
Kolmogorov framework, in textbooks such as [15]. For such
a model to make general sense in all experimental situa-
tions, we must assume that (1) a given and well-defined
logical element representing an experimental outcome or,
in the language of Kolmogorov, an elementary event will
occur with the same probability measure throughout all
experiments and that (2) the physical characterization
of the logical elements of Boole (elementary events of
Kolmogorov) is consistent and complete throughout the
experimental sequence.
This requirement for the description of experiments by

mathematical and logical abstractions that represent a
“truth” throughout an experimental sequence, brings us
back to the fundamental statement of Plato’s logic: “P
aut non P tertium non datur” and goes to the heart of
discussions related to questions such as “does the moon
shine when I am not looking?”. The sentence “The moon
shines” is, in general too ill defined to be identified with
a logical variable, say B that assumes a value +1 if the
moon shines and −1 if it does not. Throughout any reason-
ably general experimental sequence that lasts for a certain
duration, the moon may or may not shine at certain

different places and B will therefore assume a variety of
values at these different places. Correspondingly a certain
outcome of B cannot stand for the same mathematical
abstraction that describes facts at different locations. If
we wish to associate with B a certain truth or logical
expression that is valid everywhere and throughout the
experimental sequence we need to introduce some gener-
alized coordinates and formulate a more precise statement
such as “the moon was shining in Monte Carlo at a certain
date and time”. In connection with general science experi-
ments we need to note that a statement about experimen-
tal outcomes often may make no sense whatsoever without
the introduction of a coordinate system.
Therefore, we propose the use of the space-time of

special relativity to complete the characterization of
Boole’s logical elements and Kolmogorov’s elementary
events. We assume that only this completion can lead
to true-false or other binary statements that are always
and everywhere valid even in very complex one to one
correspondences of mathematical abstractions with actual
experiments.
We can, as a simple example, have a number of coins

and measure the outcome of coin-tosses at certain given
space-time coordinates. The coins may contain some
magnetic material and there may be hidden magnets with
settings a,b, c that co-determine a probability to measure
head or tail for the given coins at the given space-time
coordinates. For given magnet settings and space-time
coordinates of the coins we have then certain outcomes
that form a sample space and certain probabilities for
the outcomes that together with the sample space form
a probability space [15]. If we do not label the coins by
their correct space-time coordinates then we may have, for
example, different magnet settings applying to the same
coin and therefore may have different probabilities for the
outcomes of the coin-toss which may lead to confusion and
contradictions.
Quantum theory uses a variation of probability theory

by invoking a wave function ψ that does not have a direct
physical interpretation but does correspond to a certain
experimental procedure of preparation. The settings of
the macroscopic measurement equipment can be chosen
at will and the measurements may be performed involving
detection of particles that involve a space-time description
through the many-body Hamiltonian and wave function ψ.
The “probability” to measure a particle by the given
equipment with given setting is then related by Born’s
interpretation to the absolute square (a positive number)
of the wave function that thus assigns a positive number
to an event once the actual type of measurement is chosen.
This assignment, however, cannot yet be regarded as a
probability measure in the spirit of Boole or in terms of
Kolmogorov’s definitions because there is no assignment
made at this point for a sample space, i.e. a space of all
possible outcomes and corresponding elementary events
or logical elements. The Born rule appears thus as a
pre-measure that may be expanded to a full Kolmogorov
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probability measure only after all experiments of a
sequence are chosen i.e. once all macroscopic equipment
configurations of measurements and all possible outcomes
(data) are fully determined. If we desire to create a
Kolmogorov frame model based on Born’s rule, then the
actual choice of random variables may also necessitate
the introduction of one or more stochastic processes in
order to include time coordinates that are otherwise
not included in the Kolmogorov framework. Even this
advanced procedure as described, e.g., in [14] leaves us
with the vexing problem of determination which math-
ematical abstractions (elementary events of Kolmogorov
or logical elements of Boole) correspond to the different
actual experiments.
For example, assume that one measures correlated

