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ABSTRACT

The purpose of this lecture is to introduce the general concepts for building al-

gorithms to solve the time-dependent Schrödinger equation and to discuss ways

of turning these concepts into unconditionally stable, accurate and efficient sim-

ulation algorithms. The approach is illustrated using results of a computer sim-

ulation study of charged-particle interferometry, combining features of both the

Aharonov-Bohm and Hanbury Brown-Twiss experiment.

1. Introduction

Progress in nano-scale lithography has made it possible to perform “electron-
optics” experiments in solid state devices1,2. In an ideal device the motion of the
electrons is not affected by interactions with impurities, phonons etc., i.e. the

electrons travel ballistically, just as they would do in ultra-high vacuum. In real
devices, typical distances for ballistic motion can be as large as 250λF , λF being
the Fermi wavelength of the electrons3.

A similar, but otherwise unrelated, break-through is the development of atom-

size field-electron-emission sources. Recent experiments using these atom-size tips45

have demonstrated that they act as unusual electron beam sources, emitting elec-
trons at fairly low applied voltages (a few thousand volts or less) with a small an-
gular spread (of a few degrees). These properties make such electron sources very

attractive for applications to electron microscopy, holography and interferometry.
From physical point of view, both these nano-scale structures have at least

one important common feature: The characteristic dimensions of these devices are

comparable to the wavelength (typically the Fermi wavelength λF ) of the relevant
particles (typically electrons). Under this stringent condition, a classical, “billiard-
ball” description of the particle motion is no longer valid. A calculation of the
device properties requires a full quantum-mechanical treatment.

The dynamic properties of a non-relativistic quantum system is governed by the
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time-dependent Schrödinger equation (TDSE)

ih̄
∂

∂t
|Φ(t)〉 = H|Φ(t)〉 , (1)

where |Φ(t)〉 represents the state of the system described by the Hamiltonian H
(here and in the following we use H to denote the differential operator and H

for the hermitian matrix representing H). In analogy with ordinary differential
equations, the formal solution of the matrix differential equation

∂

∂x
U(x) = HU(x) ; U(0) = I , (2)

where I denotes the M ×M unit matrix and H is a M ×M matrix, is given by

U(x) = exH , (3)

and is called the exponential of the matrix H. In quantum physics and quantum
statistical mechanics, the exponential of the Hamiltonian is a fundamental quan-

tity. All methods for solving these problems compute, one way or another, (matrix
elements of) the exponential of the matrix H. In the case of real-time quantum
dynamics x = −it/h̄ whereas for quantum statistical problems x = −β = −1/kBT .

Formally, the exponential of a matrix H can be defined in terms of the Taylor
series

exH =
∞∑
n=0

xn

n!
Hn , (4)

just like if H would be a number. For most problems of interest, there won’t be

enough memory to store the matrix H (typical applications require matrices of
dimension 105× 105 or larger) and hence there also will be no memory to store the
full matrix exH . So let us concentrate on the other extreme: The calculation of an

arbitrary matrix element 〈ψ|exH |ψ′〉. Although from mathematical point of view,
formal expansion (4) is all that is really needed, when it comes to computation, (4)
is quite useless. The reason is not so much that it is a Taylor series but rather that
it contains powers of the matrix, indicating that simply summing the terms in (4)

may be very inefficient (and indeed it is).
There is one particular case in which it is easy to compute the matrix element

〈ψ|exH |ψ′〉 namely if all the eigenvalues and eigenvectors are known. Indeed, from
(4) it follows that

exH |Φj〉 =
∞∑
n=0

xn

n!
Hn|Φj〉 =

∞∑
n=0

xn

n!
Enj |Φj〉 = exEj |Φj〉 , (5)

where (here and in the following) En denotes the n-th eigenvalue of the matrix H
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and |Φn〉 is the corresponding eigenvector. We will label the eigenvalues such that
E0 ≤ E1 ≤ . . . ≤ EM−1 where M is the dimension of the matrix H. From (5) is
follows that

〈ψ|exH |ψ′〉 =
M−1∑
j=0

〈ψ|Φj〉〈Φj |ψ′〉e
xEj . (6)

Of course, result (6) is almost trivial but it is important to keep in mind that, except
for some pathological cases, there seems to be no other practical way to compute

the matrix element 〈ψ|exH |ψ′〉 without making approximations (assuming H is a
large matrix). In general we don’t know the solution of the eigenvalue problem of
the matrix H, otherwise we would already have solved the most difficult part of the
whole problem. Therefore (6) is not of practical use.

