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ABSTRACT

We present a collection of rigorous upper and lower bounds to the free energy of

electron-phonon models with linear electron-phonon interaction. These bounds are

used to compare different variational approaches. It is shown rigorously that the

ground states corresponding to the sharpest bounds do not exhibit Off-Diagonal

Long-Range Order in the two-particle density matrix.

1. Introduction

The Hamiltonian of a model describing the interaction of electrons and lattice
deformations can be written as

H =
∑
i,j

∑
σ=↑,↓

c+i,σTi,j({xk }, µ)cj,σ +
∑
i

p2
i

2M
+
∑
i,j

xiKi,jxj

2
, (1)

where c+i,σ and ci,σ are the fermion creation and annihilation operators, respectively,
for an electron with spin σ =↑, ↓ at the generalized site index i, Ti,j({xk}, µ)
specifies the free-electron energy for a fixed lattice deformation (e.g. the hopping

matrix elements (if i 6= j) as well as the local potential (if i = j)), and is assumed
to be a linear function of the phonon coordinates {xi}. Occasionally we will use
the linear character of the electron-phonon interaction explicitly by writing

Ti,j({xk }, µ) = T
(0)
i,j (µ) + T

(1)
i,j ({xk }) . (2)

As we will work with the grand canonical ensemble throughout, it is convenient to

absorb in Ti,j the term proportional to the chemical potential µ. As usual pi denotes
the momentum operator of the oscillator with index i. The mass of the oscillators is
denoted by M and Ki,j is the matrix of oscillator spring constants. As usual T and
K are hermitian matrices. As most of the results presented below do not depend
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on the dimensionality and connectivity of the lattice we will not specify the matrix
T any further. The form of (2) is sufficiently general to encompass all standard

electron-phonon (EP) models such as the Holstein model, the Su-Schrieffer-Heeger
(SSH) model, the Fröhlich polaron model, etc..

For brevity we will write (2) in the more compact form

H = c+T (x, µ)c +
p2

2M
+
x+Kx

2
, (3)

where c+ = (c+1,↑, . . . , c
+
L,↑, c

+
1,↓, . . . , c

+
L,↓), c = (c+)†, etc.. The number of lattice

sites is denoted by L. As model (3) is block-diagonal with respect to the spin label

we have

T =

(
(Ti,j) 0

0 (Ti,j)

)
, (4)

and we will implicitly assume that any matrix X that appears in expressions such

as c+Xc will have an identical structure.
The purpose of this paper is to present a number of rigorous bounds on the

free energy and ground state energy of (1) . These bounds are relatively easy to
compute (numerically) and are used to assess the range of applicability of the Quan-

tum Molecular Dynamics (QMD) simulation technique recently introduced by two
of us.1,2 The basic idea of this approach is to decompose the propagator of (1) in
such a way that it becomes possible to compute, from first-principles, the static

and dynamic properties of (1) with high precision. An advantage of this approach
over conventional Quantum Monte Carlo techniques3 is the absence of numerical
instabilities, minus-sign problems, and the analytical continuation or MaxEnt pro-
cedures. The upper and lower bounds presented below also suggest various ways of

extending the range of the QMD technique with little extra computational effort.
We also prove that the states of the system, corresponding to the sharpest bounds
derived in this paper, do not exhibit Off-Diagonal Long-Range-Order (ODLRO) in
the two-particle density matrix.4

The outline of the paper is as follows. An overview of the tools needed is given
in section 2. In section 3, we derive some upper bounds to the partition function.
In section 4 we construct two lower bounds and we combine the results of section 3
and 4 to obtain upper and lower bounds to the ground state energy of the EP-model

(1) . We illustrate the use of these bounds by applying it to the SSH model. In
section 5 we specialize to the Holstein model, derive upper and lower bounds to
the free energy and relate some of these bounds to the free energy of the Hubbard

model and the Bardeen-Cooper-Schrieffer (BCS) trial Hamiltonian. Some rigorous
results on the existence of ODLRO are given in section 6.
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2. Tools

Our main tools to derive upper and lower bounds are the Golden-Symanzik-
Thompson (GTS) inequality5,6,7

