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ABSTRACT

The purpose of this set of lectures is to introduce the general concepts that are

at the basis of the computer simulation algorithms that are used to study the be-

havior of condensed matter quantum systems. The emphasis is on the underlying

concepts rather than on specific applications. Topics treated include exact diago-

nalization techniques, variational methods, Trotter-Suzuki formulae, and Feynman

path integrals. Some of the concepts covered are illustrated in an application to

electron-phonon models.

1. Introduction

There is a broad consensus that the Schrödinger equation for the time-dependent
wave function |Φ(t)〉

ih̄
∂

∂t
|Φ(t)〉 = H|Φ(t)〉 , (1)

and the expression for the thermal expectation value of an observable X

〈X〉 =
Tr e−βHX

Tr e−βH
, (2)

describe the dynamic and thermodynamic properties of a system, modelled by a

Hamiltonian H, that is in thermal equilibrium at an inverse temperature β =
1/kBT . Therefore the rules for formulating the problem are fixed. What remains
is to find ways of solving (1) and computing (2).

For classical many-body systems, we can use Molecular Dynamics or Monte

Carlo methods to study the model behavior. There are almost no restrictions on
the kind of classical models that can be treated in this manner. Unfortunately,
for quantum systems the situation is not as good as in the classical case. From

numerical point of view, the only “complication” is that, one way or another, quan-
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tum mechanics is a theory that is formulated in terms of objects (operators, or,
for our purposes, matrices) that do not necessarily commute. This complication

has tremendous consequences for it makes the construction and justification of al-
gorithms for simulating quantum systems a difficult task. It is fair to say that at
present, there is no quantum simulation method that has the power and general
applicability of the techniques developed for classical systems. Consequently it still

is a considerable challenge to try to improve existing quantum simulation methods
and to invent new ones.

A feeling for the difficulties that arise may be obtained by considering the follow-
ing example. A model quantum system that has received a lot of attention recently

is the so-called Hubbard model. It describes electrons that hop on a lattice. The
electrons interact if and only if they are on the same site. Then, by the Pauli prin-
ciple, they must have opposite spin. For the present discussion, the precise form
of the Hamiltonian is irrelevant. Let us try to reduce the quantum problem to a

“classical mechanics problem”. According to the rules of the game, the only thing
we have to do is to solve (1) or, in this case, the time-independent version

H|Φn〉 = En|Φn〉 , (3)

where (here and in the following) En denotes the n-th eigenvalue of the “matrix”

H and |Φn〉 is the corresponding eigenvector. We will label the eigenvalues such
that E0 ≤ E1 ≤ . . . ≤ EM−1 where M is the dimension of the matrix H. Now we
are in the position to use (2) and compute

〈X〉 =

M−1∑
i=0

e−βEi〈Φi|X|Φi〉

/
M−1∑
i=0

e−βEi , (4)

so that in principle, we can solve all model problems.
To see what is really involved to carry out these few steps, we need an order of

magnitude for M . For concreteness we will assume that we have a lattice of L sites,
filled with L/2 electrons with spin up and L/2 electrons with spin down. Simple

counting shows that

M =

(
L

L/2

)2

, (5a)

which for large L (L ≥ 16 will do) can be approximated using Stirling’s formula to

give

M ≈
22L+2

2πL
, (5b)

demonstrating that M increases exponentially with 2L. For instance, if L = 16,
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M ≈ 108 and for L = 64, M ≈ 1035. To estimate the amount of memory we need
to store a single eigenvector we divide (5b) by 227 and obtain

MEMORY ≈
22L−25

2πL
Gb , (6)

where we have assumed that we need 8 bytes/floating point number. From (6) we
see that we need MEMORY ≈ 1Gb if L = 16 whereas for L = 64, MEMORY ≈
1028Gb ! Although our method of estimating the required amount of memory is
somewhat crude, it goes right at the heart of the problem of simulating quantum
systems: Where on earth do we find 1028Gb of memory to study a quantum system
of only 64 particles on 64 sites ? The basic strategy of any successful quantum

simulation technique is to reduce the amount of memory needed at the expense of
using (much) more CPU time.

In these lectures we will discuss the general ideas behind quantum simulation
methods. The emphasis is on the underlying concepts rather than on specific appli-

cations. In section 2, we review methods to compute the ground state properties by
exact numerical algorithms, by which we mean that the results are not subject to
statistical errors. The amount of storage used is proportional to (5a) . Variational

techniques are discussed in section 3. Simulation methods that requireO(L) instead
of O(2L) memory are based on so-called product formulae which are the subject of
section 4. In section 5 we discuss the intimate relationship of these methods with
the Feynman path integral formulation of quantum statistical mechanics. Numeri-

cal methods for solving the time-dependent Schrödinger equation are introduced in
section 6. Finally, in section 7 we show how to construct a Quantum Monte Carlo
method for a specific class of electron-phonon models and demonstrate that it can
be used to compute static and dynamic properties.

2. Exact Diagonalization

2.1 Methods to compute the full spectrum

Often it is possible to describe the quantum mechanical system by a Hamiltonian

that can be represented by a “small” matrix Here “small” means that the dimension
of the matrix is such that the whole matrix fits in the memory of the computer at
hand. For instance, on a workstation with 128 Mb memory, a ”relatively small”
system would correspond to a matrix of about 8000× 8000. Such matrices can and

should be diagonalized using standard linear algebra routines contained in packages
such as EISPACK, LAPACK, ESSL, IMSL, etc..

In general, the approach taken in these routines consists of two steps.1,2 First
there is a reduction of the matrix to tri-diagonal form, usually by means of House-
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holder transformations. The number of operations for this step is O(M2).1 Then
the eigenvalues of the tri-diagonal matrix are found by applying the bisection or

the QR algorithm. As solving the eigenvalue problem is equivalent to finding the
zero’s of the characteristic polynomial, the latter step is an iterative procedure.1

Typically the number of operations required to compute all the eigenvalues and
eigenvectors of a real symmetric matrix is O(M3). Evidently, the storage that is

needed to hold the matrix or all the eigenvectors is O(M2). In practice, one usually
runs out of memory long before one has consumed the available CPU time. The
usefulness of this approach to solve quantum problems is limited by the amount of
available storage and therefore to rather small quantum problems. However it is an

essential tool for generating exact results. The latter are of great value for testing
other simulation techniques.

2.2 Methods to compute the part of spectrum

Often one is not interested in knowing all the eigenvalues and eigenvectors. For
instance, a lot of information on the ground state or zero-temperature (T = 0) prop-

erties of a quantum system can be computed if the eigenvector corresponding to the
smallest eigenvalue is known. One can construct algorithms that are substantially
more efficient in terms of memory and CPU usage than full-matrix-diagonalization
methods if one focuses on a small part of the spectrum only.

2.2.1 Projector methods

Conceptually, the simplest method to determine the smallest (or largest) eigen-

value and the corresponding eigenvector is the so-called power method.1 Writing
|φ〉 =

∑M−1
m=0 am|Φm〉, the identity

(Es −H)p|φ〉 =
M−1∑
m=0

am(Es −Em)p|Φm〉

=(Es − E0)
p

{
a0|Φ0〉+

M−1∑
m=1

am

(
Es − Em
Es − E0

)p
|Φm〉

}
, (7)

shows that repeated application of Es−H will yield the projection of an arbitrary
state |φ〉 onto the ground state |Φ0〉, provided the shift Es is chosen such that
|Es − Em|/|Es − E0| < 1, for m > 0, and that 〈φ|Φ0〉 6= 0.

The implementation of this algorithm is straightforward. The storage needed is

O(M). The CPU time per iteration depends on the sparseness of the matrix: For
very sparse matrices it is O(pM). The number of iterations required for convergence
to the ground state depends sensitively on the separation between the smallest and
next-to-smallest eigenvalue: If the corresponding two states are almost degenerate,
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the convergence might be very slow. Then other knowledge, such as model symme-
tries, can be used to improve the efficiency. The power method is at the heart of

the Diffusion Monte Carlo technique where one uses a stochastic process to sample
powers of the matrix Es −H.3

The idea of using some kind of “filter” to project out the ground state from an
initial state is of course quite general. Therefore it is of interest to look for other,

more efficient, filters. An obvious choice would be not to use the (shifted) power of
H but its inverse. This yields the so-called inverse iteration method which is used in
almost all standard packages to compute the eigenvector corresponding to a given
eigenvalue.1,2 The basic idea is the following (we confine ourselves to a discussion

for the case where one wants to compute the ground state). Consider the linear
equation

(H − Et)|η〉 = |φ〉 , (8)

where |η〉 =
∑M−1
m=0 am|φm〉 is an approximation to the ground state |Φ0〉. Then,

from (8)

|η〉 =(H − Et)
−1|φ〉 =

a0

E0 − Et
|Φ0〉+

M−1∑
m=1

am

Em − Et
|Φm〉 , (9)

so that the ground state will give the dominant contribution to η if Et is close to
E0.

Since the new approximation |η〉 has been obtained by inverting the (almost

singular) matrix H−Et one might wonder about the numerical stability and hence
also about the convergence of this scheme. One can prove that inverse iteration
does not suffer from the fact that (H − Et)−1 is ill-conditioned: As the length

of an eigenvector vector is arbitrary in any case and most of the error is along
the direction of the eigenvector that we are looking for, there is no reason for not
trusting the result.2 In practice, there is no need to actually compute the inverse
of the matrix H − Et. Instead one solves the linear set of equations (8) directly.

The Green Function Monte Carlo technique performs the inverse iteration steps by
solving this linear equation by a stochastic method.3

Another filter which is frequently used is based on the exponential of the matrix
H (for more details about this concept, see below). From the identity

e−βH |φ〉 =
M−1∑
m=0

ame
−βEm |Φm〉

=e−βE0

{
a0|Φ0〉+

M−1∑
m=1

ame
−β(Em−E0)|Φm〉

}
, (10)
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and our convention that E0 is the smallest eigenvalue, it is clear that the ground
state can be separated from the rest of the spectrum by letting β tend to infinity.

More specifically

lim
β→∞

e−βH |φ〉√
〈e−βHφ|e−βHφ〉

=
a0

|a0|
|Φ0〉 . (11)

The exponential projector is at the basis of what is called the Projector Quantum
Monte Carlo Method. Note that none of the three projector methods will perform

well if the ground state is (nearly) degenerate.