Solving the time-dependent Schrödinger equation for even a single particle mov-
ing in a non-trivial (electromagnetic) potential is not a simple matter. The main
reason is that for most problems of interest, the dimension of the matrix represent-
ing H is quite large and although the dimension of the matrices involved is certainly

not as large as in the case of typical many-body quantum systems, exact diagonal-
ization techniques are quite useless. Indeed, a calculation of the time-development
of the wave function by exact diagonalization techniques requires the knowledge of

all eigenvectors and all eigenvalues (i.e. ≈ 1013 Mb or more RAM to store these
data). Thus, we need algorithms that do not use more than O(M + 1) storage
elements. Diagonalization methods that only require O(M + 1) memory locations
are of no use either because they can only compute a (small) part of the spectrum.

Methods based on importance sampling concepts cannot be employed at all be-
cause there is no criterion to decide which state is important or which is not: The
“weight” of a state e−itEj/h̄ is a complex number of “size” one.

Although from numerical point of view the TDSE looks like any other differential

equation which one should be able to solve by standard methods (Runge-Kutta, ...)
this similarity is misleading. Standard methods are based on (clever) truncations
of the Taylor series expansion. It is easy to convince oneself that, for the TDSE,
this implies that these numerical algorithms do not conserve the norm of the wave

function.6 This, from physical point of view, is unacceptable because it means that
during the numerical solution of the TDSE, the number of particles will change.
Moreover, it can be shown6 that this implies that these methods are not always sta-

ble with respect to rounding and other numerical errors. For completeness it should
be mentioned that the Cranck-Nicholson algorithm does conserve the norm of the
wave function and is unconditionally stable. However, except for one-dimensional
problems, in terms of accuracy and efficiency it cannot compete with the algorithms

to be discussed below.6

A key concept in the construction of an algorithm for solving the TDSE is the so-
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called unconditional stability. An algorithm for solving the TDSE is unconditionally
stable if the norm of the wavefunction is conserved exactly, at all times.6 From
physical point of view, unconditional stability obviously is an essential requirement.

If an algorithm is unconditionally stable the errors due to rounding, discretization
etc. never run out of hand, irrespective of the choice of the grid, the time step, or
the number of propagation steps. Recall that the formal solution of the TDSE is

given by

|Φ(mτ )〉 = e−imτH |Φ(t = 0)〉 , (7)

where m = 0, 1, . . . counts the number of time-steps τ . Here and in the following
we absorb h̄ in τ .

A simple, general recipe for constructing an unconditionally stable algorithm is

to use unitary approximations to the (unitary) time-step operator U(τ ) = e−iτH .6

The Trotter-Suzuki product formula approach, to be discussed in the next section,
provides the necessary mathematical framework for constructing unconditionally

stable, accurate and efficient algorithms to solve the TDSE.6

2. Theory

In all cases that we know of, the Hamiltonian is a sum of several contributions
and each contribution itself is usually simple enough so that we can diagonalize
it ourselves by some (simple) transformation. The Hamiltonian for a particle in
a potential provides the most obvious example: We can write the Hamiltonian

as a sum of the free-particle Hamiltonian and a potential energy. It is trivial to
diagonalize both parts independently but it is usually impossible to diagonalize the
sum.

The question we can now put ourselves is the following. Suppose we can di-

agonalize each of the terms in H by hand. Then, it is very reasonable to assume
that we can also compute the exponential of each of the contributions separately
(see the discussion in the previous section). Is there then a relation between the

exponentials of each of the contributions to H and the exponential of H and if so,
can we use it to compute the latter ?

