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Abstract. Three-dimensional Polarized Light Imaging (3D-PLI) is a
promising technique to reconstruct the nerve fiber architecture of human
post-mortem brains from birefringence measurements of histological
brain sections with micrometer resolution. To better understand how the
reconstructed fiber orientations are related to the underlying fiber struc-
ture, numerical simulations are employed. Here, we present two comple-
mentary simulation approaches that reproduce the entire 3D-PLI analy-
sis: First, we give a short review on a simulation approach that uses the
Jones matrix calculus to model the birefringent myelin sheaths. After-
wards, we introduce a more sophisticated simulation tool: a 3D Maxwell
solver based on a Finite-Difference Time-Domain algorithm that simu-
lates the propagation of the electromagnetic light wave through the brain
tissue. We demonstrate that the Maxwell solver is a valuable tool to bet-
ter understand the interaction of polarized light with brain tissue and to
enhance the accuracy of the fiber orientations extracted by 3D-PLI.

Keywords: Polarized Light Imaging · Nerve fiber architecture · Optics ·
Birefringence · Jones matrix calculus · Maxwell solver · Finite-Difference
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1 Introduction

One of the greatest challenges that neuroscientists are facing today is to decode
the highly complex architecture and connectivity of nerve fibers in the human
brain, the so-called connectome [1–3]. In recent years, the neuroimaging tech-
nique Three-dimensional Polarized Light Imaging (3D-PLI) has proven its poten-
tial to reconstruct the spatial fiber architecture of human post-mortem brains
with a resolution of a few micrometers [4,5]. It enables not only to investigate the
course of long-range fiber bundles but also of single fibers, which makes 3D-PLI
a bridging technology between the macroscopic and the microscopic scale.
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To validate the reconstructed fiber orientations, numerical simulations are
used. By comparing the known underlying fiber architecture of the simulation
model with the fiber orientations derived in a 3D-PLI measurement, possible
misinterpretations in the fiber reconstruction process can be identified. The sim-
ulations also help to gain a better theoretical understanding of the interaction
of polarized light with brain tissue and to improve the accuracy and reliability
of the reconstructed fiber orientations.

2 Three-Dimensional Polarized Light Imaging (3D-PLI)

The measurement and signal analysis of 3D-PLI have been described in detail
by Axer et al. [4,5]. Here, we describe only the basic principles that are needed
for the presented simulation approaches.

2.1 Measurement

Post-mortem brains are fixated, frozen, and cut with a cryotome into histological
sections with a thickness of about d = 70µm. The brain sections are embedded
in a glycerin solution and placed in a polarimeter that measures the birefrin-
gence (optical anisotropy) of the brain tissue. Part of the birefringence arises
from the highly ordered arrangement of lipid molecules in the myelin sheath –
an insulating layer which surrounds most of the axons in white matter [6–8].
The polarimeter consists of a pair of crossed linear polarizers and a quarter-
wave retarder which are rotated by angles ρ ∈ {0◦, 10◦, . . . , 170◦} around the
stationary brain section (see Fig. 1a). The setup is illuminated by a light source
with wavelength λ = 525 nm and the transmitted light intensity is recorded by
a CCD camera for each rotation angle.

2.2 Signal Analysis

Jones Matrix Calculus. For the analysis of the resulting light intensity pro-
file I(ρ), the Jones matrix calculus is used [9,10]: Each optical element of the
polarimeter is represented by a 2×2 matrix (Jones matrix) and the electric field
vector of the outgoing light E is computed by multiplying the associated Jones
matrices:

E = Py · Mtissue · Mλ/4 · Px · E0. (1)

Here, E0 represents the electric field vector of the incident light. Px, Py, and
Mλ/4 are the Jones matrices of the linear polarizers and the quarter-wave
retarder, respectively (see Fig. 1a for definition). The birefringent brain tissue is
represented by the Jones matrix of an optical retarder (Mtissue) that introduces
a phase shift δ between the polarization component along the retarder axis and
the polarization component perpendicular to it. The retarder axis (optic axis)
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is considered to be oriented in direction of the nerve fibers (with in-plane direc-
tion angle φ and out-of-plane inclination angle α, in the following referred to
as direction and inclination). Relative to the axis of the rotating polarizers, the
retarder axis describes an in-plane rotation with rotation angle β = φ − ρ:

Mtissue = R(β) · Mδ · R(−β)

=
(

cos β − sin β
sin β cos β

) (
ei δ/2 0

0 e− i δ/2

)(
cos β sin β

− sin β cos β

)
, (2)

δ ≈ 2π

λ
d Δn cos2 α, (3)

with λ being the wavelength of the light source, d the thickness of the measured
brain section, and Δn the local birefringence of the brain tissue [4,5,11].

