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Abstract – We present a computer simulation model of Wheeler’s delayed-choice experiment
that is a one-to-one copy of an experiment reported recently (Jacques V. et al., Science, 315
(2007) 966). The model is solely based on experimental facts, satisfies Einstein’s criterion of
local causality and does not rely on any concept of quantum theory. Nevertheless, the simulation
model reproduces the averages as obtained from the quantum-theoretical description of Wheeler’s
delayed-choice experiment. Our results prove that it is possible to give a particle-only description
of Wheeler’s delayed-choice experiment which reproduces the averages calculated from quantum
theory and which does not defy common sense.
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Introduction. – According to the wave-particle dual-
ity, a concept of quantum theory, photons exhibit both
wave and particle behavior depending upon the circum-
stances of the experiment [1]. In 1978, Wheeler proposed
a gedankenexperiment [2], a variation on Young’s double-
slit experiment, in which the decision to observe wave or
particle behavior is made after the photon has passed the
slits. The pictorial description of this experiment defies
common sense: The behavior of the photon in the past is
said to be influenced changing the representation of the
photon from a particle to a wave.
Recently, Jacques et al. reported an almost ideal exper-

imental realization of Wheeler’s delayed-choice experi-
ment [3]. The experimental setup (see fig. 1) consists of
a single-photon source, a Mach-Zehnder interferometer,
with at the output side a beam splitter (BSoutput) of
which the presence can be controlled by a voltage applied
to an electro-optic modulator (EOM) and detectors [3].
Although the detection events are the only experimen-
tal facts, the pictorial description of Jacques et al. [3] is
as follows: The decision to apply a voltage to the EOM
is made after the photon has passed BSinput but before
the photon enters BSoutput. If no voltage is applied to the
EOM (open configuration), then the arrival of a photon at

(a)E-mail: h.a.de.raedt@rug.nl

Fig. 1: Schematic diagram of the experimental setup for
Wheeler’s delayed-choice gedankenexperiment [3]. PBS: polar-
izing beam splitter; HWP: half-wave plate; EOM: electro-optic
modulator; RNG: random number generator; WP: Wollaston
prism; P, S: polarization state of the photon;D0, D1: detectors.

either detector clearly gives which-way information about
the photon within the interferometer (particle behavior),
with 50% arriving from either path. When the voltage is
applied (closed configuration), the paths interfere and it
is impossible to know which path the photon took (wave
behavior). Accordingly, the detectors register an interfer-
ence pattern.
The outcome of delayed-choice experiments [3–8], that

is the average results of many detection events, is in
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agreement with quantum theory. However, the pictorial
description [3] defies common sense: The decision to apply
a voltage to the EOM after the photon left BSinput but
before it passes BSoutput, influences the behavior of the
photon in the past and changes the representation of
the photon from a particle to a wave [3]. On the other
hand, quantum theory does not describe single events [1].
Therefore, it should not be a surprise that the application
of concepts of quantum theory to the domain of individual
events may lead to conclusions that are at odds with
common sense.
In this letter, we describe a model that, when imple-

mented as a computer program, performs an event-by-
event simulation of Wheeler’s delayed-choice experiment.
Every essential component of the laboratory experiment
(PBS, EOM, HWP,Wollaston prism, detector) has a coun-
terpart in the algorithm. The data is analyzed by count-
ing detection events, just like in the experiment [3]. The
simulation model is solely based on experimental facts,
satisfies Einstein’s criterion of local causality and does not
rely on any concept of quantum theory or of probability
theory. Nevertheless, our simulation model reproduces the
averages obtained from the quantum-theoretical descrip-
tion of Wheeler’s delayed-choice experiment but as our
approach does not rely on concepts of quantum theory
and gives a description on the level of individual events,
it provides a description of the experimental facts that
does not defy common sense. In a pictorial description
of our simulation model, we may speak about “photons”
generating the detection events. However, these so-called
photons, as we will call them in the sequel, are elements
of a model or theory for the real laboratory experiment
only. The experimental facts are the settings of the vari-
ous apparatuses and the detection events. What happens
in between activating the source and the registration of
the detection events is not measured and is therefore not
known. Although the photons “know” exactly which route
they followed in the closed configuration of the interfer-
ometer (we can always track them during the simulation),
they build up an interference pattern at the detector. The
appearance of an interference pattern is commonly consid-
ered to be characteristic for a wave. In this letter, we
demonstrate that, as in experiment, it can also be built
up by many photons. These photons have which-way infor-
mation, never directly communicate with each other and
arrive one by one at a detector.
To head off possible misunderstandings, the work