Tr eA+B ≤ Tr eAeB = Tr eA/2eBeA/2 , (5)

a generalized form of Jensen’s inequality,8

Tr eA+B ≥ exp

(
Tr eAB

Tr eA

)
Tr eA , (6)

the Lie-Trotter formula9−12

eA+B = lim
m→∞

(
eA/meB/m

)m
, (7)

and some of its generalizations.13,14,15

We also need identity3

tr ec
+X1c . . . ec

+Xnc = det(1 + eX1 . . . eXn)2 , (8)

where tr denotes the trace over all possible electron states, and the Xi’s are arbi-
trary L×Lmatrices. The proof of (8) relies on the fact that each of the exponentials

at the l.h.s. is a quadratic form in the fermion operators. Equations (5) and (8)
imply

det(1 + eA+B) ≤ det(1 + eAeB) = det(1 + eA/2eBeA/2) . (9)

From (8) it follows that3

tr ec
+X1c . . . ec

+Xncc+Y c

tr ec+X1c . . . ec+Xnc
= 2Sp Y (1 + e−Xn . . . e−X1)−1 , (10)

where Sp X ≡
∑L

i=1Xi,i denotes the trace of the L × L matrix X. The factor of
two in front of Sp is due to the fact that the electrons have spin.

3. Upper bounds to the partition function

Application of the above inequalities to the EP model requires a choice of the
decomposition of the Hamiltonian (3). Of particular interest are decompositons
that lead to upper and lower bounds that are easy to compute. Decomposing (3)

as

H = H1 +H2 , H1 =
p2

2M
, H2 = c+T (x, µ)c +

x+Kx

2
, (11)

—3—



and application of the GTS inequality yields for the partition function

Z ≡ Tr e−βH ≤ Z1 ≡ Tr e−βH1e−βH2 , (12a)

=

∫
dx 〈x|e−βp

2/2M |x〉ρ1(x)tr e−βc
+T (x,µ)c , (12b)

=

(
M

2πβh̄2

)L/2 ∫
dx ρ1(x)tr e−βc

+T (x,µ)c , (12c)

=

(
M

2πβh̄2

)L/2 ∫
dx ρ1(x) det(1 + e−βT (x,µ))2 , (12d)

where ρ1(x) ≡ e−βx
+Kx/2.

In deriving upperbound (12b) use has been made of the fact that H2 is diagonal
with respect to the oscillator coordinates. The standard result16

〈xi|e
−βp2

i/2M |x′i〉 =

√
M

2πβh̄2 e
−M(xi−x

′
i)/2βh̄

2

, (13)

was used to go from (12b) to (12c). The multiple integrals appearing in (12) (as
well as in the other bounds presented below) are readily calculated by standard
numerical simulation methods.17 Accordingly, for any specific EP model of the
type (1) it is possible to actually compute these bounds.

The inequality (12) becomes an equality if the mass of the oscillators tends to
infinity, i.e.

lim
M→∞

M−L/2Z = lim
M→∞

M−L/2Z1 . (14)

At zero temperature, taking this limit is tantamount to making the adiabatic ap-
proximation in which the phonon coordinates are determined by minimizing the
expectation value of H2.

Upperbound (12) can be improved by decomposing the EP-Hamiltonian as H =

H3 +H4 where

H3 =
p2

2M
+
gx+Kx

2
, H4 = c+T (x, µ)c +

(1 − g)x+Kx

2
, (15)

and repeating the steps that led to (12). The parameter 0 ≤ g < 1 has been
introduced to assure that H4 is bounded from below, a property that will prove

useful to obtain lower bounds on the ground state energy. It is convenient to bring
H3 into diagonal form

H3 =
p̃2

2M
+
gMx̃+ω2x̃

2
, (16)
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where x̃k =
∑
j Uk,jxj , p̃k =