2.2.2 Subspace iteration

Both the power and inverse iteration method use information obtained by re-
peatedly operating with H. It is quite natural to raise the question if there is a
way to use this information in a more effective manner, and indeed there is.

Instead of using Householder transformations , one can also use the Lanczos

procedure to render the matrix tri-diagonal.1,2 In general, these two procedures
yield two tri-diagonal matrices that will be different although it is evident they
do have the same set of eigenvalues and eigenvectors. The numerical stability and

efficiency of the Householder method make it the preferred algorithm if a reduction
to tri-diagonal form of the full matrix is desired. However, if the matrix is too large
to be kept in memory and one is interested in the ground state and perhaps a few
excited states only, the Lanczos scheme is the one to use.

The idea behind the Lanczos method is to build a set of orthonormal basis states
in such a way that the convergence of the smallest (and also largest) eigenvalues of
the 1 × 1, 2 × 2, . . . sub-matrices is “optimal” in the sense explained below. The
first step of the Lanczos algorithm consists in choosing an initial vector (or state)

ψ0 which is assumed to have a nonzero projection onto the (unknown) ground state
|Φ0〉. In general, the choice of the starting vector |ψ0〉 may affect the rate of con-
vergence of the Lanczos process. For simplicity we assume that |ψ0〉 is normalized,
i.e. 〈ψ0|ψ0〉 = 1. In the second step we compute

|ψ̃1〉 = H|ψ0〉 − |ψ0〉〈ψ0|H|ψ0〉 , (12)

so that ψ̃1 is orthogonal to ψ0, i.e. 〈ψ0|ψ1〉 = 0. The third step consists of normal-
izing ψ̃1:

|ψ1〉 =
|ψ̃1〉√
〈ψ̃1|ψ̃1〉

. (13)

In the fourth step we construct a vector that is orthogonal to both |ψ0〉 and |ψ1〉:
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|ψ̃2〉 = H|ψ1〉 − |ψ1〉〈ψ1|H|ψ1〉 − |ψ0〉〈ψ0|H|ψ1〉 , (14)

and in the fifth step we normalize ψ̃2:

|ψ2〉 =
|ψ̃2〉√
〈ψ̃2|ψ̃2〉

. (15)

Subsequent vectors |ψj〉, for j = 3, . . . ,M −1 are generated by repeating the fourth
and fifth step, with |ψ0〉 replaced by |ψj−2〉, |ψ1〉 replaced by |ψj−1〉, and |ψ2〉
replaced by |ψj〉. By construction, 〈ψi|H|ψj〉 = 0 for all |i− j| > 1, i.e. the matrix
Ti,j = 〈ψi|H|ψj〉 = 0 is tri-diagonal. The storage required for the vectors and the
tri-diagonal matrix is proportional to the dimension M of the Hilbert space.

In contrast to the Householder algorithm, the Lanczos method often suffers from

numerical instabilities, resulting from the loss of orthogonality.1,2 This feature re-
duces the usefulness of the Lanczos method as a technique to bring the full matrix
into tri-diagonal form but it has little effect on the accuracy with which the smallest
and largest eigenvalues can be found. The reason for this behavior is readily under-

stood by reinterpreting the Lanczos process as a variational technique, as explained
in the next section.

In theoretical quantum chemistry, the most popular algorithms to compute a
few of the smallest eigenvalues of a large matrix are based on the method proposed

by Davidson.4 The variant I discuss here is taken from the work by J. Olsen et
al..5 Assume that H can be written as H = A+ B where B is considered to be a
perturbation with respect to A and let |ψ〉 denote a first (normalized) approximation

to the ground state |Φ0〉, so that E0 ≤ E(ψ) = 〈ψ|H|ψ〉. Write |ψ′〉 = |ψ〉+ |η〉 and
solve

(A+B)(|ψ〉 + |η〉) = (E(ψ) + ∆)(|ψ〉+ |η〉) , (16)

by keeping terms up to first order in B, ∆, or |η〉 to find

|η〉 = −(A− E(ψ))−1 [(H − E(ψ))|ψ〉 −∆|ψ〉] . (17)

Without loss of generality we can assume that 〈ψ|η〉 = 0. Then, from (17) it follows

that

∆ =
〈ψ|(A− E(ψ))−1(H −E(ψ))|ψ〉

〈ψ|(A− E(ψ))−1|ψ〉
. (18)

In practice we feed the value for ∆, as calculated from (18), back into (17), replace

|ψ〉 by |ψ′〉, normalize |ψ〉, and repeat the procedure. For this method to be useful
in practice, there must exist a shortcut to invert the full, large matrix A − E(ψ).
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Usually one takes as A the principalK×K submatrix of H padded with a diagonal
matrix consisting of the remaining M −K diagonal elements of H. The dimension

K is chosen such that inversion of the K×K submatrix can be done with standard
methods. An advantage of Davidson-based methods over the Lanczos method is
that with minor modifications of the scheme outlined above, it is possible to com-
pute the K smallest eigenvalues and corresponding eigenstates without significant

loss of accuracy.

3. Variational Methods

3.1 Fundamental Theorems

All variational methods for solving quantum problems are based on a fundamen-

tal result of Poincaré called the minimax characterization of the eigenvalues.1,2 One
way of stating this result is to say that the j-th eigenvalue Ej for j = 0, . . . ,M − 1
can be calculated as

Ej = min max
ψ∈Sj−1

R(H,ψ) , (19)

where

R(H,ψ) =
〈ψ|H|ψ〉

〈ψ|ψ〉
, (20)

denotes the Rayleigh quotient, and Sj−1 is the set |ψ〉’s, subject to all possible j−1
linear constraints. Application of this theorem to the case of the ground state of
the quantum system yields the well-known variational principle:

E0 ≤
〈ψ|H|ψ〉

〈ψ|ψ〉
, (21)

for any choice of |ψ〉 6= 0.
For later use we mention here another equally important result due to Cauchy.2

It relates the eigenvalues of a principal submatrix to those of the full matrix. To
be precise let

H =

(
H(k) XT

X Y

)
, (22)

where k ≤M − 1. Then, for j = 0, . . . , k

Ej ≤ E
(k)
j ≤ EM−k+j , (23)
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where E
(k)
j denotes the j-th eigenvalue of the matrix H(k). Note that (23) also

makes statements about the excited states. If k = M − 1, Cauchy’s results is also
known as the separation theorem.1,2

3.2 Trial State Approach

The most straightforward application of result (21) consists of making an ansatz
for the trial function |ψ〉 = |ψ({αj})〉 where {αj} denotes a set of parameters that
are used to minimize the r.h.s. of (21). In practice, the usefulness of this approach

crucially depends on two factors. First of all, for any choice of {αj}, it should be
possible to compute the matrix elements

R(H, {αj}) =
〈ψ({αj})|H|ψ({αj})〉

〈ψ({αj})|ψ({αj})〉
. (24)

For a non-trivial many-body system it is not a simple matter to evaluate these ma-
trix elements analytically and one usually has to resort to Monte Carlo techniques
to evaluate (the ratio of) these matrix elements. Secondly, the form of |ψ({αj})〉
should be flexible enough to cover the essential physics of the system. It is clear that

making an appropriate choice for the form of |ψ({αj})〉 requires detailed knowledge
about the behavior of the system, possibly biasing the results of the calculation.
Appealing features of this approach are its simplicity and its general applicability

to continuum and lattice models.

3.3 Recursive Variational Techniques

A simple choice for the form of ψ, allowing for systematic improvements, is given
by

|ψ〉 =
k−1∑
j=0

αj |φj〉 , (25)

where {|φj〉} is a complete set of basis vectors and the αj ’s are the minimization
parameters. Minimization of the Rayleigh quotient is equivalent to the calculation
of the smallest eigenvalue of the principal k×k matrixH(k). The separation theorem

tells us that by including another basis state |φk〉 and corresponding coefficient αk,
we can improve the approximation since

E0 ≤ E
(k+1)
0 ≤ E(k)

0 . (26)

This result is the basis of the Lanczos-based techniques for computing the ground
state of a quantum system. Consider the Lanczos process after k states have been

generated. The set of states {ψ0, . . . , ψk−1} fully qualifies as a set of basis states.
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Diagonalizing the k × k tri-diagonal matrix yields E
(k)
0 . According to (26), per-

forming one more Lanczos step, followed by another diagonalization of the new
tri-diagonal matrix will yield a better approximation to the ground state energy.
The power of the Lanczos scheme stems from the fact that, on the basis of all the
information on the eigenvalues already contained in the k-dimensional subspace

spanned by {|ψ0〉, . . . , |ψk−1}〉, the next Lanczos step is the best thing one can do
to improve the approximation. To see this, compute the gradient of the Rayleigh
quotient to find

∂R(H,ψ)

∂αj
∝ 〈φj |

[
H|ψ〉 − |ψ〉〈ψ|H|ψ〉

]
〉 , (27)

showing that the vector required in the (k + 1)-th step of the Lanczos process,
is parallel to the vector that specifies the direction for minimizing the Rayleigh
quotient.6

The fact that each step of the Lanczos process can be viewed as an attempt
to minimize the Rayleigh quotient suggest that in practice, the calculation of the
ground state can be rearranged such that there is no need to explicitly diagonalize
the tri-diagonal matrix. We will illustrate this idea by combining the steepest

descent and Lanczos technique.7 Assume we have already carried out k iterations,
i.e. we know the trial state |ψ〉. According to the Lanczos procedure, the next step
is to compute the new vector

|ψ′〉 =
H|ψ〉 − |ψ〉〈ψ|H|ψ〉√
〈ψ|H2|ψ〉 − 〈ψ|H|ψ〉2

. (28)

Minimizing the Rayleigh quotient with respect to the trial state x|ψ〉+y|ψ′〉 amounts
to solving eigenvalue problem for the two-by-two matrix

A =

(
〈ψ|H|ψ〉 〈ψ|H|ψ′〉
〈ψ′|H|ψ〉 〈ψ′|H|ψ′〉

)
. (29)

The eigenvector (x0, y0) corresponding to the smallest eigenvalue of A is then used
to construct the new trial state |ψ〉 ← x0|ψ〉 + y0|ψ′〉 that serves as input for the
next iteration.