pairs of spin-1/2 particles with magnet settings a,b and
characterizes the dichotomic outcomes for the a,b settings
by the variables Aa, Ab. Further assume that in another
set of measurements we measure with magnet settings a, c.
Can we then denote the corresponding variables for the
outcomes by Aa, Ac? Recall that, in this second case, we
measure the “Aa” outcomes corresponding to the c setting
(in the other wing of the experiment) at different space-
time coordinates and with different correlated pairs as
compared to the first case “Aa” outcomes that correspond
to the original b setting. Is it then permitted to use the
same dichotomic variable or logical element as used for the
b setting?
Because a sample space and single outcomes are not

included into considerations of quantum theory, this
theory does not answer the above question. The Born rule
per se does therefore not provide probabilities in the sense
of Boole or Kolmogorov but can only lead to a probability
once a one to one assignment of mathematical elements
and experimental outcomes is made and a measure for the
whole space of possible outcomes, the whole sample space,
is introduced. This cannot be accomplished by normal-
izing a given wave function because that normalization
refers only to a single preparation and measurement of a
much more elaborate sequence of experiments. However,
it is clear that for measurements with a given macroscopic
setting and a fixed method of preparation, sample spaces
can always be created and that such a sample space of
measurement outcomes together with the probabilities
from Born’s rule forms then also a probability space à la
Kolmogorov for a given setting as outlined in texts such
as [14]. Nevertheless, for different and particularly for
incompatible experiments and for a given characterization
of functions or random variables e.g. by magnet settings
only, such a probability space may not exist.
As we will see in our counterexample this non-existence

depends crucially on the one-to-one correspondence of
the experimental outcomes to their mathematical ideal-
izations be they elements of Boolean logic or elementary
events in the framework of Kolmogorov.
Many mathematical papers on probability theory

simply start with the phrase “given a Kolmogorov

probability space . . .”. It is, however, well known and has
been particularly well pointed out by Vorob’ev [16] that
there are cases in which a Kolmogorov probability space
does not exist. In particular, there exist numerous classi-
cal experiments that subject to certain characterizations
by simple settings, cannot be described on one probability
space in a logically consistent way. Take, for example,
certain physical experiments that can be described by
Stochastic Processes. Examples are Brownian motion or
stock market and exchange rate fluctuations. It is plausi-
ble that such different processes may not be describable
by a single stochastic process but are described rather
by different ones. It is less known but has been shown in
great detail that even very slight changes in experiments
may require the use of different stochastic processes for
their description and that this is true also for EPR-type
experiments.
It is the purpose of this paper to show that Born’s

rule defines a pre-probability measure that only then can
be turned into a Kolmogorov (or Boole) probability if a
logically consistent one to one correspondence between
experimental outcomes and mathematical abstractions is
or can be made. We also show that such one to one
correspondence can always be made for the known EPR
experiments by completing the characterization of the
mathematical symbols describing the functions A of Bell
by use of space-time indices that relativity theory provides
us with. Indices related to influences at a distance would
also accomplish the same goal of obtaining a consistent
probability measure à la Kolmogorov from Born’s rule but
do not appear to be necessary.

Games with symptoms and patients: from Boole

to Bell. – As mentioned, the early definitions of probabil-
ity by Boole were related to a one to one correspondence
that Boole established between actual experiments and
idealizations of them through elements of logic with two
possible outcomes. His view gave the concept of probabil-
ity precision in its relation to sets of experiments and this
precision is expressed by Boole’s discussion of probabilities
as related to possible experience. These discussions can be
best explained by an example that also shows the role of
space-time coordinates in the characterization of variables
related to probability theory. We discuss first this example
that has its origins in the works of Boole and also Vorob’ev
and relates to the work of Bell inasmuch as it can be used
as a counterexample to Bell’s conclusions related to non-
locality. Then we return to the more general discussions
of probability in quantum theory.
Consider a certain disease that strikes persons in differ-