The transmitted light intensity per pixel can be computed using Itheo ∝ |E|2
and Eqs. (1) and (2):

Itheo(ρ) =
IT

2

(
1 + sin

(
2(ρ − φ)

)
sin δ

)
. (4)

Here, IT ∝ |E0|2 is twice the average transmitted light intensity per pixel (in
the following referred to as transmittance) and | sin δ| the retardation per pixel.

Fourier Analysis. To derive the spatial fiber orientation (φ, α) for each image
pixel, the measured intensity profile I(ρ) is analyzed by means of a discrete
harmonic Fourier analysis.

Every set of N data points can be represented by a Fourier series with at
most N coefficients (N/2th order):

I(ρ) = a0 +
N/2∑
n=1

(
an cos(nρ) + bn sin(nρ)

)
, (5)

a0 =
1
N

N∑
i=1

I(ρi), an =
2
N

N∑
i=1

I(ρi) cos(nρi), bn =
2
N

N∑
i=1

I(ρi) sin(nρi). (6)

Using sin(x− y) = sinx cos y − cos x sin y, Eq. (4) can be written in terms of
a Fourier series with Fourier coefficients of zeroth and second order [4,12]:

Itheo(ρ) =
IT

2
+

IT

2
sin δ cos(2φ) sin(2ρ) − IT

2
sin δ sin(2φ) cos(2ρ) (7)

≡ a′
0 + a′

2 cos(2ρ) + b′
2 sin(2ρ), (8)

a′
0 =

IT

2
, a′

2 = −IT

2
sin δ sin(2φ), b′

2 =
IT

2
sin δ cos(2φ). (9)

To determine the transmittance IT , the direction angle φ, and the retar-
dation |sin δ| from the light intensities I(ρi) measured at rotation angles ρi ∈
{0, 10◦, ..., 170◦}, we assume a0 = a′

0, a2 = a′
2, b2 = b′

2, and b4 = b′
4, whereby the
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Fourier coefficients a0, a2, and b2 are computed using Eq. (6), with n = 2 and
N = 18. By rearranging Eq. (9), we obtain:

IT = 2 a0 , (10)

φ =
atan2(−a2, b2)

2
, (11)

| sin δ| =

√
a2
2 + b22
a0

, (12)

where atan2 is the arctangent with two arguments.1 The inclination angle α can
be calculated from the retardation | sin δ| by rearranging Eq. (3).

The computed fiber orientations (φ, α) of the measured brain section are
visualized in a so-called fiber orientation map (FOM) (cf. Fig. 2).

Fig. 1. (a) Experimental setup of 3D-PLI and associated Jones matrices of the optical
elements (b) Simulation of 3D-PLI by means of the Jones matrix calculus illustrated
for a large fiber: Each myelin voxel (gray) is represented by the Jones matrix of an
optical retarder (Mj) whose axis is oriented in direction of the optic axis (arrows).
All Jones matrices along the optical path of one image pixel (highlighted column) are
multiplied. (Source: Menzel et al. [13])

3 Simulation of 3D-PLI by Means of the Jones Matrix
Calculus

One possibility to simulate the interaction of polarized light with brain tissue
is by using the Jones matrix calculus. Instead of representing the whole brain
tissue (per pixel) by a single retarder matrix (as in Eq. (2)), the birefringence
of the myelin sheaths is modeled by multiple optical retarder elements (Jones
matrices). For more details, see Menzel et al. [11] and Dohmen et al. [14].
1 The function atan2(x, y) denotes the angle (in radians) between the positive x-axis

and the point (x, y). The angle is positive for y > 0 and negative for y < 0.
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3.1 Simulation Method

For the simulation, the nerve fibers are replaced by hollow tubes representing
the surrounding myelin sheaths. The simulation volume is discretized into small
cubic volume elements (voxels, indicated by the gray mesh in Fig. 1b) and each
myelin voxel is represented by the Jones matrix of an optical retarder with the
retarder axis oriented along the optic axis of the myelin sheath (indicated by the
arrows in Fig. 1b).