presented here is not concerned with the interpretation
or an extension of quantum theory. We adopt the point
of view that quantum theory has nothing to say about
individual events [1]. The fact that there exist simula-
tion algorithms that reproduce the results of quantum
theory has no direct implications to the foundations of
quantum theory: These algorithms describe the process
of generating events at a level of detail that is outside
the scope of what current quantum theory can describe.
The event-based simulation approach that we describe in

this letter is unconventional in that it does not require
knowledge of the probability distribution obtained by
solving the quantum problem. The averages given by
quantum theory are obtained through a simulation of
locally causal, classical dynamical systems. The key point
of these dynamical systems is that they are built from
units that are adaptive.
It is common practice to use the framework of

Kolmogorov’s probability theory to construct probabilis-
tic models of phenomena that cannot (yet) be described
by a deductive theory. Although Kolmogorov’s probability
theory provides a rigorous framework to formulate such
models, there are ample examples that illustrate how easy
it is to make plausible assumptions that create all kinds
of paradoxes, also for every-day problems that have no
bearing on quantum theory at all [9–13]. Subtle mistakes
such as dropping (some of the) conditions, mixing up
the meaning of physical and statistical independence,
and changing one probability space for another during
the cause of an argument can give rise to all kinds of
paradoxes [14–16]. To avoid these potential pitfalls, in
our simulation approach we strictly stay in the domain of
integer arithmetic, that is we do not invoke any concept
of probability theory.
This letter builds on earlier work [17–25] that demon-

strated that it may be possible to simulate quantum
phenomena on the level of individual events without invok-
ing a single concept of quantum theory. Specifically, we
have demonstrated that locally connected networks of
processing units with a primitive learning capability can
simulate event by event, the single-photon beam splitter
and Mach-Zehnder interferometer experiments of Grangier
et al. [26] and Einstein-Podolsky-Rosen experiments with
photons [27–29]. Furthermore, we have shown that this
approach can be generalized to simulate universal quan-
tum computation by an event-by-event process [19,20].
The algorithms used in our earlier work [17–25] cannot be
used to simulate Wheeler’s delayed-choice experiment [3].
The latter uses components that respond to the polar-
ization and/or the difference in path length and the
algorithms used in our earlier work cannot handle both
features simultaneously. In contrast, the more general
algorithms described in this letter can also simulate all
the experiments covered in our earlier work. Our event by
event simulation approach rigorously satisfies Einstein’s
criterion of local causality and builds up the final outcome
that agrees with quantum theory event by event, as
observed in real experiments.

Simulation model. – The simulation algorithm can
be viewed as a message-processing and message-passing
process: It routes messengers through a network of units
that process messages. In a pictorial description, the
photon is the messenger, carrying a message representing
its phase and polarization. The processing units play
the role of the components of the laboratory experiment
and the network represents the complete experimental
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setup. Some processing units consist of an input stage
(a standard linear adaptive filter), a transformation stage
and an output stage. The input (output) stage may
have several channels at (through) which messengers
arrive (leave). Other processing units are simpler in the
sense that the input stage is not necessary for the proper
functioning of the device. A message is represented by a
vector. As a messenger arrives at an input channel of a
processing unit, the input stage updates its internal state,
represented by a vector, and sends the message together
with its internal state to the transformation stage that
implements the operation of the particular device. Then,
a new message is sent to the output stage, using a pseudo-
random number to select the output channel through
which the messenger will leave the unit. We use pseudo-
random numbers to mimic the apparent unpredictability
of the experimental data only. The use of pseudo-random
numbers is merely convenient, not essential. At any given
time, there is only one messenger being routed through the
whole network. There is no direct communication between
the messengers.
In the experimental realization of Wheeler’s delayed-

choice experiment by Jacques et al. [3] linearly polarized
single photons are sent through a polarizing beam splitter
(PBS) that together with a second, movable PBS forms
an interferometer (see fig. 1). The network of processing
units is a one-to-one image of the experimental setup [3]
and is therefore not shown. We now describe each of the
components of the network in detail.