∑
j Uk,jpj and U is the unitary transformation that

diagonalizes K. The matrix ω = δk,k′ωk is, by construction, diagonal. Using the

exact expression for the propagator of the harmonic oscillator16

〈x̃k |e
−β(p2

k/2M+Mω2
kx

2
k/2)|x̃′k〉 =

√
Mωk

2πh̄ sinhβh̄ωk

× exp

{
−
Mωk

[
(x̃ 2
k + x̃′2k ) cosh βh̄ωk − 2x̃kx̃

′
k

]
2h̄ sinhβh̄ωk

}
, (17)

we obtain the upperbound

Z ≤ Z2(g) ≡

(
Mωk

√
g

2πh̄ sinhβh̄ωk
√
g

)L/2
×

∫
dx̃ ρ2(x̃, g) det(1 + e−βT (x̃,µ))2 , (18a)

with

ρ2(x̃, g) ≡e−β(1−g)Mx̃+ω2x̃/2 exp

[
−
βgM

2
x̃+ω2 tanhβh̄ω

√
g/2

βh̄ω
√
g/2

x̃

]
. (18b)

From decomposition (15) it follows immediately that inequality (18) becomes an
equality for zero EP-coupling.

Upperbound (18) is as easy to compute as upperbound (12) as can be seen by

rewriting (18b) as

ρ2(x, g) = e−βx
+K̃(βh̄)x/2 , (19)

where

K̃ ≡ K̃(βh̄)j,j′ = (1− g)Kj,j′ +
2
√
gM

βh̄

∑
k

U†j,kωk tanh
βh̄ωk

√
g

2
Uk,j′ , (20)

is the matrix of ”renormalized” spring constants. From (20) it follows that

lim
βh̄maxk(ωk)→0

K̃ = K . (21)

Furthermore it is easy to convince oneself that

Z ≤ Z2(g) ≤ Z1 . (22)

At zero temperature (22) yields, for the ground state energy E0, the lower bounds
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E
(A)
0 (1) ≤

√
gE

(p)
0 + E

(A)
0 (1 − g) ≤ E0 , (23)

where E
(p)
0 is the ground-state energy of the phonon system and

E
(A)
0 (γ) = min

{x}

[
γx+Kx

2
− 2 lim

β→∞
β−1Sp ln(1 + e−βT (x,µ))

]
, (24)

is the ground-state energy of model (with modified couplings γK) in the adiabatic
limit.

4. Lower bounds to the partition function

As we have assumed that the EP interaction is linear in the phonon coordinates a
first, rather trivial, lower bound follows from the decomposition H = Hp+He+Hep
where

Hp =
p2

2M
+
x+Kx

2
; He = c+T (0)(µ)c ; Hep = c+T (1)(x)c . (25)

Using inequality (6) we find

Z ≥Tr e−β(He+Hp) exp (−β〈Hep〉e+p) , (26a)

≥Tr e−β(He+Hp) = ZpZe , (26b)

where 〈X〉e+p = Tr e−β(He+Hp)X/Tr e−β(He+Hp), and Zp and Ze are the partition

functions of the free oscillators and electrons respectively. To obtain (26b) we made
use of [Hp,He] = 0 and 〈Hep〉e+p = 0. Lower bound (26) does not dependent on
the EP interaction strength and is, in this respect, not very useful.

Writing

H =
p2

2M
+

(x+ − x̄+)K(x− x̄)

2
+
x̄+Kx̄

2
+ c+T (x, µ)c

+
(x+ − x̄+)Kx̄+ x̄+K(x− x̄)

2
, (27)

application of inequality (6) with

A =
p2

2M
+

(x+ − x̄+)K(x− x̄)

2
+
x̄+Kx̄

2
+ c+T (x̄, µ)c , (28a)

and

B =
(x+ − x̄+)Kx̄+ x̄+K(x− x̄)

2
+ c+T (x− x̄, µ)c , (28b)
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gives

Z ≥ Zp max
x̄

e−βx̄
+Kx̄/2 det(1 + e−βT (x̄,µ))2 . (29)

Collecting all results, the upper and lower bounds to the ground-state energy

read

E
(A)
0 (1) ≤

√
gE

(p)
0 + E

(A)
0 (1 − g) ≤ E0 ≤ E

(p)
0 + E

(A)
0 (1) . (30)

As already pointed out above, both bounds are readily computed by standard sim-
ulation techniques, for any EP-model of the type (1) . From (30) it also follows that

if E
(p)
0 � |E(A)

0 (1)|, treating the phonon degrees of freedom as classical variables
will be a good approximation.

