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Abstract

We present a comparative study of numerical algorithms to solve the time-dependent Maxwell equations for syste
spatially varying permittivity and permeability. We show that the Lie–Trotter–Suzuki product-formula approach can b
to construct a family of unconditionally stable algorithms, the conventional Yee algorithm, and two new variants of t
algorithm that do not require the use of the staggered-in-time grid. We also consider a one-step algorithm, base
Chebyshev polynomial expansion, and compare the computational efficiency of the one-step, the Yee-type, the al
direction-implicit, and the unconditionally stable algorithms. For applications where the long-time behavior is of main i
we find that the one-step algorithm may be orders of magnitude more efficient than present multiple time-step, finite-d
time-domain algorithms.
 2003 Elsevier B.V. All rights reserved.

PACS: 02.60.Cb; 03.50.De; 41.20.Jb

1. Introduction

The Maxwell equations describe the evolution of electromagnetic (EM) fields in space and time [1]
apply to a wide range of different physical situations and play an important role in a large number of engi
applications. In many cases, numerical methods are required to solve Maxwell’s equations [2,3]. A well
class of algorithms is based on a method proposed by Yee [4]. This finite-difference time-domain (FDTD) ap
owes its popularity mainly due to its flexibility and speed while at the same time it is easy to implement [2,

A limitation of Yee-based FDTD techniques is that their stability is conditional, depending on the mesh
the spatial discretization and the time step of the time integration [2,3]. Furthermore, in practice, the am
computational work required to solve the time-dependent Maxwell equations by present FDTD techniques
12] prohibits applications to a class of important fields such as bio-electromagnetics and VLSI design [2
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The basic reason for this is that the time step in the FDTD calculation has to be relatively small in order to m
stability and a reasonable degree of accuracy in the time integration. Thus, the search for new algorith
solve the Maxwell equations focuses on removing the conditional stability of FDTD methods and on imp
the accuracy/efficiency of the algorithms.

A systematic approach to construct unconditionally stable algorithms is to employ a Lie–Trotter–
product-formula [15] to approximate the time evolution operator [16]. In the case of EM fields, the latter
matrix exponential of a skew-symmetric matrix and the approximations take the form of products of orth
transformations [11,12]. The resulting numerical algorithms are unconditionally stable by construction [16

The spectral-domain split-operator technique proposed in Ref. [10] is one of the many forms that resu
the use of the Lie–Trotter–Suzuki product-formulas [15]. This technique makes use of Fast Fourier Tra
to compute the matrix exponentials of the displacement operators. The choice made in Ref. [10] yi
approximation to the time-evolution operator that is no longer orthogonal and hence unconditional sta
not automatically guaranteed [18]. In contrast, the methodology proposed in Refs. [11,12] yields efficient, e
unconditionally stable schemes that operate on the EM fields defined on the real space grid only. These a
naturally allow for the spatial variations in both the permittivity and the permeability.

The product-formula approach also provides a unified framework to construct and analyze other time s
algorithms [16,19]. To illustrate this point we show that the conventional Yee algorithm and the altern
direction-implicit (ADI) time-stepping algorithms [6–9,19] fit into this framework. Furthermore we propose
variants of the Yee algorithm.

Another route to improve upon the accuracy/efficiency of time-integration schemes is to make use
Chebyshev polynomial expansions of the matrix exponential [20–25]. In this paper we review the o
algorithm [26,27], based on Chebyshev polynomials, to solve the time-dependent Maxwell equations fo
large time steps. As the solution obtained by the one-step algorithm is exact to nearly machine precisio
fixed spatial discretization), we use this algorithm to generate the reference data.

The main purpose of this paper is to review the basic ideas behind the recent developments in nu
algorithms to solve the time-dependent Maxwell equations and to compare the virtues and shortcoming
different methods. The plan of the paper is as follows: In Section 2 we briefly discuss the basic physical sym
of the time-dependent Maxwell equations. The general framework to construct time-integration algorithm
out in Section 3. We also pay attention to the numerical treatment of the current source term. In Sectio
use the simplest case of the time-dependent Maxwell equations to illustrate how the various algorithms
implemented. We explicitly show how the conventional Yee algorithm naturally fits into this framework an
minor modification, construct second-order and fourth-order time-accurate schemes that do not require
of staggered-in-time fields, nor extra memory to store intermediate results. Then we recall the steps to c
the unconditionally stable algorithms proposed in Refs. [11,12] and analyze a modification to improve th
integration accuracy. Finally we discuss the implementation of the ADI and one-step algorithms. A discus
the results of numerical experiments and our conclusions are given in Sections 5 and 6, respectively.

2. Theory

This section recalls some well-known facts of Maxwell’s theory and also serves to introduce the notatio
in this paper. We consider EM fields in linear, isotropic, nondispersive and lossless materials. The time e
of EM fields in these systems is governed by the time-dependent Maxwell equations [1]. Some important
symmetries of the Maxwell equations can be made explicit by introducing the fields

(1)X(t)≡√µH(t) and Y(t)≡√ε E(t).

Here, H(t) = (Hx(r, t),Hy(r, t),Hz(r, t))T denotes the magnetic andE(t) = (Ex(r, t),Ey(r, t),Ez(r, t))T the
electric field vector, whileµ= µ(r) andε = ε(r) denote, respectively, the permeability and the permittivity. In
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absence of electric charges, Maxwell’s curl equations [2] read

(2)
∂

∂t

(
X(t)

Y(t)

)
=H

(
X(t)

Y(t)

)
− 1√

ε

(
0

J(t)

)
,

whereJ(t)= (Jx(r, t), Jy(r, t), Jz(r, t))T represents the source of the electric field andH denotes the operator

(3)H≡
(

0 − 1√
µ
∇ × 1√

ε
1√
ε
∇ × 1√

µ
0

)
.

Writing Z(t) = (X(t),Y(t))T it is easy to show thatH is skew symmetric, i.e.HT = −H, with respect to the
inner product〈Z(t)|Z′(t)〉 ≡ ∫V ZT(t) · Z′(t)dr, whereV denotes the system’s volume. In addition to Eq. (2),
EM fields also satisfy∇ · (√µX(t))= 0 and∇ · (√εY(t))= 0 [1]. Throughout this paper we use dimensionl
quantities: We measure distances in units ofλ and express time and frequency in units ofλ/c andc/λ, respectively.

A numerical algorithm that solves the time-dependent Maxwell equations necessarily involves some dis
tion procedure of the spatial derivatives in Eq. (2). Ideally, this procedure should not change the basic sym
of the Maxwell equations. We will not discuss the (important) technicalities of the spatial discretization (w
the reader to Refs. [2,3]) as this is not essential to the discussion that follows. On a spatial grid Maxwe
equations (2) can be written in the compact form [11]

(4)
∂

∂t
Ψ (t)=HΨ (t)−Φ(t).