Messenger. Photons are regarded as messengers. Each
messenger carries a message represented by a six-
dimensional unit vector yk,n = (cosψ

H
k,n, sinψ

H
k,n, cosψ

V
k,n,

sinψVk,n, cos ξk,n, sin ξk,n). The superscript H (V ) refers
to the horizontal (vertical) component of the polariza-
tion and ψHk,n, ψ

V
k,n, and ξk,n represent the phases and

polarization of the photon, respectively. It is evident
that the representation used here maps one-to-one to
the plane-wave description of a classical electromagnetic
field [30], except that we assign these properties to each
individual message, not to a wave. The subscript n� 0
numbers the consecutive messages and k= 0, 1 labels
the channel of the PBS at which the message arrives
(see below).

Polarizing beam splitter. The processor that performs
the event-by-event simulation of a PBS is depicted in fig. 2.
It consists of an input stage, a simple deterministic learn-
ing machine (DLM) [17–20], a transformation stage (T),
an output stage (O) and has two input and two output
channels labeled with k= 0, 1. We now define the opera-
tion of each stage explicitly.

– Input stage: The DLM receives a message on either
input channel 0 or 1, never on both channels simul-
taneously. The arrival of a message on channel 0 (1)
is named a 0 (1) event. The input events are repre-
sented by the vectors vn = (1, 0) or vn = (0, 1) if

Fig. 2: Diagram of a DLM-based processing unit that performs
an event-based simulation of a polarizing beam splitter (PBS).
The solid lines represent the input and output channels of the
PBS. The presence of a message is indicated by an arrow on
the corresponding channel line. The dashed lines indicate the
data flow within the PBS.

the n-th event occurred on channel 0 or 1, respec-
tively. The DLM has six internal registers YHk,n =

(CHk,n, S
H
k,n), Y

V
k,n = (C

V
k,n, S

V
k,n), Y

P
k,n = (C

P
k,n, S

P
k,n)

and one internal vector xn = (x0,n, x1,n), where x0,n+
x1,n = 1 and xk,n � 0 for k= 0, 1 and all n’s. These
seven two-dimensional vectors are labeled by the
message number n because their contents are updated
every time the DLM receives a message. Note that the
DLM stores information about the last message only.
The information carried by earlier messages is over-
written by updating the internal registers.

Upon receiving the (n+1)-th input event, the DLM
performs the following steps: It stores the first two
elements of message yk,n+1 in its internal register
YHk,n+1 = (C

H
k,n+1, S

H
k,n+1), the middle two elements

of yk,n+1 in Y
V
k,n+1 = (C

V
k,n+1, S

V
k,n+1), and the last

two elements of yk,n+1 in Y
P
k,n+1 = (C

P
k,n+1, S

P
k,n+1).

Then, it updates its internal vector according to the
rule [17]

xi,n+1 = αxi,n+(1−α)δi,k, (1)

where 0<α< 1 is a parameter that controls the learn-
ing process [17]. Note that by construction x0,n+1+
x1,n+1 = 1, x0,n+1 � 0 and x1,n+1 � 0.

– Transformation stage: The second stage (T) of the
DLM-based processor takes as input the data stored
in the six internal registersYHk,n+1 = (C

H
k,n+1, S

H
k,n+1),

YVk,n+1 = (C
V
k,n+1, S

V
k,n+1),Y

P
k,n+1 = (C

P
k,n+1, S

P
k,n+1)

and in the internal vector xn+1 = (x0,n+1, x1,n+1) and
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combines the data into the eight-dimensional vector

T=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

CH0,n+1C
P
0,n+1

√
x0,n+1

SH0,n+1C
P
0,n+1

√
x0,n+1

−SV1,n+1SP1,n+1
√
x1,n+1

CV1,n+1S
P
1,n+1

√
x1,n+1

CH1,n+1C
P
1,n+1

√
x1,n+1

SH1,n+1C
P
1,n+1

√
x1,n+1

−SV0,n+1SP0,n+1
√
x0,n+1

CV0,n+1S
P
0,n+1

√
x0,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2)

Rewriting the vector T as

T =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

CH0,n+1+ iS
H
0,n+1

)

CP0,n+1
√
x0,n+1

i
(

CV1,n+1+ iS
V
1,n+1

)

SP1,n+1
√
x1,n+1

(

CH1,n+1+ iS
H
1,n+1

)

CP1,n+1
√
x1,n+1

i
(

CV0,n+1+S
V
0,n+1

)

SP0,n+1
√
x0,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≡

⎛

⎜

⎜

⎜

⎜

⎝

aH0

iaV1

aH1

iaV0

⎞

⎟

⎟

⎟

⎟

⎠

, (3)

shows that the operation performed by the trans-
formation stage T corresponds to the matrix-vector
multiplication in the quantum-theoretical description
of a PBS, namely