The answer to this question is affirmative and can be found in the mathematical
literature of the previous century. The following fundamental result due to Lie,7

is the basis for the Trotter-Suzuki method for solving quantum problems.8,9,10 It
expresses the exponential of a sum of two matrices as infinite ordered product of
the exponentials of the two individual matrices:

ex(A+B) = lim
m→∞

(
exA/mexB/m

)m
, (8)

where, for our purposes, A and B are M ×M matrices. The result (8) is called the
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Trotter formula. A first hint for understanding why (8) holds comes from comparing
the two Taylor series

ex(A+B)/m = I +
x

m
(A+B) +

1

2

x2

m2
(A+B)2 +O(x3/m3)

= I +
x

m
(A+B)

+
1

2

x2

m2
(A2 +AB +BA+B2) +O(x3/m3) , (9a)

and

exA/mexB/m = I +
x

m
(A+B) +

1

2

x2

m2
(A2 + 2AB +B2) +O(x3/m3) . (9b)

It is clear that for sufficiently large m, both expansions will agree up to terms of
O(x2‖[A,B]‖/m2).11 Thus, for sufficiently large m (how large depends on x and

‖[A,B]‖),

ex(A+B)/m ≈ exA/mexB/m . (10)

A mathematically rigorous treatment shows that12

‖ex(A+B)/m − exA/mexB/m‖ ≤
x2

2m2
‖[A,B]‖e|x|(‖A‖+‖B‖)/m , (11)

demonstrating that for finite m, the difference between the exponential of a sum

of two matrices and the ordered product of the individual exponentials vanishes
as x2/m. As expected, (11) also reveals that this difference is zero if A and B

commute: If [A,B] = 0 then ex(A+B) = exAexB. For the case at hand x = −imτ
and then upperbound in (11) can be improved considerably to read6

‖e−iτ(A+B) − e−iτAe−iτB‖ ≤
τ 2

2
‖[A,B]‖ , (12)

Except for the fact that we assumed that H = A+B, the above discussion has been
extremely general. This suggests that one can apply the Trotter-Suzuki approach

to a wide variety of problems and indeed one can. We have only discussed the most
simple form of the Trotter formula. There now exist a vast number of extensions
and generalizations of which we will consider only three of them.

The Trotter formula is readily generalized to the case of more than two contri-

butions to H. Writing H =
∑p
i=1Ai it can be shown that6,12

‖e−iτ(A1+...+Ap) − e−iτA1 . . . e−iτAp‖ ≤
τ 2

2

∑
1≤i<j≤p

‖[Ai, Aj ]‖ , (13)
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showing that any decomposition of the Hamiltonian qualifies as a candidate for
applying the Trotter-Suzuki approach. This is an important conclusion because
the flexibility of choosing the decomposition of H can be exploited to construct

efficient algorithms. From the above discussion it is also clear that at no point, an
assumption was made about the “importance” of a particular contribution to H.
This is the reason why the Trotter-Suzuki approach can be used where perturbation

methods break down.
The product formula (10) is the simplest one can think of. We use it to define

an approximate time-step operator

U1(τ ) = e−iτA1 . . . e−iτAp . (14)

The hermitian conjugate of this operator is given by

U†1 (τ ) = eiτAp . . . eiτA1 , (15)

from which it follows that

U1(τ )U
†
1 (τ ) = I . (16)

For simplicity we have assumed that H has be written as a sum of hermitian contri-
butions, i.e. Ai = A†i for i = 1, . . . , p. Result (16) implies that (U1(τ ))−1 = U†1 (τ )
hence U1(τ ) is a unitary approximation to the time-step operator e−iτH . Thus, if

we succeed in implementing U1(τ ), the resulting algorithm will be unconditionally
stable by construction. The upperbound in (13) shows that the error made by re-
placing e−iτH by U1(τ ) will, in the worst case, never exceed a constant multiplied
by τ 2. Therefore U1(τ ) is said to be a first-order approximant to the time-step

operator.
For many applications it is necessary to employ an algorithm that is correct

up to fourth order in the time step. Approximants correct up to second order are
obtained by symmetrization6,12,13