To generate a synthetic 3D-PLI image series, a modified version of the Jones
matrix calculus described in Sect. 2 is used whereby Mtissue in Eq. (2) is replaced
by the product of N retarder matrices that represent the myelin voxels along the
optical path of one image pixel (indicated by the highlighted column in Fig. 1b):

E = Py · (MN · MN−1 · · · M1) · Mλ/4 · Px · E0. (13)

The synthetic 3D-PLI image series is interpreted by applying the same
Fourier analysis as for the experimental data (see Sect. 2). The generated FOM
can directly be compared to experimental results.

3.2 Results

A comparison of a measured and a simulated FOM of the optic chiasm of a
hooded seal (see Fig. 2) demonstrates that the simulation approach based on the
simple Jones matrix calculus can be used to make hypotheses on the underly-
ing fiber structure [14]. Even though the employed model of crossing and non-
crossing fibers is quite simple, the most dominant features of the measured FOM
are reproduced.

Fig. 2. Measured and simulated FOMs of the optic chiasm of a hooded seal, adapted
from Dohmen et al. [14] (Color figure online)
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4 Simulation of 3D-PLI by Means of a 3D Maxwell Solver

Although the previous simulation approach is already quite successful in repro-
ducing 3D-PLI measurements, it is limited by the assumptions made in the
Jones matrix calculus and the fact that only the molecular birefringence of
the myelin sheaths is considered. To account for scattering and interference,
we use a more sophisticated simulation approach: The propagation of the polar-
ized light wave through the brain tissue is simulated by a massively parallel
3D Maxwell solver based on an unconditionally stable Finite-Difference Time-
Domain (FDTD) algorithm [15].

4.1 Simulation Method

Finite-Difference Time-Domain (FDTD) Algorithm. The FDTD algo-
rithm [15] numerically computes the components of the electromagnetic field
by discretizing space and time and approximating Maxwell’s curl equations by
so-called finite differences: The Maxwell equations are discretized using the Yee
cell [16], see top panel Fig. 3b, such that each component of the electric field E
is surrounded by four components of the magnetic field H and vice versa. The
propagation of the electromagnetic field in time is computed iteratively using a
leapfrog time-stepping scheme (see lower Fig. 3b): The components of the E-field
at a given time t are computed from the values of the H-field at time (t−Δt/2)
and from the values of the E-field at time (t−Δt), where Δt is a globally defined
time step. The components of the H-field at time (t+Δt/2) are computed analo-
gously from the values of the E-field at time t and from the values of the H-field
at time (t − Δt/2). The time-dependent electromagnetic fields are computed at
every point in space using Maxwell’s curl equations:

∂E

∂t
=

1
ε

[
∇ × H − (J source + σeE)

]
, (14)

∂H

∂t
= − 1

μ

[
∇ × E + (M source + σmH)

]
, (15)

where ε and μ are the electric permittivity and the magnetic permeability, Jsource

and Msource are the electric and magnetic current densities acting as independent
sources of the electric and magnetic field energy, and σe and σm are the electric
conductivity and the equivalent magnetic loss, respectively.