4.1 Application to the SSH model

For the SSH model at half filling one has18,19

E
(A)
0 (γ)/L = min

z

(
−

4t

π
E(1 − z2) +

γKt2z2

2α2

)
, (31a)

and

E
(p)
0 /L =

1

π

√
4K

M
, (31b)

where E(x) denotes the complete elliptic integral of the second kind. For poly-
acetylene representative values of the model parameters are t ≈ 2.5eV (the nearest

neighbor hopping matrix element), K ≈ 21eV/Å
2

(the spring constant), Mh̄2 =

3145eV−1/Å
2

(the mass of the oscillators) and α ≈ 4.1eV/Å. For these parameters

one has18,19

E
(A)
0 (γ)/L =− 3.18(1− e−2−4.88γ)eV , (32a)

and

E
(p)
0 /L =0.052eV . (32b)

From (30) it follows that

−3.17eV ≤ −3.14eV ≤ E0/L ≤ −3.12eV , (33)

where the better of the two lower bounds has been obtained by putting γ = 7/8.

Equation (33) suggests that replacing the full quantum mechanical density matrix
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by the simplest (m = 1) Lie-Trotter formula may be a rather good approximation,
even down to zero temperature. As inequalities (12) and (29) become equalities as

the temperature increases, at temperatures of interest (room temperature in the
case of polyacetylene) the m = 1 approximation will perform even better than (33)
suggests. Further results on the thermodynamic properties, the density of states
and the conductivity of the SSH model can be found in refs.1,2.

5. Holstein model

In some cases the particular form of T can be exploited to derive additional

bounds and to relate the upper and lower bounds to the partition functions of
other models. Here we illustrate how this can be done for the case of the Holstein
model for which the Hamiltonian (in our notation) reads

H =
∑
i,j

∑
σ=↑,↓

c+i,σT
(0)
i,j (µ)cj,σ + λ

∑
i

∑
σ=↑,↓

ni,σxi +
∑
i

p2
i

2M
+
∑
i

MΩ2x2
i

2
, (34)

where ni,σ = c+i,σci,σ is the number operator for a fermion with spin σ at site i.
From (34) it is clear that the model describes Einstein oscillators with a frequency
Ω interacting with the electrons through a linear on-site potential, characterized

by a coupling constant λ. The inequalities presented below can be generalized to
include the case of phonons with dispersion.

Eliminating the term linear in x by the unitary transformation S = exp(iαnp)
with α = −λ/h̄MΩ2 brings the Hamiltonian into the form

SHS† =
∑
l,j

∑
σ=↑,↓

c+l,σe
iαplT

(0)
l,j (µ)e−iαpj cj,σ +

U

2

∑
i

∑
σ,σ′=↑,↓

ni,σni,σ′

+
∑
i

p2
i

2M
+
∑
i

MΩ2x2
i

2
, (35a)

or, in shorthand notation,

SHS† = c+eiαpT (0)(µ)e−iαpc+
Un2

2
+

p2

2M
+
MΩ2x2

2
, (35b)

where U = −λ2/MΩ2 determines the strength of an effective, attractive electron-
electron interaction mediated by the phonons. Using n2

i,σ = ni,σ, we can rewrite

(35a) as

SHS† =
∑
i,j

∑
σ=↑,↓

c+i,σT
(0)
i,j (µ− U/2)cj,σ + U

∑
i

ni,↑ni,↓
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+
∑
i

p2
i

2M
+
∑
i

MΩ2x2
i

2

+
∑
l,j

∑
σ=↑,↓

c+l,σ(eiα(pl−pj) − 1)T (0)
l,j (µ − U/2)cj,σ , (36)

where we have made explicit that the transformed Hamiltonian is the sum of the
Hubbard model Hamiltonian, the free phonon Hamiltonian (Hp), and a hopping

term that account for the “retarded” EP interactions.
Putting A = MΩ2x2/2 and B = c+eiαpT (0)(µ)e−iαpc+Un2/2 + p2/2M , appli-

cation of the GTS inequality yields

Z ≤Tr e−βMΩ2x2/2e−β(c+eiαpT (0)(µ)e−iαpc+Un2/2+p2/2M) , (37a)

