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Abstract

We present a comparative study of numerical algorithms to solve the time-dependent Maxwell equations for systems with
spatially varying permittivity and permeability. We show that the Lie—Trotter—Suzuki product-formula approach can be used
to construct a family of unconditionally stable algorithms, the conventional Yee algorithm, and two new variants of the Yee
algorithm that do not require the use of the staggered-in-time grid. We also consider a one-step algorithm, based on the
Chebyshev polynomial expansion, and compare the computational efficiency of the one-step, the Yee-type, the alternating-
direction-implicit, and the unconditionally stable algorithms. For applications where the long-time behavior is of main interest,
we find that the one-step algorithm may be orders of magnitude more efficient than present multiple time-step, finite-difference
time-domain algorithms.
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1. Introduction

The Maxwell equations describe the evolution of electromagnetic (EM) fields in space and time [1]. They
apply to a wide range of different physical situations and play an important role in a large number of engineering
applications. In many cases, humerical methods are required to solve Maxwell's equations [2,3]. A well-known
class of algorithms is based on a method proposed by Yee [4]. This finite-difference time-domain (FDTD) approach
owes its popularity mainly due to its flexibility and speed while at the same time it is easy to implement [2,3].

A limitation of Yee-based FDTD techniques is that their stability is conditional, depending on the mesh size of
the spatial discretization and the time step of the time integration [2,3]. Furthermore, in practice, the amount of
computational work required to solve the time-dependent Maxwell equations by present FDTD techniques [2,3,5—
12] prohibits applications to a class of important fields such as bio-electromagnetics and VLSI design [2,13,14].
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The basic reason for this is that the time step in the FDTD calculation has to be relatively small in order to maintain
stability and a reasonable degree of accuracy in the time integration. Thus, the search for new algorithms that
solve the Maxwell equations focuses on removing the conditional stability of FDTD methods and on improving
the accuracy/efficiency of the algorithms.

A systematic approach to construct unconditionally stable algorithms is to employ a Lie—Trotter—Suzuki
product-formula [15] to approximate the time evolution operator [16]. In the case of EM fields, the latter is the
matrix exponential of a skew-symmetric matrix and the approximations take the form of products of orthogonal
transformations [11,12]. The resulting numerical algorithms are unconditionally stable by construction [16,17].

The spectral-domain split-operator technique proposed in Ref. [10] is one of the many forms that results from
the use of the Lie—Trotter—Suzuki product-formulas [15]. This technique makes use of Fast Fourier Transforms
to compute the matrix exponentials of the displacement operators. The choice made in Ref. [10] yields an
approximation to the time-evolution operator that is no longer orthogonal and hence unconditional stability is
not automatically guaranteed [18]. In contrast, the methodology proposed in Refs. [11,12] yields efficient, explicit,
unconditionally stable schemes that operate on the EM fields defined on the real space grid only. These algorithms
naturally allow for the spatial variations in both the permittivity and the permeability.

The product-formula approach also provides a unified framework to construct and analyze other time stepping
algorithms [16,19]. To illustrate this point we show that the conventional Yee algorithm and the alternating-
direction-implicit (ADI) time-stepping algorithms [6—9,19] fit into this framework. Furthermore we propose new
variants of the Yee algorithm.

Another route to improve upon the accuracy/efficiency of time-integration schemes is to make use of the
Chebyshev polynomial expansions of the matrix exponential [20-25]. In this paper we review the one-step
algorithm [26,27], based on Chebyshev polynomials, to solve the time-dependent Maxwell equations for (very)
large time steps. As the solution obtained by the one-step algorithm is exact to nearly machine precision (for a
fixed spatial discretization), we use this algorithm to generate the reference data.

The main purpose of this paper is to review the basic ideas behind the recent developments in numerical
algorithms to solve the time-dependent Maxwell equations and to compare the virtues and shortcomings of the
different methods. The plan of the paper is as follows: In Section 2 we briefly discuss the basic physical symmetries
of the time-dependent Maxwell equations. The general framework to construct time-integration algorithms is laid
out in Section 3. We also pay attention to the numerical treatment of the current source term. In Section 4 we
use the simplest case of the time-dependent Maxwell equations to illustrate how the various algorithms can be
implemented. We explicitly show how the conventional Yee algorithm naturally fits into this framework and, by
minor modification, construct second-order and fourth-order time-accurate schemes that do not require the use
of staggered-in-time fields, nor extra memory to store intermediate results. Then we recall the steps to construct
the unconditionally stable algorithms proposed in Refs. [11,12] and analyze a modification to improve the time-
integration accuracy. Finally we discuss the implementation of the ADI and one-step algorithms. A discussion of
the results of numerical experiments and our conclusions are given in Sections 5 and 6, respectively.

2. Theory

This section recalls some well-known facts of Maxwell's theory and also serves to introduce the notation used
in this paper. We consider EM fields in linear, isotropic, nondispersive and lossless materials. The time evolution
of EM fields in these systems is governed by the time-dependent Maxwell equations [1]. Some important physical
symmetries of the Maxwell equations can be made explicit by introducing the fields

X(#)=/rH(@) and Y()=eEQ). 1)

Here,H(t) = (H(r,t), Hy(r, 1), Hy(r, )T denotes the magnetic artf{r) = (E.(r, 1), Ey(r,t), E,(r, /N7 the
electric field vector, while. = 1. (r) ande = ¢(r) denote, respectively, the permeability and the permittivity. In the
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absence of electric charges, Maxwell’s curl equations [2] read

a [ X() X(1) 1 0
Z — N 2
7 (v ) =7 (%60 )~ () @
whereld(t) = (Jx(r, 1), Jy(r, 1), J.(r, 1)) represents the source of the electric field @hdenotes the operator
1 1
=l Lyx L 0 : 3)
NG NG

Writing Z(r) = (X(r), Y(t))" it is easy to show that{ is skew symmetric, i.eHT = —H, with respect to the
inner productZ(1)|Z'(¢)) = fv ZT(t)-Z'(t) dr, whereV denotes the system’s volume. In addition to Eq. (2), the
EM fields also satisfyv - (,/u X(r)) =0 andV - (/e Y(r)) = 0 [1]. Throughout this paper we use dimensionless
quantities: We measure distances in units ahd express time and frequency in unita.¢f andc/2, respectively.