The spatial and temporal derivatives of the electric and magnetic fields are
approximated by second-order central differences:

∂un
i,j,k

∂x
=

un
i+ 1

2 ,j,k
− un

i− 1
2 ,j,k

Δx
+ O

[
(Δx)2

]
, (16)

∂un
i,j,k

∂t
=

u
n+ 1

2
i,j,k − u

n− 1
2

i,j,k

Δt
+ O

[
(Δt)2

]
, (17)

where un
i,j,k represents the electric and magnetic fields evaluated at a discrete

point in space (iΔx, jΔy, kΔz) and a discrete point in time (nΔt). This approx-
imation allows to interleave the electric and magnetic field components in space
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Fig. 3. Simulation principles of the 3D Maxwell solver: (a) The software TDME3D
simulates the propagation of left-hand circularly polarized light through a given fiber
configuration. The resulting electric field components are multiplied with the Jones
matrix of a rotated linear polarizer. (b) The upper figure shows a unit cell of the
cubic Yee grid used for the discretization of space (After: Yee [16]). The lower figure
illustrates the leapfrog time-stepping scheme used for the discretization of time.

and time at intervals of Δx/2 and Δt/2 and thus to implement the leapfrog
time-stepping algorithm.

Maxwell Solver Software. For the simulations, we use the software TDME3D
− a massively parallel 3D Maxwell solver that is based on an unconditionally
stable FDTD algorithm. The algorithm makes use of the formal solution of
Maxwell’s equations in matrix form and the Lie-Trotter-Suzuki product formula
approach. For more details, see De Raedt [17].

The software solves Maxwell’s equations for arbitrary (non-)periodic struc-
tures that are illuminated by arbitrary incident plane waves and that consist
of linear, isotropic, lossy materials with known permeability, permittivity, and
conductivity. The simulations are performed on the JUQUEEN supercomputer
[18] at the Forschungszentrum Jülich, Germany.

Simulation of the Polarimetric Setup. The Maxwell solver computes the
electromagnetic field behind a tissue sample from the given geometric and optical
properties of the sample and the incident plane wave. In order to simulate a
standard 3D-PLI measurement, the polarimetric setup needs to be taken into
account (see Fig. 3a): After passing the first linear polarizer and the quarter-
wave retarder, the light is left-hand circularly polarized. The propagation of this
light wave through the sample is computed by TDME3D. The resulting electric
field components (Ex, Ey, Ez) are then processed by a second linear polarizer
rotated by angles ρ, yielding Ẽx(ρ), Ẽy(ρ), and Ẽz(ρ). The x- and y-components
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of Ẽ are computed by multiplying E with the Jones matrix of a rotated linear
polarizer (R(ρ) · Py · R(−ρ), cf. Sect. 2):

(
Ẽx

Ẽy

)
=

(
cos ρ − sin ρ
sin ρ cos ρ

) (
0 0
0 1

) (
cos ρ sin ρ

− sin ρ cos ρ

) (
Ex

Ey

)
(18)

=
(

cos ρ
(
Ex cos ρ + Ey sin ρ

)
sin ρ

(
Ex cos ρ + Ey sin ρ

)
)

. (19)

The z-component of Ẽ is computed by applying Maxwell’s equation in free space:

divẼ = 0 ⇔ Ẽz = − 1
kz

(
kxẼx + kyẼy

)
(20)

(19)
= −kx cos ρ + ky sin ρ

kz

(
Ex cos ρ + Ey sin ρ

)
, (21)

where Ẽ = Ẽ0 ei(k·r−ωt+ϕ) (monochromatic plane wave) has been used.
The light intensity recorded by the camera is given by the absolute squared

value of the electric field vector:

I ∝ |Ẽx|2 + |Ẽy|2 + |Ẽz|2. (22)

The x- and y-components of the electric field yield Fourier coefficients of
zeroth and second order in ρ:

|Ẽx|2 + |Ẽy|2 (19)
= cos2 ρ |Ex|2 + sin2 ρ |Ey|2 + sin ρ cos ρ

(
ExE∗

y + E∗
xEy

)
(23)

=
1
2

(
|Ex|2 + |Ey|2

)
+

1
2

(
|Ex|2 − |Ey|2

)
cos(2ρ) (24)

+
1
2

(
ExE∗

y + E∗
xEy

)
sin(2ρ) (25)

≡ c0 + c2 cos(2ρ) + d2 sin(2ρ). (26)

Similar analytical calculations show that the z-component of the electric field
yields Fourier coefficients of zeroth, second, and fourth order in ρ:

|Ẽz|2 (21)
= e0 + e2 cos(2ρ) + f2 sin(2ρ) + e4 cos(4ρ) + f4 sin(4ρ), (27)

where en and fn are analytical functions of the wave vector k and Ex,y.
The transmitted light intensity I(ρ) can therefore be represented by means

of a Fourier series with Fourier coefficients a0, a2, b2, a4, and b4:

I(ρ) = a0 + a2 cos(2ρ) + b2 sin(2ρ) + a4 cos(4ρ) + b4 sin(4ρ), (28)
a0 = c0 + e0, a2 = c2 + e2, b2 = d2 + f2, a4 = e4, b4 = f4. (29)

From the five Fourier coefficients, the light intensity profile I(ρ) is derived for
arbitrary rotation angles ρ.
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Fig. 4. Simulation results of the 3D Maxwell solver computed for three samples contain-
ing horizontal parallel, horizontal crossing, and vertical fibers, respectively: (a) Fourier
coefficient maps (a0, a2, a4, b2, b4; cf. Eq. (29)) (b) Light intensity profiles (averaged
and normalized recorded light intensity plotted against the rotation angle ρ)
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Fig. 5. Fourier coefficient maps (a0, a2, a4, a6, b2, b4, b6; cf. Eq. (6)) of a coronal rat
brain section measured with 3D-PLI



FDTD Simulation for 3D Polarized Light Imaging 83

4.2 Results

Simulated Data. Figure 4 shows the computed Fourier coefficients and light
intensity profiles for three samples containing horizontal parallel, horizontal
crossing, and vertical fibers, respectively. The fibers were simulated as solid cylin-
ders with diameters of 1µm and arranged in hexagonal bundles with inter-fiber
distances of 0.1µm in a box of 10×10×12µm3. The simulations were performed
with uniaxial perfectly matched layer absorbing boundary conditions [19], a Yee
cell of 25 nm side length, and λ = 525 nm. The refractive indices of the fibers
and the surroundings were chosen as 1.47 and 1.37 (according to measurements
of the refractive indices of myelin and the embedding glycerin solution).

Similar to a 3D-PLI measurement, the transmittance IT ∝ a0 shows the
underlying fiber structure (see Fig. 4a). The (averaged and normalized) light
intensity profiles I(ρ) show a strong sinusoidal signal for horizontal parallel fibers,
whereas the signal amplitude for horizontal crossing and vertical fibers is very
small (see Fig. 4b) − an effect that can also be observed in a standard 3D-
PLI measurement [4,5,14]. This demonstrates that the Maxwell solver is able
to reproduce the most dominant effects of the 3D-PLI measurement without
assuming any intrinsic birefringence of the nerve fibers.

Experimental Data. To derive the spatial fiber orientations in a standard
3D-PLI analysis, only the Fourier coefficients of zeroth and second order are
extracted from the measured signal (see Eqs. (10)−(12)). However, the sim-
ulations with the Maxwell solver suggest that for non-normal incident light
(Ez �= 0), Fourier coefficients of fourth order will also be generated (cf. Eq. (27)).

Figure 5 shows the Fourier coefficient maps (up to the sixth order) computed
from a 3D-PLI measurement of a coronal rat brain section. As can be seen, the
Fourier coefficients of fourth order are smaller than the Fourier coefficients of sec-
ond order, but they still show the underlying tissue structure. Fourier coefficients
of higher orders do not contain valuable tissue information and are probably due
to noise. This suggests that non-normal incident light (e.g. caused by scattering)
leads to Fourier coefficients of fourth order which contain valuable signal infor-
mation. Therefore, a4 and b4 should also be taken into account when computing
the fiber orientations from the measured 3D-PLI light intensity profile.

5 Conclusion

The 3D Maxwell solver has proven to be a valuable tool for simulating 3D-PLI.
It models the interaction of polarized light with brain tissue without assuming
any intrinsic birefringence of the nerve fibers. Nevertheless, the Maxwell solver
reproduces the most dominant features observed in a 3D-PLI measurement and
opens up new ways to improve the accuracy of the extracted fiber orientations:
The FDTD simulations suggest, for example, that the Fourier coefficients of
fourth order contain valuable structural information and should be incorporated
in an enhanced signal analysis of 3D-PLI.
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