=Tr e−βMΩ2(x−αh̄n)2/2e−β(c+T (0)(µ)c+Un2/2+p2/2M) , (37b)

=(βh̄Ω)−LZh(T,U, µ − U/2) , (37c)

where we have used the fact that [p,B] = 0 to perform the inverse transformation

S−1 and we worked out the trace over the phonon coordinates analytically. From
(37) it follows that the upperbound for Z contains the partition function

Zh(T,U, µ) ≡ tr e−βHh = tr e−β(c+T (0)(µ+U/2)c+Un2/2) , (38)

of the Hubbard model

Hh =
∑
i,j

∑
σ=↑,↓

c+i,σT
(0)
i,j (0)cj,σ + U

∑
i

ni,↑ni,↓ − µ
∑
i

(ni,↑ + ni,↓) . (39)

For the case at hand U < 0 so that Zh is the partition function of the attractive

Hubbard model.
A lower bound to Z in terms of the (attractive) Hubbard model follows from

the application of (6) with A = Hh +Hp, B = H −A and reads

Z ≥ ZpZh(T,U, µ − U/2)

× exp
[
−β(e−λ

2 coth(βh̄Ω/2)/2h̄MΩ3

− 1)Kh(T,U, µ − U/2)
]

, (40)

where Kh(T,U, µ) ≡< c+T (0)(µ)c >h.
The corresponding bounds for the ground state energy read

E
(h)
0 (T,U, µ − U/2) ≤ E0 ≤ E

(h)
0 (Te−λ

2/2h̄MΩ3

, U, µ− U/2) +
Lh̄Ω

2

≤ E(h)
0 (T,U, µ − U/2) +

Lh̄Ω

2
+ (e−λ

2/2h̄MΩ3

− 1)K
(h)
0 (T,U, µ −U/2) , (41)

where the first upper bound was obtained from a straightforward application of the
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variational principle. In the anti-adiabatic limit h̄Ω→∞, MΩ2 = K constant, the
third term in the upper bound vanishes and the ground state energy of the Holstein

model differs from the ground state energy of the Hubbard model by at most h̄Ω/2.
Additional upper bounds to the partition function of the Holstein and Hubbard

model follow from the decomposition

H = H5 +H6 , H5 =
p2

2M
+
MΩ2x2

2
+ λxn , H6 = c+T (0)(µ)c , (42)

and the identity

e−β(p2/2M+MΩ2x2/2+λxn) =

eβλ
2n2(1−t)/2MΩ2

e−βλtxn/2e−β(p2/2M+MΩ2x2/2)e−βλtxn/2 , (43a)

where

t =
tanh(βh̄Ω/2)

βh̄Ω/2
. (43b)

Application of the GTS inequality and the identity

eβλ
2n2(1−t)/2MΩ2

=

∫
du ρ3(u,

1

1− t
)e−βλ(1−t)un , (44a)

where

ρ3(u, a) ≡

(
βMΩ2

2aπ

)L/2
e−βMΩ2u2/2a , (44b)

yields, after some algebra,

Z ≤Z3 ≡ Tr e−βH5e−βH6 , (45a)

Z3 =Z3(µ) = Zp

∫
dx ρ3(x, 1) tr e−βλxn/2e−βc

+T (0)(µ)ce−βλxn/2 , (45b)

=Zp

∫
dx ρ3(x, 1) det

(
1 + e−βλD(x)/2e−βT

(0)(µ)e−βλD(x)/2
)2

, (45c)

where D = D(x) = δi,jxi is a diagonal matrix. Note that the determinant in (45)

is strictly positive. Obviously inequality (45) becomes an equality if λ = 0.
The electronic part in the upper bound (45) is identical to an upper bound to

the partition function of the attractive Hubbard model. Indeed, invoking the GTS

inequality and identity (44) once more we find

ZpZh(T,U, µ) ≤ZpZ4 ≡ Zptr e
−βc+T (0)(µ+U/2)ce−βUn

2/2 , (46a)
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=Zp

∫
dx ρ3(x, 1) tr e−βc

+T (0)(µ+U/2)ce−βλxn , (46b)