A numerical algorithm that solves the time-dependent Maxwell equations necessarily involves some discretiza-
tion procedure of the spatial derivatives in Eq. (2). Ideally, this procedure should not change the basic symmetries
of the Maxwell equations. We will not discuss the (important) technicalities of the spatial discretization (we refer
the reader to Refs. [2,3]) as this is not essential to the discussion that follows. On a spatial grid Maxwell’'s curl
equations (2) can be written in the compact form [11]

%wmszm—¢m. 4)

The vecton (¢) is a representation & () on the grid. The matrip{ is the discrete analogue of the operator (3),
and the vectow (¢) contains all the information on the current soud¢e. The formal solution of Eq. (4) is given

by

t

wm:umW©—/Ua—mmmm, (5)
0
where
U =¢e*, (6)

denotes the time-evolution matrix. If the discretization procedure preserves the underlying symmetries of the
time-dependent Maxwell equations then the matiixs real and skew symmetric [11], implying th&kt(¢) is
orthogonal [28]. Physically, the orthogonality &f(¢) implies conservation of energy [11].

3. Timeintegration algorithms

There are two, closely related, strategies to construct an algorithm for performing the time integration of the
time-dependent Maxwell equations defined on the grid [17]. The traditional approach is to discretize (with increas-
ing level of sophistication) the derivative with respect to time [17]. The other is to approximate the formally exact
solution, i.e. the matrix exponential(s) = €% by some time evolution matri/ (1) [16,17]. We adopt the latter
approach in this paper as it facilitates the construction of algorithms with specific features, such as unconditional
stability [11,16].

If the approximatiorﬁ(t) is itself an orthogonal transformation, thedl ()| = 1 where| X || denotes the 2-
norm of a vector or matrixX [28]. In the absence of source terms (ig(t) = 0) this implies that|¥ (¢)| =
||l7(t)lI/(0)|| = ||w (0)]|, for an arbitrary initial condition# (0) and for all timest and hence the time integration
algorithm defined bﬁ(r) is unconditionally stable by construction [16,17].
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In the presence of current sources, for gengra, it follows immediately from Eq. (5) that
t
wol <lvol se(vol+ [low]a). o
0

Where||ﬁ(u) —U)| < €for0<u <tandé is a measure for the accuracy of the approximaﬁajn).
From Eq. (5) it follows that the EM field# (r) change according to

t+t
vi+t)=elw@) — / el+T=H g (1) du. (8)
t

In the time-stepping approach we approximate the source term in Eq. (8) by the standard 3-point Gauss—Legendre
quadrature formula [29]

2

v(i+r)=elw(@) — % > w eMHITHRP (1 4 (14 x)7/2) + O(x7), (9)

i=0
wherexo, x1, x2 are the zeros of the Legendre polynom#alx) = x(5x2 — 3)/2 andw; = 8/(1 — x?)(15¢? —
3)2[29]. In practice we replacé®™)7#/2 in Eq. (9) by an approximatiodl (1 + x;)7/2).
We now consider three options to construct the approximate time evolution niatrjx We exclude from

the discussion the exceptional cases for which the matrix exponéntial= € can be calculated directly, as
these are usually of little relevance for realistic problems. The first option, which is based on the product-formula
approach, yields the conventional Yee algorithm, a higher-order generalization thereof, and the unconditional
schemes proposed in Refs. [11,12]. The second option is to use rational approximations to the matrix exponential,
yielding the standard ADI methods. Finally, the Chebyshev polynomial approximation to the matrix exponential is
used to construct a one-step algorithm [26,27].

3.1. Product-formula approach

As discussed in [11], a systematic approach to construct approximations to matrix exponentials is to make use
of the Lie—Trotter—Suzuki product-formula[15,30]

m—00

p m
gt — g (Hit+Hp) _ |im <HetHi/m> i (10)
i=1

and generalizations thereof [31,32]. Expression (10) suggests that
Ui(r)=et  ellr, (11)

might be a good approximation W(r) if t is sufficiently small. Applied to the case of interest here, if all Hhe
are real and skew-symmetri¢ (t) is orthogonal by construction and a numerical scheme based on Eq. (11) will
be unconditionally stable. For orthogonal matriéeg) andU;(t) it can be shown that [16]
2
T
|U@ - i@ < 5 X[, Hilll (12)

i<j

where [H;, H;j] = H;H; — H;H; is, in general, non-zero. Relaxing the condition tidatr) and Ui(r) are
orthogonal matrices changes thedependence in Eq. (12) but for smallthe error still vanishes like? [32].
From Eq. (12) it follows that, in general, the Taylor seriedkf) andU1(z) are identical up to first order in.
We callU1(7) afirst-order approximation to (7).
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The product-formula approach provides simple, systematic procedures to improve the accuracy of the
approximation tdJ (t) without changing its fundamental symmetries. For example, the matrix

Us(t) = Ur(—1/2) " Ur(z/2) = " Hr/? | eTH1/2gr /2 et Hp/2 (13)

is a second-order approximation &&(z) [31,32]. If U1() is orthogonal, so i€/>(t). For orthogonal/z(t) we
have [16]

|UG =m7) — [Ua(D)]"] < cat?t, (14)

wherecy is a positive constant.
Suzuki's fractal decomposition approach [32] gives a general method to construct higher-order approximations
based orUUz(7) (or U1(7)). A particularly useful fourth-order approximation is given by [32]

Ua(t) = Uz(at)Uz(at)Uz((1 — 4a)t)Uz(at)Uz(at), (15)

wherea = 1/(4 — 4/3). The approximations Egs. (11) and (13), and (15) have proven to be very useful in many
applications [15,16,31,33-41] and, as we show below, turn out to be equally useful for solving the time-dependent
Maxwell equations. As before, for orthogoridl(r) we have [16]

|U @t =mrt) —[Ua(D)]"| < cat™s, (16)

wherecy is a positive constant.

As our numerical results (see below) show, for sufficiently smaallhe numerical error of a time integrator
vanishes withr according to the-dependence of the corresponding rigorous bound, e.g., Egs. (12), (14), or (16).
Our experience shows that if this behavior is not observed, there is a fair chance that the computer program contains
one or more errors.

In practice an efficient implementation of the first-order scheme is all that is needed to construct the higher-
order algorithms (Eqgs. (13) and (15)). The crucial step of this approach is to choaggdtseich that the matrix
exponentials ex@g Hy), . .., exp(t H,) can be calculated efficiently. This will turn the formal expressiongfgir)
andUa(7) into efficient algorithms to solve the time-dependent Maxwell equations.