ent ways depending on circumstances such as place of birth
and place of residence etc. Assume that we deal with one
set of patients that are born in Africa (subscript a), in
Asia (subscript b) and in Europe (subscript c). Assume
further that doctors are assembling information about the
disease altogether in the three cities Lille, Lyon and Paris,
all in France. The doctors are careful and perform the
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investigations on randomly chosen but identical dates.
The patients are denoted by the symbol Al

o
(n) where

o= a,b, c depending on the birthplace of the patient,
l= 1, 2, 3 depending on where the doctor gathered infor-
mation 1 designating Lille, 2 Lyon and 3 Paris respectively,
and n= 1, 2, 3, . . . , N denotes just a given random day of
the examination. The doctors assign a value A=±1 to
each patient; A=+1 if the patients show a certain symp-
tom and A=−1 if they do not.
The first variation of this investigation of the disease

is performed as follows. The doctor in Lille examines all
patients of type a, the doctor in Lyon all patients of type
b and the doctor in Paris all patients of type c. On any
given day of examination (of precisely one patient for each
doctor and day) they write down their diagnosis and then,
after many exams, concatenate the results and form the
following sum of pair-products of exam outcomes at a
given date described by n:

Γ(n) =A1
a
(n)A2

b
(n)+A1

a
(n)A3

c
(n)+A2

b
(n)A3

c
(n). (2)

Boole noted now that

Γ(n)�−1, (3)

which can be found by inserting all possible values for
the patient outcomes summed in eq. (2). For the average
(denoted by 〈.〉) over all examinations we have then also:

Γ = 〈Γ(n)〉=
1

N

N∑

n=1

Γ(n)�−1. (4)

This equation gives conditions for the product aver-
ages and therefore for the frequencies of the concurrence
of certain values of A1

a
(n), A2

b
(n) etc. e.g. for A1

a
(n) =

+1, A2
b
(n) =−1. These latter frequencies must therefore

obey these conditions. Thus we obtain rules or non-
trivial inequalities for the frequencies of concurrence of the
patients symptoms. Boole calls these rules “conditions of
possible experience”. In case of a violation, Boole states
that then the “evidence is contradictory”.
In the opinion of the authors, the term “possible

experience” is somewhat of a misnomer. The experimental
outcomes have been determined from an experimental
procedure in a scientific way and are therefore possible.
What may not be possible is the one to one correspondence
of Boole’s logical elements or variables to the experimental
outcomes that the scientist or statistician has chosen. In
order to judge precisely where the contradictions arise
from, we need to advance 100 years to the work of Vorob’ev
on the one side and go back to the meaning of Plato’s logic
and his rule “aut P aut non P tertium non datur” on the
other.
Before doing so, however, we note the following. In this

example, we may indeed regard the various Al
o
(n) =±1

with given indices as the elements of Boole’s logic to
which the actual experiments can be mapped. As shown
by Boole, this is a sufficient condition for the inequality

of eq. (4) to be valid. We may in this case also omit all
the indices except for those designating the birth place
and still will obtain a valid equation that can never be
violated:

〈AaAb〉+ 〈AaAc〉+ 〈AbAc〉�−1. (5)

The reason is simply that three arbitrary dichotomic
variables i.e. variables that assume only two values (±1
in our case) must always fulfill eq. (5) no matter what
their logical connection to experiments is because we
deduce the three products of eq. (5) from sequences of
each three measurement outcomes. Note that eq. (5)
contains six factors with each birthplace appearing twice
and representing then the identical result. Below we will
discuss a slightly modified experiment that is much more
general and contains six measurement results for the six
factors. Before discussing this more general experiment
that resembles more clearly EPR experiments we turn
now to the findings of Vorob’ev regarding this type of
inequalities and Boole’s conditions of possible experience.
Obviously the inequality of eq. (3) is non-trivial because

based on the fact that the value of all products must be
±1 one could only conclude that

Γ(n)�−3. (6)