The vectorΨ (t) is a representation ofZ(t) on the grid. The matrixH is the discrete analogue of the operator (
and the vectorΦ(t) contains all the information on the current sourceJ(t). The formal solution of Eq. (4) is give
by

(5)Ψ (t)=U(t)Ψ (0)−
t∫

0

U(t − u)Φ(u)du,

where

(6)U(t)= etH ,

denotes the time-evolution matrix. If the discretization procedure preserves the underlying symmetrie
time-dependent Maxwell equations then the matrixH is real and skew symmetric [11], implying thatU(t) is
orthogonal [28]. Physically, the orthogonality ofU(t) implies conservation of energy [11].

3. Time integration algorithms

There are two, closely related, strategies to construct an algorithm for performing the time integration
time-dependent Maxwell equations defined on the grid [17]. The traditional approach is to discretize (with i
ing level of sophistication) the derivative with respect to time [17]. The other is to approximate the formally
solution, i.e. the matrix exponentialU(t)= etH by some time evolution matrix̃U(t) [16,17]. We adopt the latte
approach in this paper as it facilitates the construction of algorithms with specific features, such as uncon
stability [11,16].

If the approximatioñU(t) is itself an orthogonal transformation, then‖Ũ(t)‖ = 1 where‖X‖ denotes the 2
norm of a vector or matrixX [28]. In the absence of source terms (i.e.Φ(t) = 0) this implies that‖Ψ̃ (t)‖ =
‖Ũ (t)Ψ (0)‖ = ‖Ψ (0)‖, for an arbitrary initial conditionΨ (0) and for all timest and hence the time integratio
algorithm defined bỹU(t) is unconditionally stable by construction [16,17].
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In the presence of current sources, for generalŨ(t), it follows immediately from Eq. (5) that

(7)
∥∥Ψ̃ (t)

∥∥�
∥∥Ψ (t)

∥∥+ ε̃

(∥∥Ψ (0)
∥∥+ t∫

0

∥∥Φ(u)
∥∥du

)
,

where‖Ũ(u)−U(u)‖� ε̃ for 0 � u � t andε̃ is a measure for the accuracy of the approximationŨ(t).
From Eq. (5) it follows that the EM fieldsΨ (t) change according to

(8)Ψ (t + τ )= eτHΨ (t)−
t+τ∫
t

e(t+τ−u)HΦ(u)du.

In the time-stepping approach we approximate the source term in Eq. (8) by the standard 3-point Gauss–
quadrature formula [29]

(9)Ψ (t + τ )= eτHΨ (t)− τ

2

2∑
i=0

wie(1+xi)τH/2Φ
(
t + (1+ xi)τ/2

)+O(τ7),

wherex0, x1, x2 are the zeros of the Legendre polynomialP3(x) = x(5x2− 3)/2 andwi = 8/(1− x2
i )(15x2

i −
3)2 [29]. In practice we replace e(1+xi)τH/2 in Eq. (9) by an approximatioñU((1+ xi)τ/2).

We now consider three options to construct the approximate time evolution matrixŨ(t). We exclude from
the discussion the exceptional cases for which the matrix exponentialU(t) = etH can be calculated directly, a
these are usually of little relevance for realistic problems. The first option, which is based on the product-
approach, yields the conventional Yee algorithm, a higher-order generalization thereof, and the uncon
schemes proposed in Refs. [11,12]. The second option is to use rational approximations to the matrix exp
yielding the standard ADI methods. Finally, the Chebyshev polynomial approximation to the matrix expone
used to construct a one-step algorithm [26,27].

3.1. Product-formula approach

As discussed in [11], a systematic approach to construct approximations to matrix exponentials is to m
of the Lie–Trotter–Suzuki product-formula [15,30]

(10)etH = et (H1+···+Hp) = lim
m→∞

(
p∏

i=1

etHi/m

)m

,

and generalizations thereof [31,32]. Expression (10) suggests that

(11)U1(τ )= eτH1 . . .eτHp ,

might be a good approximation toU(τ) if τ is sufficiently small. Applied to the case of interest here, if all theHi

are real and skew-symmetricU1(τ ) is orthogonal by construction and a numerical scheme based on Eq. (11
be unconditionally stable. For orthogonal matricesU(τ) andU1(τ ) it can be shown that [16]

(12)
∥∥U(τ)−U1(τ )

∥∥� τ2

2

∑
i<j

∥∥[Hi,Hj ]
∥∥,

where [Hi,Hj ] = HiHj − HjHi is, in general, non-zero. Relaxing the condition thatU(τ) and U1(τ ) are
orthogonal matrices changes theτ -dependence in Eq. (12) but for smallτ the error still vanishes likeτ2 [32].
From Eq. (12) it follows that, in general, the Taylor series ofU(τ) andU1(τ ) are identical up to first order inτ .
We callU1(τ ) a first-order approximation toU(τ).
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The product-formula approach provides simple, systematic procedures to improve the accuracy
approximation toU(τ) without changing its fundamental symmetries. For example, the matrix

(13)U2(τ )= U1(−τ/2)TU1(τ/2)= eτHp/2 . . .eτH1/2eτH1/2 . . .eτHp/2,

is a second-order approximation toU(τ) [31,32]. If U1(τ ) is orthogonal, so isU2(τ ). For orthogonalU2(τ ) we
have [16]

(14)
∥∥U(t =mτ)− [U2(τ )

]m∥∥� c2τ
2t,

wherec2 is a positive constant.
Suzuki’s fractal decomposition approach [32] gives a general method to construct higher-order approxi

based onU2(τ ) (or U1(τ )). A particularly useful fourth-order approximation is given by [32]

(15)U4(τ )= U2(aτ)U2(aτ)U2
(
(1− 4a)τ

)
U2(aτ)U2(aτ),

wherea = 1/(4− 41/3). The approximations Eqs. (11) and (13), and (15) have proven to be very useful in
applications [15,16,31,33–41] and, as we show below, turn out to be equally useful for solving the time-de
Maxwell equations. As before, for orthogonalU4(τ ) we have [16]

(16)
∥∥U(t =mτ)− [U4(τ )

]m∥∥� c4τ
4t,

wherec4 is a positive constant.
As our numerical results (see below) show, for sufficiently smallτ , the numerical error of a time integrat

vanishes withτ according to theτ -dependence of the corresponding rigorous bound, e.g., Eqs. (12), (14), o
Our experience shows that if this behavior is not observed, there is a fair chance that the computer program
one or more errors.

In practice an efficient implementation of the first-order scheme is all that is needed to construct the
order algorithms (Eqs. (13) and (15)). The crucial step of this approach is to choose theHi ’s such that the matrix
exponentials exp(τH1), . . . ,exp(τHp) can be calculated efficiently. This will turn the formal expressions forU2(τ )

andU4(τ ) into efficient algorithms to solve the time-dependent Maxwell equations.