U2 (τ ) = UT1 (τ/2)U1 (τ/2) , (17)

where the UT1 is the transpose of U1 . Trotter-Suzuki formula-based procedures to
construct algorithms that are correct up to fourth-order in the time step are given
in ref.6. From practical point of view, a disadvantage of the fourth-order methods
introduced in ref.6 is that they involve commutators of various contributions to

the Hamiltonian. Recently Suzuki proposed a symmetrized fractal decomposition
of the time evolution operator.14 Using this formula, a fourth-order algorithm is
easily build from a second-order algorithm by applying14

U4(τ ) = U2(pτ )U2(pτ )U2((1 − 4p)τ )U2(pτ )U2(pτ ) , (18)
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where p = 1/(4 − 41/3) and Un(τ ) is the n–th order approximation to U(τ ), i.e.
U(τ ) = Un(τ ) +O(τn+1). It is trivial to show that all of the above approximations
are unitary operators, hence the corresponding algorithms will be unconditionally

stable. Note that once we have programmed a first-order algorithm, writing the
code to implement the second- and fourth-order algorithms will normally only take
a few seconds.

3. Data analysis

The amount of data generated by a TDSE solver can be tremendous: The

wave function is known at each time step so that in principle the TDSE solver can
generate O(16mM) bytes of data in a single run. In typical applications, M ≈ 106

and m > 1000. Clearly it may be difficult to store all these data. Therefore it is
more appropriate to process the data as it is generated and compress it as much as

possible.
A very appealing method to look at the data is to make say 100 snapshots of

the (coarse grained) probability distribution and to use visualization techniques to
produce digital video’s.15,16,17 Simply looking at these video’s can already bring a

lot of insight but, to be on the save side, this insight should be confronted with the
results of more advanced, numerical processing of the data.

The numerical processing of the raw data generated by the TDSE solver depends

to considerable extent on the details of the actual application. Therefore I will
not dwell on this subject in full generality but confine myself to a discussion of a
simple, widely applicable method to extract from the raw data, information about
the spectrum of the model Hamiltonian.

The idea is straightforward. Consider the matrix element 〈Φ(t = 0)|Φ(t)〉 and
write |Φ(t)〉 in terms of the (unknown) eigenvalues and eigenvectors of H to obtain

f(t) ≡ 〈Φ(t = 0)|Φ(t)〉 =
M−1∑
j=0

|〈Φ(t = 0)|Φj〉|
2e−itEj . (19)

From (19) it is clear that the Fourier transform of f(t) with respect to t will give

direct information on all the Ej ’s for which the overlap |〈Φ(t = 0)|Φj〉|2 is not
negligible. In other words, if we keep all the values of f(t = mτ ) and compute the
its Fourier transform, we obtain the local (with respect to the initial state Φ(t = 0))

density of states.

4. Implementation

In general there will be many possibilities to write down different decomposi-
tions of a given Hamiltonian. From theoretical point of view, the choice of the
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decomposition is arbitrary. In practice however, this flexibility can be exploited to
considerable extent to tailor the algorithm to the computer architecture on which
the algorithm will execute. Of particular interest are decompositions that vectorize

well and have a large intrinsic degree of parallelism.
We now illustrate the application of the theory presented above to the case of a

charged (spinless) non-relativistic particle in an external, static magnetic field B .

The hamiltonian reads

H =
1

2m∗
(p − eA )2 + V , (20)

where m∗ is the effective mass of the particle with charge e, p = −ih̄∇ is the mo-
mentum operator, A represents the vector potential and V denotes the potential.
For many applications it is sufficient to consider the choice B = (0, 0, B(x, y)) and

V = V (x, y). Then the problem is essentially two-dimensional and the motion of
the particle may be confined to the x–y plane. For numerical work, there is no
compelling reason to adopt the Coulomb gauge (divA = 0). A convenient choice
for the vector potential is A = (Ax(x, y), 0, 0) where

Ax(x, y) = −

∫ y

0

B(x, y)dy . (21)

We will solve the TDSE for the Hamiltonian (20) with the boundary condition

that the wave function is zero outside the simulation box, i.e. we assume perfectly
reflecting boundaries.