3.2. ADI algorithms

ADI algorithms are usually derived by starting from the differential equation and applying the operator splitting
idea [42]. Not surprisingly, the same algorithms can be obtained by approximating the formal solution of the
differential equation in terms of a product formula. Instead of hunting for a decomposition that leads to matrix
exponentials ex@ Hy), ..., exp(r H,) that are easy to compute, one can opt for an algorithm in which each
of these exponentials is calculated approximately. In principle this might be beneficial because there is more
flexibility in decomposingH. The standard strategy, preserving the symmetry/qf..., H, is to use rational
(Padé) approximations to the exponential [17]. For instance, the approximatrer{le+ x/2)/(1 — x/2) with
some decompositioH = H1 + H> yields the second-order-accurate ADI algorithm [17,19,42]

UpP (1) = (I = tH1/2) M (I + tH2/2)(I — TH2/2) (I + T H1/2), 17)

wherel is the identity matrix. As the subscript indicates, the algorithm (17) is second-order accurate in time. For
general skew-symmetric matricég and H, it is easy to show that the algorithmzAD' () is unconditionally
stable. Following Ref. [19] we rearrange factors and obtain

[[US®' )" || = |(I — tH1/2)  X2X1X2. .. X1 Xo(I + TH1/2)|
<[ —H/2) 71 X2X1X2. . X1 Xoll| (I + T H1/2) |
= | = cHY2)7| | (I + tH/2)|. (18)
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We used the fact that for skew-symmetri;, X; = (I — tH;/2)~(I + tH;/2) is orthogonal and that
X2X1Xo...X1Xo|| = 1. If X is skew-symmetric, it's eigenvalues are pure imaginary and theréforeXx) 1
is non-singular. Hence, for any number of time steps||[U5"' (1)]"|| < C, whereC is some finite positive
constant, proving that thg5'®! () algorithm is unconditionally stable in the Lax—Richtmyer sense [17].

The matrix inversions appearing in Eq. (17) suggest that for practical purposes the implicit tﬁg‘fﬂcﬁd) will

not be very useful unless— r H1/2 andl — t Ho/2 take special forms that allow efficient matrix inversion [17,42].
3.3. One-step algorithm

For completeness, we briefly review the theory behind the one-step algorithm described in [26,27]. The basic
idea of this approach is to make use of extremely accurate polynomial approximations to the matrix exponential.
First we use the Chebyshev polynomial expansion to approxifiéte and then show how to treat the source
term in Eqg. (5). We begin by “normalizing” the matri¥f. The eigenvalues of the skew-symmetric matix
are pure imaginary numbers. In practifleis sparse so it is easy to compuitd |1 = max; ), |H; j|. Then, by
construction, the eigenvalues 8f= —iH /|| H|1 all lie in the interval[—1, 1] [28]. Expanding the initial value
¥ (0) in the (unknown) eigenvectols of B, we find from Eq. (5) with@ (¢) = 0:

W () =eBw(0) =) Pib;b;|w(0). (19)
J
wherez =t || H |1 and theb; denote the (unknown) eigenvaluesiifThere is no need to know the eigenvalues and
eigenvectors oB explicitly. We find the Chebyshev polynomial expansiortaf) by computing the expansion
coefficients of each of the function§% that appear in Eq. (19). In particular, ad < b; <1, we can use the
expansion [29] €%/ = Jo(z) + 2 321 ik Jk(2) Tk (b)), where Ji(z) is the Bessel function of integer order to
write Eq. (19) as

o0

() = |:Jo(z)1 +2)° Jk(zm(B)]W(m. (20)
k=1

Hereﬁ(B) = ikTy (B) is a matrix-valued modified Chebyshev polynomial that is defined by the recursion relations
To(BW(0)=¥(0),  Ti(B)¥(0)=iB¥(0), (21)

and
Tiey1(B)W (0) = 2iBT (B)W (0) + Ti—1(B)¥ (0). (22)

fork > 1.

As || Tk (B)| < 1 by construction antV (z)| < |z|F/2%k! for z real [29], thekth coefficient in Eq. (20) vanishes
exponentially fast for sufficiently largé. Thus, we can obtain an accurate approximation by summing the
contributions in Eq. (20) wittk < K only. The numbei is fixed by requiring thatJx(z)| < « for all k > K.

Here,k is a control parameter that determines the accuracy of the approximation. For fiKeidicreases linearly

with z =¢||H||1 (there is no requirement anbeing small). From numerical analysis it is known that for fixéd

the Chebyshev polynomial is very nearly the same polynomial as the minimax polynomial [42], i.e. the polynomial
of degreek that has the smallest maximum deviation from the true function, and is much more accurate than for
instance a Taylor expansion of the same dedfeén Fig. 1 we show a plot of,,(z = 200 as a function of: to
illustrate these points. From Fig. 1 itis clear that the Chebyshev polynomial expansion will only be ukefielsf

to the right of the right-most extremum df (z = 200), i.e. K has to be larger than 200 in this example.

We now turn to the treatment of the current sou¢®. The contribution of the source term to the EM field at
timet is given by the last term in Eq. (5). For simplicity we only consider the case of a sinusoidal source

Jr, ) =0 )O(T —1)s(r)sin(£21), (23)
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Fig. 1. Dependence of the Bessel functif(z = 200) on the order:. The value of; corresponds to the time= 100 used in Figs. 3—6 and
Tables 1-3.

wheres(r) specifies the spatial distribution atizl= 27 f; the angular frequency of the source. The step functions

B() and®(T — t) indicate that the source is turned orrat 0 and is switched off at = T'. Note that Eq. (23)

may be used to compose sources with a more complicated time dependence by a Fourier sine transformation.
The formal expression for the contribution of the sinusoidal source (23) reads

t
/e“*”)“’fb(u) du = (22+ H?) e (26 — QcosQT — HsinRT')E
0

where T’ = min(¢, T) and ¢(u) = O(@)O(T — r)sin(21)E. The vector £ represents the spatial (time-
independent) distributios(r) and has the same dimensionag)). The coefficients of the Chebyshev polynomial
expansion of the formal solution (24) are calculated as follows. First we repeat the scaling procedure described
above and substitute in Eq. (2B)=ix||H |1, t =z/I|H| 1, T' = Z'/||H||1, and$2 = w|| H ||1. Then, we compute
the (Fast) Fourier Transform with respecttof the functionf (x, z, Z’, w) (which is non-singular on the interval
—1< x <1). By construction, the Fourier coefficierfig(z|| H ||1) are the coefficients of the Chebyshev polynomial
expansion [29].