3.2. ADI algorithms

ADI algorithms are usually derived by starting from the differential equation and applying the operator sp
idea [42]. Not surprisingly, the same algorithms can be obtained by approximating the formal solution
differential equation in terms of a product formula. Instead of hunting for a decomposition that leads to
exponentials exp(τH1), . . . ,exp(τHp) that are easy to compute, one can opt for an algorithm in which
of these exponentials is calculated approximately. In principle this might be beneficial because there
flexibility in decomposingH . The standard strategy, preserving the symmetry ofH1, . . . ,Hp is to use rationa
(Padé) approximations to the exponential [17]. For instance, the approximation ex ≈ (1+ x/2)/(1− x/2) with
some decompositionH =H1+H2 yields the second-order-accurate ADI algorithm [17,19,42]

(17)UADI
2 (τ )= (I − τH1/2)−1(I + τH2/2)(I − τH2/2)−1(I + τH1/2),

whereI is the identity matrix. As the subscript indicates, the algorithm (17) is second-order accurate in tim
general skew-symmetric matricesH1 andH2, it is easy to show that the algorithmUADI

2 (τ ) is unconditionally
stable. Following Ref. [19] we rearrange factors and obtain∥∥[UADI

2 (τ )
]m∥∥= ∥∥(I − τH1/2)−1X2X1X2 . . .X1X2(I + τH1/2)

∥∥
�
∥∥(I − τH1/2)−1

∥∥‖X2X1X2 . . .X1X2‖
∥∥(I + τH1/2)

∥∥
(18)= ∥∥(I − τH1/2)−1

∥∥∥∥(I + τH1/2)
∥∥.



48 H. De Raedt et al. / Computer Physics Communications 156 (2003) 43–61

t

2].

e basic
nential.
ce

nd
n

ations

s
the

nomial
han for

at
We used the fact that for skew-symmetricHi , Xi ≡ (I − τHi/2)−1(I + τHi/2) is orthogonal and tha
‖X2X1X2 . . .X1X2‖ = 1. If X is skew-symmetric, it’s eigenvalues are pure imaginary and therefore(I − X)−1

is non-singular. Hence, for any number of time stepsm, ‖[UADI
2 (τ )]m‖ � C, whereC is some finite positive

constant, proving that theUADI
2 (τ ) algorithm is unconditionally stable in the Lax–Richtmyer sense [17].

The matrix inversions appearing in Eq. (17) suggest that for practical purposes the implicit methodUADI
2 (τ ) will

not be very useful unlessI − τH1/2 andI − τH2/2 take special forms that allow efficient matrix inversion [17,4

3.3. One-step algorithm

For completeness, we briefly review the theory behind the one-step algorithm described in [26,27]. Th
idea of this approach is to make use of extremely accurate polynomial approximations to the matrix expo
First we use the Chebyshev polynomial expansion to approximateU(t) and then show how to treat the sour
term in Eq. (5). We begin by “normalizing” the matrixH . The eigenvalues of the skew-symmetric matrixH

are pure imaginary numbers. In practiceH is sparse so it is easy to compute‖H‖1 ≡maxj
∑

i |Hi,j |. Then, by
construction, the eigenvalues ofB ≡ −iH/‖H‖1 all lie in the interval[−1,1] [28]. Expanding the initial value
Ψ (0) in the (unknown) eigenvectorsbj of B, we find from Eq. (5) withΦ(t)≡ 0:

(19)Ψ (t)= eizBΨ (0)=
∑
j

eizbj bj

〈
bj

∣∣Ψ (0)
〉
,

wherez= t‖H‖1 and thebj denote the (unknown) eigenvalues ofB. There is no need to know the eigenvalues a
eigenvectors ofB explicitly. We find the Chebyshev polynomial expansion ofU(t) by computing the expansio
coefficients of each of the functions eizbj that appear in Eq. (19). In particular, as−1 � bj � 1, we can use the
expansion [29] eizbj = J0(z) + 2

∑∞
k=1 ikJk(z)Tk(bj ), whereJk(z) is the Bessel function of integer orderk, to

write Eq. (19) as

(20)Ψ (t)=
[
J0(z)I + 2

∞∑
k=1

Jk(z)T̂k(B)

]
Ψ (0).

HereT̂k(B)= ikTk(B) is a matrix-valued modified Chebyshev polynomial that is defined by the recursion rel

(21)T̂0(B)Ψ (0)= Ψ (0), T̂1(B)Ψ (0)= iBΨ (0),

and

(22)T̂k+1(B)Ψ (0)= 2iBT̂k(B)Ψ (0)+ T̂k−1(B)Ψ (0),

for k � 1.
As ‖T̂k(B)‖� 1 by construction and|Jk(z)|� |z|k/2kk! for z real [29], thekth coefficient in Eq. (20) vanishe

exponentially fast for sufficiently largek. Thus, we can obtain an accurate approximation by summing
contributions in Eq. (20) withk � K only. The numberK is fixed by requiring that|Jk(z)| < κ for all k > K.
Here,κ is a control parameter that determines the accuracy of the approximation. For fixedκ , K increases linearly
with z= t‖H‖1 (there is no requirement ont being small). From numerical analysis it is known that for fixedK,
the Chebyshev polynomial is very nearly the same polynomial as the minimax polynomial [42], i.e. the poly
of degreeK that has the smallest maximum deviation from the true function, and is much more accurate t
instance a Taylor expansion of the same degreeK. In Fig. 1 we show a plot ofJn(z = 200) as a function ofn to
illustrate these points. From Fig. 1 it is clear that the Chebyshev polynomial expansion will only be useful ifK lies
to the right of the right-most extremum ofJn(z= 200), i.e.K has to be larger than 200 in this example.

We now turn to the treatment of the current sourceJ(t). The contribution of the source term to the EM field
time t is given by the last term in Eq. (5). For simplicity we only consider the case of a sinusoidal source

(23)J(r, t)=*(t)*(T − t)s(r)sin(Ωt),
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Fig. 1. Dependence of the Bessel functionJn(z = 200) on the ordern. The value ofz corresponds to the timet = 100 used in Figs. 3–6 an
Tables 1–3.

wheres(r) specifies the spatial distribution andΩ ≡ 2πfs the angular frequency of the source. The step funct
*(t) and*(T − t) indicate that the source is turned on att = 0 and is switched off att = T . Note that Eq. (23)
may be used to compose sources with a more complicated time dependence by a Fourier sine transforma

The formal expression for the contribution of the sinusoidal source (23) reads

t∫
0

e(t−u)HΦ(u)du= (Ω2+H 2)−1
e(t−T ′)H × (ΩeT

′H −Ω cosΩT ′ −H sinΩT ′
)
Ξ

(24)≡ f (H, t, T ′,Ω)Ξ ,

where T ′ = min(t, T ) and Φ(u) ≡ *(t)*(T − t)sin(Ωt)Ξ . The vectorΞ represents the spatial (tim
independent) distributions(r) and has the same dimension asΨ (0). The coefficients of the Chebyshev polynom
expansion of the formal solution (24) are calculated as follows. First we repeat the scaling procedure d
above and substitute in Eq. (24)H = ix‖H‖1, t = z/‖H‖1, T ′ = Z′/‖H‖1, andΩ = ω‖H‖1. Then, we compute
the (Fast) Fourier Transform with respect tox of the functionf (x, z,Z′,ω) (which is non-singular on the interva
−1 � x � 1). By construction, the Fourier coefficientsSk(t‖H‖1) are the coefficients of the Chebyshev polynom
expansion [29].