The non-trivial result has the following reason. Boole
included into eq. (2) a cyclicity: the outcomes of the first
two products determine the outcomes in the third product.
Because all outcomes can only be ±1 the cyclicity gives
rise to eq. (3). Vorob’ev showed precisely 100 years after
Boole’s original work in a very general way that it is always
a combinatorial-topological cyclicity that gives rise to non-
trivial inequalities for the mathematical abstractions of
experimental outcomes. Boole pointed to the fact that
eq. (3) cannot be violated. However, in order to come to
that conclusion, the Al

o
(n) need, in the first place, to be in

a one to one correspondence to Boole’s elements of logic
that follow the law “aut A=+1 aut A=−1 tertium non
datur”. As discussed in the introduction, eternally valid
statements about physical experience such as “aut A=+1
aut A=−1 tertium non datur” can usually not be made
when describing the physical world without the use of
some coordinates. In the example above these coordinates
where the places of birth, the places of examination and
the numbering of the exams that were randomly taken.
All these coordinates when added need to still allow
for a cyclicity in order to make Boole’s inequality non-
trivial. Therefore, if we have a violation of a non-trivial
Boole inequality, then we must conclude that we have not
achieved a one to one correspondence of our variables to
the elementary eternally true logical variables of Boole
and that we need further “coordinates” that will then
remove the cyclicity. In order to illustrate all this by a
simple example, we consider the following second different
statistical investigation of the same disease.
We now let only two doctors, one in Lille and one

in Lyon perform the examinations. The doctor in Lille
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examines randomly all patients of types a and b and
the one in Lyon all of type b and c each one patient
at a randomly chosen date. Note that in this way, all
patients of type b receive two examinations. The doctors
are convinced that neither the date of examination nor the
location (Lille or Lyon) has any influence and therefore
denote the patients only by their place of birth. After a
lengthy period of examination they find:

Γ= 〈AaAb〉+ 〈AaAc〉+ 〈AbAc〉=−3. (7)

They further notice that the single outcomes of Aa, Ab and
Ac are randomly equal to ±1. This latter fact completely
baffles them. How can the single outcomes be entirely
random while the products are not random at all and
how can a Boole inequality be violated hinting that
we are not dealing with a possible experience? After
lengthy discussions they conclude that there must be some
influence at a distance going on and the outcomes depend
on the exams in both Lille and Lyon such that a single
outcome manifests itself randomly in one city and that
the outcome in the other city is then always of opposite
sign. Naturally that way they have removed the Vorob’ev
cyclicity and we have only the trivial inequality eq. (6) to
obey.
However, there are also other ways that remove the

cyclicity, ways that do not need to take recourse to
influences at a distance. For example we can have a
time dependence and a city dependence of the illness as
follows. On even dates we have Aa =+1 and Ac =−1
in both cities while Ab =+1 in Lille and Ab =−1 in
Lyon. On odd days all signs are reversed. Obviously for
measurements on random dates we have then the outcome
that Aa, Ab and Ac are randomly equal to ±1 while
at the same time Γ(n) =−3 and therefore Γ=−3. We
need no deviation from conventional thinking to arrive
at this result because now, in order to deal with Boole’s
elements of logic, we need to add the coordinates of the
cities to obtain Γ= 〈A1

a
A2
b
〉+ 〈A1

a
A2
c
〉+ 〈A1

b
A2
c
〉�−3 and

the inequality is of the trivial kind because the cyclicity
is removed. The date index does not matter for the
products since both signs are reversed leaving the products
unchanged. However, in actual fact, also this index might
have to be included and could be a reason to remove
the cyclicity, e.g., Γ = 〈A1

a
(d1)A

2
b
(d1)〉+ 〈A

1
a
(d2)A

2
c
(d2)〉+

〈A1
b
(d3)A

2
c
(d3)〉�−3, where we now have included the

fact that the exams of pairs are performed at different
dates d1, d2, d3.
We note that in connection with EPR experiments and

