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Abstract. We study effects of the physical realization of quantum computers on their logical operation.
Through simulation of physical models of quantum computer hardware, we analyze the difficulties that are
encountered in programming physical realizations of quantum computers. Examples of logically identical
implementations of the controlled-NOT operation and Grover’s database search algorithm are used to
demonstrate that the results of a quantum computation are unstable with respect to the physical realization
of the quantum computer. We discuss the origin of these instabilities and discuss possibilities to overcome
this, for practical purposes, fundamental limitation of quantum computers.

PACS. 75.10.Jm Quantized spin models – 76.20.+q General theory of resonances and relaxations –
03.65.-w Quantum mechanics – 03.67.Lx Quantum computation

1 Introduction

Recent theoretical work has shown that a quantum com-
puter has the potential of solving certain computationally
hard problems such as factoring integers [1] and searching
databases much faster than a conventional computer [2].
In most theortical work the operation of a quantum com-
puter is described in terms of highly idealized transfor-
mations on the qubits [3–6]. The impact of the physical
implementation of a quantum computer on its computa-
tional efficiency is largely unexplored.

The logical operation of conventional digital circuits
does not depend on their hardware implementation (e.g.
semiconductors, relays, vacuum tubes, etc.). Dissipative
processes suppress the effects of the internal, non-ideal
(chaotic) dynamics and drive the circuits into regions of
stable operation. Conventional digital computers, built
from these digital circuits, are in one particular state at
a time and are able to perform logical operations that do
not depend on their hardware implementation. From the
point of view of programming the computer this is very
important. Implementations of algorithms designed to run
on a conventional computer will give results that do not
depend on the hardware used to build the computer.

A quantum computer differs from a conventional digi-
tal computer in many respects. A quantum computer ex-
ploits the fact that a quantum system can be in a su-
perposition of states. Interference of these states allows
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exponentially many computations to be done in paral-
lel [3–7]. The presence of the superposition of states is a
direct manifestation of the internal quantum dynamics of
the elementary units of the quantum computer, the qubits.
In an ideal quantum computer the qubits are assumed to
be ideal two-state quantum systems. Therefore, the oper-
ation of an ideal quantum computer does not depend on
the intrinsic dynamics of its qubits.

A physically realizable quantum computer is a many-
body system in which the quantum dynamics of the qubits
is essential to its operation. Manipulation of one qubit
may cause unwanted motion of other qubits. It is difficult
to suppress these effects by dissipation because in contrast
to the case of conventional digital circuits, dissipation pro-
cesses have a devastating effect on the coherent quantum
dynamical motion of the qubits. Therefore a quantum al-
gorithm may yield quantum computation results that de-
pend on the specific physical realization of the quantum
computer. Although quantum algorithms can be designed
independent of the quantum computer hardware, the im-
plementation of a quantum algorithm on a physical real-
ization of a quantum computer (i.e. the programming of
the quantum computer) very much depends on the hard-
ware of which the quantum computer is built from. We
refer to the problem of programming quantum computers
as the quantum programming problem.

Due to the quantum programming problem it may be
very difficult to develop a non-trivial quantum program
for a physical realization of a quantum computer. More-
over, there is no guarantee that an implementation of a
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quantum algorithm, that works well on one quantum com-
puter will also perform well on other physical realizations
of quantum computers. As mentioned above, there are sev-
eral factors that contribute to the quantum programming
problem:

1) Differences between the theoretically perfect and phys-
ically realizable one- and two-qubit operations; qubits
cannot be kept still during the time that other qubits
are being addressed; precision needed to implement op-
erations on the qubits.

2) The effect of coupling of the qubits to other degrees of
freedom (dissipation, decoherence).

How does a quantum programming problem reveal it-
self? Consider two logically independent operations (O1

and O2) of the machine. On a conventional computer
or ideal quantum computer, the order in which we ex-
ecute these two mutually independent instructions does
not matter: O1O2 = O2O1. However, on a physically real-
izable quantum computer sometimes the order does mat-
ter, even if there are no logical dependencies in these two
program steps. In some cases, due to practical problems
in manipulating individual qubits O1O2 6= O2O1 and the
quantum computer may give wrong answers. Note the
qualifier sometimes. There seems to be no general rule to
decide beforehand which operation and at what stage of
the quantum algorithm the quantum programming prob-
lem leads to incorrect results. At present the only way to
find out seems to be to actually carry out the calculations
and check the results.

In most theoretical work on quantum computers and
quantum algorithms [1–6,8] one considers theoretically
ideal (but physically unrealizable) quantum computers.
Then the quantum programming problem is not an issue.
The quantum programming problem is also fundamentally
different from the error propagation previously studied in
quantum algorithms implemented on ideal quantum com-
puters [9–12] since the quantum programming problem is
due to the specific realization of the quantum computer
and leads to systematic instead of random errors. In prin-
ciple the theory of fault-tolerant quantum computation
can be used to deal with random errors, this to the extent
that the noise satisfies certain criteria [8]. However, it is
good to realize that it is not the case that it is possible
to protect a quantum computation against the effects of
completely random noise [8]. According to optimistic esti-
mates the probability of error per quantum gate should be
less than 10−4 for fault-tolerant quantum computation [8].
Disregarding the fact that the systematic errors consid-
ered in this paper are far from being random, the typical
size of these errors is much larger than 10−4 and therefore
there is no indication that these errors can be compen-
sated for by current fault-tolerant quantum computation
techniques. Furthermore one also has to take into account
that quantum error correction requires the manipulation
of additional qubits. On a physical quantum computer,
these extra qubits suffer from exactly the same quantum
programming problem as the other qubit(s). In principle
the quantum error correction part should be treated on
the same physical footing as the other qubits. Actually

this is a highly non-trivial simulation because a physical
model of 2 qubits with minimal quantum error correction
contains at least 10 qubits. In view of the difficulties en-
countered with only 2 qubits, as reported in this paper,
we relegate the simulation of a physical model with noise
and quantum error correction to a future project.

In this paper we study the relation between the phys-
ical realization of quantum computers and their logical
operation. We investigate various aspects of the quan-
tum programming problem by simulating quantum com-
puter hardware. In this work we only consider effects of
the intrinsic quantum dynamics of the quantum computer
(item 1, see above). The study of the effect of the cou-
pling of the qubits to other degrees of freedom (item 2,
see above) is left for future research. We demonstrate that
the programming of a physical, non-ideal implementation
of a quantum computer is difficult, even if the quantum
computer consists of only two qubits. Berman et al. [13] in-
vestigated the influence of the Ising spin interaction on the
quantum dynamics of NMR systems. Although they did
not address the quantum programming problem, the work
is similar in spirit to [14] and the present paper as it ex-
plores the consequences of the difference between the ideal
quantum computers and physical realizations of quantum
computers. As far as we know no experimental data has
been published that specifically addresses this, for poten-
tial applications, very important and intrinsic problem
of programming quantum computers. However, with the
quantum computer hardware currently available a test of
correct quantum computation on a physical realization of
a quantum computer is definitely within reach. In this pa-
per we propose two simple quantum algorithms that may
be used to study the quantum programming problem in
physical realizations of quantum computers. We also dis-
cuss methods to enlarge the region(s) of reliable operation.

The paper is organized as follows: In Section 2 we
describe a physical model of a quantum computer. Our
choice is largely inspired by NMR quantum computer ex-
periments [15–22], mainly because other candidate tech-
nologies for building quantum computers [23–37] are not
yet developed to the point that they can execute compu-
tationally non-trivial quantum algorithms. As the basic
example of a quantum algorithm we take the Controlled-
NOT (CNOT) gate [38]. In Section 3 we discuss the imple-
mentation of the CNOT gate on an ideal two-qubit quan-
tum computer and describe simple, non-trivial quantum
algorithms that consist of repetitions of CNOT opera-
tions. As an illustration of the general nature of the quan-
tum programming problem, we also consider a more com-
plicated example, namely Grover’s quantum algorithm to
search for an item in a database [2]. In Section 4 we derive
the conditions for which the physical two-qubit quantum
computer will exhibit ideal quantum computer behavior
and discuss the generalization of these ideas to n-qubit
quantum computers. Also in Section 4 we describe the im-
plementation of the quantum algorithms discussed in Sec-
tion 3 on a physical realization of a quantum computer.
In Section 5 we demonstrate and analyze the quantum
programming problem by simulating the time-evolution
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of (= execute quantum algorithms on) the physical model
of the quantum computer by solving the time-dependent
Schrödinger equation. In Section 6 we summarize our find-
ings.