Taking into account all contributions of the source term withk smaller thanK ′ (determined by a procedur
similar to the one forK), the one-step algorithm to compute the EM fields at timet reads

(25)Ψ̂ (t)=
[
J0
(
t‖H‖1

)
I + 2

K∑
k=1

Jk

(
t‖H‖1

)
T̂k(B)

]
Ψ (0)−

[
S0
(
t‖H‖1

)
I + 2

K ′∑
k=1

Sk

(
t‖H‖1

)
T̂k(B)

]
Ξ .

Note that in this one-step approach the time dependence of the source is taken into account exactly, withou
sampling it.

In a strict sense, the one-step method does not yield an orthogonal approximation. However, for p
purposes it can be viewed as an extremely stable time-integration algorithm because it yields an appro
to the exact time evolution operatorU(t)= etH that is exact to nearly machine precision, i.e. in practice the v
of ε̃ in Eq. (7) is very small. This also implies that within the same precision∇ · (µH(t))= ∇ · (µH(t = 0)) and
∇ · (εE(t)) = ∇ · (εE(t = 0)) holds for all times, implying that the numerical scheme will not produce artifi
charges during the time integration [2,3].
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4. Implementation

The basic steps in the construction of the product-formula and one-step algorithms are best illustr
considering the simplest case, i.e. the Maxwell equations of a 1D homogeneous problem. From a concep
of view nothing is lost by doing this: the extension to 2D and 3D inhomogeneous problems is straightfo
albeit technically non-trivial [11,12,26,27].

We consider a system, infinitely large in they and z direction, for whichε = 1 andµ = 1. Under these
conditions, the Maxwell equations reduce to two independent sets of first-order differential equations
transverse electric (TE) mode and the transverse magnetic (TM) mode [1]. As the equations of the TE- a
mode differ by a sign we can restrict our considerations to the TM-mode only. The magnetic fieldHy(x, t) and the
electric fieldEz(x, t) of the TM-mode in the 1D cavity of lengthL are solutions of

(26)
∂

∂t
Hy(x, t)= ∂

∂x
Ez(x, t),

(27)
∂

∂t
Ez(x, t)= ∂

∂x
Hy(x, t)− Jz(x, t),

subject to the boundary conditionEz(0, t)= Ez(L, t) = 0 [1]. Note that the divergence of both fields is trivia
zero.

Following Yee [4], to discretize Eqs. (26) and (27), it is convenient to assignHy to odd andEz to even numbered
lattice sites, as shown in Fig. 2. Using the second-order central-difference approximation to the first derivat
respect tox, we obtain

(28)
∂

∂t
Hy(2i + 1, t)= δ−1(Ez(2i + 2, t)−Ez(2i, t)

)
,

(29)
∂

∂t
Ez(2i, t)= δ−1(Hy(2i + 1, t)−Hy(2i − 1, t)

)− Jz(2i, t),

where we have introduced the notationA(i, t)=A(x = iδ/2, t). The integeri labels the grid points andδ denotes
the distance between two next-nearest neighbors on the lattice (hence the absence of a factor two in the no
We define then-dimensional vectorΨ (t) by

(30)Ψ (i, t)=
{

Hy(i, t), i odd,

Ez(i, t), i even.

The vectorΨ (t) contains both the magnetic and the electric field on the lattice pointsi = 1, . . . , n. Theith element
of Ψ (t) is given by the inner productΨ (i, t)= eT

i ·Ψ (t) whereei denotes theith unit vector in then-dimensional
vector space. Using this notation (which proves most useful for the case of 2D and 3D for which it is
cumbersome to write down explicit matrix representations), it is easy to show that Eqs. (28) and (29)

Fig. 2. Positions of the two TM-mode field components on the one-dimensional grid. The distance between two next-nearest ne
denoted byδ.
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written in the form of Eq. (4) where the matrixH is given by

(31)H = δ−1
n−1∑
i=1

(
ei eT

i+1− ei+1eT
i

)=


0 δ−1

−δ−1 0 δ−1

. . .
. . .

. . .

−δ−1 0 δ−1

−δ−1 0

 .

We immediately see thatH is sparse and skew-symmetric by construction.

4.1. Yee-type algorithms

First we demonstrate that the conventional Yee algorithm fits into the product-formula approach. For
model (31) it is easy to see that one time-step with the Yee algorithm corresponds to the operation

(32)UYee
1 (τ )= (I + τA)(I − τAT)= eτAe−τAT

,

where

(33)A= δ−1
n−1∑′

i=2

(
ei eT

i−1− ei eT
i+1

)=


0 δ−1 0 0 0 · · ·
0 0 0 0 0 · · ·
0 −δ−1 0 δ−1 0 · · ·
0 0 0 0 0 · · ·
0 0 0 −δ−1 0 · · ·
...

...
...

...
...

. . .

 ,

and we used the arrangements ofH andE fields as defined by Eq. (30). We use the notation
∑′ to indicate that

the stride of the summation index is two. Note that sinceA2 = 0 we have eτA = 1+ τA exactly. Therefore we
recover the time-step operator of the Yee algorithm using the first-order product-formula approximationτH

and decomposingH =A−AT. However, the conventional Yee algorithm is second-order, not first-order, acc
in time [2,3]. This is due to the use of a staggered grid in time [2,3]. To perform one time step with the conve
Yee algorithm we need to know the values ofEz(t) andHy(t + τ/2), notHy(t). Another method has to supply th
Hy -field at a time shifted byτ/2. We will denote the conventional Yee algorithm, i.e. the algorithm that use
staggered space-and-time grid and is second-order accurate in both space and time (notUYee

1 (τ )), by “C-Yee” and
reserve the use of the upperscriptYee to algorithms that have been constructed by decomposingH = A− AT but
are not using the staggered-in-time grid.

Within the spirit of this approach, we can easily eliminate the staggered-in-time grid at virtually no
computational cost or programming effort (if a conventional Yee code is available) by using the secon
product formula

(34)UYee
2 (τ )= eτA/2e−τAT

eτA/2= (I + τA/2)(I − τAT)(I + τA/2).

The effect of the last factor is to propagate theHy-field by τ/2. The middle factor propagates theEz-field by τ .
The first factor again propagates theHy -field by τ/2. In this scheme all EM fields are to be taken at the s
time. The algorithm defined byUYee

2 (τ ) is second-order accurate in time by construction [16]. Note that eτA/2 is
not orthogonal so nothing has been gained in terms of stability. Since(UYee

2 (τ ))m = e−τA/2(UYee
1 (τ ))me+τA/2, we

see that, compared to the conventional Yee algorithm, the extra computational work is proportional to(1+ 2/m),
hence negligible if the number of time stepsm is large.