questions relating to interpretations of quantum theory,
eqs. (1) and (3) are called Leggett-Garg inequalities
and are of the Bell type. It is often claimed that a
violation of such inequalities implies that either realism or
Einstein locality should be abandoned. As we saw in our
counterexample which is both Einstein local and realistic
in the common sense of the word, it is the one to one
correspondence of the variables to the logical elements
of Boole that matters when we determine a possible

experience, but not necessarily the choice between realism
and Einstein locality. Phrased differently, the question
“does the moon shine when we are not looking’ is simply
too imprecise. Had we given a space-time coordinate for
the event that the moon shines we would have expressed
an eternal truth of a measurement.
Realism plays a role in the arguments of Bell and

followers because they introduce a variable λ representing
an element of reality and then write

Γ= 〈Aa(λ)Ab(λ)〉+ 〈Aa(λ)Ac(λ)〉+ 〈Ab(λ)Ac(λ)〉�−1.
(8)

Because no λ exists that would lead to a violation except
a λ that depends on the index pairs (a, b), (a, c) and
(b, c) the simplistic conclusion is that either elements of
reality do not exist or they are non-local. The mistake
here is that Bell and followers insist from the start that
the same element of reality occurs for the three differ-
ent experiments with three different setting pairs. This
assumption implies the existence of the combinatorial-
topological cyclicity that in turn implies the validity of
a non-trivial inequality but has no physical basis. Why
should the elements of reality not all be different? Why
should they, for example not include the time of measure-
ment? There is furthermore no reason why there should be
no parameter of the equipment involved. Thus the equip-
ment could involve time and setting dependent parame-
ters such as λa(t), λb(t), λc(t) and the functions A might
depend on these parameters as well. We refer the reader
to refs. [6,17–20] and note that parameters related to
the devices of measurement have been discussed already
by Wigner [21] but not in connection to the one-to-one
correspondence with Boole’s logical elements. The possi-
ble dependence of these parameters on measurement time
or Einstein’s space-time prevents the derivation of the
Clauser-Horne-Shimony-Holt inequality because outcome
independence may be violated, as can be seen directly by
using our example of different outcomes for even and odd
times in their equations.

Bell revisited from the view of quantum theory.

– Consider three spin-1/2 particles that are measured
by macroscopic equipment involving three Stern-Gerlach
magnets. The wave function of the three particles is
not nearer specified and denoted by ψ3. If we denote
the measurement outcomes at measurement time n for
the three particles with the three respective magnet
settings by An

a
(ψ3), A

n

b
(ψ3), A

n
c
(ψ3), then it is easy to

show by the laws of quantum theory that the Boole (Bell)
inequality [22]:

〈An
a
(ψ3)A

n

b
(ψ3)〉 + 〈A

n

a
(ψ3)A

n

c
(ψ3)〉

+ 〈An
b
(ψ3)A

n

c
(ψ3)〉�−1, (9)

is fulfilled and we can conclude that we have dealt with the
logical elements of Boole and well-defined probabilities.
If we consider instead six measurements of pairs

of particles that are described by the singlet state
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ψS then we need three different measurement station
pairs or one pair of measurement stations at three
different measurement times. For simplicity consider
three different measurement station pairs that we
label with indices n,m, l. Correspondingly, we also
introduce for the measurement outcomes the symbols
An
a
(ψS), A

n

b
(ψS); A

m
a
(ψS), A

m
c
(ψS); A

l

b
(ψS), A

l
c
(ψS).