2 Physical model of a quantum computer

Generic quantum computer hardware can be modeled in
terms of quantum spins (qubits) that evolve in time ac-
cording to the time-dependent Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉, (1)

in units such that h̄ = 1. For present purposes it is suffi-
cient to consider two-qubit quantum computers only. The
state

|Φ(t)〉 = a(↓, ↓; t)| ↓, ↓〉+ a(↑, ↓; t)| ↑, ↓〉
+ a(↓, ↑; t)| ↓, ↑〉+ a(↑, ↑; t)| ↑, ↑〉, (2)

describes the state of the quantum computer at time t.
The complex coefficients a(↓, ↓; t), . . . , a(↑, ↑; t) com-
pletely specify the state of the quantum system. In the
absence of interactions with other degrees of freedom this
spin-1/2 system can be modeled by the time-dependent
Hamiltonian

H(t) = −JSz1Sz2 − hz1Sz1 − hz2Sz2 − hx1Sx1 − hx2Sx2
−hy1S

y
1 − h

y
2S

y
2

−(h̃x1S
x
1 + h̃x2S

x
2 ) sin(ωt+ φx)

−(h̃y1S
y
1 + h̃y2S

y
2 ) sin(ωt+ φy), (3)

where Sαj , α = x, y, z denotes the αth component of the
spin-1/2 operator representing the jth qubit, J determines
the strength of the interaction between the two qubits, hαj
and h̃αj represent the strength of the applied static (mag-
netic) and applied sinusoidal field (SF) acting on the jth
spin respectively. For a physical system, hα2 = γhα1 and
h̃α2 = γh̃α1 , for α = x, y, z where γ is a constant. The fre-
quency and the phase of the sinusoidal field are denoted
by ω and φα. As the Ising model, i.e. the first term of (3),
is known to be a universal quantum computer [39,40],
model (3) is sufficiently general to serve as a physical
model for a generic quantum computer at zero tempera-
ture. In terms of spin matrices, the operatorQj measuring
the state of qubit j is given by

Qj =
1
2
− Szj . (4)

For numerical purposes it is necessary to fix as many
model parameters as possible. We have chosen to simu-
late the two nuclear spins of the 1H and 13C atoms in a
carbon-13 labeled chloroform, a molecule that has been
used in NMR quantum computer experiments [17,18]. In
these experiments hz1/2π ≈ 500 MHz, hz2/2π ≈ 125 MHz,

and J/2π ≈ −215 Hz [17]. In the following we will use
model parameters rescaled with respect to hz1/2π, i.e we
put

J = −0.43× 10−6, hz1 = 1, hz2 = 0.25. (5)

With this choice of units, time divided by 2π is measured
in units of 2 ns. Note that there is a difference of many
orders of magnitude between the interaction J and the
fields hzj . If the duration of the sinusoidal field pulses is
much shorter than 2π/|J |, the effects of J on the time
evolution during these pulses are very small. Our numer-
ical experiments (see below) are all performed under this
condition. We will only consider quantum computers at
zero temperature without coupling to the environment.
In this sense we simulate highly idealized NMR experi-
ments on a closed quantum system at zero temperature.
This allows us to study a concrete physical realization of
a quantum computer and at the same time focus on the
intrinsic quantum dynamics of the quantum computer.

A quantum algorithm for quantum computer
model (3) consists of a sequence of elementary operations
that change the state |Ψ〉 of the quantum processor
according to the time-dependent Schrödinger equation,
i.e. by (a product of) unitary tranformations. Each
elementary operation transforms the input state |Ψ(t)〉
into the output state |Ψ(t + τ)〉 where τ denotes the
execution time of the elementary operation. The action of
an elementary operation on the state |Ψ〉 of the quantum
processor is defined by specifying how long it acts (i.e. the
time interval τ during which it is active), and the values
of J and all h’s. During the execution of an elementary
operation the values of J and all h’s are kept fixed.

The time evolution of quantum model (3) is obtained
by solving time-dependent Schrödinger equation (1) for
model (3). The simulations have been carried out with a
software tool called Quantum Computer Emulator [41].
The quantum computer software simulates physical mod-
els of quantum computer hardware by a Suzuki product-
formula [42,43], i.e. in terms of elementary unitary oper-
ations [44–46]. For all practical purposes, the numerical
results obtained by this technique are exact. A detailed
description of the quantum computer software tool can be
found elsewhere [47].

3 Ideal quantum computer

3.1 Single-qubit operations

One qubit or one spin-1/2 system is a two-state quantum
system. The two basis states spanning the Hilbert space
are denoted by | ↑〉 ≡ |0〉 and | ↓〉 ≡ |1〉. Rotations of spin j
about π/2 around the x and y-axis are basic quantum
computer operations. We will denote them by Xj and Yj
respectively. In matrix notation, they are given by

Xj ≡ eiπSxj /2 =
1√
2

(
1 i
i 1

)
, (6)
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Table 1. Input and output states and the corresponding ex-
pectation values (a, b) of the qubits for the CNOT operation.

Input state a b Output state a b

|00〉 0 0 |00〉 0 0

|10〉 1 0 |11〉 1 1

|01〉 0 1 |01〉 0 1

|11〉 1 1 |10〉 1 0

and

Yj ≡ eiπSyj /2 =
1√
2

(
1 1
−1 1

)
· (7)

Clearly operations such as (6) and (7) can be implemented
in terms of the time evolution of model (3) by a proper
choice of the model parameters. Writing |a〉 = a0|00〉 +
a1|10〉+a2|01〉+a3|11〉 with |b1b2〉 ≡ |b1〉|b2〉 and bi = 0, 1
we have

X1|a〉 = X1


a0

a1

a2

a3

 =
1√
2


1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1



a0

a1

a2

a3

 . (8)

For example, X1|11〉 = (|11〉+ i|01〉)/
√

2. Using the same
labeling of the basis states as in (8) we have

Y2 ≡
1√
2


1 0 1 0
0 1 0 1
−1 0 1 0

0 −1 0 1

 , (9)

e.g. Y2|11〉 = (|10〉+ |11〉)/
√

2. The matrix expressions for
the inverse of the rotations X1 and Y2, denoted by X1

and Y 2 respectively, are obtained by taking the hermitian
conjugates of the matrices in (8) and (9). For example,
Y 2|11〉 = (|11〉 − |10〉)/

√
2.

3.2 Two-qubit operations: CNOT gate

Computation requires some form of communication be-
tween the qubits. A basic two-qubit operation is provided
by the CNOT gate. The CNOT gate flips the second spin
if the first spin is in the down state, i.e. the first qubit
acts as a control qubit for the second one, see Table 1.
The procedure that we use to construct the CNOT gate
may seem a little ad hoc and indeed to considerable ex-
tent it is. There is no unique method to construct quantum
computer gates.