According to the general theory outlined in Section 3, the expression

(35)UYee
4 (τ )=UYee

2 (aτ)UYee
2 (aτ)UYee

2

(
(1− 4a)τ

)
UYee

2 (aτ)UYee
2 (aτ),
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defines a fourth-order accurate Yee-like scheme, the realization of which requires almost no effort onceUYee
2 has

been implemented. It is easy to see that the above construction of the Yee-like algorithms holds for the mu
complicated 2D, and 3D inhomogeneous case as well. Also note that the fourth-order Yee algorithmUYee

4 does not
require extra storage to hold field values at intermediate times.

4.2. Unconditionally stable algorithms

Guided by previous work on Schrödinger and diffusion problems we splitH into two parts such thatH =
H1+H2, dividing the lattice into odd and even numbered cells [16,35,40]. Following Ref. [11] we have

(36)H1= δ−1
n−1∑′

i=1

(
ei eT

i+1− ei+1eT
i

)=


0 δ−1 0 0 0 · · ·
−δ−1 0 0 0 0 · · ·

0 0 0 δ−1 0 · · ·
0 0 −δ−1 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 −δ−1 · · ·
...

...
...

...
...

. . .


,

(37)H2= δ−1
n−2∑′

i=1

(
ei+1eT

i+2− ei+2eT
i+1

)=


0 0 0 0 0 · · ·
0 0 δ−1 0 0 · · ·
0 −δ−1 0 0 0 · · ·
0 0 0 0 δ−1 · · ·
0 0 0 −δ−1 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .


.

Clearly bothH1 andH2 are skew-symmetric block-diagonal matrices, containing one 1× 1 matrix and(n− 1)/2
real, 2×2 skew-symmetric matrices. According to the general theory given above, the first-order algorithm i
by

(38)Ũ1(τ )= eτH1eτH2 =
{ n−1∏′

i=1

exp
[
τδ−1(ei eT

i+1− ei+1eT
i

)]}{ n−2∏′

i=1

exp
[
τδ−1(ei+1eT

i+2− ei+2eT
i+1

)]}
.

To derive Eq. (38) we used the block-diagonal structure ofH1 andH2 (see Eqs. (36) and (37)) and obtained an ex
expression for̃U1(τ ) in terms of an ordered product of matrix exponentials: the order of the matrix expone
between each pair of curly brackets is irrelevant as these matrices commute with each other. Each of the
exponentials only operates on a pair of elements ofΨ (t) and leaves other elements intact. The indices of eac
these pairs are given by the subscripts ofe andeT. From Eq. (38) it is clear what a program should do: Make lo
overi with stride 2. For eachi pick a pair of elements fromΨ (t) according to the subscripts ofe andeT, compute
(or fetch from memory) the elements of the plane rotation (see Eq. (39)), perform the plane rotation, i.e. m
the 2×2 matrices and the vectors of length two, and overwrite the same two elements. As the matrix expon
a block-diagonal matrix is equal to the block-diagonal matrix of the matrix exponentials of the individual b
the numerical calculation of eτH1 (or eτH2) reduces to the calculation of(n− 1)/2 matrix exponentials of 2× 2
matrices. The matrix exponential of a typical 2× 2 matrix appearing in eτH1 or eτH2 is given by

(39)exp

[
α

(
0 1
−1 0

)](
Ψ (i, t)

Ψ (j, t)

)
=
(

cosα sinα
−sinα cosα

)(
Ψ (i, t)

Ψ (j, t)

)
.

Using the algorithm to compute Eq. (38), it is easy to construct the unconditionally stable, higher-order alg
Ũ2(τ ) andŨ4(τ ), see Eqs. (13) and (15).
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Obviously, the decomposition intoH1 Eq. (36) andH2 Eq. (37) yields the most simple real-space algorithm
is not difficult to imagine that a better but slightly more complicated algorithm can be constructed by using
of 3× 3 instead of 2× 2 matrices. Thus we are lead to consider the decomposition

(40)

H3= δ−1
n−2∑′′

i=1

(
ei eT

i+1+ ei+1eT
i+2− ei+1eT

i − ei+2eT
i+1

)=


0 δ−1 0 0 0 · · ·
−δ−1 0 δ−1 0 0 · · ·

0 −δ−1 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 −δ−1 · · ·
...

...
...

...
...

. . .


,

(41)

H4= δ−1
n−4∑′′

i=1

(
ei+2eT

i+3+ ei+3eT
i+4− ei+3eT

i+2− ei+4eT
i+3

)=


0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 δ−1 0 · · ·
0 0 −δ−1 0 δ−1 · · ·
0 0 0 −δ−1 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .


.

where the double prime indicates that the stride of the indexi is three. Obviously bothH3 andH4 are skew-
symmetric block-diagonal matrices, built from the 3× 3 skew-symmetric matrix

(42)B =
 0 δ−1 0

−δ−1 0 δ−1

0 −δ−1 0

 .

As B3=−2B we have

(43)eτB = 1+ sB + cB2=
1− c s c

−s 1− 2c s

−c −s 1− c

 ,

wheres = sin(
√

2τ ) and c = sin2(τ/
√

2). In practice, using the 3× 3 instead of the 2× 2 decomposition is
marginally more difficult. We will denote the corresponding second- and fourth-order algorithm byŨ3×3

2 and
Ũ3×3

4 , respectively.

4.3. ADI algorithm

For the tri-diagonal matrix (31), the ADI algorithm reduces to the Cranck–Nicholson method [42]. Th
diagonal structure of the matrixH permits the calculation of(I − τH/2)−1Ψ in O(n) operations by standar
linear algebra methods [42].

4.4. One-step algorithm

The one-step algorithm is based on the recursion (see Eqs. (21) and (22))

(44)Ψ k+1= 2H

‖H‖1Ψ k +Ψ k−1.
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Thus, the explicit form Eq. (31) is all we need to implement the matrix–vector operation (i.e.Ψ ′ ← HΨ ) that
enters Eq. (44).

The coefficientsJk(z) andSk(z) (see Eq. (25)) should be calculated to high precision. Using the recu
relation of the Bessel functions, allK coefficients can be obtained withO(K) arithmetic operations [42]. Th
numbersSk(z) can be calculated inO(K logK) by standard Fast Fourier transformation techniques. Clearly
computations are a negligible fraction of the total computational cost for solving the Maxwell equations.

Performing one time step amounts to repeatedly using recursion (22) to obtainT̂k(B)Ψ (0) for k = 2, . . . ,K,
multiply the elements of this vector byJk(z) (or Sk(z)) and add all contributions. This procedure requires sto
for two vectors of the same length asΨ (0) and some code to multiply such a vector by the sparse matrixH . The
result of performing one time step yields the solution at timet , hence the name one-step algorithm. In contras
what Eqs. (21) and (22) might suggest, the algorithm does not require the use of complex arithmetic.