Steepest descent is only one of the many techniques that can be used to minimize
the Rayleigh quotient. In general it is not very efficient but it is simple to program.
A slightly more complicated approach that is similar in spirit and more efficient in
terms of the number of iterations uses a combination of Lanczos steps and conjugate

gradient minimization.8

The salient features of all these recursive variational algorithms are that 1) in
principle, they will yield the exact ground state for a sufficiently large number of

iterations, 2) the storage during the iterations is proportional to the dimensionM of
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the full Hilbert space, and 3) there is no general recipe for determining the number
of iterations that will be required.

3.4 Stochastic Diagonalization

For many problems of interest the dimension of the Hilbert space becomes so

large that it is no longer feasible to store even a single vector. Then, the only way
to make progress towards solving the problem is to make the basic assumption that
of the whole, large set of basis vectors, only a relatively small portion is important
when it comes to computing physical properties. Instead of using the sparseness

of the matrix, we will now assume that the solution itself is “sparse” in the sense
that only a small fraction of the elements of the eigenvector, corresponding to the
smallest eigenvalue, is non-zero.

The stochastic diagonalization algorithm (SD) implements this idea in the fol-

lowing way.9,10 We know that the ground state can be written as a linear combina-
tion of all the basis states (to keep the discussion as simple as possible no use will
be made of the model symmetry to reduce the size of the Hilbert space):

|Φ0〉 =
M−1∑
j=0

cj |φj〉 . (30)

In principle we can rearrange the terms in this sum so that the ones with the largest
amplitude are in front:

|Φ0〉 =
M−1∑
j=0

cPj |φPj〉 . (31)

Here P denotes the permutation of the set {0, . . . ,M−1} such that |cPj | ≥ |cP(j+1)|.
Assuming that we obtain a good approximation if we restrict the sum to the first

MI terms we have

|Φ0〉 ≈ |Φ̃0〉 =
MI∑
j=0

cPj |φPj〉 . (32)

By virtue of the Poincaré theorem we have

E0 ≤ Ẽ0 =
〈Φ̃0|H|Φ̃0〉

〈Φ̃0|Φ̃0〉
, (33)

demonstrating that stochastic diagonalization belongs to the class of variational
techniques. In general we can only hope that MI � M and in practice MI will

depend on the actual choice of the basis vectors and on the matrixH. Note that the
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SD method will yield the exact result whenever other methods (such as Lanczos)
will, because then we can store the whole vector and put MI = M from the start.

Up to know, we have assumed that we know the permutation P that does the
job described above, but in fact we don’t know P nor do we know the coefficients
cPj . The crux of the SD method is that it uses a stochastic process to construct
P and the coefficients cPj simultaneously. Thereby it does not suffer from the so-

called minus-sign problem (to be discussed below) that is usually encountered in
Quantum Monte Carlo work. A detailed description of the SD method is beyond
the scope of these lectures. A rigorous proof of the correctness of the SD algorithm,
an extensive discussion on the origin of the minus-sign problem, details on the

implementation of the SD algorithm, and applications to the Hubbard model can
be found elsewhere.10 Some application to quantum chemistry problems is given in
ref. 11 .

3.5 Computation of physical properties

In quantum mechanics, physical quantities are related to matrix elements of

physical observables (Hermitian matrices for our purposes). Assuming the ground
state wave function has been obtained, for instance by one of the methods described
above, the calculation of these matrix elements itself becomes a non-trivial problem
if the matrix representing the observable is not diagonal in the basis that was used

to diagonalize the Hamiltonian. Indeed, if A denotes the physical observable,

〈A〉 = 〈Φ0|A|Φ0〉 =
M−1∑
i,j=0

cicj〈φi|A|φj〉 , (34)

showing that in general it will takeO(M2) operations to carry out this computation.

For large M , it may take longer to calculate certain expectation values than it takes
to solve for the ground state by one of the variational methods described above.
Finally, it is important to keep in mind that a variational calculation that yields a

good approximation to the energy can be quite bad for other physical quantities.
This is most evident in the case where the ground state is (nearly) degenerate, but
care has to be taken in other cases as well.

4. Trotter-Suzuki Formulae

In analogy with ordinary differential equations, the formal solution of the dif-
ferential equation

∂

∂λ
U(λ) = HU(λ) ; U(0) = I , (35)
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where H is a M ×M matrix, is given by

U(λ) = eλH , (36)

and is called the exponential of the matrix H. In quantum physics and quantum

statistical mechanics, the exponential of the Hamiltonian is a fundamental quantity.
All methods for solving these problems compute, one way or another, (matrix ele-
ments of) the exponential of the matrix H. For our purposes, λ = −β = −1/kBT
for quantum statistical problems and λ = −it/h̄ for the case of real time quantum

dynamics. Formally, the exponential of a matrix H can be defined in terms of the
Taylor series

eλH =
∞∑
n=0

λn

n!
Hn , (37)

just like if H would be a number. For most problems of interest, there won’t be
enough memory to store the matrix H and hence there also will be no memory
to store the full matrix eλH . So let us concentrate on the other extreme: The
calculation of an arbitrary matrix element 〈ψ|eλH |ψ′〉. Although from mathematical

point of view, formal expansion (37) is all that is really needed, when it comes to
computation, (37) is quite useless. The reason is not so much that it is a Taylor
series but rather that it contains powers of the matrix, indicating that simply
summing the terms in (37) may be very inefficient (and indeed it is).

There is one particular case in which it is easy to compute the matrix element
〈ψ|eλH |ψ′〉 namely if all the eigenvalues and eigenvectors are known. Indeed, from
(37) it follows that

eλH |Φj〉 =

∞∑
n=0

λn

n!
Hn|Φj〉 =

∞∑
n=0

λn

n!
Enj |Φj〉 = eλEj |Φj〉 , (38)

so that

〈ψ|eλH |ψ′〉 =
M−1∑
j=0

〈ψ|Φj〉〈Φj |ψ′〉e
λEj . (39)

Of course, result (39) is almost trivial but it is important to keep in mind that,
except for some pathological cases, there seems to be no other practical way to
compute the matrix element 〈ψ|eλH |ψ′〉 without making approximations (assuming
H is a large matrix). In general we don’t know the solution of the eigenvalue

problem of the matrix H, otherwise we would already have solved the most difficult
part of the whole problem. Therefore (39) is not of practical use.

In all cases that we know of, the Hamiltonian is a sum of several contributions
and each contribution itself is usually simple enough so that we can diagonalize
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it ourselves by some (simple) transformation. The Hamiltonian for a particle in
a potential provides the most obvious example: We can write the Hamiltonian

as a sum of the free-particle Hamiltonian and a potential energy. It is trivial to
diagonalize both parts independently but it is usually impossible to diagonalize the
sum.

The question we can now put ourselves is the following. Suppose we can diago-

nalize each of the terms in H by hand. Then, it is very reasonable to assume that
we can also compute the exponential of each of the contributions separately (see
(39)). Is there then a relation between the exponentials of each of the contributions
to H and the exponential of H and if so, can we use it to compute the latter ?

The answer to this question is affirmative and can be found in the mathematical
literature of the previous century. The following fundamental result due to Lie,12

is the basis for the Trotter-Suzuki method for solving quantum problems.13,14,15 It
expresses the exponential of a sum of two matrices as infinite ordered product of

the exponentials of the two individual matrices:

eλ(A+B) = lim
m→∞

(
eλA/meλB/m

)m
, (40)

where, for our purposes, A and B are M ×M matrices. The result (40) is called
the Trotter formula. A first hint for understanding why (40) holds comes from
comparing the two Taylor series

eλ(A+B)/m = 1 +
λ

m
(A+B) +

1

2

λ2

m2
(A+B)2 +O(λ3/m3)

= 1 +
λ

m
(A+B)

+
1

2

λ2

m2
(A2 +AB +BA+B2) +O(λ3/m3) , (41a)

and

eλA/meλB/m = 1 +
λ

m
(A+B) +

1

2

λ2

m2
(A2 + 2AB +B2) +O(λ3/m3) .(41b)

It is clear that for sufficiently large m, both expansions will agree up to terms of

O(λ2‖[A,B]‖/m2). Thus, for sufficiently large m (how large depends on λ and
‖[A,B]‖),

eλ(A+B)/m ≈ eλA/meλB/m . (42)

A mathematically rigorous treatment shows that16

‖eλ(A+B) −
(
eλA/meλB/m

)m
‖ ≤

λ2

2m
‖[A,B]‖e|λ|(‖A‖+‖B‖) , (43)
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demonstrating that for finite m, the difference between the exponential of a sum
of two matrices and the ordered product of the individual exponentials vanishes

as λ2/m. As expected, (43) also reveals that this difference is zero if A and B

commute: If [A,B] = 0 then eλ(A+B) = eλAeλB.
Except for the fact that we assumed that H = A + B, the above discussion

has been extremely general. This suggests that one can apply the Trotter-Suzuki

approach to a wide variety of problems and indeed one can. We have only discussed
the most simple form of the Trotter formula. There now exist a vast number of
extensions and generalizations of which we will consider only one in this section,
and another one in the section on quantum dynamics.

The Trotter formula is readily generalized to the case of more than two contri-
butions to H. Writing H =

∑p
i=1Ai it can be shown that16

‖ exp

[
λ

p∑
i=1

Ai

]
−
(
eλA1/m . . . eλAp/m

)m
‖ ≤

λ2

2m

∑
1≤i<j≤p

‖[Ai, Aj ]‖ exp

[
|λ|

p∑
i=1

‖Ai‖

]
, (44)

showing that any decomposition of the Hamiltonian qualifies as a candidate for
applying the Trotter-Suzuki approach. This is an important conclusion because
the flexibility of choosing the decomposition of H can be exploited to construct
efficient algorithms. From the above discussion it is also clear that at no point, an

assumption was made about the “importance” of a particular contribution to H.
Therefore the Trotter-Suzuki approach can be used where perturbation methods
break down.