For computational purposes it is expedient to express all quantities in dimen-
sionless units. Fixing the unit of length by λ, wavevectors are measured in units

of k = 2π/λ, energies in E = h̄2k2/2m∗, time in h̄/E and the vector potential in
eλ/h̄. Expressed in these dimensionless variables Hamiltonian (20) reads

H = −
1

4π2

{[
∂

∂x
− iAx(x, y)

]2

+
∂2

∂y2

}
+ V (x, y) . (22)

An essential step in the construction of a numerical algorithm is to discretize the
derivatives with respect to the x and y coordinates (of course, if the problem is
defined on a lattice instead of in continuum space this step can be omitted). For
many purposes, it is necessary to use a difference formula for the first and second

derivatives in (22) that is accurate up to fourth order in the spatial mesh size δ.
Using the standard four and five point difference formula18 the discretized r.h.s. of
(22) reads

HΦl,k(t) =
1

48π2δ2

{ [
1− iδ

(
Al,k +Al+2,k

)]
Φl+2,k(t)
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+
[
1 + iδ

(
Al−2,k +Al,k

)]
Φl−2,k(t)

−16
[
1−

iδ

2

(
Al,k +Al+1,k

)]
Φl+1,k(t)

−16
[
1 +

iδ

2

(
Al−1,k +Al,k

)]
Φl−1,k(t)

+Φl,k+2 + Φl,k−2 − 16Φl,k+1 − 16Φl,k−1(t)

+
[
60 + 12δ2A2

l,k + 48π2δ2Vl,k

]
Φl,k(t)

}
+O(δ5) , (23)

where Φl,k(t) = Φ(lδ, kδ, t) and Al,k = Ax(lδ, kδ). The discretized form (23)

will provide a good approximation to the continuum problem if δ is substantially
smaller than the smallest physical length scale. For the case at hand there are
two such scales. One is the de Broglie wavelength of the particle (which by def-
inition is equal to λ) and the other is the (smallest) magnetic length defined by

l2B = min(x,y) |h̄/eB(x, y)|. From numerical calculations (not shown) it follows that
δ = 0.1min(1, lB) yields a good compromise between accuracy and the CPU time
required to solve the TDSE.

Straightforward application of the product-formula recipe to expression (23)

requires a cumbersome matrix notation. This can be avoided in the following way.6

Defining

|Φ(t)〉 =

Lx∑
l=1

Ly∑
k=1

Φl,k(t)c
+
l,k|0〉 , (24)

where Lx and Ly are the number of grid points in the x and y direction respectively
and c+l,k creates a particle at lattice site (l, k), (24) can be written as

|Φ(mτ )〉 = e−imτH |Φ(t = 0)〉 , (25)

where

H =
1

48π2δ2

Lx−2∑
l=1

Ly∑
k=1

{[
1− iδ

(
Al,k +Al+2,k

)]
c+l,kcl+2,k

+
[
1 + iδ

(
Al,k +Al+2,k

)]
c+l+2,kcl,k

}

−
1

3π2δ2

Lx−1∑
l=1

Ly∑
k=1

{[
1−

iδ

2

(
Al,k +Al+1,k

)]
c+l,kcl+1,k

+
[
1 +

iδ

2

(
Al,k +Al+1,k

)]
c+l+1,kcl,k

}
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+
1

48π2δ2

Lx∑
l=1

Ly−2∑
k=1

(
c+l,kcl,k+2 + c+l,k+2cl,k

)
−

1

3π2δ2

Lx∑
l=1

Ly−1∑
k=1

(
c+l,kcl,k+1 + c+l,k+1cl,k

)
+

1

48π2δ2

Lx∑
l=1

Ly∑
k=1

(
60 + 12δ2A2

l,k + 48π2δ2Vl,k
)

+O(δ5) , (26)

where cl,k annihilates a particle at lattice site (l, k).