On an ideal quantum computer the CNOT gate can be
implemented by a combination of single-qubit operations
and a two-qubit phase shift operation P defined by the
matrix

P ≡


eiφ0 0 0 0
0 eiφ1 0 0
0 0 eiφ2 0
0 0 0 eiφ3

 . (10)

Assume that the quantum computer is in a state

|Ψ〉 = a0|00〉+ a1|10〉+ a2|01〉+ a3|11〉. (11)

First we apply to |Ψ〉 the rotation Y2, as defined in (9).
This gives

Y2|Ψ〉 =
1√
2

[(a0 + a2)|00〉+ (a1 + a3)|10〉

+(a2 − a0)|01〉+ (a3 − a1)|11〉] . (12)

Next we apply to Y2|Ψ〉 the phase shift P

PY2|Ψ〉 =
1√
2

[
eiφ0c0|00〉+ eiφ1c1|10〉

+eiφ2c2|01〉+ eiφ3c3|11〉
]
, (13)

where c0 = a0 + a2, c1 = a1 + a3, c2 = a2 − a0 and
c3 = a3−a1. Finally we apply the inverse of the rotation Y2

Y 2PY2|Ψ〉 =
1
2
[
(eiφ0c0 − eiφ2c2)|00〉

+(eiφ1c1 − eiφ3c3)|10〉+ (eiφ0c0 + eiφ2c2)|01〉
+(eiφ1c1 + eiφ3c3)|11〉

]
. (14)

We now determine the angles φi such that the se-
quence (14) performs the CNOT operation. Since the
CNOT gate will not change a0 and a2 (see Tab. 1) we
can choose φ0 = φ2. This gives

Y 2PY2|Ψ〉 = eiφ0 [a0|00〉+ a2|01〉
+eiβ(a1 cosα+ ia3 sinα)|10〉

+eiβ(a3 cosα+ ia1 sinα)|11〉
]
, (15)

where β = α + φ3 − φ0 and α = (φ2 − φ3)/2. The global
phase factor eiφ0 is physically irrelevant.

The simplest way to implement the phase shift P is to
use the time evolution, i.e. P = e−iτHI , of the Ising model

HI = −JSz1Sz2 − hSz1 − hSz2 , (16)

where the external fields acting on both spins are the same.
From (16) it follows immediately that φ0 = τ(J/4 + h),
φ1 = φ2 = −τJ/4 and φ3 = τ(J/4 − h). Taking into
account our choice φ0 = φ2, (15) becomes

Y 2PY2|Ψ〉 = eiα/2 [a0|00〉+ a2|01〉
+e−iα(a1 cosα+ ia3 sinα)|10〉

+e−iα(a3 cosα+ ia1 sinα)|11〉
]
. (17)
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Using the same labeling of states as in (8) we have

Y 2PY2 = eiα/2


1 0 0 0
0 e−iα cosα 0 ie−iα sinα
0 0 1 0
0 ie−iα sinα 0 e−iα cosα

 . (18)

Comparing the truth table of the CNOT gate (see Tab. 1)
with the matrix in (18), it is clear that putting α = π/2
will do the job (upto an irrelevant global phase factor). In
terms of Hamiltonian (16), −τJ = π and h = −J/2. The
sequence

CNOT = Y 2IY2 = eiπ/4


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , (19)

performs the CNOT operation on qubit 2 with qubit 1
acting as the control variable. Here we introduced the
symbol I to represent the time evolution e−iτHI with
τ = −π/J .

3.3 Quantum algorithms

Any quantum algorithm can be written as a sequence
of the one- and two-qubit operations discussed above.
As a simple example of a quantum algorithm we take
(CNOT )5. On an ideal quantum computer, CNOT 2 is the
identity operation and hence (CNOT )5 = CNOT but on
a physical quantum computer this is not always the case,
see below. To illustrate the dependence of the quantum
computation on the physical implementation and on the
choice of the input state we consider two quantum algo-
rithms, QA1 and QA2, defined by

QA1|b1b2〉 ≡ (CNOT )5|b1b2〉, (20)
QA2|singlet〉 ≡ Y1(CNOT )5|singlet〉, (21)

where |singlet〉 = (|01〉 − |10〉)/
√

2. We have

(|01〉 − |11〉)/
√

2 = (CNOT )5|singlet〉, (22)

and hence 〈singlet|(CNOT )5QA1(CNOT )5|singlet〉 =
1/2. We can obtain a clear-cut answer in terms of ex-
pectation values of the qubits by applying a π/2 rotation
to spin 1

|11〉 = Y1(CNOT )5|singlet〉. (23)

Therefore in (21), the CNOT operations are followed by
a π/2 rotation of spin 1.

As a more complicated example of a quantum algo-
rithm, we consider Grover’s database search algorithm to
find the needle in a haystack. On a conventional computer,
finding an item out of N elements requires O(N) queries

[48]. Grover has shown that a quantum computer can find
the item using only O(

√
N) attempts [2]. Assuming a uni-

form probability distribution for the needle, for N = 4 the
average number of queries required by a conventional al-
gorithm is 9/4 [17,48]. With Grover’s quantum algorithm
the correct answer can be found in a single query [15,17].

Experimentally Grover’s quantum algorithm has been
implemented on a 2-qubit NMR quantum computer for
the case of a database containing four items [15,17]. In
experiments [15,17] the sequences

U0 = X1Y 1X2Y 2GX1Y 1X2Y 2GX1X1Y 1X2X2Y 2, (24)

U1 = X1Y 1X2Y 2GX1Y 1X2Y 2GX1X1Y 1X2X2Y 2, (25)

U2 = X1Y 1X2Y 2GX1Y 1X2Y 2GX1X1Y 1X2X2Y 2, (26)

U3 = X1Y 1X2Y 2GX1Y 1X2Y 2GX1X1Y 1X2X2Y 2, (27)

have been chosen to implement Grover’s search algorithm.
The subscript j of Uj corresponds to the position of the
searched-for item in the database. In all four cases the
input state is |00〉. The two-qubit operation G is defined
by

G =


e−iπ/4 0 0 0

0 e+iπ/4 0 0
0 0 e+iπ/4 0
0 0 0 e−iπ/4

 , (28)

and performs a conditional phase shift.
On an ideal quantum computer the quantum algo-

rithms (24–27) are by no means unique: Various al-
ternative expressions can be written down by using
the algebraic properties of the X ’s and Y ’s. This fea-
ture has been exploited to eliminate redundant elemen-
tary operations [17]. On an ideal quantum computer
sequences (24–27) return the correct answer, i.e. the posi-
tion of the searched-for item. This is easily verified on the
quantum computer by selecting the elementary operations
that implement an ideal quantum computer.

4 Physical quantum computer

In this section we recapitulate some elementary quantum
mechanics that is useful to understand how the ideal one-
and two-qubit operations can be implemented by control-
ling the time evolution of the quantum spin system. We
use the NMR system described above as a concrete ex-
ample and use analytical instead of numerical techniques
to discuss the salient features. However at this point we
want to stress that in contrast to the analytical treatment
presented below, our numerical simulations do not in any
way rely on one or more approximations that are neces-
sary to make the problem analytically tractable. Thus,
the analytical results presented below should be consid-
ered as useful, qualitative information that is helpful to
understand the behavior of the quantum spin system, as
obtained from the simulation.
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4.1 Single-qubit operations

NMR uses sinusoidal field pulses to rotate the spins. By
tuning the frequency of the sinusoidal field to the pre-
cession frequency of a particular spin (hzj in our case),
the power of the applied pulse (= intensity times dura-
tion) controls how much the spin will rotate. The axis of
the rotation is determined by the direction of the applied
sinusoidal field. The elementary model of an NMR exper-
iment on a single spin (qubit 1 for example) subject to a
constant magnetic field along the z-axis and a sinusoidal
field along the x-axis reads [49]

i
∂

∂t
|Φ(t)〉 = −

(
hz1S

z
1 + h̃x1S

x
1 sinωt

)
|Φ(t)〉, (29)

where |Φ〉 = | ↑〉〈Φ| ↑〉+ | ↓〉〈Φ| ↓〉, |Φ(t = 0)〉 is the initial
state of the two-state system and we have set the phase
φx = 0. Substituting |Φ(t)〉 = eithz1S

z
1 |Ψ(t)〉 yields

i
∂

∂t
|Ψ(t)〉 = −h̃x1 (Sx1 sinωt coshz1t

+Sy1 sinωt sinhz1t) |Ψ(t)〉. (30)

At resonance, i.e. ω = hz1, we find

i
∂

∂t
|Ψ(t)〉 = − h̃

x
1

2
(Sy1 + Sx1 sin 2ωt− Sy1 cos 2ωt) |Ψ(t)〉.