Trotter-Suzuki formulae provide an extremely powerful setting for constructing

whole families of algorithms to compute matrix elements of the exponential of H.
We will illustrate their use by concentrating on the simplest example where we
decompose the Hamiltonian H in two parts H = A1 +A2. Using (40) the partition

function can be written as

Z =Tr e−βH = Tr e−β(A1+A2) = lim
m→∞

Zm , (45a)

where

Zm =Tr
(
e−βA1/me−βA2/m

)m
, (45b)

denotes the m-th approximant to the partition function Z. In numerical work, it
is impossible to take the limit m → ∞. Therefore, the general strategy of the
Trotter-Suzuki approach is to compute the m-th approximant for various m, to

study the convergence as a function of m, and to extrapolate to m → ∞. Recall
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that convergence is guaranteed by inequalities such as (43) and (44).
We can compute Zm as follows. By construction we may assume (see above)

that we already know the eigenvalues E
(p)
j and eigenvectors |Φ(p)

j 〉 of the matrices
Ap, for p = 1, 2. Since each set of eigenvectors form a complete set of states, the
identity matrix I can be expressed as

M−1∑
j=0

|Φ(p)
j 〉〈Φ

(p)
j | = I ; p = 1, 2 . (46)

Using representation (46), the approximant (45b) can be written as

Zm =Tr
(
e−βA1/m I e−βA2/m I

)m
=
∑
{jn}

∑
{kn}

m∏
n=1

〈Φ(2)
jn
|e−βA1/m|Φ(1)

kn
〉〈Φ(1)

kn
|e−βA2/m|Φ(2)

jn+1
〉

=
∑
{jn}

∑
{kn}

m∏
n=1

exp
[
−β
(
E

(1)
kn

+ E
(2)
jn

)
/m
]
〈Φ(2)

jn
|Φ(1)
kn
〉〈Φ(1)

kn
|Φ(2)
jn+1
〉 , (47)

subject to the boundary condition jm+1 = j1, reflecting the fact that we are calcu-

lating the trace of a matrix.
Expressions similar to (47) for the m-th approximant to any expectation value

of interest can be obtained by repeating the steps that lead to (47). The general,
the m-th approximant to the expectation value of an observable X can be written

as

〈X〉m =

∑
{jn}

∑
{kn}

ρ({jn}, {kn})X({jn}, {kn})∑
{jn}

∑
{kn}

ρ({jn}, {kn})
, (48a)

where

ρ({jn}, {kn}) =

m∏
n=1

e
−β
(
E

(1)
kn

+E
(2)
jn

)
/m
〈Φ(2)

jn
|Φ(1)
kn
〉〈Φ(1)

kn
|Φ(2)
jn+1
〉 , (48b)

For fixed m, the calculation of (48a) is straightforward, at least in principle: All

quantities are known so we just have to sum over all M2m possibilities. In practice,
the number of possibilities can become so large that it is not feasible to sum all
terms. Then an importance sampling method such as the Metropolis Monte Carlo

or a Molecular Dynamics technique can be used to estimate the m-th approximant
to thermal expectation values. Simulation techniques based on these ideas are called
Quantum Monte Carlo methods.13,14,15

Although from the derivation given above, it may look as if the additional
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M2m−1 degrees of freedom are the only extra’s one pays for transforming the quan-
tum statistical problem into a “classical” mechanics problem, there is a fundamental

problem with this approach.10,13,15 Indeed, the presence in (48b) of the matrix el-

ements of the eigenstates |Φ(p)
j 〉 implies that one cannot exclude that in general,

there may exist combinations of the labels {jn} and {kn} for which ρ({jn}, {kn})
is zero, negative or even complex. This phenomenon is often referred to as the
“minus-sign” problem.10,13,15 The usefulness of a Quantum Monte Carlo method is
reduced considerably when minus-sign problems are encountered.

The class of quantum systems that does not suffer from minus-sign problems

is rather small. One can show that if all non-diagonal matrix elements of H are
negative there will be no minus sign problems (obviously, the sign of the matrix
elements depends on the choice of the basis vector |φj〉).10 This sufficient condition
applies not only to Trotter-Suzuki based methods but also to the Diffusion, Green

Function, and Projector Quantum Monte Carlo techniques as well. An in-depth
discussion of the minus-sign problem can be found elsewhere.10 For the present
purpose, it is sufficient to know that it is a fundamental problem resulting from
the use of a product formula (in practice projection-based methods are product

formulae in disguise) and conventional importance sampling techniques.10 Therefore
the minus-sign problems is an intrinsic property of this approach to solving quantum
problems and, contrary to the common lore, due to the presence of fermionic degrees

of freedom.15 Sometimes, it is possible to perform the sum (or integration) over some
of the degrees of freedom analytically. Usually it pays off to reduce the numerical
work by analytical manipulations, in particular if one can eliminate the minus-sign
problem (an example is given in the last section). Methods that are free of minus-

sign problems are the exact diagonalization techniques, the trial-state approach and
the stochastic diagonalization method.

5. Path Integrals

For a particular class of model Hamiltonians, limm→∞ Zm reduces to the Feyn-
man path integral representation of the partition function. Usually, Feynman’s
path integral is obtained by starting from the expression of the classical action and

allowing for particle trajectories other than the classical one. The Trotter-Suzuki
formula gives a precise prescription of how such a path integral can be constructed.
From mathematical perspective, the Trotter-Suzuki approach for approximating

exponentials of matrices is much more general than the Feynman path integral:
It can be used for model Hamiltonians (matrices, linear operators) for which it is
apparently impossible to write down the classical action.13

We will illustrate the construction of the Feynman path integral for the generic

Hamiltonian
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H =
N∑
i=1

p2
i

2m∗
+

∑
1≤i<j≤N

V (ri, rj) , (49)

where pi and ri denote the momentum and position operator of the i-th particle.

The particles have mass m∗ and interact via a potential V (ri, rj). For simplicity
we will assume that they are distinguishable. Treating fermion or boson systems
requires only minor modifications.13,17 We decompose the Hamiltonian (49) into ki-

netic and potential energy. The eigenstates of the kinetic energy are direct products
of free-particle eigenstates. Writing |q1, . . . , qN 〉 for |Φ(1)

k 〉 where pi|qi〉 = h̄qi|qi〉,

and |x1, . . . , xN 〉 for |Φ(2)
j 〉 where ri|xi〉 = xi|xi〉, the first factor in the product of

matrix elements (4.13) reads

〈x1, . . . , xN | exp

(
−

β

2m∗m

N∑
i=1

p2
i

)
|x′1, . . . , x

′
N 〉

=

∫ +∞

−∞
dq1 . . . dqN 〈x1, . . . , xN | exp

(
−

β

2m∗m

N∑
i=1

p2
i

)
|q1, . . . , qN 〉

× 〈q1, . . . , qN |x′1, . . . , x
′
N 〉

=

∫ +∞

−∞
dq1 . . . dqN 〈x1, . . . , xN |q1, . . . , qN 〉〈q1, . . . , qN |x′1, . . . , x

′
N 〉

× exp

(
−
β

m

N∑
i=1

h̄2q2
i

2m∗

)

=

∫ +∞

−∞
dq1 . . . dqN

N∏
j=1

ei(xj−x
′
j)·qje−βh̄

2q2j /2m
∗m , (50)

where, in the last step, we used 〈xj |qj〉 = eixj·qj . Using the fact that the potential

energy is diagonal when we work in the coordinate representation, the second factor
in (4.13) takes the form

〈x1, . . . , xN | exp

− β
m

∑
1≤i<j≤N

V (ri, rj)

 |x′1, . . . , x′N 〉
= exp

− β
m

∑
1≤i<j≤N

V (xi, xj)

 m∏
i=1

δ(xi − x
′
i) . (51)

The identity
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∫ +∞

−∞
e−ay

2+by dy =

√
π

a
eb

2/4a , (52)

allows the integrals over all qj in (51) to be worked out analytically, giving

Zm =

(
2πm∗m

βh̄2

)d/2 ∫ +∞

−∞
dx1,n . . .dxN,m exp

−m∗m2βh̄2

m∑
n=1

N∑
j=1

(xj,n − xj,n+1)
2

−
β

m

m∑
n=1

∑
1≤i<j≤N

V (xi,n, xj,n)

 , (53)

where d denotes the dimension of the space in which the particles move. Using

lim
m→∞

m

β

m∑
n=1

(xj,n − xj,n+1)
2 = lim

m→∞

β

m

m∑
n=1

(
xj,n − xj,n+1

β/m

)2

=

∫ β

0

dτ

(
dxj(τ )

dτ

)2

, (54a)

and

lim
m→∞

β

m

m∑
n=1

V (xi,n, xj,n) =

∫ β

0

dτ V (xi(τ ), xj(τ )) , (54b)

we recover the Feynman path integral representation of the partition function

Z =

∫
Dx(τ ) e−S({xj (τ)}) , (55)

where for model (50)

S({xj(τ )}) =
m∗

2

N∑
j=1

∫ β

0

dτ

(
dxj(τ )

dτ

)2

+
∑

1≤i<j≤N

∫ β

0

dτ V (xi(τ ), xj(τ )) , (56)

is the classical action of the N particles, moving along the path {xj(τ )} parame-
terized by the imaginary time τ . To obtain the real-time Feynman path integral

replace β by it/h̄.
The Feynman path integral (56) and its interpretation in terms of particles

moving along world lines carries over to (53). First we make m replicas of the

original physical system. Then we connect the coordinates with the same particle
label by harmonic springs (the first term in the exponential appearing in (53)),
restricting the connections to replica’s that are nearest neighbors with respect to
the replica label n. Within each replica the particles interact with each other via

—19—



potential V (x, x′). The forces resulting from the springs get stronger as m→∞ or
kBT = 1/β → 0, while the forces due to V (x, x′) get weaker (note that we have to

let m →∞ before we let β → ∞ to recover the exact result). The fact that these
interactions depend on m, the size of the system in the imaginary-time direction,
indicates that the interpretation of (53) as a partition function of some genuine
classical system is somewhat misleading.13