⎛

⎜

⎜

⎜

⎜

⎝

bH0

bV0

bH1

bV1

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 0 0 i

0 0 1 0

0 i 0 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

aH0

aV0

aH1

aV1

⎞

⎟

⎟

⎟

⎟

⎠

, (4)

where (aH0 , a
V
0 , a

H
1 , a

V
1 ) and (b

H
0 , b

V
0 , b

H
1 , b

V
1 ) denote

the input and output amplitudes of the photons with
polarization H and V in the 0 and 1 channels of a
PBS, respectively. Note that in the quantum optical
description of a (polarizing) beam splitter the vacuum
field must be included. In our simulation model, there
is no need to introduce the concept of a vacuum field.

– Output stage: The final stage (O) sends the message

w=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

w0,n+1/s0,n+1

w1,n+1/s0,n+1

w2,n+1/s1,n+1

w3,n+1/s1,n+1

s0,n+1/s2,n+1

s1,n+1/s2,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (5)

where

w0,n+1 = C
H
0,n+1C

P
0,n+1

√
x0,n+1,

w1,n+1 = S
H
0,n+1C

P
0,n+1

√
x0,n+1,

w2,n+1 = −SV1,n+1SP1,n+1
√
x1,n+1,

w3,n+1 = C
V
1,n+1S

P
1,n+1

√
x1,n+1,

s0,n+1 =
√

w20,n+1+w
2
1,n+1,

s1,n+1 =
√

w22,n+1+w
2
3,n+1,

s2,n+1 =
√

w20,n+1+w
2
1,n+1+w

2
2,n+1+w

2
3,n+1,

(6)

through output channel 0, if w20,n+1+w
2
1,n+1 > r,

where 0< r < 1 is a uniform pseudo-random number.
Otherwise, if w20,n+1+w

2
1,n+1 � r, the output stage

sends through output channel 1 the message

z=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

z0,n+1/t0,n+1

z1,n+1/t0,n+1

z2,n+1/t1,n+1

z3,n+1/t1,n+1

t0,n+1/t2,n+1

t1,n+1/t2,n+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (7)

where

z0,n+1 = C
H
1,n+1C

P
1,n+1

√
x1,n+1,

z1,n+1 = S
H
1,n+1C

P
1,n+1

√
x1,n+1,

z2,n+1 = −SV0,n+1SP0,n+1
√
x0,n+1,

z3,n+1 = C
V
0,n+1S

P
0,n+1

√
x0,n+1,

t0,n+1 =
√

z20,n+1+ z
2
1,n+1,

t1,n+1 =
√

z22,n+1+ z
2
3,n+1,

t2,n+1 =
√

z20,n+1+ z
2
1,n+1+ z

2
2,n+1+ z

2
3,n+1.

(8)

As mentioned earlier, the use of pseudo-random numbers
to select the output channel is not essential. We use
pseudo-random numbers to mimic the apparent unpre-
dictability of the experimental data only. Instead of a
uniform pseudo-random number generator, any algorithm
that selects the output channel in a systematic manner
might be employed as well. This will change the order in
which messages are being processed but the content of the
messages will be left intact and the resulting averages do
not change significantly.

Half-wave plate (HWP). This device performs a
rotation of the polarization of the photon [30]. If the
polarization of an incoming photon is at an angle θ with
respect to the optical axis of the HWP then, after passing
the HWP, the polarization of the photon has been rotated
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Fig. 3: Simulation results generated by the DLM network of the
PBS shown in fig. 2. Input channel 0 receives (cosψH0 , sinψ

H

0 ,
cosψV0 , sinψ

V

0 , cos θ, sin θ)=(1, 0, 1, 0, cos θ, sin θ). Input chan-
nel 1 receives no events. After each set of N = 10000 events, θ is
increased by 15◦. Squares and circles give the simulation results
for the normalized intensities N0/N and N1/N as a function
of θ. Dashed lines represent the results of quantum theory.

by an angle 2θ. In order to change horizontal polarization
into vertical polarization, or vice versa, a HWP is used
with its optical axis oriented at π/4. The HWP does not
only change the polarization of the photon, but also its
phase as can be seen from the wave-mechanical description

(

bH

bV

)

=
−i√
2

(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)(

aH

aV

)

. (9)

As a result, for the case θ= π/4, the polarization of the
photon is rotated by an angle π/2 and its phase is changed
by −π/2.
Electro-optic modulator (EOM). This device rotates

the polarization of the photon by an angle depending on
the voltage applied to the modulator. In the laboratory
experiment [3], the EOM is operated such that when a
voltage is applied the EOM acts as a HWP that rotates
the input polarizations by π/4. In the simulation a pseudo-
random number is used to decide to apply a voltage to the
EOM or not. Also here we use a pseudo-random number to
mimic the experimental procedure to control the EOM [3].
Any other (systematic) sequence to control the EOM can
be used as well.