(31)

Assuming that the effects of the higher harmonic terms
(i.e. the terms in sin 2ωt and cos 2ωt) are small [49], (31)
is easily solved to give

|Ψ(t)〉 ≈ eith̃x1S
y
1/2|Ψ(t = 0)〉, (32)

so that the overall action of a sinusoidal field pulse of
duration τ can be written as

|Φ(t+ τ)〉 ≈ eiτhz1S
z
1 eiτh̃x1S

y
1/2|Φ(t)〉. (33)

Hence it follows that application of a sinusoidal field pulse
of power τh̃x1 = π will have the effect of rotating spin 1 by
an angle of π/2 about the y-axis, as is clear by compar-
ing (7) with (33).

In deriving (33), higher harmonics have been ne-
glected, as indicated by the “≈” sign. Note that as al-
ready mentioned above, in our simulations we solve for the
time evolution of the quantum system exactly, i.e. without
making any approximation. Instead of applying sinusoidal
fields along the x or y direction, one may also consider us-
ing sinusoidal fields that rotate in the x-y plane. This leads
to the time-dependent Schrödinger equation [49]

i
∂

∂t
|Φ(t)〉 = −

[
hz1S

z
1 + h̃x1(Sx1 sinωt+ Sy1 cosωt)

]
|Φ(t)〉,

(34)

and instead of (33) we obtain

|Φ(t+ τ)〉 = eiτhz1S
z
1 eiτh̃x1S

y
1 |Φ(t)〉. (35)

A quantum computer contains at least two spins. If
in experiments it is difficult to shield a particular spin
from the sinusoidal field, an application of a sinusoidal
field pulse affects not only the state of the resonant spin
but changes the state of the other spins too (unless they
are perfectly aligned along the z-axis). A general analyt-
ical, quantitative analysis of this many-body problem is
rather difficult. We will study the limiting case in which
the interaction between the spins has neglegible impact on
the time evolution of the spins during application of the
sinusoidal field pulse. As our numerical results (see be-
low) demonstrate, this is the case that is relevant to the
model system considered in the present paper and also to
experiments [15–18].

We consider the two-spin system described by the
time-dependent Schrödinger equation

i
∂

∂t
|Φ(t)〉 = −

[
hz1S

z
1 + hz2S

z
2 + h̃x1(Sx1 sinωt+ Sy1 cosωt)

+h̃x2(Sx2 sinωt+ Sy2 cosωt)
]
|Φ(t)〉. (36)

Substituting |Φ(t)〉 = eitω(Sz1+Sz2 )|Ψ(t)〉 we obtain

i
∂

∂t
|Ψ(t)〉 =

−
[
(hz1 − ω)Sz1 + (hz2 − ω)Sz2 + h̃x1S

y
1 + h̃x2S

y
2

]
|Ψ(t)〉.

(37)

Our aim is to rotate spin 1 about an angle ϕ1 without
affecting the state of spin 2. This can be accomplished as
follows. First we choose

ω = hz1, (38)

i.e. the frequency of the sinusoidal field pulse is tuned to
the resonance frequency of spin 1. Then (37) can easily be
integrated. The result is

|Φ(t)〉 = eithz1(Sz1+Sz2 )eith̃x1S
y
1 eitS2·v1,2 |Φ(0)〉, (39)

where vn,m ≡ (0, h̃xm, h
z
m − hzn).

The third factor in (39) rotates spin 2 around the vec-
tor v1,2. This factor can be expressed as

eitSm·vn,m =

(
1 0
0 1

)
cos

t|vn,m|
2

+ i|vn,m|−1

(
hzm − hzn −ihxm

ihxm hzn − hzm

)
sin

t|vn,m|
2

, (40)

and we see that the sinusoidal field pulse will not change
the state of spin 2 if and only if the duration t1 of the
pulse satisfies

t1|v1,2| = t1

√
(hz1 − hz2)2 + (h̃x2)2 = 4πn1, (41)
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where n1 is a positive integer.
The second factor in (39) is a special case of (40). It is

easy to see that if

t1h̃
x
1 = ϕ1, (42)

the second factor in (39) will rotate spin 1 about ϕ1 around
the y-axis. Therefore, if conditions (38), (41), and (42) are
satisfied we can rotate spin 1 about ϕ1 without affecting
the state of spin 2, independent of the physical realization
of the quantum computer. However, the first factor in (39)
can still generate a phase shift. Although it drops out
of the expression of the expectation value of the qubits,
in general it has to be taken into account in a quantum
computer calculation because this phase shift depends on
the state of the spins. Adding the condition

t1h
z
1 = 4πk1, (43)

where k1 is a positive integer (hzi > 0 by definition), the
first factor in (39) is always equal to one. Summarizing:
If conditions (38, 41, 42), and (43) are satisfied we can
rotate spin 1 about ϕ1 without affecting the state of spin
2 and without introducing unwanted phase shifts.

A last constraint on the choice of the pulse parameters
comes from the fact that

hα2 = γhα1 , h̃α2 = γh̃α1 ; α = x, y, z. (44)

Without loss of generality we will assume that 0 < γ < 1,
in concert with the choice of parameters (5).

Using constraint (44) and conditions (38, 41, 42),
and (43) we have

(1− γ)2k2
1 +

γ2

4

(ϕ1

2π

)2

= n2
1, (45)

and reversing the role of spin 1 and spin 2 we obtain

(1− 1
γ

)2k2
2 +

1
4γ2

(ϕ2

2π

)2

= n2
2, (46)

where k1, k2, n1, and n2 are positive integers. The angles
of rotation about the y-axis can be chosen such that 0 ≤
ϕ1 ≤ 2π and 0 ≤ ϕ2 ≤ 2π.

In general (45) or (46) have no solution but a good
approximate solution may be obtained if γ is a rational
number and k1 and k2 are large. Let γ = N/M where N
and M are integers satisfying 0 < N < M . It follows
that the representation k1 = kMN2 and k2 = kNM2 will
generate sufficiently accurate solutions of (45) and (46) if
the integer k is chosen such that

2kNM(M −N)� 1. (47)

In terms of k, N , and M , the relevant physical quantities
are then given by

t1h
z
1

2π
= 2kMN2 ,

h̃x1
hz1

=
1

2kMN2

ϕ1

2π
, (48)

and

t2h
z
1

2π
= 2kM3 ,

h̃x2
hz1

=
1

2kM3

ϕ2

2π
· (49)

In our numerical experiments we use (48) and (49) to
determine the duration of the sinusoidal field pulses for
both the static and rotating sinusoidal fields. In the latter
case the sinusoidal field pulses will be optimized in the
sense that a pulse that rotates spin 1 (2) will hardly affect
spin 2 (1) if k satisfies condition (47).