=Zp

∫
dx ρ3(x, 1) tr e−βλxn/2e−βc

+T (0)(µ+U/2)ce−βλxn/2 ,(46c)

=Z3(µ + U/2) . (46d)

The numerical calculation of upper bounds (45) and (46) is more complicated than
the computation of Z1 or Z2(g).

From (29) and (45) it follows that

min
x

[
MΩ2x2

2
− 2 lim

β→∞
β−1Sp ln(1 + e−βλD(x)/2e−βT

(0)(µ)e−βλD(x)/2)

]
≤ E0 −

Lh̄Ω

2
≤

min
x

[
MΩ2x2

2
− 2 lim

β→∞
β−1Sp ln(1 + e−β(T (0)(µ)+λD(x)))

]
, (47)

At zero-temperture (46) yields

min
x

[
MΩ2x2

2
− 2 lim

β→∞
β−1Sp ln(1 + e−βλD(x)/2e−βT

(0)(µ)e−βλD(x)/2)

]
≤ E(h)

0 (T,U, µ + U/2) . (48)

It is also of interest to adopt instead of the Hubbard model Hamiltonian, the
standard BCS trial Hamiltonian

H(BCS) =
∑
k

∑
σ=↑,↓

ε̂k c
+
k,σck,σ + ∆̂

∑
k

(
c+k,↑c

+
−k,↓ + c−k,↓ck,↑

)
, (49)

to derive an upper bound to the free energy of the Holstein model. Specializing to

the ground state for simplicity, simultaneous minimization of the resulting upper
bound with respect to ε̂k and ∆̂ gives

E0 −
Lh̄Ω

2
≤
U〈n〉2

4
−

∆2

U
−
∑
k

ε̃k (ε̃k − µ̃)√
(ε̃k − µ̃)2 + ∆2

, (50a)

where

ε̃k =εk e
U/2h̄Ω , (50b)

and the gap ∆ and the chemical potential µ̃ are the solutions of the set of equations
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1 = −
U

2

∑
k

1√
(ε̃k − µ̃)2 + ∆2

, (50c)

〈n〉 =1−
∑
k

(ε̃k − µ̃)√
(ε̃k − µ̃)2 + ∆2

, (50d)

where 〈n〉 denotes the density of electrons. In deriving (50) we have assumed that a

Fourier transformation of T (0)(µ) with respect to the site indices yields a diagonal
matrix with elements εk .

Fig.1. Numerical results for upper and lower bounds to the ground
state energy per site E0/L of the two-dimensional Holstein model as
a function of the EP coupling λ. Open squares: Variational results
using the BCS trial Hamiltonian with a fixed oscillator frequency. Solid
squares: Variational results using the BCS trial Hamiltonian and an
adjustable oscillator frequency. Circles: Upperbounds as obtained from
a simulated-anneal minimization of the r.h.s. of (30) for a lattice of
12 × 10 sites. Bullets: Lowerbounds as obtained from a simulated-
anneal minimization of the l.h.s. of (23) for a lattice of 12 × 10 sites.
In all cases the density of electrons 〈n〉 = 1.
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5.1 Application

In Fig.1 we show numerical results for the lower and upper bounds (30), as
obtained by simulated annealing of the phonon coordinates of a system of L = 120
sites together with the results obtained by solving the BCS equations (50) for the
same system. The results for the latter do not change if the number of sites is

increased by several orders of magnitude so that we believe they are extremely
close to their infinite-system values. The first set (open squares) of BCS-variational
data has been obtained for fixed Ω. For the second set (solid squares) of data
we also allowed for a different phonon frequency and used this frequency as an

additional minimization parameter. In our numerical work we used a hypercubic
lattice subject to periodic boundary conditions.

