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Solving the Maxwell Equations by the Chebyshev
Method: A One-Step Finite-Difference

Time-Domain Algorithm
Hans De Raedt, Kristel Michielsen, J. Sebastiaan Kole, and Marc Thilo Figge

Abstract—We present a one-step algorithm that solves the
Maxwell equations for systems with spatially varying permittivity
and permeability by the Chebyshev method. We demonstrate that
this algorithm may be orders of magnitude more efficient than
current finite-difference time-domain (FDTD) algorithms.

Index Terms—Electromagnetic propagation, finite-difference
time-domain (FDTD) methods, Maxwell equations.

I. INTRODUCTION

M OST finite-difference time-domain (FDTD) methods
solve the time-dependent Maxwell equations using algo-

rithms based on a proposal by Yee [1]–[3]. The Yee algorithm is
flexible, fast, and easy to implement. A limitation of Yee-based
FDTD techniques is that their stability is conditional, meaning
that their numerical stability depends on the mesh size used
for the spatial discretization and on the time step of the time
integration [2], [3]. In practice, the amount of computational
work required to solve the time-dependent Maxwell equations
by present FDTD techniques [2]–[10] prohibits applications to a
class of important fields such as bioelectromagnetics and VLSI
design [2], [11], [12]. The basic reason for this is that the time
step in the FDTD calculation has to be relatively small in order to
maintain a reasonable degree of accuracy in the time integration.

In this paper, we describe a one-step algorithm, based on
Chebyshev polynomial expansions [13]–[19], to solve the time-
dependent Maxwell equations for arbitrarily long times. We
demonstrate that the computational efficiency of this one-step
algorithm can be orders of magnitude larger than of other
FDTD techniques.

II. A LGORITHM

We consider electromagnetic (EM) fields in linear, isotropic,
nondispersive and lossless materials. The time evolution of
EM fields in these systems is governed by the time-dependent
Maxwell equations [20]. Some important physical symmetries
of the Maxwell equations can be made explicit by introducing
the fields

(1)
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Here, denotes the mag-
netic and the electric
field vector, while and denote, respectively,
the permeability and the permittivity. The velocity of light in
vacuum is given by (in MKS units), where de-
notes the permittivity and the permeability in vacuum. In the
absence of electric charges, Maxwell’s curl equations [2] read

(2)

where represents the source
of the electric field and denotes the operator

(3)

Writing it is easy to show that is skew
symmetric, i.e., , with respect to the inner product

, where denotes the system’s volume.
In addition to (2), the EM fields also satisfy
and . If we measure distances in units of the
wave length , time and frequency are expressed in units of
and , respectively. The Maxwell equations take a dimension-
less form if we replace by its value relative to and
express and in units of and , respectively. In the
following we adopt this dimensionless form and use the dimen-
sionless quantities , , , , , and .

A numerical algorithm that solves the time-dependent
Maxwell equations necessarily involves some discretization
procedure of the spatial derivatives in (2). As we explain
later, the rigorous mathematical justification of the one-step
algorithm is very simple if the discretization procedure does
not change the basic symmetries of the Maxwell equations,
meaning that the matrix correspondig to the operatorshould
also be skew symmetric. Any of the many different discretiza-
tion procedures (for an overview see [2]) can be used as long as
it preserves this fundamental physical symmetry (for explicit
examples also see [10]). In our numerical examples we adopt
the standard Yee-lattice discretization scheme [2] and fix the
mesh size . We will use the termexact solutionas an
abbreviation forrigorous solution of the discretized Maxwell
equations on a grid with a fixed mesh size and a fixed
discretization method. Of course, the rigorous solution on
the grid with mesh size will differ from the rigorous
solution of the original continuum problem because of numer-
ical dispersion [2]. The accuracy of the solution on the grid
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can be improved by reducingand/or using a more accurate
discretization scheme [2], [10]. In this paper, we do not discuss
this (important) aspect of spatial discretization as it is not es-
sential to the construction of the one-step algorithm (assuming
the basic physical symmetry of the Maxwell equations is not
changed). Thus, we focus entirely on the time integration of the
problem defined on the Yee grid.

On a spatial grid Maxwell’s curl equations (2) can be written
in the compact form [9], [10]

(4)

The vector is a representation of on the grid. The
skew-symmetric matrix is the discrete analogue of the op-
erator (3), and the vector contains all the information on
the current source. The formal solution of (4) is given by

(5)

where denotes the time-evolution matrix. The un-
derlying physical symmetries of the time-dependent Maxwell
equations are reflected by the fact that the matrixis real and
skew symmetric [9], implying that is orthogonal [21]. In
practice it is trivial to check whether is skew-symmetric or
not.

Numerically, the time integration is carried out by using a
time-evolution operator that is an approximation to

. We denote the approximate solution by . First we use
the Chebyshev polynomial expansion to approximate and
then show how to treat the source term in (5). We begin by
“normalizing” the matrix . The eigenvalues of the skew-sym-
metric matrix are pure imaginary numbers. In practiceis
sparse so it is easy to compute . Since

is real and symmetric, it is diagonalizable
(i.e. it has a complete set of orthonormal eigenvectors), all its
eigenvalues are real and lie in the interval [1,1] [21], [22]. Ex-
panding the initial value in the (unknown) eigenvectors
of , we find from (5) with

(6)

where the denote the (unknown) eigenvalues ofand
. Although there is no need to know the eigenvalues

and eigenvectors of explicitly, it is important to note that in
writing down (6), we implicitly assumed that the matrixhas
a complete set of eigenvectors. A sufficient condition for this
assumption to be true is that is normal, i.e.
[21], [22] (note that this would extend the range of applicability
to include nondispersive electric and magnetic losses). On the
other hand, if the eigensystem of is ill-conditioned and/or

’s departure from normality is large, the difference between
and some matrix polynomial approximation may be con-

siderably larger than the maximum of the difference between
the corresponding scalar polynomial approximation over

all [22], [23]. Thus, unless is normal, the math-
ematical justification of the Chebyshev polynomial approach
requires additional conditions and a much more complicated
analysis [24].