Hamiltonian (26) describes a particle that moves on a two-dimensional lattice
by making nearest and next-nearest neighbor jumps. This interpretation suggests
that H should be written as a sum of terms that represent groups of independent
jumps.6 A convenient choice is

A1 =
1

48π2δ2

∑
l∈X1

Ly∑
k=1

{[
1− iδ

(
Al,k +Al+2,k

)]
c+l,kcl+2,k

+
[
1 + iδ

(
Al,k +Al+2,k

)]
c+l+2,kcl,k

}
;

X1 = {1, 2, 5, 6, 9, 10, . . .} ,

A2 =
1

48π2δ2

Ly∑
k=1

∑
l∈X2

{[
1− iδ

(
Al,k +Al+2,k

)]
c+l,kcl+2,k

+
[
1 + iδ

(
Al,k +Al+2,k

)]
c+l+2,kcl,k

}
;

X2 = {3, 4, 7, 8, 11, 12, . . .} ,

A3 =
−1

3π2δ2

Ly∑
k=1

∑
l∈X3

{[
1−

iδ

2

(
Al,k +Al+1,k

)]
c+l,kcl+1,k

+
[
1 +

iδ

2

(
Al,k +Al+1,k

)]
c+l+1,kcl,k

}
;

X3 = {1, 3, 5, 7, 9, 11, . . .} ,

A4 =
−1

3π2δ2

Ly∑
k=1

∑
l∈X4

{[
1−

iδ

2

(
Al,k +Al+1,k

)]
c+l,kcl+1,k

+
[
1 +

iδ

2

(
Al,k +Al+1,k

)]
c+l+1,kcl,k

}
;

X4 = {2, 4, 6, 8, 10, 12, . . .} ,
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A5 =
1

48π2δ2

∑
k∈X5

Lx∑
l=1

(
c+l,kcl,k+2 + c+l,k+2cl,k

)
; X5 = {1, 2, 5, 6, 9, 10, . . .} ,

A6 =
1

48π2δ2

∑
k∈X6

Lx∑
l=1

(
c+l,kcl,k+2 + c+l,k+2cl,k

)
; X6 = {3, 4, 7, 8, 11, 12, . . .} ,

A7 =
−1

3π2δ2

∑
k∈X3

Lx∑
l=1

(
c+l,kcl,k+1 + c+l,k+1cl,k

)
; X3 = {1, 3, 5, 7, 9, 11, . . .} ,

A8 =
−1

3π2δ2

∑
k∈X4

Lx∑
l=1

(
c+l,kcl,k+1 + c+l,k+1cl,k

)
; X4 = {2, 4, 6, 8, 10, 12, . . .} ,

A9 =
1

48π2δ2

Ly∑
k=1

Lx∑
l=1

(
60 + 12δ2A2

l,k + 48π2δ2Vl,k
)

, (27)

and

U1(τ ) =

9∏
n=1

e−iτAn , (28)

is the first-order approximant from which the algorithm, correct up to fourth-order
in the spatial (δ) and temporal (τ ) mesh size, can be build.

Inspection of An for n = 1, . . . , 9 shows that each of the terms commutes with
all the other terms in the sum over k and l. This is because each of these terms
corresponds to a jump of the particle between a pair of two, isolated sites. For the

purpose of implementation, this feature is of extreme importance.6 To illustrate
this point it is sufficient to consider the first of the exponents in (28) and use the
fact that all terms commute to rewrite it as

e−iτA1 =

Ly∏
k=1

∏
l∈X1

exp

(
−iτ

48π2δ2

{[
1− iδ

(
Al,k +Al+2,k

)]
c+l,kcl+2,k

+
[
1 + iδ

(
Al,k +Al+2,k

)]
c+l+2,kcl,k

})
. (29)

Furthermore, each of the exponents in the product (29) describes a two-site sys-

tem, and the exponent of the corresponding two-by-two matrix can be worked out
analytically.6 In general

exp
(
iταc+l,kcl′,k′ + iτα∗c+l′,k′cl,k

)
=
(
c+l,kcl,k + c+l′,k′cl′,k′

)
cos τ |α|

+i
(
α∗−1c+l,kcl′,k′ + α−1c+l′,k′cl,k

)
sin τ |α| .(30)