Taking into account all contributions of the source term witemaller thank’ (determined by a procedure
similar to the one foK), the one-step algorithm to compute the EM fields at timeads

K K’
(1) = [Jo(ranl)l +2%° Jk(r||H||1)ﬂ<B>]W<0> - [SO(ranl)l +2Y° Sk(ranl)ﬁ(B)]E. (25)

k=1 k=1
Note that in this one-step approach the time dependence of the source is taken into account exactly, without actually
sampling it.

In a strict sense, the one-step method does not yield an orthogonal approximation. However, for practical
purposes it can be viewed as an extremely stable time-integration algorithm because it yields an approximation
to the exact time evolution operatbi(z) = € that is exact to nearly machine precision, i.e. in practice the value
of € in Eq. (7) is very small. This also implies that within the same preciSiorfuH(¢)) = V - (uH(t = 0)) and
V - (¢E(t)) = V - (¢E(t = 0)) holds for all times, implying that the numerical scheme will not produce artificial
charges during the time integration [2,3].
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4. Implementation

The basic steps in the construction of the product-formula and one-step algorithms are best illustrated by
considering the simplest case, i.e. the Maxwell equations of a 1D homogeneous problem. From a conceptual point
of view nothing is lost by doing this: the extension to 2D and 3D inhomogeneous problems is straightforward,
albeit technically non-trivial [11,12,26,27].

We consider a system, infinitely large in tlyeand z direction, for whiche = 1 and . = 1. Under these
conditions, the Maxwell equations reduce to two independent sets of first-order differential equations [1], the
transverse electric (TE) mode and the transverse magnetic (TM) mode [1]. As the equations of the TE- and TM-
mode differ by a sign we can restrict our considerations to the TM-mode only. The magnetig field) and the
electric fieldE, (x, t) of the TM-mode in the 1D cavity of length are solutions of

) )
EHy(x,t) = E:(x,), (26)
) )

—E.(x,t) = —H,(x,1) — J.(x, 1), (27)
ot ox -~

subject to the boundary conditiaty, (0, r) = E, (L, t) = 0 [1]. Note that the divergence of both fields is trivially
zero.

Following Yee [4], to discretize Egs. (26) and (27), itis convenient to as8igto odd andE;, to even numbered
lattice sites, as shown in Fig. 2. Using the second-order central-difference approximation to the first derivative with
respect toc, we obtain

3
EH),(Zi +1,0) =8"HE,(2i +2,1) — E;(2i,1)), (28)
3

EEZ(ZZ., 1) =8 (Hy(2i +1,0) — Hy(2i — 1, 1)) — J.(2i, 1), (29)

where we have introduced the notatid, r) = A(x =i§/2,t). The integei labels the grid points angidenotes
the distance between two next-nearest neighbors on the lattice (hence the absence of a factor two in the nominator).
We define the:-dimensional vectow (¢) by

Hy(,t), iodd

. . (30)
E.(i,t), ieven

Wi, 1) ={

The vectowr (¢) contains both the magnetic and the electric field on the lattice poiatk . . ., n. Theith element
of ¥ (¢) is given by the inner produd (i, 1) = el.T - ¥ (1) whereg; denotes théth unit vector in the:-dimensional
vector space. Using this notation (which proves most useful for the case of 2D and 3D for which it is rather
cumbersome to write down explicit matrix representations), it is easy to show that Egs. (28) and (29) can be

Hy E; Hy E, Hy E, Hy
1 2 3 4 n2 npn1 n
\___—‘
8

Fig. 2. Positions of the two TM-mode field components on the one-dimensional grid. The distance between two next-nearest neighbors is
denoted bys.
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written in the form of Eq. (4) where the matriX is given by

0o &1
ne1 -5t o &t
H=5"1Y (e €,1—6.,6)= . (31)
i=1 _5—1 0 5—1

-5t 0
We immediately see thd{ is sparse and skew-symmetric by construction.

4.1. Yee-type algorithms

First we demonstrate that the conventional Yee algorithm fits into the product-formula approach. For the 1D
model (31) it is easy to see that one time-step with the Yee algorithm corresponds to the operation

UYee(r) = (I + TA)(I —tAT) = e4e ™4, (32)
where
o s o o o
. O 0 0 0 0 .-
iy 0o st o 1 o0 ..
A=s'Y (e 1-e€u)=lo0 0o o o o , (33)
i=2 0O 0 0 0

and we used the arrangementsgbfand E fields as defined by Eq. (30). We use the notafignto indicate that
the stride of the summation index is two. Note that sidde= 0 we have & = 1+ 7 A exactly. Therefore we
recover the time-step operator of the Yee algorithm using the first-order product-formula approximafién to e
and decomposingl = A — AT. However, the conventional Yee algorithm is second-order, not first-order, accurate
in time [2,3]. This is due to the use of a staggered grid in time [2,3]. To perform one time step with the conventional
Yee algorithm we need to know the valuesii(r) andH, (t + t/2), not H, (¢). Another method has to supply the
H,-field at a time shifted by /2. We will denote the conventional Yee algorithm, i.e. the algorithm that uses the
staggered space-and-time grid and is second-order accurate in both space and tmj(ée(mm), by “C-Yee” and
reserve the use of the upperscript to algorithms that have been constructed by decompddirgA — AT but
are not using the staggered-in-time grid.

Within the spirit of this approach, we can easily eliminate the staggered-in-time grid at virtually no extra
computational cost or programming effort (if a conventional Yee code is available) by using the second-order
product formula

UYeS(r) = e 4/2e A T A2 — ([ 4t AJ2)(I — TATY(I +TA/2). (34)

The effect of the last factor is to propagate tHe-field by /2. The middle factor propagates tig-field by .
The first factor again propagates thg-field by t/2. In this scheme all EM fields are to be taken at the same
time. The algorithm defined by;ee(r) is second-order accurate in time by construction [16]. Note th&ds
not orthogonal so nothing has been gained in terms of stability. S ()" = e 74/2(U,/*%(7))"et*4/2, we
see that, compared to the conventional Yee algorithm, the extra computational work is proporti{dralom),
hence negligible if the number of time stepds large.