5. Numerical experiments

Except for the conventional Yee algorithm, all algorithms discussed in this paper operate on the vector
defined at the same timet . We use the one-step algorithm (with a time stepτ/2) to computeEz(τ/2) andHy(τ/2).
Then we useEz(0) andHy(τ/2) as the initial values for the conventional Yee algorithm. In the presence
current source, there are some ambiguities with this procedure as it is not obvious how to treat the sourc
Eq. (9). In order to compare of the final result of the conventional Yee algorithm with those of the other m
we use the one-step algorithm once more to shift the time of theHy field by−τ/2. This procedure to prepa
the initial and to analyze the final state of the Yee algorithm does in fact make the results of the conventio
algorithm look a little more accurate than they would be if the exact data of theτ/2-shifted fields are not available
Thus, the results on the errors of the conventional Yee algorithm presented in this paper give a too optimis
on the accuracy of this algorithm but we nevertheless adopt the above procedure to make a quantitative co
between the various algorithms.

We define the error of the solutioñΨ (t) for the wave form by‖Ψ̃ (t)− Ψ̂ (t)‖/‖Ψ̂ (t)‖. Here and in the seque
the caret̂ on top of a symbol indicates that the results have been obtained by means of the one-step al
Thus,Ψ̂ (t) is the vector of EM fields obtained by the one-step algorithm. In our definition of the error we
already assumed that the one-step algorithm yields the exact (within numerical precision) results but this h
demonstrated of course. A comparison of the results of an unconditionally stable algorithm, e.g.,Ũ4 with those of
the one-step algorithm is sufficient to show that within rounding errors the latter yields the exact answer. U
triangle inequality

(45)
∥∥Ψ (t)− Ψ̂ (t)

∥∥�
∥∥Ψ (t)− Ψ̃ (t)

∥∥+ ∥∥Ψ̃ (t)− Ψ̂ (t)
∥∥,

and the rigorous bound

(46)
∥∥Ψ (t)− Ψ̃ (t)

∥∥� c4τ
4t

(∥∥Ψ (0)
∥∥+ t∫

0

∥∥J(u)
∥∥du

)
,

we can be confident that the one-step algorithm yields the numerically exact answer if (i) Eq. (46) is not v
and (ii) if ‖Ψ̃ (t)− Ψ̂ (t)‖ vanishes likeτ4.

If an algorithm conserves the norm of the normalized vectorΨ (t) (as in the case of the unconditiona
stable algorithms discussed in this paper), in the absence of current sources, the difference between
and approximate solution can never exceed 2 (‖Ψ̃ (t)− Ψ̂ (t)‖� ‖Ψ̃ (t)‖+‖Ψ̂ (t)‖ = 2). Therefore, the behavior o
the error as a function ofτ has no significance if the error is of the order of one.

In Fig. 3 we show a typical result of a one-step calculation on a grid ofn = 5001 sites withδ = 0.1
(corresponding to a physical length of 250.05), and a current source placed ati = 2500 to eliminate possibl



H. De Raedt et al. / Computer Physics Communications 156 (2003) 43–61 55

is

l

e
d by
and 6,
2) and

e
Tables 2

bitrarily
stable.

nventional
and
Fig. 3. The fieldHy(x, t = 100) generated by a current source atx = 125 that oscillates at frequencyfs = 2π during the interval 0� t � 6, as
obtained by the one-step algorithm withK ′ = 2103 (K = 0 in this case).

Table 1
The error‖Ψ̃ (t)− Ψ̂ (t)‖/‖Ψ̂ (t)‖ at time t = 100 as a function of the time stepτ for eight different FDTD algorithms. The current source
positioned at the center of the system (see Fig. 3), and oscillates at frequencyfs = 2π during the interval 0� t � 6, Ψ̂ (t) is the vector obtained
by the one-step algorithm withκ = 10−9, usingK ′ = 2103 matrix–vector operationsΨ ′ ←MΨ . The largest time step (τ = 0.1) corresponds to
the upperbound on the Courant number (τ/δ) for which the conventional Yee algorithm is stable [2]. C-Yee:Ψ̃ (t) obtained by the conventiona
Yee algorithm [2–4]; Other columns:̃Ψ (t) obtained by the algorithms indicated

τ C-Yee UYee
2 UADI

2 Ũ2 Ũ3×3
2 UYee

4 Ũ4 Ũ3×3
4

0.10000E+0 0.16E+1 0.15E+1 0.15E+1 0.15E+1 0.14E+1 0.15E+0 0.37E+0 0.27E+0
0.50000E−1 0.18E+1 0.18E+1 0.13E+1 0.16E+1 0.13E+1 0.36E−1 0.33E−1 0.23E−1
0.25000E−1 0.68E+0 0.65E+0 0.12E+1 0.72E+0 0.12E+1 0.25E−2 0.22E−2 0.15E−2
0.12500E−1 0.21E+0 0.19E+0 0.35E+0 0.13E+1 0.31E+0 0.16E−3 0.14E−3 0.96E−4
0.62500E−2 0.63E−1 0.55E−1 0.10E+0 0.35E+0 0.78E−1 0.99E−5 0.87E−5 0.60E−5
0.31250E−2 0.19E−1 0.14E−1 0.28E−1 0.88E−1 0.20E−1 0.62E−6 0.55E−6 0.38E−6
0.15625E−2 0.61E−2 0.35E−2 0.69E−2 0.22E−1 0.49E−2 0.39E−7 0.34E−7 0.24E−7
0.78125E−3 0.23E−2 0.86E−2 0.17E−2 0.55E−2 0.12E−2 0.24E−8 0.21E−8 0.15E−8
0.39063E−3 0.10E−2 0.22E−3 0.43E−3 0.14E−2 0.31E−3 0.24E−9 0.24E−9 0.22E−9

artifacts of the boundaries. The frequency of the source is set to one (fs = 2π ) and the number of periods th
source radiates is set to six (i.e.T = 6). In Table 1 (Fig. 4) we present results for the errors, as obtaine
repeating the simulation shown in Fig. 3 using eight different FDTD methods. In Tables 2 and 3 (Figs. 5
respectively) we show similar results but instead of using a current source, a random wave form (Table
Gaussian wave packet (Table 3) was taken as the initial condition.

From the data in Tables 1–3 we conclude that the error of algorithmŨ4 vanishes likeτ4, demonstrating that th
one-step algorithm yields the numerically exact result (see Eqs. (45) and (46)). The results presented in
and 3 have been obtained by using a vector of initial values that is normalized to one, i.e.‖Ψ (0)‖ = 1. As
‖Ψ̂ (t)‖ = 1 for 0� t � 100 to at least 10 digits,‖Ψ̃ (t)− Ψ̂ (t)‖/‖Ψ̂ (t)‖ = ‖Ψ̃ (t)− Ψ̂ (t)‖ for all entries in Tables 2
and 3. The high precision of the one-step algorithm also allows us to use it for genuine time stepping with ar
large time steps, this in spite of the fact that strictly speaking, the one-step algorithm is not unconditionally

The data in Tables 1–3 suggests that there does not seem to be a significant difference between the co
Yee algorithm and its variantUYee

2 but in fact there is. The time evolution matrix corresponding to the Yee
the UYee

2 algorithm is not orthogonal. Therefore the energy of the electromagnetic field (W = ‖Ψ (t)‖2) is not
conserved. Furthermore, in the conventional Yee algorithm, theE- andH -fields are time-shifted byτ/2 with
respect to each other. Obviously, by constructionUYee

2 does not rely on staggered-in-timeE- andH -fields and it
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Fig. 4. The data presented in Table 1 plotted on a double logarithmic scale. C-Yee: data obtained by the conventional Yee algorithm
largest time step (τ = 0.1) corresponds to the upperbound on the Courant number (τ/δ) for which the conventional Yee algorithm is stable [2
Lines are guides to the eye.