Fig.2. Blow-up of Fig.1 for small λ. BCS results for the ground-state
energy are consistently larger than those obtained from the r.h.s. of
(30).

In Fig.2 we show the data of Fig.1 for small λ on an expanded scale demon-
strationg that also in this regime the ground-state energy of the Holstein model, as
obtained from the BCS variational treatment, is larger than the ground-state energy
obtained from the variational ansatz based on the adiabatic limit. In the case of

the latter, for sufficiently small λ the energy is extremely close to the free-electron
value. Within the BCS approach the decrease of the energy resulting from the at-
tractive interaction is more than compensated for by the increase in kinetic energy
resulting from the reduction of the bandwidth. Changing the density of electrons

does not alter this picture, as is illustrated in Fig.3. The qualitative features of the
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results depicted in Figs.1-3 seem to be generic for simple hypercubic lattices. For
the whole range of EP couplings covered, the BCS variational ansatz never yields

an energy that is lower than the one obtained from the upperbound (30).

Fig.3. Same as Fig.1 except that 〈n〉 = 1.383.

6. Off-Diagonal Long-Range Order

Bose-Einstein condensation in boson systems is characterized by the existence
of ODLRO in the reduced one-particle density matrix.20,21 Yang has shown that
the concept of ODLRO can also be used to characterize the superconducting state
of fermion systems.4 Recently it has been shown that, under certain simplifying

assumptions, ODLRO implies the existence of the Meissner effect and magnetic
flux quantization.22,23

We now address the question of the existence of ODLRO in EP lattice models
described by Hamiltonian (1) . Following Yang there is ODLRO in a fermion system

if the largest eigenvalue λ0 of the 2L2 × 2L2 matrix

ρr,s ≡ ρ(i, j, σ; k, l, σ′) = 〈c+i,σc
+
j,−σcl,−σ′ck,σ′〉 , (51)

grows with the size of the system (assuming the density of fermions is kept constant).
Here r = (i, j, σ) and s = (k, l, σ′) and we have confined ourselves to the case of
singlet pairing.

As also pointed out by Yang, it is possible for a system to exhibit ODLRO in e.g.
the three-body, four-body , ... density matrices but not in the two-body density
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matrix.4 Here we will confine ourselves to the study of the largest eigenvalue of
the two-body density matrix, and we will use the term ODLRO, always meaning

ODLRO in the two-body density matrix.
Let us introduce the L × L matrix Λ and define the most general singlet-pair

operator by

∆† =
∑
i,j

Λi,jc
+
i,↑c

+
j,↓ . (52)

Without loss of generality we may assume that Λ is normalized, i.e.

Sp Λ†Λ = 1 . (53)

From the derivation of the upper and lowerbounds to the partition function we may
expect that

e−βH ≈ e−βH3/2e−βH4e−βH3/2 , (54)

will be an excellent approximation for small βh̄maxk(ωk) and/or weak EP inter-
action. For the Holstein model we could, as an alternative, use decomposition (42)
instead of (54). As [H3,∆] = [H3,∆†] = 0 we have

〈c+i,σc
+
j,−σcl,−σ′ck,σ′〉4 ≡

Tr e−βH3e−βH4c+i,σc
+
j,−σcl,−σ′ck,σ′

Tr e−βH3e−βH4
, (55a)

=〈〈(1 + eβT (x,µ))−1
i,k (1 + eβT (x,µ))−1

j,l 〉〉4 , (55b)

where

〈〈F (x)〉〉n ≡

∫
dx ρn(x)F (x) , (55c)

and

ρ4(x) ≡ ρ4(x, g) =
ρ2(x, g) det(1 + e−βT (x,µ))2∫
dxρ2(x, g) det(1 + e−βT (x,µ))2

> 0 , (55d)

is a proper, normalized probability distribution. For the most general singlet pairing
operator

〈∆†∆〉4 =

∫
dxρ4(x)Sp NT (x, µ)Λ†N(x, µ)Λ , (56)

where N(x, µ) = (1 + eβT (x,µ))−1. As all the eigenvalues of N(x, µ) are strictly
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positive and smaller than one we have, for any x,

0 ≤ Sp NT (x, µ)Λ†N(x, µ)Λ ≤ Sp Λ†Λ = 1 . (57)

implying

0 ≤ 〈∆†∆〉4 ≤ 1 . (58)

We now set Λ equal to the eigenvector that corresponds to the largest eigenvalue

of the reduced two-particle density matrix. For this choice

λ0 = 〈∆†∆〉4 ≤ 1 , (59)

demonstrating the absence of ODLRO in EP models of the type (1) , for all ap-
proximations to the density matrix that are strictly positive.