According to the general theory outlined in Section 3, the expression

UL®(t) = Uy*%(at) Uy at)UY®((1 — da)T) Uy *(at) Uy ar), (35)
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defines a fourth-order accurate Yee-like scheme, the realization of which requires almost no effdiff?ﬁces

been implemented. It is easy to see that the above construction of the Yee-like algorithms holds for the much more
complicated 2D, and 3D inhomogeneous case as well. Also note that the fourth-order Yee algf(jﬁ?rdnes not

require extra storage to hold field values at intermediate times.

4.2. Unconditionally stable algorithms

Guided by previous work on Schrodinger and diffusion problems we gblihto two parts such thatl =
Hj + H», dividing the lattice into odd and even numbered cells [16,35,40]. Following Ref. [11] we have

o st o0 0 0

-1 0 0 0 0
0O o0 o0 s o0
Hi=51) (e €&, € o 0 -5t 0 0 , (36)
Z +18) = O 0 0 0 o
0 0 0 0 51
0O 0 0 O0 0
0 0 &' 0 o0
n—2 0 s 0 0 0 -.
Ho=68"1 e..€.,-€..6e,,)=[0 0 0 0o &t . (37)
;( +1%i+2 i+2 +l) 0 0 0 —5_1 0
0 0 0 O

Clearly bothH; and H2 are skew-symmetric block-diagonal matrices, containing orelImatrix and(n — 1)/2
real, 2x 2 skew-symmetric matrices. According to the general theory given above, the first-order algorithm is given
by

n—1 n—2
Ur(r) = etttz = l_[/ exgt6 (e €, —€.q€) ”l_[ exp{zs (e 182 — €08 1)] - (38)
i=1
To derive Eg. (38) we used the block-diagonal structurgphndH; (see Egs. (36) and (37)) and obtained an exact
expression fol/1(t) in terms of an ordered product of matrix exponentials: the order of the matrix exponentials
between each pair of curly brackets is irrelevant as these matrices commute with each other. Each of these matrix
exponentials only operates on a pair of element® @f) and leaves other elements intact. The indices of each of
these pairs are given by the subscripte ahde’. From Eq. (38) it is clear what a program should do: Make loops
overi with stride 2. For each pick a pair of elements fron# () according to the subscripts efande’, compute
(or fetch from memory) the elements of the plane rotation (see Eq. (39)), perform the plane rotation, i.e. multiply
the 2x 2 matrices and the vectors of length two, and overwrite the same two elements. As the matrix exponential of
a block-diagonal matrix is equal to the block-diagonal matrix of the matrix exponentials of the individual blocks,
the numerical calculation off&! (or €/2) reduces to the calculation ¢& — 1)/2 matrix exponentials of X 2
matrices. The matrix exponential of a typicak2 matrix appearing in@" or &2 is given by

01 v, 1)\ _ cosw Sina (i, t)
eXp[“(—l O)Ktp(j,z))_(—sina COSa)(W(j,t))' (39)
Using the algorithm to compute Eq. (38), it is easy to construct the unconditionally stable, higher-order algorithms
Uz(t) andUy(z), see Egs. (13) and (15).
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Obviously, the decomposition intd; Eq. (36) andH» Eq. (37) yields the most simple real-space algorithm. It
is not difficult to imagine that a better but slightly more complicated algorithm can be constructed by using blocks
of 3 x 3 instead of 2x 2 matrices. Thus we are lead to consider the decomposition

0 51 0 0 0
-1 0 st o o0
n_2 o 51 o o0 o
_ 7
Hz=35"" iZ=1 (e eiT+1 + ei+1eiT+2 - ei+1eiT - ei+2eiT+1) = 8 8 8 8 8 ,
0 0 0 0 &1
(40)
00 0 0 0
00 0 0 0
n—4 00 O s o
_ " -1 -1
Hy=5"" Z (ei+2eiT+3 + ei+3eiT+4 - ei+39iT+2 - ei+4eiT+3) =10 0 =4 071 8
— 00 0 -5 0
00 0 0 0
(41)

where the double prime indicates that the stride of the indexthree. Obviously bottHz and H, are skew-
symmetric block-diagonal matrices, built from thex3 skew-symmetric matrix

0 5710
B= (_51 0 51) ) (42)
0 -1 0

As B3 = —2B we have

1-c¢ ) c
€8 —1+sB+cB?= —s 1-2c s , (43)
—c —s 1-c¢
wheres = sin(+/27) and ¢ = sirf(t/+/2). In practice, using the X 3 instead of the X 2 decomposition is

marginally more difficult. We will denote the corresponding second- and fourth-order algoritrﬁfﬁ/and
U3, respectively.

4.3. ADI algorithm

For the tri-diagonal matrix (31), the ADI algorithm reduces to the Cranck—Nicholson method [42]. The tri-

diagonal structure of the matri¥ permits the calculation of/ — t H/2)~1% in O(n) operations by standard
linear algebra methods [42].

4.4. One-step algorithm
The one-step algorithm is based on the recursion (see Egs. (21) and (22))

H
Ui1=—Wi+Wi_1. (44)
I H 1
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Thus, the explicit form Eqg. (31) is all we need to implement the matrix—vector operation(i.e- H¥) that
enters Eq. (44).

The coefficients/i(z) and Sg(z) (see Eq. (25)) should be calculated to high precision. Using the recursion
relation of the Bessel functions, alf coefficients can be obtained with(K) arithmetic operations [42]. The
numbersSi (z) can be calculated i® (K log K) by standard Fast Fourier transformation techniques. Clearly both
computations are a negligible fraction of the total computational cost for solving the Maxwell equations.

Performing one time step amounts to repeatedly using recursion (22) to Gt (0) for k =2,..., K,
multiply the elements of this vector b (z) (or Si(z)) and add all contributions. This procedure requires storage
for two vectors of the same length #g0) and some code to multiply such a vector by the sparse métrikxhe
result of performing one time step yields the solution at timieence the name one-step algorithm. In contrast to
what Egs. (21) and (22) might suggest, the algorithm does not require the use of complex arithmetic.