The rather formal language used above easily translates into a computer pro-
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gram. All that (27)–(30) imply is that for each factor in product formula (28) one
has to pick successive pairs of lattice points, get the values of the wave function for
each pair of points and perform a plane rotation using matrices of the form

M =

(
cos τ |α| +iα−1 sin τ |α|

+iα∗−1 sin τ |α| cos τ |α|

)
. (31)

For each of the nine exponentials,19 the order in which the pairs of points are
processed is irrelevant. Therefore, the computation of each of the nine factors

can be done entirely parallel, fully vectorized, or mixed parallel and vectorized
depending on the computer architecture on which the code will execute. Further
technical details on the implementation of this algorithm can be found elsewhere.20

5. Quantum interference of two identical particles

Fig.1. Schematic view of the combined Aharonov-Bohm – Hanbury-
Brown Twiss apparatus. Charged fermions or bosons leave the source
S, pass through the double-slit and arrive at detectors D1 and D2. The
signals of these detectors are multiplied in correlator C . The parti-
cles do not experience the magnetic field B enclosed in the double-slit
apparatus.

Trotter-Suzuki based TDSE solvers have been employed to study a variety

of problems including wave localization in disordered and fractals,6,21 electron
emission from nanotips,22,23,15 Andreev reflection in mesoscopic systems,24,16 the
Aharonov-Bohm effect,20,17 quantum interference of charged identical particles,25,17

etc.. Appealing features of the TDSE approach are that is extremely flexible in the
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sense that it can handle arbitrary geometries and (vector) potentials and that its
numerical stability and accuracy are such that for all practical purposes the solution
is exact.

Trotter-Suzuki formula-based algorithms can and also have been used to solve
the TDSE for few-body quantum systems, including a 26-site S=1/2 Heisenberg
model.26 The application of the TDSE approach is mainly limited by the storage

needed for the (complex valued) wave function.
In this section we will use the TDSE approach to study some aspects of quantum

interference of charged identical particles. Recently Silverman27,28 proposed and an-
alyzed a thought experiment that combines both the features of the Aharonov-Bohm

(AB) and Hanbury-Brown and Twiss (HBT) experiments. The former provides in-
formation on the effect of the magnetic field on correlations of two amplitudes.
The latter on the other hand yields direct information on the correlations of two
intensities, i.e. of correlations of four amplitudes.

A schematic view of the AB-HBT apparatus is shown in Fig.1. Charged fermions
or bosons leave the source S, pass through the double-slit and arrive at detectors D1

and D2. In order for the particle statistics to be relevant at all, it is necessary that
in the detection area the wave functions of two individual particles overlap. For

simplicity, it is assumed that the particles do not interact. The particle statistics
may affect the single-particle as well as two-particle interference. The former can
be studied by considering the signal of only one of the two detectors. Information

on the latter is contained in the cross-correlation of the signals of both detectors.
Below we report some of our results25 for the AB-HBT thought experiment, as
obtained from the numerically exact solution of the time-dependent Schrödinger
equation (TDSE) using the algorithm described above.

In practice we solve the two-particle TDSE subject to the boundary condition
that the wave function is zero outside the simulation box (a grid of 1024 × 513
points), i.e. we assume perfectly reflecting boundaries. The algorithm that we
use is accurate to fourth-order in both the spatial and temporal mesh size.20 Addi-

tional technical details can be found elsewehere.20 Physical properties are calculated
from the two-particle amplitude Φ(r, r′, t) = φ1(r, t)φ2(r′, t)±φ2(r, t)φ1(r′, t) where
φ1(r, t) and φ2(r, t) are the single-particle amplitudes and the plus and minus sign
correspond to the case of bosons and fermions respectively.

Let us first reproduce Silverman’s analysis.27,28 Assume that the double-slit
apparatus can be designed such that the probability for two identical particles
(fermions or bosons) to pass through the same slit can be made negligibly small. The

two slits then act as the two sources in the HBT experiment with one modification:
Due to the presence of the vector potential the waves can pick up an extra phase
shift. According to Silverman,27,28 it immediately follows that the signal generated
by the cross-correlator will not show any dependence on the confined magnetic field.