6. Quantum Dynamics

In this section we will discuss numerical algorithms to solve the TDSE

ih̄
∂

∂t
|Φ(t)〉 = H|Φ(t)〉 , (57)

where |Φ(t)〉 represents the state of the system described by the Hamiltonian H
(in this section we use H for the differential operator and H for the corresponding
matrix). Solving the time-dependent Schrödinger equation for a single particle

moving in a non-trivial (electromagnetic) potential is not a simple matter. The main
reason is that for most problems of interest, the dimension of the matrix representing
H can be quite large. Typical applications use matrices of dimension M = 106 or

larger. Although the dimension of the matrices involved is certainly not as large as
in the case of typical many-body quantum systems, exact diagonalization techniques
quite useless. Indeed, a calculation of the time-development of the wave function
by exact diagonalization techniques requires the knowledge of all eigenvectors and

all eigenvalues (i.e. ≈ 1013 Mb or more RAM to store these data). Thus, we
need algorithms that do not use more than O(M + 1) storage elements but the
diagonalization methods discussed above are of very limited use. Methods based
on importance sampling concepts cannot be employed either because there is no

criterion to decide which state is important or which is not.
A key concept in the construction of an algorithm for solving the TDSE is the so-

called unconditional stability. An algorithm for solving the TDSE is unconditionally
stable if the norm of the wavefunction is conserved exactly, at all times.18 From

physical point of view, unconditional stability obviously is an essential requirement.
If an algorithm is unconditionally stable the errors due to rounding, discretization
etc. never run out of hand, irrespective of the choice of the grid, the time step, or

the number of propagation steps. Recall that the formal solution of the TDSE is
given by

|Φ(mτ )〉 = e−imτH|Φ(t = 0)〉 , (58)

where m = 0, 1, . . . counts the number of time-steps τ .
A simple, general recipe for constructing an unconditionally stable algorithm is

to use unitary approximations to the (unitary) time-step operator U(τ ) = e−iτH.18
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Trotter-Suzuki formulae provide the necessary mathematical framework for con-
structing unconditionally stable, accurate and efficient algorithms to solve the

TDSE.18 For many applications it is necessary to employ an algorithm that is
correct up to fourth order, both in space and time. Trotter-Suzuki formula-based
procedures to devise algorithms that are correct up to fourth-order in the time step
are given in ref.18. From practical point of view, a disadvantage of the fourth-

order methods introduced in ref.18 is that they involve commutators of various
contributions to the Hamiltonian. Recently Suzuki proposed a symmetrized fractal
decomposition of the time evolution operator.19 Using this formula, a fourth-order
algorithm is easily built from a second-order algorithm by applying19

U4(τ ) = U2(pτ )U2(pτ )U2((1 − 4p)τ )U2(pτ )U2(pτ ) , (59)

where p = 1/(4 − 41/3) and Un(τ ) is the n–th order approximation to U(τ ), i.e.
U(τ ) = Un(τ ) + O(τn+1). Approximants correct up to second order are obtained
by symmetrization of first order approximants,18,19,20 namely

U2 (τ ) = UT1 (τ/2)U1 (τ/2) , (60)

where the UT1 is the transpose of U1 .

Usually the Hamiltonian can be written as a sum of different contributions which
may or may not commute. The first-order approximant U1(τ ), corresponding to
the decomposition

H =

N∑
n=1

Hn , (61a)

is given by

U1(τ ) =e−iτH1 e−iτH2 . . . e−iτHN =

N∏
n=1

e−iτHn . (61b)

In general there will be many possibilities to write down different decompositions of
a given Hamiltonian. From theoretical point of view, the choice of the decomposi-
tion is arbitrary. In practice however, this flexibility can be exploited to considerable

extent to tailor the algorithm to the computer architecture on which the algorithm
will execute. Of particular interest are decompositions that vectorize well and have
a large intrinsic degree of parallelism.

Having reached a point where it is impossible to proceed with formal manipu-

lations only, it is nevertheless important to recognize that for any decomposition
H, the use of the unitary operator U1(τ ) guarantees that the algorithms defined by
(59)–(61b) are unconditionally stable and correct upto respectively fourth-, second-
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and first order in the time step.
The Hamiltonian of a charged (spinless) non-relativistic particle in an external,

static magnetic field B reads

H =
1

2m∗
(p − eA )2 + V , (62)

where m∗ is the effective mass of the particle with charge e, p = −ih̄∇ is the mo-
mentum operator, A represents the vector potential and V denotes the potential.
For many applications it is sufficient to consider the choice B = (0, 0, B(x, y)) and
V = V (x, y). Then the problem is essentially two-dimensional and the motion of

the particle may be confined to the x–y plane. For numerical work, there is no
compelling reason to adopt the Coulomb gauge (divA = 0). A convenient choice
for the vector potential is A = (Ax(x, y), 0, 0) where

Ax(x, y) = −

∫ y

0

B(x, y)dy . (63)

We will solve the TDSE for the Hamiltonian (62) with the boundary condition
that the wave function is zero outside the simulation box, i.e. we assume perfectly

reflecting boundaries.
For computational purposes it is expedient to express all quantities in dimen-

sionless units. Fixing the unit of length by λ, wavevectors are measured in units of
k = 2π/λ, energies in E = h̄2k2/2m∗, time in h̄/E and vector potential in units of

eλ/h̄. Expressed in these dimensionless variables Hamiltonian (62) reads

H = −
1

4π2

{[
∂

∂x
− iAx(x, y)

]2

+
∂2

∂y2

}
+ V (x, y) . (64)

An essential step in the construction of a numerical algorithm is to discretize the

derivatives with respect to the x and y coordinates. For our purposes, it is necessary
to use a difference formula for the first and second derivatives in (64) that is accurate
up to fourth order in the spatial mesh size δ. Using the standard four and five point
difference formula21 the discretized r.h.s. of (64) reads

HΦl,k(t) =
1

48π2δ2

{ [
1− iδ

(
Al,k +Al+2,k

)]
Φl+2,k(t)

+
[
1 + iδ

(
Al−2,k +Al,k

)]
Φl−2,k(t)

−16
[
1−

iδ

2

(
Al,k +Al+1,k

)]
Φl+1,k(t)

−16
[
1 +

iδ

2

(
Al−1,k +Al,k

)]
Φl−1,k(t)

+Φl,k+2 + Φl,k−2 − 16Φl,k+1 − 16Φl,k−1(t)
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+
[
60 + δ2A2

l,k + 48π2δ2Vl,k

]
Φl,k(t)

}
+O(δ5) , (65)

where Φl,k(t) = Φ(lδ, kδ, t) and Al,k = Ax(lδ, kδ). The discretized form (65)
will provide a good approximation to the continuum problem if δ is substantially
smaller than the smallest physical length scale. For the case at hand there are
two such scales. One is the de Broglie wavelength of the particle (which by def-

inition is equal to λ) and the other is the (smallest) magnetic length defined by
l2B = min(x,y) |h̄/eB(x, y)|. From numerical calculations (not shown) it follows that
δ = 0.1min(1, lB) yields a good compromise between accuracy and the CPU time
required to solve the TDSE.

Straightforward application of the product-formula recipe to expression (65)
requires a cumbersome matrix notation. This can be avoided in the following way.18

Defining

|Φ(t)〉 =

Lx∑
l=1

Ly∑
k=1

Φl,k(t)c
+
l,k|0〉 , (66)

where Lx and Ly are the number of grid points in the x and y direction respectively
and c+l,k creates a particle at lattice site (l, k), (66) can be written as

|Φ(mτ )〉 = e−imτH |Φ(t = 0)〉 , (67)

where

H =
1

48π2δ2

Lx−2∑
l=1

Ly∑
k=1

{[
1− iδ

(
Al,k +Al+2,k

)]
c+l,kcl+2,k

+
[
1 + iδ

(
Al,k +Al+2,k

)]
c+l+2,kcl,k

}

−
1

3π2δ2

Lx−1∑
l=1

Ly∑
k=1

{[
1−

iδ

2

(
Al,k +Al+1,k

)]
c+l,kcl+1,k

+
[
1 +

iδ

2

(
Al,k +Al+1,k

)]
c+l+1,kcl,k

}

+
1

48π2δ2

Lx∑
l=1

Ly−2∑
k=1

(
c+l,kcl,k+2 + c+l,k+2cl,k

)
−

1

3π2δ2

Lx∑
l=1

Ly−1∑
k=1

(
c+l,kcl,k+1 + c+l,k+1cl,k

)
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+
1

48π2δ2

Lx∑
l=1

Ly∑
k=1

(
60 + δ2A2

l,k + 48π2δ2Vl,k
)

+O(δ5) , (68)

where cl,k annihilates a particle at lattice site (l, k).
Hamiltonian (68) describes a particle that moves on a two-dimensional lattice

by making nearest and next-nearest neighbor jumps. This interpretation suggests

that H should be written as a sum of terms that represent groups of independent
jumps.18 A convenient choice is

H1 =
1

48π2δ2

∑
l∈X1

Ly∑
k=1

{[
1− iδ

(
Al,k +Al+2,k

)]
c+l,kcl+2,k

+
[
1 + iδ

(
Al,k +Al+2,k

)]
c+l+2,kcl,k

}
;

X1 = {1, 2, 5, 6, 9, 10, . . .} ,

H2 =
1

48π2δ2

Ly∑
k=1

∑
l∈X2

{[
1− iδ

(
Al,k +Al+2,k

)]
c+l,kcl+2,k

+
[
1 + iδ

(
Al,k +Al+2,k

)]
c+l+2,kcl,k

}
;

X2 = {3, 4, 7, 8, 11, 12, . . .} ,

H3 =
−1

3π2δ2

Ly∑
k=1

∑
l∈X3

{[
1−

iδ

2

(
Al,k +Al+1,k

)]
c+l,kcl+1,k

+
[
1 +

iδ

2

(
Al,k +Al+1,k

)]
c+l+1,kcl,k

}
;

X3 = {1, 3, 5, 7, 9, 11, . . .} ,

H4 =
−1

3π2δ2

Ly∑
k=1

∑
l∈X4

{[
1−

iδ

2

(
Al,k +Al+1,k

)]
c+l,kcl+1,k

+
[
1 +

iδ

2

(
Al,k +Al+1,k

)]
c+l+1,kcl,k

}
;

X4 = {2, 4, 6, 8, 10, 12, . . .} ,

H5 =
1

48π2δ2

∑
k∈X5

Lx∑
l=1

(
c+l,kcl,k+2 + c+l,k+2cl,k

)
; X5 = {1, 2, 5, 6, 9, 10, . . .} ,

H6 =
1

48π2δ2

∑
k∈X6

Lx∑
l=1

(
c+l,kcl,k+2 + c+l,k+2cl,k

)
; X6 = {3, 4, 7, 8, 11, 12, . . .} ,
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H7 =
−1

3π2δ2

∑
k∈X7

Lx∑
l=1

(
c+l,kcl,k+1 + c+l,k+1cl,k

)
; X7 = {1, 2, 5, 6, 9, 10, . . .} ,

H8 =
−1

3π2δ2

∑
k∈X8

Lx∑
l=1

(
c+l,kcl,k+1 + c+l,k+1cl,k

)
; X8 = {3, 4, 7, 8, 11, 12, . . .} ,

H9 =
1

48π2δ2

Ly∑
k=1

Lx∑
l=1

(
60 + δ2A2

l,k + 48π2δ2Vl,k
)

, (69)

and

U1(τ ) =

9∏
n=1

e−iτHn , (70)

is the first-order approximant from which the algorithm, correct up to fourth-order
in the spatial (δ) and temporal (τ ) mesh size, can be built.