5. Numerical experiments

Except for the conventional Yee algorithm, all algorithms discussed in this paper operate on the vector of fields
defined at the same timeWe use the one-step algorithm (with a time st¢p) to computeE, (r/2) andH,(t/2).
Then we use£,(0) and Hy(t/2) as the initial values for the conventional Yee algorithm. In the presence of a
current source, there are some ambiguities with this procedure as it is not obvious how to treat the source term in
Eqg. (9). In order to compare of the final result of the conventional Yee algorithm with those of the other methods,
we use the one-step algorithm once more to shift the time offhdield by —t/2. This procedure to prepare
the initial and to analyze the final state of the Yee algorithm does in fact make the results of the conventional Yee
algorithm look a little more accurate than they would be if the exact data af/@ehifted fields are not available.
Thus, the results on the errors of the conventional Yee algorithm presented in this paper give a too optimistic view
on the accuracy of this algorithm but we nevertheless adopt the above procedure to make a quantitative comparison
between the various algorithms.

We define the error of the solutiah(r) for the wave form by||¥ (1) — ¥ (1) || /|| ¥ (1) ||. Here and in the sequel,
the caret on top of a symbol indicates that the results have been obtained by means of the one-step algorithm.
Thus, ¥ (1) is the vector of EM fields obtained by the one-step algorithm. In our definition of the error we have
already assumed that the one-step algorithm yields the exact (within numerical precision) results but this has to be
demonstrated of course. A comparison of the results of an unconditionally stable algorithrﬁwv'gh those of
the one-step algorithm is sufficient to show that within rounding errors the latter yields the exact answer. Using the
triangle inequality

ey - <|ewe) - +|¥@) ¥ (45)
and the rigorous bound
t
o) —w@| < C4r4t<”'11(0) I +/HJ(u)H du), (46)
0

we can be confident that the one-step algorithm yields the numerically exact answer if (i) Eq. (46) is not violated
and (ii) if | ¥ (r) — ¥ (¢t)|| vanishes liker?.

If an algorithm conserves the norm of the normalized ved@r) (as in the case of the unconditionally
stable algorithms discussed in this paper), in the absence of current sources, the difference between the exact
and approximate solution can never exceeﬂitz(t) — lII(t) I < ||lII(t)|| + ||lII(t)|| = 2). Therefore, the behavior of
the error as a function af has no significance if the error is of the order of one.

In Fig. 3 we show a typical result of a one-step calculation on a gria ef 5001 sites with§ = 0.1
(corresponding to a physical length of 288), and a current source placediat 2500 to eliminate possible
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Fig. 3. The fieldHy (x, ¢ = 100 generated by a current sourcevat 125 that oscillates at frequengy = 2z during the interval G<¢ <6, as
obtained by the one-step algorithm wiki{ = 2103 (K = 0 in this case).

Table 1

The error||l1~/(t) — @(t)u/uﬁ(t)u at timer = 100 as a function of the time stepfor eight different FDTD algorithms. The current source is
positioned at the center of the system (see Fig. 3), and oscillates at fregiea@sr during the interval 6< ¢ < 6, ¥ (1) is the vector obtained
by the one-step algorithm with= 1079, usingK’ = 2103 matrix—vector operations’ <~ MW . The largest time step (= 0.1) corresponds to
the upperbound on the Courant numbets( for which the conventional Yee algorithm is stable [2]. C-Yd1) obtained by the conventional
Yee algorithm [2—4]; Other columné () obtained by the algorithms indicated

: C-vee uyee yAo A 733 uyee Ua 733
0.10000E+0 0.16E+1 0.15E+1 0.15E+1 0.15E+1 0.14E+1 0.15E+0 0.37E+0 0.27E+0
0.50000E-1 0.18E+1 0.18E+1 0.13E+1 0.16E+1 0.13E+1 0.36E-1 0.33E-1 0.23E-1
0.25000E-1 0.68E+0 0.65E+0 0.12E+1 0.72E+0 0.12E+1 0.25E-2 0.22E-2 0.15E-2
0.12500E-1 0.21E+0 0.19E+0 0.35E+0 0.13E+1 0.31E+0 0.16E-3 0.14E-3 0.96E-4
0.62500E-2 0.63E-1 0.55E-1 0.10E+0 0.35E+0 0.78E-1 0.99E-5 0.87E-5 0.60E-5
0.31250E-2 0.19E-1 0.14E-1 0.28E-1 0.88E-1 0.20E-1 0.62E-6 0.55E-6 0.38E-6
0.15625E-2 0.61E-2 0.35E-2 0.69E-2 0.22E-1 0.49E-2 0.39E-7 0.34E-7 0.24E-7
0.78125E-3 0.23E-2 0.86E-2 0.17E-2 0.55E-2 0.12E-2 0.24E-8 0.21E-8 0.15E-8
0.39063E-3 0.10E-2 0.22E-3 0.43E-3 0.14E-2 0.31E-3 0.24E-9 0.24E-9 0.22E-9

artifacts of the boundaries. The frequency of the source is set to fpne 2) and the number of periods the
source radiates is set to six (i.€.= 6). In Table 1 (Fig. 4) we present results for the errors, as obtained by
repeating the simulation shown in Fig. 3 using eight different FDTD methods. In Tables 2 and 3 (Figs. 5 and 6,
respectively) we show similar results but instead of using a current source, a random wave form (Table 2) and
Gaussian wave packet (Table 3) was taken as the initial condition._

From the data in Tables 1-3 we conclude that the error of algorithranishes liker#, demonstrating that the
one-step algorithm yields the numerically exact result (see Eqgs. (45) and (46)). The results presented in Tables 2
and 3 have been obtained by using a vector of initial values that is normalized to ongl{®J = 1. As
¥ (r)|| = 1 for 0< t < 100 to at least 10 digit§ ¥ (1) — ¥ ())||/|¥ (1) || = |¥ (r) — ¥ (¢)|| for all entries in Tables 2
and 3. The high precision of the one-step algorithm also allows us to use it for genuine time stepping with arbitrarily
large time steps, this in spite of the fact that strictly speaking, the one-step algorithm is not unconditionally stable.

The data in Tables 1-3 suggests that there does not seem to be a significant difference between the conventional
Yee algorithm and its variarlt/;(ee but in fact there is. The time evolution matrix corresponding to the Yee and
the U;(ee algorithm is not orthogonal. Therefore the energy of the electromagnetic fiélek (¥ (r)||2) is not
conserved. Furthermore, in the conventional Yee algorithm Bhand H-fields are time-shifted by /2 with
respect to each other. Obviously, by construcﬂ@??e does not rely on staggered-in-tinie and H -fields and it
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Fig. 4. The data presented in Table 1 plotted on a double logarithmic scale. C-Yee: data obtained by the conventional Yee algorithm [2-4]. The
largest time stepr(= 0.1) corresponds to the upperbound on the Courant numtsé) for which the conventional Yee algorithm is stable [2].
Lines are guides to the eye.