Wollaston prism. This device is a PBS with one input
channel and two output channels and is simulated as the
PBS described earlier. Messengers arrive at one and the
same input channel only.

Detection and data analysis procedure. Detector D0
(D1) registers the output events at channel 0 (1). During
a run of N events, the algorithm generates the data set

Γ= {xn, An|n= 1, . . . , N ;φ= φ1−φ0} , (10)

where xn = 0, 1 indicates which detector fired (D0 or D1),
and An = 0, 1 is a pseudo-random number that is chosen

0
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0.5

0 60 120 180 240 300 360
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u
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 /
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φ

Fig. 4: Event-by-event simulation results of the experimental
realization of Wheeler’s delayed-choice gedankenexperiment.
Open (closed) markers correspond to data for the open (closed)
configuration of the interferometer. Squares and circles give
the simulation results for the normalized intensities N0/N and
N1/N as a function of the phase shift φ, N0 (N1) denoting
the number of events registered at detector D0 (D1). For each
value of φ, the number of input events N = 10000. The number
of detection events per data point is approximately the same as
in experiment. The simulation data is in qualitative agreement
with experiment: See fig. 3 of ref. [3]. Dashed lines represent
the results of quantum theory (Malus law).

after the n-th message (=photon) has passed the first
PBS, determining whether or not a voltage is applied
to the EOM (hence whether the configuration is open
or closed). The angle φ denotes the phase shift between
the two interferometer arms. This phase shift is varied
by applying a plane rotation on the phase of the particles
entering channel 0 of the second PBS. This corresponds to
tilting the second PBS in the laboratory experiment [3].
For each phase shift φ and interferometer configuration
(open or closed) the number of 0 (1) output events N0
(N1) is calculated.

Simulation results. – The algorithm described above
directly translates into a simple computer program. For a
fixed set of input parameters, each simulation takes a few
seconds on a present-day PC. All simulations are carried
out with α= 0.99 [17].
We first demonstrate that our model for the PBS

reproduces Malus’ law. In this simulation, we send
messengers to one input channel, say channel 0, only.
This implies that the registers that are connected to
channel 1 will not change during the simulation. Figure 3
shows a representative set of event-based simulation
results for the PBS modeled by the processor depicted
in fig. 2. The data set is produced with input messages
(

cosψH0 , sinψ
H
0 , cosψ

V
0 , sinψ

V
0 , cos ξ0, sin ξ0

)

. The values
of ψH0 and ψ

V
0 are fixed but irrelevant otherwise. Also the

value of ξ0 is irrelevant. It is clear that the intensities in
both output channels obey Malus’ law.
Next, we build a network that contains all the optical

components of the laboratory experiment [3] (see fig. 1).
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Before the simulation starts we set x0 = (x0,0, x1,0) =
(r, 1− r), where r is a uniform pseudo-random number.
In a similar way we use pseudo-random numbers to
initialize YH0,0, Y

V
0,0, Y

P
0,0, Y

H
1,0, Y

V
1,0 and Y

P
1,0. In this

simulation, we send messengers to one input channel (see
fig. 1). The HWP in BSoutput changes the phases and also
interchanges the roles of channels 0 and 1. Disregarding
a few exceptional events, the PBS in BSoutput generates
messages in one of the channels only.
Representative results of an event-by-event simulation

of this network, a one-to-one image of Wheeler’s delayed-
choice experiment [3], are shown in fig. 4. The simula-
tion data are in quantitative agreement with the averages
calculated from quantum theory and in qualitative agree-
ment with experiment [3].

Conclusion. – In this letter, we have proven that it
is possible to give a particle-only description for both the
open and closed interferometer configuration in Wheeler’s
delayed-choice experiment that 1) reproduces the averages
calculated from quantum theory, 2) satisfies Einstein’s
criteria of realism and local causality, 3) does not rely on
any concept of quantum theory or of probability theory,
and 4) is not in conflict with common sense.
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