Inspection of Hn for n = 1, . . . , 9 shows that each of the terms commutes with

all the other terms in the sum over k and l. This is because each of these terms
corresponds to a jump of the particle between a pair of two, isolated sites. For the
purpose of implementation, this feature is of extreme importance.18 To illustrate

this point it is sufficient to consider the first of the exponents in (70) and use the
fact that all terms commute to rewrite it as

e−iτH1 =

Ly∏
k=1

∏
l∈X1

exp

(
−iτ

48π2δ2

{[
1− iδ

(
Al,k +Al+2,k

)]
c+l,kcl+2,k

+
[
1 + iδ

(
Al,k +Al+2,k

)]
c+l+2,kcl,k

})
. (71)

Furthermore, each of the exponents in the product (71) describes a two-site sys-
tem, and the exponent of the corresponding two-by-two matrix can be worked out
analytically.18 In general

exp
(
ταc+l,kcl′,k′ + τα∗c+l′,k′cl,k

)
=
(
c+l,kcl,k + c+l′,k′cl′,k′

)
cos τ |α|

−i
(
α∗
−1
c+l,kcl′,k′ + α−1c+l′,k′cl,k

)
sin τ |α| . (72)

Fortunately, the rather formal language used above easily translates into a computer

program. All that (69)–(72) imply is that for each factor in product formula (70)
one has to pick successive pairs of lattice points, get the values of the wave function
for each pair of points and perform a plane rotation using matrices of the form

M =

(
cos τ |α| −iα−1 sin τ |α|

−iα∗−1 sin τ |α| cos τ |α|

)
. (73)
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For each of the nine exponentials,22 the order in which the pairs of points are
processed is irrelevant. Therefore, the computation of each of the nine factors

can be done entirely parallel, fully vectorized, or mixed parallel and vectorized
depending on the computer architecture on which the code will execute. Further
technical details on the implementation of this algorithm can be found elsewhere.23

Trotter-Suzuki based TDSE solvers have been employed to study a variety

of problems including wave localization in disordered and fractals,18,24 electron
emission from nanotips,25,26,27 Andreev reflection in mesoscopic systems,28,29 the
Aharonov-Bohm effect,23 quantum interference of charged identical particles,30 etc..
Appealing features of the TDSE approach are that is extremely flexible in the sense

that it can handle arbitrary geometries and (vector) potentials and that its numer-
ical stability and accuracy are such that for all practical purposes the solution is
exact.

Trotter-Suzuki formala-based algorithms can and also have been used to solve

the TDSE for few-body quantum systems, including a 26-site S=1/2 Heisenberg
model.31 The application of the TDSE approach is mainly limited by the storage
needed for the (complex valued) wave function.

If M is so large that we cannot store the wave function other, less accurate,
techniques can be used to estimate some of the dynamical properties of the model
system. All these methods are based on the knowledge of certain correlation func-
tions in the imaginary-time domain. This data is usually obtained from Quantum

Monte Carlo (QMC) simulations. Straightforward extrapolation of imaginary-time
data to real-time data is, from mathematical point of view, an ill-conditioned prob-
lem (i.e. numerically highly unstable) and some regularization method is required.
Most successful work uses the so-called Maximum Entropy (MaxEnt) method32 to

extract spectral functions from imaginary-time QMC data. A detailed discussion
of these data manipulation techniques is outside the scope of the present lecture.

6.1 Application: Quantum interference of two identical particles

Recently Silverman33,34 proposed and analyzed a thought experiment that com-
bines both the features of the Aharonov-Bohm (AB) and Hanbury-Brown and Twiss

(HBT) experiments. The former provides information on the effect of the magnetic
field on correlations of two amplitudes. The latter on the other hand yields di-
rect information on the correlations of two intensities, i.e. of correlations of four
amplitudes.

A schematic view of the AB-HBT apparatus is shown in Fig.1. Charged fermions
or bosons leave the source S, pass through the double-slit and arrive at detectors D1

and D2. In order for the particle statistics to be relevant at all, it is necessary that
in the detection area the wave functions of two individual particles overlap. For

simplicity, it is assumed that the particles do not interact. The particle statistics
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Fig.1. Schematic view of the combined Aharonov-Bohm – Hanbury-Brown Twiss

apparatus. Charged fermions or bosons leave the source S, pass through the double-

slit and arrive at detectorsD1 andD2. The signals of these detectors are multiplied

in correlator C . The particles do not experience the magnetic field B enclosed in

the double-slit apparatus.

may affect the single-particle as well as two-particle interference. The former can
be studied by considering the signal of only one of the two detectors. Information

on the latter is contained in the cross-correlation of the signals of both detectors.
Below we report some of our results35 for the AB-HBT thought experiment, as
obtained from the numerically exact solution of the time-dependent Schrödinger

equation (TDSE) using the algorithm described above.
In practice we solve the two-particle TDSE subject to the boundary condition

that the wave function is zero outside the simulation box, i.e. we assume perfectly
reflecting boundaries. The algorithm that we use is accurate to fourth-order in both

the spatial and temporal mesh size.36 Additional technical details can be found
elsewehere.36 Physical properties are calculated from the two-particle amplitude
Φ(r, r′ , t) = φ1(r, t)φ2(r′, t) ± φ2(r, t)φ1(r′, t) where φ1(r, t) and φ2(r, t) are the
single-particle amplitudes and the plus and minus sign correspond to the case of

bosons and fermions respectively.
Let us first reproduce Silverman’s analysis.33,34 Assume that the double-slit

apparatus can be designed such that the probability for two identical particles
(fermions or bosons) to pass through the same slit can be made negligibly small. The

two slits then act as the two sources in the HBT experiment with one modification:
Due to the presence of the vector potential the waves can pick up an extra phase
shift. According to Silverman,33,34 it immediately follows that the signal generated

by the cross-correlator will not show any dependence on the confined magnetic field.
The AB shifts for the direct process and the one in which the identical particles
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Fig.2. Simulation results for single- (top) and correlated (bottom) detector signal for

B = 0, obtained from the solution of the TDSE for the initial state as described in

the text. Left: Signals generated by fermions. Right: Signals generated by bosons.

The corresponding pictures for B = B0
(38) are identical and not shown.

have been interchanged mutually cancel. This cancelation is independent of the
fact that the particles are fermions or bosons.37

The basic assumption of Silverman’s analysis is easily incorporated into a com-

puter experiment. The initial two-particle wave function is a properly symmetrized
product of single-particle wave functions which, for simplicity, are taken to be Gaus-
sians. Each Gaussian is positioned such that during propagation it effectively ”hits”
only one slit. The single (top) and correlated (bottom) signals, received by detec-

tors placed far to the right of the slits for B = 0 for fermions (l.h.s) as well as for
bosons (r.h.s.) are shown in Fig.2.
For fermions the correlated signal for θ1 = θ2 vanishes, as required by the Pauli
principle. This feature is hardly visible, due to the resolution we used to generate

the pictures but it is present in the raw data. Within four digit accuracy, the
corresponding data for B = B0 (or, as a matter of fact, for any B) are identical
to those for B = 0.35 Comparison of the cross-correlated intensities (bottom part)

clearly lends support to Silverman’s conclusion.33,34 However, it is also clear that
the single-detector signals (upper part) do not exhibit the features characteristic of
the AB effect. Under the conditions envisaged by Silverman, not only is there no
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Fig.3. Simulation results for single- (top) and correlated (bottom) detector signal

generated by two bosons, as obtained from the solution of the TDSE for the initial

state described in the text. Left: B = 0. Right: B = B0.

AB effect in the cross-correlated signal: There is no AB effect at all.
The absence of the AB effect can be traced back to Silvermans’s assumption that

the slits can be regarded as sources, thereby eliminating the second, topologically

different, alternative for a particle to reach the detector. A different route to arrive
at the same conclusion is to invoke gauge invariance to choose the vector potential
such that the two particles would never experience a non-zero vector potential.

A full treatment of the thought experiment depicted in Fig.1 requires that all

possibilities for both identical particles are included in the analysis. This is easily
done in the computer experiment by changing the position and width of the Gaus-
sians used to build the initial wave function of the fermions or bosons such that
they both hit the two slits. Some of our results for the case of two bosons are shown

in Fig.3. Comparison of the upper parts of Fig.3 provides direct evidence of the
presence of the AB effect.

The cross-correlated boson intensities (r.h.s. of the bottom part of Fig.3) clearly

exhibit an AB-like effect. The positions of the maxima and minima are interchanged
if the magnetic field changes from B = 0 to B = B0. We have verified that the
shift of these positions is a periodic function of the field B. These results for the
case of boson statistics cannot be explained on the basis of Silverman’s theory.33,34
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In general we find that there is only a small quantitative difference between the
fermion and boson single-detector signals: The interference fringes of the fermions

are less pronounced than in the case of bosons, another manifestation of the Pauli
principle. The differences in the cross-correlated fermion intensities, due to B, are
not as clear as in the boson case. Substracting the B = 0 from the B = B0 signal
and plotting the absolute value of this difference (not shown) clearly shows that

also the cross-correlated fermion intensity exhibits features that are characteristic
of the AB effect.35 The high symmetry in all the correlated signals shown is due to
our choice B = 0, B0. The fact that we recover this symmetry in our simulation
data provides an extra check on our method. If B is not a multiple of B0, this

high symmetry is lost but the salient features of the signals remain the same. From
our numerical experiments, we conclude that in an AB-HBT experiment, an AB
shift of the interference pattern will be observed in both the single and two-detector
experiments. The AB effect (in both experiments) is more pronounced for bosons

than for fermions.