Table 2

The error||¥ (1) — ¥ (¢) H/H@(l)ll at timer = 100 as a function of the time stegor eight different FDTD algorithms. The system is the same as
in Fig. 3 and Table 1. The initial values of the EM fields are random, distributed uniformly over the irftefvdl]. lI7(z) is the vector obtained

by the one-step algorithm = 1079, usingK = 2080 matrix—vector operation’ <— MW . The largest time stepr (= 0.1) corresponds to the
upperbound on the Courant numbey ) for which the conventional Yee algorithm is stable [2]. C-Yddr) obtained by the conventional Yee
algorithm [2—4]; Other columns¥ (1) obtained by the algorithms indicated

: C-vee vyee Ugo 2 733 vyee U 733
0.10000E+0 0.99E+1 0.11E+2 0.14E+1 0.15E+1 0.17E+1 0.11E+1 0.13E+1 0.13E+1
0.50000E-1 0.13E+1 0.13E+1 0.13E+1 0.13E+1 0.14E+1 0.78E+0 0.16E4+0 0.16E4+-0
0.25000E-1 0.13E+1 0.13E+1 0.13E+1 0.13E+1 0.12E+1 0.57E-2 011E-1 011E-1
0.12500E-1 0.12E+1 0.12E+1 0.14E+1 0.12E+1 0.63E+0 0.36E-2 0.71E-3 0.71E-3
0.62500E-2 0.70E+0 0.70E+0 0.12E+1 0.32E+0 0.16E+0 0.22E-3 0.45E-4 0.45E-4
0.31250E-2 0.18E+0 0.18E+0 0.36E+0 0.82E-1 041E-1 0.14E-4 0.28E-5 0.28E-5
0.15625E-2 0.46E-1 0.46E-1 0.92E-1 0.20E-1 0.10E-1 0.89E-6 0.17E-6 0.17E-6
0.78125E-3 011E-1 011E-1 0.23E-1 051E-2 0.26E-2 0.56E-7 0.11E-7 0.28E-8
0.39063E-3 0.29E-2 0.29E-2 057E-2 0.13E-2 0.64E-3 0.35E-8 0.68E-9 0.18E-9

Table 3

The errorHlINl(z) — @(z)||/||@(t)\| at timer = 100 as a function of the time stepfor eight different FDTD algorithms. The system is the same
as in Fig. 3 and Table 1. The initial state of the EM fields is a Gaussian wave pagKet £ exp(—(x — xg — 12 /52)) with a widtho = 4, and

its centerxg = 125 positioned at the middle of the system (see Figf({).) is the vector obtained by the one-step algorithm witk 1079,
using K = 2080 matrix—vector operationk’ <~ M¥. The largest time stepr (= 0.1) corresponds to the upperbound on the Courant number
(z/8) for which the conventional Yee algorithm is stable [2]. C-Y@() obtained by the conventional Yee algorithm [2—4]; Other columns:
¥ (1) obtained by the algorithms indicated

. C-vee uyee yAoI A 733 uyee A 733
0.10000E+0 0.25E-2 0.25E-2 0.50E-2 0.14E+1 0.79E+0 0.28E-6 0.15E-1 0.17E-1
0.50000E-1 0.63E-3 0.63E-3 0.13E-2 0.90E+0 0.25E+0 017E-7 0.95E-3 0.15E-3
0.25000E-1 0.16E-3 0.16E-3 0.32E-3 0.26E+0 0.65E-1 0.11E-8 0.60E-4 0.97E-4
0.12500E-1 0.40E-4 0.39E-4 0.79E-4 0.65E-1 0.16E-1 0.69E-10 037E-5 0.61E-5
0.62500E-2 0.99E-5 0.98E-5 0.20E-4 0.16E-1 0.41E-2 0.12E-10 023E-6 0.38E-6
0.31250E-2 0.25E-5 0.25E-5 0.49E-5 041E-2 0.10E-2 0.12E-10 015E-7 0.24E-7
0.15625E-2 0.63E-6 0.61E-6 0.12E-5 0.10E-2 0.26E-3 0.12E-10 091E-9 0.15E-8

0.78125E-3 0.16E-6 0.15E-6 0.31E-6 0.25E-3 0.64E-4 0.12E-10 055E-10 010E-9
0.39063E-3 041E-7 0.38E-7 0.77E-7 0.64E-4 0.16E-4 0.12E-10 043E-10 046E-10
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Fig. 5. The data presented in Table 2 plotted on a double logarithmic scale. C-Yee: data obtained by the conventional Yee algorithm [2-4]. The
largest time stepr(= 0.1) corresponds to the upperbound on the Courant numtsé) for which the conventional Yee algorithm is stable [2].
Lines are guides to the eye.
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Fig. 6. The data presented in Table 3 plotted on a double logarithmic scale. C-Yee: data obtained by the conventional Yee algorithm [2-4]. The
largest time stepr(= 0.1) corresponds to the upperbound on the Courant numtsé) for which the conventional Yee algorithm is stable [2].
Lines are guides to the eye.

also performs better than the conventional Yee algorithm with respect to energy conservation. In Fig. 7 we show
results of the time evolution of the total energy of the EM field, for a system=607 sites, a mesh sizze= 0.1
and a time step of = 0.01. A normalized (¥ (0)||2 = 1) random initial condition was used.

For the conventional Yee algorithm, the fluctuations of the energy are a factor of ten larger than in the case of the
UzYee algorithm. As expected on theoretical grounds, thealgorithm (dotted, horizontal line) exactly conserves
the energy. The fact thagee conserves EM-field energy much better than the conventional Yee algorithm also has
a considerable impact on the quality of the eigenmode distribution. The latter is obtained by Fourier transformation
of (1) - w(0) (see Ref. [11] for more details). In Fig. 8 we show the low-frequency part of the eigenmode
distribution of the same system as the one of Fig. 7. It is obvious that there is a significant improvement in the
quality of the spectrum if we uselgfee instead of the conventional Yee algorithm but for this applicaﬁ),n
performs much better than the Yee-type algorithms.