The AB shifts for the direct process and the one in which the identical particles
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Fig.2. Simulation results for single- (top) and correlated (bottom) de-
tector signal for B = 0, obtained from the solution of the TDSE for
the initial state as described in the text. Left: Signals generated by
fermions. Right: Signals generated by bosons. The corresponding pic-
tures for B = B0

(30) are identical and not shown.

have been interchanged mutually cancel. This cancelation is independent of the
fact that the particles are fermions or bosons.29

The basic assumption of Silverman’s analysis is easily incorporated into a com-

puter experiment. The initial two-particle wave function is a properly symmetrized
product of single-particle wave functions which, for simplicity, are taken to be Gaus-
sians. Each Gaussian is positioned such that during propagation it effectively ”hits”
only one slit. The single (top) and correlated (bottom) signals, received by detec-

tors placed far to the right of the slits for B = 0 for fermions (l.h.s) as well as for
bosons (r.h.s.) are shown in Fig.2.
For fermions the correlated signal for θ1 = θ2 vanishes, as required by the Pauli
principle. This feature is hardly visible, due to the resolution we used to generate

the pictures but it is present in the raw data. Within four digit accuracy, the
corresponding data for B = B0 (or, as a matter of fact, for any B) are identical
to those for B = 0.25 Comparison of the cross-correlated intensities (bottom part)

clearly lends support to Silverman’s conclusion.27,28 However, it is also clear that
the single-detector signals (upper part) do not exhibit the features characteristic of
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Fig.3. Simulation results for single- (top) and correlated (bottom) de-
tector signal generated by two bosons, as obtained from the solution
of the TDSE for the initial state described in the text. Left: B = 0.
Right: B = B0.

the AB effect. Under the conditions envisaged by Silverman, not only is there no
AB effect in the cross-correlated signal: There is no AB effect at all.

The absence of the AB effect can be traced back to Silvermans’s assumption that
the slits can be regarded as sources, thereby eliminating the second, topologically
different, alternative for a particle to reach the detector. A different route to arrive
at the same conclusion is to invoke gauge invariance to choose the vector potential

such that the two particles would never experience a non-zero vector potential.
A full treatment of the thought experiment depicted in Fig.1 requires that all

possibilities for both identical particles are included in the analysis. This is easily
done in the computer experiment by changing the position and width of the Gaus-

sians used to build the initial wave function of the fermions or bosons such that
they both hit the two slits. Some of our results for the case of two bosons are shown
in Fig.3. Comparison of the upper parts of Fig.3 provides direct evidence of the

presence of the AB effect.
The cross-correlated boson intensities (r.h.s. of the bottom part of Fig.3) clearly

exhibit an AB-like effect. The positions of the maxima and minima are interchanged
if the magnetic field changes from B = 0 to B = B0. We have verified that the
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shift of these positions is a periodic function of the field B. These results for the
case of boson statistics cannot be explained on the basis of Silverman’s theory.27,28

In general we find that there is only a small quantitative difference between the

fermion and boson single-detector signals: The interference fringes of the fermions
are less pronounced than in the case of bosons, another manifestation of the Pauli
principle. The differences in the cross-correlated fermion intensities, due to B, are

not as clear as in the boson case. Substracting the B = 0 from the B = B0 signal
and plotting the absolute value of this difference (not shown) clearly shows that
also the cross-correlated fermion intensity exhibits features that are characteristic
of the AB effect.25 The high symmetry in all the correlated signals shown is due to

our choice B = 0, B0. The fact that we recover this symmetry in our simulation
data provides an extra check on our method. If B is not a multiple of B0, this
high symmetry is lost but the salient features of the signals remain the same. From
our numerical experiments, we conclude that in an AB-HBT experiment, an AB

shift of the interference pattern will be observed in both the single and two-detector
experiments. The AB effect (in both experiments) is more pronounced for bosons
than for fermions.
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