The assumption of a pure sinusoidal time dependence
of the applied fields serves to simplify the analytical anal-
ysis given above. In experiment there is no good reason to
stick to a simple time dependence of the pulses [50,51]. In
general

i
∂

∂t
|Φ(t)〉 = −

[
hz1S

z
1 + hz2S

z
2 + w(t)h̃x1

×(Sx1 sinωt+ Sy1 cosωt) + w(t)h̃x2
×(Sx2 sinωt+ Sy2 cosωt)] |Φ(t)〉, (50)

where w(t) can be almost any waveform. For ω = hz1, the
formal solution of (50) reads

|Φ(t)〉 = eithz1(Sz1+Sz2 ) exp
(

i
∫ t

0

duw(u)h̃x1S
y
1

)
× exp+

{
i
∫ t

0

du
[
(hz2 − hz1)Sz2 + w(u)h̃x2S

y
2

]}
|Φ(0)〉,

(51)

where exp+{. . . } denotes the time-ordered exponential.
Expression (51) is an explicit Floquet-operator represen-
tation of the time-evolution operator [50]. The introduc-
tion of a general form of w(t) replaces condition (41) by

exp+

{
i
∫ t1

0

du
[
(hz2 − hz1)Sz2 + w(u)h̃x2S

y
2

]}
= 1, (52)

and condition (42) becomes

h̃x1

∫ t1

0

duw(u) = ϕ1, (53)

expressing the fact that the rotation angle ϕ1 is deter-
mined by the power of the pulse only. Conditions (38)
and (43) remain the same. There are many forms of w(u)
that will satisfy (53), so in this respect there is a lot of
freedom in the choice of w(u). The average-Hamiltonian
theory can be used to find approximations to w(u) but this
approach is not exact (an average Hamiltonian only has
a finite number of transitions) and has limited applicabil-
ity [50]. Finding the form of w(u) such that also (52) holds
exactly is a complicated non-linear optimization problem,
in particular when the quantum computer contains several
qubits.

To summarize: If conditions (38, 41, 42), and (43) are
satisfied we can rotate spin 1 about ϕ1 without affect-
ing the state of spin 2 and without introducing unwanted
phase shifts. In practice we may replace (41) and (42),
by (52) and (53) respectively.
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4.2 Two-qubit operations: CNOT gate

As the CNOT sequence (19) has been constructed on the
basis of model (16), some modification is necessary to ac-
count for the fact that the two nuclear spins feel different
static fields (see (3)). In general the Hamiltonian reads

HNMR = −JSz1Sz2 − hz1Sz1 − hz2Sz2 . (54)

Comparison of (16) with (54) shows that the implemention
of the CNOT operation requires additional rotations:

CNOT = Y 2e−iτ(hz1−h)Sz1 e−iτ(hz2−h)Sz2 e−iτHNMRY2,

= Y 2e−iτ(hz1−h)Sz1 e−iτ(hz2−h)Sz2Y2Y 2e−iτHNMRY2,

(55)

where we used the fact that Y2Y 2 = 1. The extra phase
shifts in (55) can be expressed in terms of single-qubit
operations. The identities

e−iτ(hz1−h)Sz1 = Y1X
′
1Y 1 = X1Y

′
1X1, (56)

e−iτ(hz2−h)Sz2 = Y2X
′
2Y 2, (57)

define the single-spin rotations X ′1, Y ′1 , and X ′2.
As (56) and (57) suggest, there are many different,

logically equivalent sequences that implement the CNOT
gate on an NMR quantum computer. We have chosen to
limit ourselves to the respresentations

CNOT1 = Y1X
′
1Y 1X

′
2Y 2I

′Y2, (58)

CNOT2 = Y1X
′
1X
′
2Y 1Y 2I

′Y2, (59)

CNOT3 = X1Y
′

1X
′
2Y 2X1I

′Y2, (60)

where we introduced the symbol I ′ to represent the time
evolution e−iτHNMR with τ = −π/J . On an ideal quan-
tum computer the sequences (58–60) give identical re-
sults. On an NMR-like quantum computer they do not
because on the physically realizable quantum computer
X1X2 6= X2X1 unless (47, 48) and (49) are satisfied. We
will use sequences (58–60) to demonstrate the quantum
programming problem.

4.3 Quantum algorithms

On a conventional computer an algorithm is a sequence
of logical operations that defines a one-to-one relation be-
tween the input and output data. We expect that a con-
ventional computer always returns the correct result, ir-
respective of the input. Also a quantum computer should
have correct (input, output) relationships. In contrast to
a conventional computer, a quantum computer accepts as
input linear superpositions of basis states and can return
superpositions as well. If a quantum gate correctly oper-
ates on each of the basis states, it will also do so on any
general linear superposition unless the operation generates
additional phase factors that depend on the input state.
Of course this does not happen on an ideal quantum com-
puter but on a realistic one it may. Above we have shown

how to reduce unwanted phase errors that result from im-
perfections of the one- and two-qubit operations.

For each realization of quantum computer hardware,
there is a one-to-one correspondence between the quan-
tum algorithm and the unitary matrix that transforms
the superposition accordingly. A quantum algorithm will
operate correctly under all circumstances if the whole uni-
tary matrix representing the quantum algorithm is a good
approximation to the ideal one. In other words, the mag-
nitude and the phase of all matrix elements should be
close to their ideal values. It is not sufficient to have for
example two different CNOT gates that operate correctly
by themselves: Also the relative phases that they produce
should match. For n qubits there are 2n(2n − 1) complex
numbers that specify the unitary matrix corresponding to
a quantum algorithm. All these numbers should be close
to their ideal values, otherwise the quantum algorithm is
bound to produce wrong answers.

In general on a physical quantum computer,
CNOT 2 6= 1 and hence (CNOT )5 in (20) and (21) is not
exactly equal to the CNOT operation. The effect of the
physical implemention of a quantum computer on the log-
ical operation of a quantum algorithm will be most clear
if we can distinguish errors due to faulty input data from
those that are intrinsic to the physics of the qubits. There-
fore we will provide the exact input state to the quantum
algorithm and compare the result returned by the quan-
tum algorithm with the exact answer. This procedure sim-
plifies the analysis but does not touch the essence of the
matter. We prepare |b1b2〉 and |singlet〉 = (|01〉−|10〉)/

√
2

by starting from the state |00〉 and by performing exact
rotations of the spins.

In the case of Grover’s database search algorithm, the
representation of G in terms of the time evolution of (54)
reads

G = e−iπS1S2 = e−iτhz1S
z
1 e−iτhz2S

z
2 e−iτHNMR

= Y2X
′′
2 Y 2Y1X

′′
1 Y 1e−iτHNMR , (61)

where τ = −π/J . This choice of τ also fixes the angles of
the rotations, and through relations (48) and (49) also all
parameters of the operations X ′′1 and X ′′2 .

4.4 Generic features

For our choice (5) of the model parameters, γ = 1/4 such
that N = 1 and M = 4. In general there is no good reason
to expect that γ will be a ratio of two small integers but
of course it may be approximated to any desired precision
by a rational number. Let us consider the hypothetical
case (N = 11, M = 40) such that γ = 11/40 = 0.275.
Then (47) reads 25520k � 1 so that the choice k = 1
already yields an accurate solution to (45) and (46). How-
ever as t1hz1/2π = 9680 and t2h

z
1/2π = 128 000, rather

long (in units of 2 ns) sinusoidal field pulses are required
to perform these nearly ideal, single-qubit operations. As
this example shows, the duration of the pulses that imple-
ment accurate single-qubit operations will be determined
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Table 2. Model parameters for the elementary operations on the ideal quantum computer. Parameters of model (3) that do
not appear in this table are zero, except for the interaction J = −0.43 × 10−6. The time-dependent Schrödinger equation is
solved using a time step δ/2π = 1.

τ/2π hx1 hx2 hy1 hy2 hz1 hz2

X1 0.25 1 0 0 0 0 0

X2 0.25 0 1 0 0 0 0

Y1 0.25 0 0 1 0 0 0

Y2 0.25 0 0 0 1 0 0

X′1 1 −0.4477 0 0 0 0 0

X′2 1 0 −1.4244 0 0 0 0

Y ′1 1 0 0 0.4477 0 0 0

X′′1 1 −0.6977 0 0 0 0 0

X′′2 1 0 −1.6744 0 0 0 0

I −1/2J 0 0 0 0 −J/2 −J/2
I ′ −1/2J 0 0 0 0 1 0.25

G −1/2J 0 0 0 0 1 0.25

by the representation of γ as a ratio of two (small) inte-
gers.