From Tables 1-3 it is clear that all time-stepping algorithms analyzed in this paper yield inaccurate results if
the time step approaches the stability limi$ = 1 of the conventional Yee algorithm. However this is no longer
the case if the dimensionality of the system increases [26,27]. In particular, usitig tigorithm it is possible to
compute the density of states of three-dimensional photonic bandgap systems, employing a time step that exceeds
the value of the stability limit of the conventional Yee algorithm [26,27].
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Fig. 7. The energy? = ¥ T (1) - W (¢) of the EM fields as a function of time as obtained by the Yee (solid Iiﬁéf,e (dashed line), and74
(dotted line) algorithm for a 1D cavity of size 48.05- 97 mesh points), a mesh size= 0.1 and a time step = 0.01.
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Fig. 8. The eigenvalue distribution (density of states) of the matrias obtained by Fourier transformationdof (1) - w (0), for the same system
asinFig. 7. The functionIlT(t) - ¥ (0) is sampled at time intervals of 0.1, the total number of samples being 4096. Solid line: conventional Yee
algorithm; dashed linet/,/®® algorithm; dotted line: energy conserving algoritiafy.

Table 1 suggests that; is the least efficient of the eight FDTD methods: It uses more arithmetic operations
than the conventional Yee algorithm and yields errors that are larger than those of the Yee algorithm. However, this
conclusion is biased by the choice of the model problem and does not generalize. If the initial EM field distribution
is random then, for sufficiently smadl algorithm0U> is more accurate than the two second-order accurate Yee-like
algorithms, as is clear from the data in Table 2 [43]. Also in this case, for the large3able 2, the Yee and’;(ee
algorithm are operating at the point of instability, signaled by the fact that the non¥pfyrows rapidly, resulting
in errors that are very large. From Tables 1 and 2 one might conclude that the decomposition that generates Yee-
type algorithms yields the least accurate approximations to the time evolution operator, although the difference
is not really significant, but, as Table 3 shows, this conclusion would be wrong. If the initial state is a Gaussian
wave packet that is fairly broad, the Yee-type algorithms are much more accurate than the unconditionally stable
algorithms employed in this paper. From the data in Tables 1-3 we conclude that there is no good reason to use
the ADI algorithm (even disregarding the fact that it is slower than the other second-order methods). In general the
U3*3 (U2*3) algorithm performs a little better tha, (Us) but the gain is marginal. In contrast to the numerical
data presented in Ref. [19], for all algorithms the data of Tables 1-3 clearly agree with the theoretically expected
behavior of the error as a function ofif ¢ is small enough [44].
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Usually if a current source is present we ha€0) = 0. Then the one-step algorithm requirg&s (sparse)
matrix—vector operationa(’ <— MW¥) to compute¥ (r). For a 1D system the standard Y@;(ee and U){ee, Us,
and U, algorithms perform (in worst case, without additional optimization), respectively/2,,& 3/2, and 6
MW -operations per time step. The one-step algorithm carrie& 6t 2103 matrix—vector operations’ < M ¥
to complete this simulation. This implies that foralk 7/ K’, the FDTD algorithms will perform morn#’ <— M¥
operations than the one-step algorithm. For the data presented in this paper, this is ther ca€e05 for the
conventional Yee algorithm and is always the caselfpbecause the latter uses a factor of 6 méite— MW
operations than the conventional Yee algorithm.

6. Conclusion

The answer to the question which of the algorithms is the most efficient one crucially depends on the accuracy
that one finds acceptable. Taking the data of Table 1 as an example we see that if one is satisfied with an error of
more than 2%, one could use the conventional Yee algorithm. YWAH#D.05 it needs 2000 time steps to find the
solution atr = 100, close to the&k” = 2103. Nevertheless we recommend to use the one-step algorithm because
then the time-integration error is negligible. The conventional Yee algorithm is no competitidhﬁirone
requires an error of less than 1% but thin is not nearly as efficient (by a factor of about 6) as the one-step
algorithm. Increasing the dimensionality of the problem favors the one-step algorithm [26,27]. These conclusions
seem to be quite general and are in concert with numerical experiments on 1D, 2D and 3D systems [27]. A simple
theoretical analysis of the-dependence of the error shows that the one-step algorithm is more efficient than
any other FDTD method if we are interested in the EM fields at a particular (large) time only [26,27]. This may
open possibilities to solve problems in computational electrodynamics that are currently intractable. The Yee-like
algorithms do not conserve the energy of the EM fields and therefore they are less suited for the calculation of
the eigenvalue distributions (density of states), a problem for Whicfflthelgorithm may be the most efficient
of all the algorithms covered in the paper. The main limitation of the one-step algorithm is directly linked to its
mathematical justification. The Chebyshev approach requiregthsidiagonalizable and that its eigenvalues are
real or pure imaginary. The effect of relaxing these conditions on the applicability of the Chebyshev approach is
left for future research.

In this paper we have focused entirely on the accuracy of time integration algorithms, using the most simple
discretization of the spatial derivatives. In practice it is straightforward, though technically non-trivial, to treat more
sophisticated discretization schemes [2,12] by the methodology reviewed in this paper. We also did not touch the
subject of different boundary conditions, a very important aspect in real-life applications [2,3]. All results presented
in this paper have been obtained for systems that have perfectly reflecting boundaries. For most applications it is
necessary to adopt boundary conditions that perfectly absorb, not reflect, all waves that move towards the simulation
box boundary [2]. As demonstrated above, the conventional Yee and the unconditionally stable algorithms are
particular implementations of the same product formula. Therefore one would expect that Berenger’s perfectly
matched layer approach [45] should work for the latter class of algorithms as well. In fact, it is easy to see
that it will by considering the equivalent, perfectly-matched unaxial-medium formulation [2,46]. In this approach
the perfectly-matched material enters through frequency-dependent anisotropic electric permittivity and magnetic
permeability tensors. In the Yee-algorithm implementation, the frequency dependence of these tensors is taken into
account by introducing auxiliary field variables [2]. The same procedure can be used for the unconditionally stable
algorithms as well. The practical implementation of this scheme is left for future research. Extending the one-step
algorithm to account for absorbing boundaries also requires further research: The appearance of eigenvalues of
H with a non-zero real part changes the rate of convergence of expansion (20) and hence also its computational
efficiency.
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