Table 2
The error‖Ψ̃ (t)− Ψ̂ (t)‖/‖Ψ̂ (t)‖ at timet = 100 as a function of the time stepτ for eight different FDTD algorithms. The system is the same
in Fig. 3 and Table 1. The initial values of the EM fields are random, distributed uniformly over the interval[−1,1]. Ψ̂ (t) is the vector obtained
by the one-step algorithmκ = 10−9, usingK = 2080 matrix–vector operationsΨ ′ ←MΨ . The largest time step (τ = 0.1) corresponds to the
upperbound on the Courant number (τ/δ) for which the conventional Yee algorithm is stable [2]. C-Yee:Ψ̃ (t) obtained by the conventional Ye
algorithm [2–4]; Other columns:̃Ψ (t) obtained by the algorithms indicated

τ C-Yee UYee
2 UADI

2 Ũ2 Ũ3×3
2 UYee

4 Ũ4 Ũ3×3
4

0.10000E+0 0.99E+1 0.11E+2 0.14E+1 0.15E+1 0.17E+1 0.11E+1 0.13E+1 0.13E+1
0.50000E−1 0.13E+1 0.13E+1 0.13E+1 0.13E+1 0.14E+1 0.78E+0 0.16E+0 0.16E+0
0.25000E−1 0.13E+1 0.13E+1 0.13E+1 0.13E+1 0.12E+1 0.57E−2 0.11E−1 0.11E−1
0.12500E−1 0.12E+1 0.12E+1 0.14E+1 0.12E+1 0.63E+0 0.36E−2 0.71E−3 0.71E−3
0.62500E−2 0.70E+0 0.70E+0 0.12E+1 0.32E+0 0.16E+0 0.22E−3 0.45E−4 0.45E−4
0.31250E−2 0.18E+0 0.18E+0 0.36E+0 0.82E−1 0.41E−1 0.14E−4 0.28E−5 0.28E−5
0.15625E−2 0.46E−1 0.46E−1 0.92E−1 0.20E−1 0.10E−1 0.89E−6 0.17E−6 0.17E−6
0.78125E−3 0.11E−1 0.11E−1 0.23E−1 0.51E−2 0.26E−2 0.56E−7 0.11E−7 0.28E−8
0.39063E−3 0.29E−2 0.29E−2 0.57E−2 0.13E−2 0.64E−3 0.35E−8 0.68E−9 0.18E−9

Table 3
The error‖Ψ̃ (t)− Ψ̂ (t)‖/‖Ψ̂ (t)‖ at timet = 100 as a function of the time stepτ for eight different FDTD algorithms. The system is the sa
as in Fig. 3 and Table 1. The initial state of the EM fields is a Gaussian wave packet (Ez(t)= exp(−(x− x0− t)2/σ2)) with a widthσ = 4, and
its centerx0 = 125 positioned at the middle of the system (see Fig. 3).Ψ̂ (t) is the vector obtained by the one-step algorithm withκ = 10−9,
usingK = 2080 matrix–vector operationsΨ ′ ←MΨ . The largest time step (τ = 0.1) corresponds to the upperbound on the Courant num
(τ/δ) for which the conventional Yee algorithm is stable [2]. C-Yee:Ψ̃ (t) obtained by the conventional Yee algorithm [2–4]; Other colum
Ψ̃ (t) obtained by the algorithms indicated

τ C-Yee UYee
2 UADI

2 Ũ2 Ũ3×3
2 UYee

4 Ũ4 Ũ3×3
4

0.10000E+0 0.25E−2 0.25E−2 0.50E−2 0.14E+1 0.79E+0 0.28E−6 0.15E−1 0.17E−1
0.50000E−1 0.63E−3 0.63E−3 0.13E−2 0.90E+0 0.25E+0 0.17E−7 0.95E−3 0.15E−3
0.25000E−1 0.16E−3 0.16E−3 0.32E−3 0.26E+0 0.65E−1 0.11E−8 0.60E−4 0.97E−4
0.12500E−1 0.40E−4 0.39E−4 0.79E−4 0.65E−1 0.16E−1 0.69E−10 0.37E−5 0.61E−5
0.62500E−2 0.99E−5 0.98E−5 0.20E−4 0.16E−1 0.41E−2 0.12E−10 0.23E−6 0.38E−6
0.31250E−2 0.25E−5 0.25E−5 0.49E−5 0.41E−2 0.10E−2 0.12E−10 0.15E−7 0.24E−7
0.15625E−2 0.63E−6 0.61E−6 0.12E−5 0.10E−2 0.26E−3 0.12E−10 0.91E−9 0.15E−8
0.78125E−3 0.16E−6 0.15E−6 0.31E−6 0.25E−3 0.64E−4 0.12E−10 0.55E−10 0.10E−9
0.39063E−3 0.41E−7 0.38E−7 0.77E−7 0.64E−4 0.16E−4 0.12E−10 0.43E−10 0.46E−10
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Fig. 5. The data presented in Table 2 plotted on a double logarithmic scale. C-Yee: data obtained by the conventional Yee algorithm
largest time step (τ = 0.1) corresponds to the upperbound on the Courant number (τ/δ) for which the conventional Yee algorithm is stable [2
Lines are guides to the eye.

Fig. 6. The data presented in Table 3 plotted on a double logarithmic scale. C-Yee: data obtained by the conventional Yee algorithm
largest time step (τ = 0.1) corresponds to the upperbound on the Courant number (τ/δ) for which the conventional Yee algorithm is stable [2
Lines are guides to the eye.

also performs better than the conventional Yee algorithm with respect to energy conservation. In Fig. 7 w
results of the time evolution of the total energy of the EM field, for a system ofn= 97 sites, a mesh sizeδ = 0.1
and a time step ofτ = 0.01. A normalized (‖Ψ (0)‖2= 1) random initial condition was used.

For the conventional Yee algorithm, the fluctuations of the energy are a factor of ten larger than in the ca
UYee

2 algorithm. As expected on theoretical grounds, theŨ4 algorithm (dotted, horizontal line) exactly conserv
the energy. The fact thatUYee

2 conserves EM-field energy much better than the conventional Yee algorithm al
a considerable impact on the quality of the eigenmode distribution. The latter is obtained by Fourier transfo
of Ψ T(t) · Ψ (0) (see Ref. [11] for more details). In Fig. 8 we show the low-frequency part of the eigen
distribution of the same system as the one of Fig. 7. It is obvious that there is a significant improvemen
quality of the spectrum if we useUYee

2 instead of the conventional Yee algorithm but for this applicationŨ4
performs much better than the Yee-type algorithms.