Another complication of using these rather long pulses
is that non-resonant effects due to the presence of the
(small) spin-spin interaction J will also affect the ac-
curacy of the single-qubit operations. For instance if
t2h

z
1/2π = 128 000 then, for the choice of model param-

eters (5), t2|J |/2π = 0.05504. Hence the phase shifts in-
duced by the spin-spin interaction may no longer be ne-
glected. Although the non-resonant effects due to J can
also be reduced by proper choice of the pulse shape, du-
ration and strength [13] and/or at the cost of additional
pulses [52], this complication renders the non-linear op-
timization problem for finding optimal pulse sequences
(much) more complicated.

At first sight, many of the problems we have discussed
so far may seem to disappear if the physical quantum
computer hardware is such that single physical qubits
can be addressed individually. This certainly rules out
NMR-based quantum computers but on quantum-dots or
Josephson-coupling based quantum computers this may
well be possible. However, as we now argue, the main
problem, namely the accumulation of undesirable phases
is likely to be present in these quantum computers too.

To see this it suffices to consider a few, say four, qubits
that have their own (free) oscillation frequency. Taking the
frequency of the first qubit as a reference the ratio of the
remaining frequencies can (approximately) be represented
by the ratios Nj/Mj , for j = 2, 3, 4. Let us now assume
that we carry out an operation that addresses qubit 1
and 2 only. Let us call τ12 the time it takes to carry out
the operation of qubits 1 and 2. Furthermore we assume
that this operation on these two qubits yields the exact
result, i.e. errors of the type discussed above are absent.

On an ideal quantum computer the result of the op-
eration would be exact for the four-qubit state too but
on a physical QC this is not necessarily so. In fact, unless
τ12N3/M3 and τ12N4/M4 are an exact multiple of 4π and
the input state is a linear combination of the 16 possi-

ble basis states, the operation will change the phases of
each of the basis states and systematic phase errors will
be generated. Clearly this conclusion does not depend on
the peculiarities of the NMR technique: It holds in gen-
eral. The only way to control the phase-error problem is
to manufacture the qubits with such a precision that their
free oscillation frequencies are commensurate with each
other.

5 Simulation

5.1 Model parameters

The parameters of model (3) for which e−iτH implements
the elementary operations of the ideal quantum computer
are listed in Table 2. On an NMR-like quantum computer,
the one-qubit operations can be implemented by applying
sinusoidal field pulses, as explained above. The model pa-
rameters for the fixed and rotating sinusoidal fields are
determined according to the theory outlined above. We
use the integer k to compute all free parameters and the
subscript s = 2kMN2 to label the results of the quantum
computer calculation. For reference we present the set of
parameters corresponding to k = 1 for quantum comput-
ers using fixed and rotating sinusoidal fields in Tables 3
and 4 respectively. Multiplying s (the duration of the sinu-
soidal field pulse) with the unit of time (2 ns) shows that in
our simulations, single-qubit operations are implemented
by using short SF pulses that are, in NMR terminology,
non-selective and hard. Note that in contrast to the ana-
lytical treatment in Section 4.1, in all our simulations the
interaction J is non-zero (except when mentioned explic-
itly).

The two-qubit operation I ′ can be implemented by let-
ting the system evolve in time according to Hamiltonian
HNMR, given by (54). I ′ is the same for both an ideal
or NMR-like quantum computer. Note that the condition
τJ = −π yields τ/2π = 1162790.6977, a fairly large num-
ber (compared to our reference hz1 = 1, see (5)).
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Table 3. Model parameters of single-qubit operations on an NMR quantum computer for the case (k = 1, N = 1, M = 4),
see (48) and (49). Parameters of model (3) that do not appear in this table are zero, except for the interaction J = −0.43×10−6

and the constant magnetic fields hz1 = 1 and hz2 = 0.25. The time-dependent Schrödinger equation is solved using a time step
δ/2π = 0.01.

τ/2π ω h̃x1 h̃x2 h̃y1 h̃y2
X1 8 1.00 0 0 −0.0625000 −0.0156250

X2 128 0.25 0 0 −0.0156250 −0.0039063

Y1 8 1.00 0.0625000 0.0156250 0 0

Y2 128 0.25 0.0156250 0.0039063 0 0

X′1 8 1.00 0 0 0.1119186 0.0279796

X′2 128 0.25 0 0 0.0890262 0.0222565

Y ′1 8 1.00 −0.1119186 −0.0279796 0 0

X′′1 8 1.00 0 0 0.1744186 0.0436046

X′′2 128 0.25 0 0 0.1046512 0.0261628

Table 4. Model parameters of single-qubit operations on an NMR quantum computer using rotating sinusoidal fields for the
case (k = 1, N = 1, M = 4), see (48) and (49). Parameters of model (3) that do not appear in this table are zero, except for
the interaction J = −0.43 × 10−6 and the constant magnetic fields hz1 = 1 and hz2 = 0.25. The time-dependent Schrödinger
equation is solved using a time step δ/2π = 0.01.

τ/2π ω h̃x1 h̃x2 ϕx h̃y1 h̃y2 ϕy

X1 8 1.00 −0.0312500 −0.0078125 −π/2 −0.0312500 −0.0078125 0

X2 128 0.25 −0.0078125 −0.0019531 −π/2 −0.0078125 −0.0019531 0

Y1 8 1.00 0.0312500 0.0078125 0 0.0312500 0.0078125 π/2

Y2 128 0.25 0.0078125 0.0019531 0 0.0078125 0.0019531 π/2

X′1 8 1.00 0.0559593 0.0139898 −π/2 0.0559593 0.0139898 0

X′2 128 0.25 0.0445131 0.0111283 −π/2 0.0445131 0.0111283 0

Y ′1 8 1.00 −0.0559593 −0.0139898 0 −0.0559593 −0.0139898 π/2

X′′1 8 1.00 0.0872093 0.0218023 −π/2 0.0872093 0.0218023 0

X′′2 128 0.25 0.0523256 0.0130914 −π/2 0.0523256 0.0130914 0

5.2 Results

As a standard test we execute all sequences on an imple-
mentation of the ideal quantum computer (see Tab. 2).
They all give the exact answers (results not shown). It is
also necessary to rule out that the numerical results de-
pend on the time step δ used to solve the time-dependent
Schrödinger equation. The numerical error of the prod-
uct formula used by quantum computer is proportional to
δ2 [44–46]. It goes down by a factor of about one hundred
if we reduce the time step by a factor of 10. Within the
two-digit accuracy used to present our data, there is no
difference between the results for δ = 0.01 and δ = 0.001.
Hence we can be confident that we are solving the time-
dependent Schrödinger equation with a sufficiently high
accuracy.

In Table 5 we present simulation results for quantum
algorithms, QA1 and QA2 defined by (20) and (21) re-
spectively. It is clear that even the least accurate imple-
mentation (s = 8, k = 1) nicely reproduces the correct
answers if the input corresponds to one of the four basis
states. The corresponding entries for QA2 seem to suggest
that CNOT1 is working well for s = 8. However the result
for s = 16 (k = 2) shows that the apparently good result
for s = 8 is accidental, as we might have expected on the

basis of criterion (47) (which in this case reads 24 � 1).
In agreement with the theoretical analysis of Section 4 the
results converge to the exact ones for sufficiently large k.
The pulses used in these simulations are so short that the
presence of a non-zero J has a neglegible effect on the
single-qubit pulses. For small s, the difference in the ac-
curacy with which QA1 and QA2 give the correct answer
clearly shows that in order for a quantum algorithm to
work properly, it is not sufficient to show that it correctly
operates only when the input corresponds to one of the
basis states.

In the regime where phase errors are significant the
quantum algorithms exhibit the quantum programming
problem. This is exemplified in Tables 6 and 7 where we
show the results of using CNOT2 and CNOT3 instead
of CNOT1. For k < 32 there is a clear signature of the
quantum programming problem: These logically identical
quantum algorithms are sensitive to the order in which
the single-qubit operations are carried out.