As we have seen above, for the Holstein model already the most simple approxi-
mation of this type yields an upper bound to the ground state energy that is better
than the one obtained from the BCS variational treatment. Whereas the latter
has ODLRO build in, the former has not and as (59) shows, it will never display

ODLRO.
From the exact expression

〈∆†∆〉 = lim
m→∞

∫
dx1 . . . dxmρ(x1, . . . , xm)

× Sp NT (x1, . . . , xm, µ)Λ†N(x1, . . . , xm, µ)Λ , (60a)

where ρ(x1, . . . , xm) is a Gaussian distribution of the variables (x1, . . . , xm) and

N(x1, . . . , xm, µ) =
(

1 + eβT (xm,µ)/m · · · eβT (x1,µ)/m
)−1

, (61)

it follows immediately that a necessary condition for EP models of the type (1) to
exhibit ODLRO is that eβT (xm,µ)/m · · · eβT (x1,µ)/m has at least one strictly negative

eigenvalue.

7. Acknowledgements

This work is supported by EEC contracts and the “Stichting Nationale Com-
puter Faciliteiten (NCF)”.

8. References

1. K. Michielsen, and H. De Raedt, Europhys. Lett. 34 (1996) 435.
2. K. Michielsen, and H. De Raedt, Mod. Phys. Lett. B 10 (1996) 467.

—16—



3. H. De Raedt and W. von der Linden, Monte Carlo Methods in Condensed
Matter Physics, edited by K. Binder, (Springer, Berlin, 1992).

4. C.N. Yang, Rev. Mod. Phys. 34 (1962) 694.
5. K. Symanzik, J. Math. Phys. 6 (1965) 1155.
6. S. Golden, Phys. Rev. 137 (1965) 1127.
7. C.J. Thompson, J. Math. Phys. 6 (1965) 1812.

8. E.F. Beckenbach, and R. Bellman, Inequalities, (Springer, Berlin 1961).
9. S. Lie and F. Engel, Theorie der Transformationgruppen, (Teubner, Leipzig

1888).
10. S.T. Butler, and M.H. Friedman, Phys. Rev. 98 (1955) 287.

11. S. Golden, Phys. Rev. 107 (1957) 1283.
12. H.F. Trotter, Proc. Am. Math. Soc. 10 (1959) 545.
13. M. Suzuki, S. Miyashita, and A. Kuroda, Prog. Theor. Phys. 58 (1977)

1377.

14. M. Suzuki, J. Math. Phys. 601 (1985) 26.
15. B. De Raedt, and H. De Raedt, Phys. Rev. A28 (1983) 3575.
16. R.P. Feynman, and A.R. Hibbs, Quantum Mechanics and Path Integrals,

(McGraw-Hill, New York 1965).
17. K. Michielsen, Int. J. Mod. Phys. B7 (1993) 2571.
18. A.J. Heeger, S. Kivelson, J.R. Schrieffer, and W.-P. Su, Rev. Mod. Phys. 60

(1988) 781.

19. Yu Lu, Solitons and Polarons in Conducting Polymers, ( World Scientific,
Singapore 1988).

20. O. Penrose, Philos. Mag. 42 (1951) 1373.
21. O. Penrose, and L. Onsager, Phys. Rev. 104 (1956) 576.

22. G.L. Sewell, J. Stat. Phys. 61 (1990) 415.
23. H.T. Nieh, Gang Su, Bao-Heng Zhao, Phys. Rev. B 51 (1995) 3760.

—17—