Then quantum theory tells us that for certain magnet
settings we may have

〈An
a
(ψS)A

n

b
(ψS)〉 + 〈A

m

a
(ψS)A

m

c
(ψS)〉

+ 〈Al
b
(ψS)A

l

c
(ψS)〉<−1, (10)

and we have a violation of an inequality that resembles the
Bell type. In this case, however, this does not surprise us
because as long as we have no cyclicity in the expressions
of eq. (10), we obtain only a trivial Boole inequality and as
far as Boole’s or Kolmogorov’s probability are concerned
the right-hand side of eq. (10) might as well be −3. Note
that the attachment of space-time indices to the variables
that provide a characterization of the experiments in
addition to observations such as the magnet settings
always permit a removal of any cyclicity. Quantum theory
does not have any concerns about the indices n,m, l
because quantum theory is careful not to assign any
meaning to the single outcomes and therefore does not
rely on or need a sample space or probability space.
A probability as in the frameworks of Boole or

Kolmogorov is thus not defined in quantum theory
because quantum theory does not define any relations of
its framework to single logical elements or elementary
events and therefore also cannot provide a measure to
general sets or subsets of such elements or events. What
is defined in quantum theory are long-term averages and
these may be related in a variety of ways to the actual
logical elements of a theory. The probability amplitude
just carries with it all the possibilities that may actually
be realized in a set of data, that is all the possibilities that
may be realized as a sample space. For an actual sample
space to be realized other choices must be made that, in
principle, have nothing to do with the quantum particles
that are measured but only with the macroscopic equip-
ment that is brought into a certain setting for the purpose
of measurement. These other choices may again involve
sample spaces and probability spaces that together with
the measurement outcomes related to quantum particles
may form complex stochastic processes.
Quantum theory predicts the long-term averages of

these stochastic processes but does not attempt to unify
these processes into one common stochastic process. The
Born rule thus attaches positive values to measurement
outcomes that are related to certain measurements and
preparations and defines in this way what one could call a
pre-measure. For all well-defined macroscopic equipment
arrangements this pre-measure can be turned into a proba-
bility measure with different experimental sequences corre-
sponding, in principle, to different probability measures.

Whether or not these different measures and sample spaces
can be unified is a matter of characterization. If no unifi-
cation is possible, as would be indicated by a violation of
a Boole (Bell) inequality, then one needs further detail
in the characterization of variables in order to remove
the cyclicity. That may be achieved both in an Einstein
local way or in a non-local fashion. As we saw above,
EPR experiments always permit extended characteriza-
tion by Einstein’s space-time and corresponding avoidance
of cyclicity. Non-local characterizations that avoid cyclic-
ity are also always possible but not necessary. The only
alternative to the above is to abandon realism (whatever
we mean by this word) altogether. The examples (coun-
terexamples) with the patient-investigations and the rela-
tion of these examples to EPR experiments prove, at least
in the opinion of these authors, that neither realism nor
Einstein locality need be abandoned because of a violation
of Bell’s inequalities.
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Aghdami M. J. and Khrennikov A. Y., Beyond the
Quantum (World Scientific, Singapore) 2007.

[11] Khrennikov A., Theor. Math. Phys., 157 (2008) 1448.
[12] Adenier G. and Khrennikov A. Y., J. Phys. B: At.

Mol. Opt. Phys., 40 (2007) 131.
[13] Aspect A., Grangier P. and Roger G., Phys. Rev.

Lett., 49 (1982) 91.
[14] Breuer H. and Petruccione F., Open Quantum

Systems (Oxford University Press, Oxford) 2002.
[15] Feller W., An Introduction to Probability Theory and

its Applications, Vol. 1 (Wiley & Sons, New York) 1968.
[16] Vorob’ev N., Theor. Probab. Appl., 7 (1962) 147.
[17] Fine A., Synthese, 50 (1982) 279.
[18] De Raedt K., Keimpema K., De Raedt H.,

Michielsen K. and Miyashita S., Eur. Phys. J. B, 53
(2006) 139.

[19] Zhao S., De Raedt H. and Michielsen K., Found.
Phys., 38 (2008) 322.

[20] Khrennikov A. Y., Contextual Approach to Quantum
Formalism (Springer, Berlin) 2009.

[21] Wigner E. P., Am. J. Phys., 38 (1970) 1005.
[22] De Raedt H., Hess K. and Michielsen K.,

http://arxiv.org/abs/0901.2546.

60007-p6