From the viewpoint of computation it is advantageous
to use elementary operations that are as short as pos-
sible. If γ = hz2/h

z
1 = 0.25 = 1/4 exactly (to machine

precision) Tables 5–7 show that it is indeed possible to
work with relatively short, intense pulses (intense in the
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Table 5. Expectation values of the two qubits as obtained by performing a sequence of five CNOT operations on a quantum
computer that uses rotating sinusoidal fields to manipulate individual qubits. The initial states |10〉, |01〉, |11〉, and |singlet〉 =
(|01〉 − |10〉)/

√
2 have been prepared by starting from the state |00〉 and performing exact rotations of the spins. The CNOT

operations on the singlet state are followed by a π/2 rotation of spin 1 to yield a non-zero value of qubit 1. The subscripts in as
and bs refer to the time s = τ/2π = 2kMN2 and determine the duration and strength of the sinusoidal field pulses through
relations (48) and (49), see Table 4 for the example of the case s = 8. The CNOT operation itself was implemented by applying
sequence CNOT1 given by (58). On an ideal quantum computer, CNOT 4 is the identity operation. The results obtained on an
ideal quantum computer are given by a and b.

Operation a b a8 b8 a16 b16 a32 b32 a64 b64 a256 b256

(CNOT1)5|00〉 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(CNOT1)5|10〉 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(CNOT1)5|01〉 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

(CNOT1)5|11〉 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Y1(CNOT1)5|singlet〉 1.00 1.00 0.90 1.00 0.03 1.00 0.58 1.00 0.88 1.00 0.99 1.00

Table 6. Same as Table 5 except that instead of CNOT1 sequence CNOT2 given by (59) was used to perform the quantum
computation.

Operation a b a8 b8 a16 b16 a32 b32 a64 b64 a256 b256

(CNOT2)5|00〉 0.00 0.00 0.24 0.76 0.50 0.26 0.20 0.07 0.06 0.02 0.00 0.00

(CNOT2)5|10〉 1.00 1.00 0.76 0.24 0.50 0.74 0.80 0.93 0.95 0.98 1.00 1.00

(CNOT2)5|01〉 0.00 1.00 0.24 0.24 0.51 0.74 0.20 0.93 0.06 0.98 0.00 1.00

(CNOT2)5|11〉 1.00 0.00 0.76 0.76 0.50 0.26 0.80 0.07 0.95 0.02 1.00 0.00

Y1(CNOT2)5|singlet〉 1.00 1.00 0.98 0.24 0.95 0.74 0.98 0.93 0.99 0.98 1.00 1.00

Table 7. Same as Table 5 except that instead of CNOT1 sequence CNOT3 given by (60) was used to perform the quantum
computation.

Operation a b a8 b8 a16 b16 a32 b32 a64 b64 a256 b256

(CNOT3)5|00〉 0.00 0.00 0.23 0.76 0.50 0.26 0.20 0.07 0.06 0.02 0.00 0.00

(CNOT3)5|10〉 1.00 1.00 0.77 0.24 0.50 0.74 0.80 0.93 0.95 0.98 1.00 1.00

(CNOT3)5|01〉 0.00 1.00 0.23 0.24 0.51 0.74 0.20 0.93 0.06 0.98 0.00 1.00

(CNOT3)5|11〉 1.00 0.00 0.77 0.76 0.50 0.26 0.80 0.07 0.95 0.02 1.00 0.00

Y1(CNOT3)5|singlet〉 1.00 1.00 0.79 0.24 0.55 0.74 0.82 0.93 0.95 0.98 1.00 1.00

context of NMR experiments). However, in reality it will
not be easy to fabricate qubits such that the ratios of
their natural frequencies hzi can be written as a ratio of
two small integers. As an example we consider the case
where γ = hz2/h

z
1 = 0.275 = 11/40. For N = 11 and

M = 40, the theory outlined above yields as a condition
for accurate operation 25520k � 1. Hence it is sufficient
to take k = 1. Then t1/2π = 9680 and t2/2π = 128 000
and the single-qubit pulses are weak and long compared
to those used earlier [53]. Thus we may expect that the
single-qubit operations are close to perfect. Table 8 shows
the numerical results for the various implementations of
the CNOT gate. If the input state is a simple basis state
(first four rows of Tab. 8) the output state agrees with
the exact result within 20%. If the input state is a sin-
glet (fifth row of Tab. 8) the output is completely wrong.
The deviations from the exact results are solely due to
the presence of the interaction J (which may be reduced
by further optimization of the pulses [13,52]). Turning off
this interaction during the single-qubit operations yields
the exact results for all cases, also those that operate on
the singlet state (results not shown). These results con-

firm that it is possible to optimize the pulses such that
the quantum computer operates correctly. In general, as
discussed above, this can only be achieved by a tremen-
dous precision in the fabrication process of the qubits or
at the expense of rather slow real-time performance.

The results presented in Tables 5–8 have been obtained
using rotating sinusoidal fields. As explained above, in this
case a single-qubit operation on qubit j exactly rotates
qubit j about the specified angle (but perturbs the state
of the other spin). In Table 9 we present simulation results
obtained by using sinusoidal field in the x or y direction
only. Then the single-spin rotation on spin j no longer
corresponds to the exact one. Nevertheless, as Table 9
shows, for sufficiently large s the results nicely converge to
the correct anwers. Apparently, for a quantum algorithm
to compute correctly, it is more important to have the
phase errors under control than to perform very accurate
single-spin rotations.

The very essence of quantum algorithms is the use of
entangled states at some stage of the calculations. It is at
this point that the quantum algorithm is most sensitive to
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Table 8. Same as Table 5 except that N = 11, M = 40, γ = N/M = hz2/h
z
1 = 0.275, τ/2π = 9680 for X1, τ/2π = 128 000 for

X2 etc. As time is measured in units of 2 ns, weak but rather long sinusoidal field pulses are used to perform the single-qubit
operations. For the first four rows, deviations from the exact result are due to the presence of the non-resonant effects of the
interaction J . Turning off this interaction during the single-qubit operations yields the exact results for all entries (results not
shown).

C = CNOT C = CNOT1 C = CNOT2 C = CNOT3

Operation a b a1 b1 a1 b1 a1 b1

C5|00〉 0.00 0.00 0.00 0.19 0.00 0.19 0.00 0.19

C5|10〉 1.00 1.00 1.00 0.89 1.00 0.89 1.00 0.89

C5|01〉 0.00 1.00 0.01 0.81 0.01 0.81 0.01 0.81

C5|11〉 1.00 0.00 1.00 0.11 1.00 0.11 1.00 0.11

Y1C
5|singlet〉 1.00 1.00 0.01 0.85 0.01 0.85 0.01 0.84

Table 9. Same as Table 5 except that instead of rotating sinusoidal fields, sinusoidal fields along either the x or y-axis were
used to manipulate individual qubits. See Table 3 for the example of the set of model parameters for s = 8.

Operation a b a8 b8 a16 b16 a32 b32 a64 b64 a256 b256

(CNOT1)5|00〉 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

(CNOT1)5|10〉 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(CNOT1)5|01〉 0.00 1.00 0.00 0.97 0.00 0.99 0.00 1.00 0.00 1.00 0.00 1.00

(CNOT1)5|11〉 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Y1(CNOT1)5|singlet〉 1.00 1.00 0.02 0.98 0.45 1.00 0.17 1.00 0.70 1.00 0.98 1.00

Table 10. Expectation values of the two qubits as obtained by running Grover’s database search algorithm on a quantum
computer that uses rotating sinusoidal fields to manipulate individual qubits. The subscripts in as and bs refer to the time
s = τ/2π = 2kMN2 and determine the duration and strength of the sinusoidal field pulses through relations (48) and (49), see
Table 4 for the example of the case s = 8. The results obtained on an ideal quantum computer are given by a and b.