From Tables 1–3 it is clear that all time-stepping algorithms analyzed in this paper yield inaccurate re
the time step approaches the stability limitτ/δ = 1 of the conventional Yee algorithm. However this is no lon
the case if the dimensionality of the system increases [26,27]. In particular, using theŨ4 algorithm it is possible to
compute the density of states of three-dimensional photonic bandgap systems, employing a time step tha
the value of the stability limit of the conventional Yee algorithm [26,27].
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Fig. 7. The energyW = Ψ T(t) · Ψ (t) of the EM fields as a function of time as obtained by the Yee (solid line),UYee
2 (dashed line), and̃U4

(dotted line) algorithm for a 1D cavity of size 48.05 (n= 97 mesh points), a mesh sizeδ = 0.1 and a time stepτ = 0.01.

Fig. 8. The eigenvalue distribution (density of states) of the matrixH , as obtained by Fourier transformation ofΨ T(t) ·Ψ (0), for the same system
as in Fig. 7. The functionΨ T(t) ·Ψ (0) is sampled at time intervals of 0.1, the total number of samples being 4096. Solid line: convention
algorithm; dashed line:UYee

2 algorithm; dotted line: energy conserving algorithm̃U4.

Table 1 suggests that̃U2 is the least efficient of the eight FDTD methods: It uses more arithmetic opera
than the conventional Yee algorithm and yields errors that are larger than those of the Yee algorithm. Howe
conclusion is biased by the choice of the model problem and does not generalize. If the initial EM field distr
is random then, for sufficiently smallτ , algorithmŨ2 is more accurate than the two second-order accurate Yee
algorithms, as is clear from the data in Table 2 [43]. Also in this case, for the largestτ in Table 2, the Yee andUYee

2
algorithm are operating at the point of instability, signaled by the fact that the norm ofΨ (t) grows rapidly, resulting
in errors that are very large. From Tables 1 and 2 one might conclude that the decomposition that gener
type algorithms yields the least accurate approximations to the time evolution operator, although the di
is not really significant, but, as Table 3 shows, this conclusion would be wrong. If the initial state is a Ga
wave packet that is fairly broad, the Yee-type algorithms are much more accurate than the unconditional
algorithms employed in this paper. From the data in Tables 1–3 we conclude that there is no good reaso
the ADI algorithm (even disregarding the fact that it is slower than the other second-order methods). In gen
Ũ3×3

2 (Ũ3×3
4 ) algorithm performs a little better thañU2 (Ũ4) but the gain is marginal. In contrast to the numeri

data presented in Ref. [19], for all algorithms the data of Tables 1–3 clearly agree with the theoretically e
behavior of the error as a function ofτ if τ is small enough [44].



H. De Raedt et al. / Computer Physics Communications 156 (2003) 43–61 59

ccuracy
n error of
he
cause

step
lusions
simple

t than
s may
Yee-like
lation of
t
to its

are
oach is

simple
t more
uch the
sented
tions it is
imulation
hms are
erfectly
to see
roach
agnetic

aken into
y stable
ne-step
values of
utational
Usually if a current source is present we haveΨ (0) = 0. Then the one-step algorithm requiresK ′ (sparse)
matrix–vector operations (Ψ ′ ←MΨ ) to computeΨ (t). For a 1D system the standard Yee,UYee

2 andUYee
4 , Ũ2,

and Ũ4 algorithms perform (in worst case, without additional optimization), respectively, 1, 3/2, 6, 3/2, and 6
MΨ -operations per time step. The one-step algorithm carries outK ′ = 2103 matrix–vector operationsΨ ′ ←MΨ

to complete this simulation. This implies that for allτ < t/K ′, the FDTD algorithms will perform moreΨ ′ ←MΨ

operations than the one-step algorithm. For the data presented in this paper, this is the case ifτ < 0.05 for the
conventional Yee algorithm and is always the case forŨ4 because the latter uses a factor of 6 moreΨ ′ ←MΨ

operations than the conventional Yee algorithm.

6. Conclusion

The answer to the question which of the algorithms is the most efficient one crucially depends on the a
that one finds acceptable. Taking the data of Table 1 as an example we see that if one is satisfied with a
more than 2%, one could use the conventional Yee algorithm. Withτ = 0.05 it needs 2000 time steps to find t
solution att = 100, close to theK ′ = 2103. Nevertheless we recommend to use the one-step algorithm be
then the time-integration error is negligible. The conventional Yee algorithm is no competition forŨ4 if one
requires an error of less than 1% but thenŨ4 is not nearly as efficient (by a factor of about 6) as the one-
algorithm. Increasing the dimensionality of the problem favors the one-step algorithm [26,27]. These conc
seem to be quite general and are in concert with numerical experiments on 1D, 2D and 3D systems [27]. A
theoretical analysis of theτ -dependence of the error shows that the one-step algorithm is more efficien
any other FDTD method if we are interested in the EM fields at a particular (large) time only [26,27]. Thi
open possibilities to solve problems in computational electrodynamics that are currently intractable. The
algorithms do not conserve the energy of the EM fields and therefore they are less suited for the calcu
the eigenvalue distributions (density of states), a problem for which theŨ4 algorithm may be the most efficien
of all the algorithms covered in the paper. The main limitation of the one-step algorithm is directly linked
mathematical justification. The Chebyshev approach requires thatH is diagonalizable and that its eigenvalues
real or pure imaginary. The effect of relaxing these conditions on the applicability of the Chebyshev appr
left for future research.

In this paper we have focused entirely on the accuracy of time integration algorithms, using the most
discretization of the spatial derivatives. In practice it is straightforward, though technically non-trivial, to trea
sophisticated discretization schemes [2,12] by the methodology reviewed in this paper. We also did not to
subject of different boundary conditions, a very important aspect in real-life applications [2,3]. All results pre
in this paper have been obtained for systems that have perfectly reflecting boundaries. For most applica
necessary to adopt boundary conditions that perfectly absorb, not reflect, all waves that move towards the s
box boundary [2]. As demonstrated above, the conventional Yee and the unconditionally stable algorit
particular implementations of the same product formula. Therefore one would expect that Berenger’s p
matched layer approach [45] should work for the latter class of algorithms as well. In fact, it is easy
that it will by considering the equivalent, perfectly-matched unaxial-medium formulation [2,46]. In this app
the perfectly-matched material enters through frequency-dependent anisotropic electric permittivity and m
permeability tensors. In the Yee-algorithm implementation, the frequency dependence of these tensors is t
account by introducing auxiliary field variables [2]. The same procedure can be used for the unconditionall
algorithms as well. The practical implementation of this scheme is left for future research. Extending the o
algorithm to account for absorbing boundaries also requires further research: The appearance of eigen
H with a non-zero real part changes the rate of convergence of expansion (20) and hence also its comp
efficiency.
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