7. Quantum Monte Carlo: Application

In this section we will discuss a particular QMC method to solve a large class of
models that involve quantum particles coupled to classical degrees of freedom. Using
this method one can compute the dynamical properties of the quantum degrees of

freedom with the same accuracy as the time-independent quantities for any density
of quantum particles. To illustrate the power of the method, we will present the
first, numerically exact, results for the density of states and the optical conductivity
of an electron-phonon model for a polymer.

From pedagogical viewpoint the method we will discuss has a number of attrac-
tive features. First of all it illustrates how QMC methods can be used to compute
all physically relevant properties of a non-trivial many-body system. Secondly,
the method does not suffer from the problems encountered in most QMC work:

There are no minus-sign problems, time-dependent properties can be computed di-
rectly, without making use of the extrapolation techniques mentioned above, and
the accuracy of the results is high. Thirdly, from methodological point of view it

is complementary to the methods discussed above. Finally, it is straightforward to
implement the algorithm which make it a good starting point to learn the tricks of
the game.

There is a vast class of systems in all branches of many-body physics that may,

as a first step, be modelled in terms of quantum mechanical degrees of freedom
interacting with a set of classical variables. Models of this kind are used to describe
for example, solvated electrons,39 metallic clusters,40 the electronic properties of
polymers,41−46 f- and d-electron systems,47 crystallization,48,49 etc.. Usually the

classical environment itself displays complicated dynamical behavior and one often
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has to resort to a Molecular Dynamics or Monte Carlo simulation to unravel its prop-
erties. Methods have been developed to incorporate the effects of the coupling of

the classical variables to the quantum mechanical degrees of freedom.39,50,51 These
methods have successfully been used to compute the time-independent properties
of the quantum mechanical system embedded in the classical environment.

7.1 Theory

The generic Hamiltonian of a system of fermions interacting with a set of classical
degrees of freedom reads

H =
∑
i,j

∑
s

c+i,sMi,j({uk})cj,s +E({uk}) , (74)

where c+i,s and ci,s are the creation and annihilation operators, respectively, for a
fermion with spin s =↑, ↓ at the generalized site (orbital) index i, ui denotes the gen-
eralized coordinate describing the classical degrees of freedom, Mi,j = Mi,j({uk})
is a Hermitian matrix and E({uk}) represents the potential energy of the classical
degrees of freedom. The grand-canonical partition function for model (74) can be
written as

Z = Tr e−β(H−µN) =

∫
{uk}

e−βE({uk})tr exp

−β∑
i,j

∑
s

c+i,sMi,j ({uk}) cj,s

 ,

(75)
where β denotes the inverse temperature and µ is the chemical potential. As already

mentioned above, it is expedient to simplify (75) as much as possible by means of
analytical manipulations. Since H is a quadratic form in the fermionic degrees of
freedom, the trace tr over the fermions can be performed analytically as we now
show. The first step is to prove the identities

c+i,s(λ) =eλc
+·M ·cc+i,se

−λc+·M ·c =
∑
j

c+j,s
(
eλM

)
j,i

, (76a)

ci,s(λ) =eλc
+·M ·cci,se

−λc+·M ·c =
∑
j

(
e−λM

)
i,j
cj,s , (76b)

where we use the shorthand notation c+ ·M · c =
∑

i,j

∑
s c

+
i,sMi,j ({uk}) cj,s. To

prove (76), just compute the derivative of both sides of (76a) and (76b) with
respect to λ and use c+i,s(λ = 0) = c+i,s and ci,s(λ = 0) = ci,s respectively.

Next we consider a one particle state c+i,s|0〉 and calculate how this state changes

if we operate on it with e−βH . Since, by construction ci,s|0〉 = 0, we have
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e−βHc+i,s|0〉 = e−βHc+i,se
βHe−βH |0〉 = e−βE({uk})e−βHc+i,se

βH |0〉 . (77)

We can now use (76) to obtain

e−βHc+i,s|0〉 = e−βE({uk})
∑
j

(
e−βM

)
j,i
c+j,s|0〉 . (78)

The result (78) is readily generalized to an n-particle state, yielding

e−βHc+i1,s1 . . . c
+
in,sn
|0〉

=e−βE({uk})
∑
{jk}

(
e−βM

)
j1,i1

. . .
(
e−βM

)
jn,in

c+j1,s1 . . . c
+
jn,sn
|0〉 , (79)

showing the well-known fact that under the action of a Hamiltonian, quadratic in
the fermionic degrees of freedom, a single Slater determinant remains a single Slater
determinant. From (79) it follows that

〈0|ci1,s . . . cin,se
−βHc+i1,s . . . c

+
in,s
|0〉 = e−βE({uk})

×
∑
{jk}

(
e−βM

)
j1,i1

. . .
(
e−βM

)
jn,in

〈0|ci1,s . . . cin,sc
+
j1,s

. . . c+jn,s|0〉 , (80a)

=e−βE({uk})
∑
{P (n)}

sign(P (n))
(
e−βM

)
P (n)i1,i1

. . .
(
e−βM

)
P (n)in,in

, (80b)

where P (n) denotes a permutation of the indices i1, . . . , in. Including the weight
e−βµN (i.e. working in the grand canonical ensemble) the sum over all possible

numbers and arrangements of particles can be performed analytically yielding for
the partition function the exact expression15

Z =

∫
{ui}

ρ({ui}) =

∫
{ui}

e−βE({ui})
[
det
(
I + e−β(M({ui})−µI)

)]2
, (81)

where, as before, I denotes the unit matrix. Exact expressions for any static prop-
erty of interest can be derived in a similar manner. Expectation values of static
quantities are calculated as follows: For a particular configuration {ui} we diag-
onalize the L × L matrix M , compute the determinant in (81), and multiply the

latter by the exponential prefactor, to obtain the weight of the configuration {ui}.
From (81) it is clear that this weight is strictly positive. Therefore it can be used
in a Metropolis Monte Carlo simulation of the variables {ui} to calculate the av-

erages of time-independent quantities. The algorithm is, by construction, free of
minus-sign problems or numerical instabilities. This enables us to cover a much
wider range of temperatures (see below) than the one which is usually accessible to
other Quantum Monte Carlo methods.52 In our implementation of the algorithm,
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the computer time required to simulate the system is roughly proportional to the
square of the number of lattice sites L.

We now demonstrate that for models of type (74), also the time-dependent
quantities can be calculated directly, in the real-time domain, without invoking
procedures52 for extrapolating imaginary-time data to the real-time axis. We begin
by considering the single-particle density of states

N(ω) =
1

2πL

∑
l,s

∫ +∞

−∞
dτeiωτ 〈{cl,s(τ ), c

+
l,s}〉 , (82)

i.e. the probability for removing or adding a single fermion from or to the system.

Again using the fact that (74) is a quadratic form of the fermion operators, the
time evolution of the annihilation operator in (82) can be worked out analytically
(use (76) with λ = iτ ), yielding

1

L

∑
l,s

〈{cl,s(τ ), c
+
l,s}〉 =

2
∫
{ui}

ρ({ui}) Spe−iτM({ui})∫
{ui}

ρ({ui})
, (83)

where SpX denotes the trace of the L × L matrix X. Since we already know
the eigenvalues and eigenvectors of M({ui}), it is straightforward to compute the

real and imaginary part of e−iτM({ui}) for arbitrary τ . For each choice of τ , the
calculation of Spe−iτM({ui}) takes of the order of L operations (the same as for a
static quantity) per configuration {ui}, the statistical errors being comparable to

those of the static quantities. In practice we choose a set of τ -values (typically 256)
such that, after all samples have been taken, the integral in (82) can be computed by
Fast Fourier Transformation (FFT). Thus, the total number of operations required
to compute N(ω) is proportional to the number of lattice sites multiplied by the

number of points in time that we use for the FFT.
The same technique can also be used to calculate other dynamical properties

as well, as we now demonstrate for the case of the optical conductivity. The Kubo
formula for the conductivity reads53

σ (ω) = lim
ε→0

i

ω + iε

−∑
l,s

〈[lnl,s, J ]〉+

∫ ∞
0

eiωτ e−ετ 〈[J, J (τ )]〉dτ

 , (84)

where nl,s = c+l,scl,s is the number operator for site l and spin s, and the current op-

erator is given by J = i
∑

l,s[H, lnl,s]. It is straightforward to work out analytically,
the time-evolution of J(τ ) and the commutator appearing in (84). The resulting
expression for the integrand is used to sample the current-current correlation func-
tion for a set of τ -values (typically 512). After collecting all data, application of the

FFT yields the frequency-dependent conductivity. Unlike for the density of states,
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the computation time per τ -value is not a linear function of L but increases with the
third power of L, effectively limiting the system size that we can study to L ≤ 256.

The statistical noise on the conductivity is of the same order of magnitude as for
the density of states and the static quantities. Disregarding the statistical errors
(which are too small to be visible on the figures presented below) the results for the
static and dynamic properties are, for all practical purposes, numerically exact.

7.2 Hubbard-Stratonovitch Transformation

Can we compute the properties of more complicated fermion systems in the

same way ? The answer is no and the reason is the following. In our derivations we
heavily relied on the fact that generic model (74) is a quadratic form of the fermion
operators. If we add to (74) a term that accounts for a direct interaction between
the fermions then things become much more complicated.