Item position a b a8 b8 a16 b16 a32 b32 a64 b64 a256 b256

0 0.00 0.00 0.48 0.53 0.15 0.16 0.04 0.04 0.01 0.01 0.00 0.00

1 1.00 0.00 0.52 0.50 0.85 0.15 0.96 0.04 0.99 0.01 1.00 0.00

2 0.00 1.00 0.55 0.48 0.15 0.84 0.04 0.96 0.01 0.99 0.00 1.00

3 1.00 1.00 0.45 0.50 0.85 0.85 0.96 0.96 0.99 0.99 1.00 1.00

Table 11. Same as Table 10 except that instead of rotating sinusoidal fields, sinusoidal fields along either the x or y-axis were
used to manipulate individual qubits. See Table 3 for the example of the set of model parameters for s = 8.

Item position a b a8 b8 a16 b16 a32 b32 a64 b64 a256 b256

0 0.00 0.00 0.92 0.91 0.39 0.35 0.11 0.10 0.03 0.03 0.00 0.00

1 1.00 0.00 0.09 0.91 0.61 0.36 0.89 0.10 0.97 0.03 1.00 0.00

2 0.00 1.00 0.95 0.10 0.36 0.65 0.10 0.90 0.03 0.98 0.00 1.00

3 1.00 1.00 0.05 0.09 0.64 0.64 0.90 0.90 0.97 0.97 1.00 1.00

(accumulated) phase errors. As another illustration of this
phenomenon, we present in Tables 10 and 11 some typical
results obtained by executing Grover’s database search al-
gorithm on the same model quantum computers as those
used in the examples discussed above. We find that rea-
sonably good answers are obtained if s ≥ 32, in concert
with the observations based on quantum algorithms QA1

and QA2.
The results discussed above show effects of imperfec-

tions in the physical implementation of single-qubit op-

erations. Thereby we assumed that J , and the static ap-
plied fields hz1 and hz2 are fixed in time and known to very
high precision. The Ising-model time evolution was used
to perform two-qubit operations, leaving only the duration
of this operation as a possible source for causing errors.
In Table 12 we give examples of the extreme sensitivity
of a quantum algorithm to the precision with which the
parameters have to be specified. Essentially we repeated
the calculation of Table 5 for s = 256 but on purpose we
made an error in the specification of the duration of I ′. As
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Table 12. Same as Table 5 except for a change in the duration of the operation I ′. (a
(1)
256,b

(1)
256): τ/2π = 1162790.4977; (a

(2)
256,b

(2)
256):

τ/2π = 1162790.5977; (a
(3)
256,b

(3)
256): τ/2π = 1162790.6977 (correct value); (a

(4)
256,b

(4)
256): τ/2π = 1162790.7977; (a

(5)
256,b

(5)
256): τ/2π =

1162790.8977.

Operation a b a
(1)
256 b

(1)
256 a

(2)
256 b

(2)
256 a

(3)
256 b

(3)
256 a

(4)
256 b

(4)
256 a

(5)
256 b

(5)
256

(CNOT1)5|00〉 0.00 0.00 0.00 0.52 0.00 0.16 0.00 0.00 0.00 0.13 0.00 0.48

(CNOT1)5|10〉 1.00 1.00 1.00 0.48 1.00 0.87 1.00 1.00 1.00 0.84 1.00 0.48

(CNOT1)5|01〉 0.00 1.00 0.00 0.48 0.00 0.84 0.00 1.00 0.00 0.87 0.00 0.52

(CNOT1)5|11〉 1.00 0.00 1.00 0.52 1.00 0.13 1.00 0.00 1.00 0.16 1.00 0.52

Y1(CNOT1)5|singlet〉 1.00 1.00 0.99 0.50 0.09 0.85 0.99 1.00 0.01 0.85 0.99 0.50

Table 12 shows, an error in the 8th digit can have a dev-
astating effect on the outcome of the quantum computer
calculation. This again is just another manifestation of the
quantum programming problem but not really a surprise:
During the application of I ′ the spins rotate around the
z-axis with their resonance frequencies hz1 and hz2. A small
deviation in τ/2π from its ideal value produces phase er-
rors. Note however that the integer part of τ/2π is also
essential to perform the correct conditional phase shift.
Therefore, in practice it is necessary to specify the dura-
tion of the time evolution I ′ to at least 8 digits (for the
case |J |/hz1 ≈ 10−6).

6 Conclusions

On a physically realizable, non-ideal quantum computer,
operations that manipulate one particular qubit also affect
the state of other qubits. This may cause unwanted devia-
tions from the ideal motion of the total system and lead to
practical problems of programming quantum computers:
An implementation of a quantum computation that works
well on one quantum computer may fail on others.

We have classified the various physical sources that
lead to deviations. The most obvious one originates from
the fact that other spins cannot be kept still during an
operation on one particular spin. If these spins do not re-
turn to their original state when this operation is over,
the quantum computation is unlikely to give correct an-
swers [14].

Proper optimization of the parameters that control the
single-qubit operations can largely eliminate this source of
errors. However, even if the operation gives almost exact
results for all basis states, the operation is not necessarily
perfect. That is, the operation generally yields a phase
factor which depends on the input states. Therefore, when
such an operation is applied on a linear combination of
the basis states, the relative phases of the basis states
change, resulting in incorrect quantum computation. This
is a second source for deviations from correct quantum
computer operation.

We have derived additional conditions on the parame-
ters that control the single-qubit operations and have ob-
tained the conditions for reliable quantum computation.
Unfortunately, these conditions cannot be satisfied simul-
taneously. However they can be satisfied to any precision
by increasing the duration of the single-qubit operations.

Using the controlled-NOT gate and Grover’s search algo-
rithm as examples, we have given concrete demonstrations
of how the above mentioned problems arise and how they
can be solved.

At this moment, we do not know how to stabilize the
quantum computation by controlling the evolution of the
state of a closed quantum system. In a classical computer
the presence of dissipation enables reliable computation.
However, dissipation seems detrimental for quantum com-
puter operation. Therefore, at this moment, the only op-
tion is to perform each operation as perfect as possible.
The present paper shows how this may be done.

The condition on the commensurability of the preces-
sion frequencies of the individual qubits leads to an in-
crease of the execution time of single-qubit operations. Un-
less the precession frequencies of the qubits are the same
to great precision, the execution time will grow rapidly
with the number of qubits and substantially limit the
speed of quantum computation. Therefore new techniques
have to be developed to compensate for this loss in effi-
ciency. Quantum error correction schemes that work well
on an ideal quantum computer require many extra qubits
and many additional operations to detect and correct er-
rors. On a physical quantum computer however, the error-
correction qubits will suffer from the same deficiencies as
those exposed in this paper. Possibly, the clever use of
dissipation processes may help to perform automatic er-
ror correction [54]. All this puts considerable demands on
the technology to fabricate qubits.

In recent NMR experiments Vandersypen et al. demon-
strated that it is possible to carry out order finding and
number factoring by controlling the quantum dynamics of
upto seven nuclear spins [55,56]. The experimental results
do not contradict our findings, on the contrary. Indeed
the success of these NMR experiments crucially depends
on how well the pulses can be optimized to suppress sys-
tematic errors. As a matter of fact, a very large amount
of (computational) work in doing these experiments goes
into the design of the pulse sequences and into finding
tricks to eliminate systematic (not random) errors [57].
Also in real time, these experimental quantum calcula-
tions are very slow (order of 100 ms), also in concert with
our findings. The observation that there is a surprisingly
large degree of cancellations of systematic errors is one of
the main results of these experiments [57]. There clearly is
a need to understand where these cancellations come from.
The exact numerical analysis of the quantum dynamics of
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the 2-qubit system presented in this paper provides insight
into this remarkable phenomenon. It remains a great chal-
lenge to demonstrate that a quantum computer of many
qubits can perform a genuine computation in less real time
than a conventional computer.
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