As an example let us consider adding to (74) a ”Hubbard” interaction

HHub = U
∑
i

ni,↑ni,↓ . (85)

where U is the so-called on-site Coulomb interaction strength. If we replace H by
H+HHub then (78) – (81) no longer hold because the new H now contains quartic

terms. We can get around this problem by invoking the Trotter-Suzuki formula

e−τ(H+HHub) ≈ e−τHe−τHHub , (86)

where we have assume that τ = β/m > 0 is sufficiently small, and the identities

e−τHHub =
∏
i

e−τUni,↑ni,↓ =
∏
i

eτU(ni,↑−ni,↓)
2/2e−τU(ni,↑+ni,↓)/2 , (87a)

=
∏
i

√
2τπU

∫ +∞

−∞
dxi e

−x2
i/2τU−xi(ni,↑−ni,↓)−τU(ni,↑+ni,↓)/2 , (87b)

=
∏
i

1

2

∑
σi=±1

eτ
∗σi(ni,↑−ni,↓)e−τU(ni,↑+ni,↓)/2 , (87c)

where cosh τ∗ = eτU/2 and U > 0. Representation (87b) is obtained by using

(5.4). The trick of expressing the exponential of an two-particle interaction as an
integral over auxilary variables ({xi} in our case) is usually called the Hubbard-
Stratonovitch transformation. The discrete form (87c) is due to Hirsch.54 Expres-
sions for U < 0 can be derived in the same manner.

From (87b) or (87c) it is clear that we have now written e−τHHub as a sum
of exponentials of quadratic forms of the fermion operators. Now we are in the
position to use (79) and obtain
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(
e−βH/me−βHHub/m

)m
c+i1,s . . . c

+
in,s
|0〉

=e−βE({uk})
∑
{jk}

A
(s)
j1,i1

. . . A
(s)
jn ,in

c+j1,s . . . c
+
jn,s
|0〉 , (88a)

where

A(s) =2−mLe−τMesD({σi,1}) . . . e−τMesD({σi,m}) , (88b)

and

D({σi,k})l,l′ =τ ∗σl,kδl,l′ , (88c)

where for concreteness we have used the discrete representation (87c) . The result
(88) can now be used derive the expression of the partition function in the grand
canonical ensemble. The exact expression reads

Z =

∫
{ui}

e−βE({ui})
∑

{σi,j=±1}

det
(
I +A(1)

)
det
(
I +A(−1)

)
. (89)

At first sight, (89) looks very similar to (81) but this is only due to our use of a
compact notation. The matrices A(s), as defined in (88b) are complicated objects.
Although still real, they are no longer symmetric and hence there is no guarantuee
that for a given realization of the {σi,j}, the product of the determinants is positive.

This is nothing but another manifestation the minus-sign problem. This example
shows that even if we do our best to perform the sum over all fermionic degrees of
freedom, the fact that we had to make use of a product formula at some stage of the

calculation results in minus-sign problems. More details on how one can proceed
anyway can be found elsewhere.13,15,52

7.3 Application

We now return to the more simple case of the generic model (74) and as an
illustration we will apply the method described above to the Su, Schrieffer, and
Heeger (SSH) model for trans-polyacetylene.41−46 Application to models for corre-

lated electrons can be found elsewhere.55−61 The SSH Hamiltonian reads

H =−
∑
i

∑
s

(t− α (ui+1 − ui))
(
c+i,sci+1,s + c+i+1,sci,s

)
+
K

2

∑
i

(ui+1 − ui)
2

, (90)
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where c+i,s and ci,s are the creation and annihilation operators, respectively, for a
π-electron with spin s =↑, ↓ at the i-th CH group, ni,s denotes the number operator

at group i, µ is the chemical potential which fixes the number of π-electrons, ui is
the coordinate describing the displacement of the i-th CH group along the molec-
ular symmetry axis, t is the hopping integral for the undimerized chain, α is the
electron-phonon coupling constant and K is the effective σ-spring constant.41−46

The absence, in (90), of the lattice kinetic energy implies that the displacements
may be regarded as classical degrees of freedom, a good starting point for the de-
scription of the electronic properties of polyacetylene.41−46

Model Hamiltonian (90) clearly falls into the class of models described by the

generic Hamiltonian (79). For the SSH model, E({uk}) = (K/2)
∑

i(ui+1 − ui)2,
Mi,j({uk}) = −t+ α(uj − ui) for i, j nearest neighbors, and Mi,j({uk}) = 0 other-
wise. The current operator of the SSH model is given by

J = i
∑
i,s

(−t+ α(ui+1 − ui))
(
c+i,sci+1,s − c

+
i+1,sci,s

)
. (91)

Our approach differs from others41−46 in that it allows a first-principle calculation

of the static and dynamic properties of (91). It does not depend on a particular
variational ansatz for the ui configuration nor is there the risk of ending up in a
local instead of global minimum of the (free) energy. Furthermore, to the best of our
knowledge, it yields the first first-principle calculation of the optical conductivity

of model (91).
The results reported below have been obtained from simulations of rings con-

taining up to 256 sites (CH groups) and 256 electrons, exceeding the length of
most chains in actual materials,62−64 for a set of model parameters appropriate for

polyacetylene42−46 : t = 2.5eV, α = 4.1eV/Å and K = 21eV/Å
2
. Energies will

be measured in units of t = 2.5eV. We show results for even-site chains only and
we confine ourselves to a discussion of low-temperature results (in practice we set
T = 2.9K, corresponding to βt = 10000).65

First we demonstrate that our method reproduces the known features of the
model.41−46 At half-filling the Peierls instability66 leads to a dimerization, adjacent
CH groups forming alternately short and long bonds. Our numerical results for a
half-filled CH chain show that the distortion parameter u0 ≡ |

∑
i(−1)i〈ui〉|/2L =

0.0396Å. In Fig.4 we show the pattern of the lattice displacement for a dopant
concentration y ≡ 1 − n = 0.016, where n is the density of electrons in the chain.
The small oscillations on top of a superstructure can easily be removed by standard

filtering procedures. The result is depicted in Fig.5.
The solid curve in Fig.4 is given by ui = u0 tanh[(i− i0)/l] where i0 is a fitting

parameter, l = 8 determines the extent of the defect and u0 = 0.0396Å. The
hyperbolic tangent is characteristic of the bond-length alternation associated with

the geometric distortion due to a soliton on an infinite chain.41−46 Variational
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Fig.4. Lattice distortions for a ring of 128 sites for y = 0.016. The line is a guide

to the eye.

Fig.5. Same as Fig.4, but the smallest wave numbers are filtered out. Bullets:

Simulation results; solid line: u0 tanh [(i − i0)/l].

calculations suggest a value of l ≈ 7.42−46 As expected, Figs.4,5 shows that for
the case in which two electrons are taken away from a half-filled 128-site ring, two
solitons are being created.

Upon doping the system further the soliton lattice evolves toward a sinusoidal

modulation as shown in Figs.6,7 for y = 0.078. The solid curve in Fig.7 is given
by ui = u0 sin[2πm(i − i0)/L], where i0 and m are fitting parameters. Additional
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Fig.6. Lattice distortions for a ring of 128 sites for y = 0.078. The line is a guide

to the eye.

Fig.7. Same as Fig.6, but the smallest wave numbers are filtered out. Bullets:

Simulation results; solid line: u0 sin [2πm(i− i0)/L].

simulations for 256-site rings (results not shown) strongly suggest that solitons
(soliton-antisoliton pairs) are only present for dopant concentrations y < 0.031
and that the transition from the soliton lattice to the sinusoidal modulation is
continuous.

There is strong experimental evidence that upon doping trans-polyacetylene
a first-order phase transition occurs at a dopant concentration of approximately
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Fig.8. Electron density n as a function of the chemical potential µ for a ring of 256

sites. The line is a guide to the eye.

6%.67−64 A first-order phase transition is characterized by plateau’s and steps in n
versus µ.69 Since we perform our calculations in the grand-canonical ensemble we
only have to compute the density n for many values of the chemical potential µ. Our

numerical results, depicted in Fig.8, show that n varies smoothly as a function of µ,
strongly suggesting that the SSH model does not exhibit a first-order transition as
a function of doping. The small steps in n versus µ indicate that only states with
an even number of electrons are thermodynamically stable and that the formation

of polarons is unlikely. This also implies (and is corroborated by our simulation
data (not shown)) that systems of 64 sites or less cannot support soliton–antisoliton
pairs because the removal of two electrons from the half-filled system corresponds
to a dopant concentration that exceeds the critical value of 3.1%.

In Fig.9 we show N(ω) for a ring of 256 sites for various dopant concentrations.
The position of the chemical potential is indicated by the dashed line. For half
filling (y = 0), N(ω) consists of two bands separated by a gap ∆ = 1eV ± 0.3eV .
The chemical potential is located in the middle of the gap and the system acts

as a dimerized semiconductor. At low dopant concentration (y < 0.06) there is a
narrow, mid-gap band in the density of states. For y ≤ 0.031 this band is due to
the presence of solitons whereas for 0.031 < y ≤ 0.06 it results from the sinusoidal

modulation. At high dopant concentration (y > 0.06) the midgap-band broadens.
In the doped system the chemical potential always falls in a gap. There is excellent
qualitative agreement between the results for the density of states obtained by a
combination of geometry optimization and the continued fraction technique70,71

and our numerically exact results.
Fig.10 shows a series of calculated absorption spectra for various dopant con-
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Fig.9. Density of statesN(ω) for a ring of 256 sites for various dopant concentrations

y. The dashed line denotes the position of the chemical potential.

centrations. The optical absorption for the undoped case (thick solid line) has
a gap which is as broad as the gap in the density of states. For dopant con-
centrations below 6%, a midgap absorption peak appears. The intensity of the
midgap absorption peak comes from the interband transitions over the whole spec-

tral range. For y < 0.031, i.e. the range of dopant concentrations for which the
system supports solitons, the intensity of the midgap absorption is proportional to
the dopant concentration. In the intermediate doping regime 0.031 < y < 0.06, the

doping dependence of the intensity of the midgap absorption changes. In the heav-
ily doped regime (y > 0.06) the interband transition has completely disappeared.
Our calculations of the optical absorption reproduce all salient features observed
experimentally.72−74
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25. N. Garćıa, J.J. Sáenz, and H. De Raedt, J. Phys.: Condens. Matter 1 (1989)

9931.
26. H. De Raedt, and K. Michielsen, Nanoscources and Manipulation of Atoms

Under High Fields and Temperatures: Applications, edited by Vu Thien Binh,
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