Fig. 1. Dependence of the Bessel functionJ (z = 200) on the ordern.

For the case at hand we find the Chebyshev polynomial ex-
pansion of by computing the Fourier coefficients of the
function [25]. Alternatively, since , we can
use the expansion [25] ,
where is the Bessel function of integer order, to write
(6) as

(7)

Here, is the identity matrix and is a matrix-
valued modified Chebyshev polynomial that is defined by the
recursion relations

(8)

and

(9)

for . From numerical analysis it is known that for fixed,
the Chebyshev polynomial is very nearly the same polynomial
as the minimax polynomial [26], i.e., the polynomial of degree

that has the smallest maximum deviation from the true func-
tion, and is much more accurate than for instance a Taylor ex-
pansion of the same degree[23].

In practice we (will have to) truncate the sum in (7), i.e., to ob-
tain the approximation we will sum only the contributions
with . The procedure to find is most easily understood
by looking at the plot of the expansion coefficients as a function
of . From Fig. 1 it is clear that vanishes rapidly if be-
comes larger than. For instance, for
all . Thus we can fix the number by requiring that

for all . Here is a small number that
determines the accuracy of the approximation. In our numer-
ical experiments we use conventional 14–15 digit floating-point
arithmetic and we have taken . Once we have found
the smallest such that for all , there
is no point of taking more than terms in the expansion. In-
deed, since by construction of the mod-
ified Chebyshev polynomials, it follows from Fig. 1 that such
contributions would only add to the noise. However, taking less
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than terms has considerable negative impact on the accuracy
of the results. Hence, in practice the choice ofis rather lim-
ited (e.g., if ). In any case, for fixed

, increases linearly with .
Performing one time step amounts to repeatedly using recur-

sion (9) to obtain for , multiply the
elements of this vector by and add all contributions. This
procedure requires storage for two vectors of the same length
as and some code to multiply such a vector by the sparse
matrix . The result of performing one time step yields the so-
lution at time , hence, the name one-step algorithm. In contrast
to what (8) and (9) might suggest, the algorithm does not require
the use of complex arithmetic.

We now turn to the treatment of the current source . The
contribution of the source term to the EM field at timeis given
by the last term in (5). One approach might be to use the Cheby-
shev expansion (7) for and to perform the
integral in (5) numerically. However, that is not efficient as for
each value of we would have to perform a recursion of
the kind (9). Thus, it is better to adopt another strategy. For sim-
plicity, we first consider a sinusoidal source

(10)

where specifies the spatial distribution andthe angular
frequency of the source. The step function indicates
that the source is turned on at and is switched off at .

The formal solution for the contribution of the sinusoidal
source (10) reads

(11)

where and with a
vector of the same length as that represents the time-inde-
pendent, spatial distribution . The coefficients of the Cheby-
shev polynomial expansion of the formal solution (11) are calcu-
lated as follows. First we repeat the scaling procedure described
earlier and substitute in (11) , ,

, and . Then, we compute the (Fast)
Fourier Transform with respect to of the function

(which is nonsingular on the interval
. By construction, the Fourier coefficients are the

coefficients of the Chebyshev polynomial expansion [25].
Taking into account all contributions of the source term with
smaller than (determined by a procedure similar to the one

for ), the one-step algorithm to compute the EM fields at time
reads

(12)

Other types of sources can be treated in the same manner but, in
order to reduce the computational work to obtain the coefficients

, it is expedient to choose the time dependence of
the source term such that the convolution integral in (5) can be
found in closed form. For instance, for the modulated Gaussian
pulsed source defined by [2]

(13)

where , , , and are the source parameters. The coeffi-
cients are obtained by (Fast) Fourier transformation
with respect to the angleof the function

(14)

where and . Note that in our
one-step approach the time dependence of the source is taken
into account exactly, without actually sampling it. Furthermore,
from the derivation of (11) or (14) it is clear that from a math-
ematical point of view there is no restriction on. However, it
is easy to see from (11) [or (14)] that the functional dependence
on changes character if becomes larger than one. This
reflects the fact that the numerical values on nodes of the grid
may not yield a physically meaningful representation of the so-
lution unless is (much) smaller than the maximum frequency
( ) supported by the grid with mesh size.

III. RESULTS

The following two examples illustrate the efficiency of the
one-step algorithm. First we consider a system in vacuum (

and ) which is infinitely large in the and direc-
tion, hence, effectively one dimensional (1-D), and subject to
perfectly reflecting boundary conditions [2]. The current source
(10) is placed at the center of a system of length 250.1 and
oscillates with angular frequency during the time in-
terval . In Table I, we present results of nu-
merical experiments with two different FDTD algorithms. The
time step used is denoted byand the mesh size of
the Yee-type grid is kept fixed. We define the error of a solu-
tion obtained by the FDTD algorithm of Yee [1], [2] or
the unconditionally stable FDTD algorithm [9], [10] by

, where denotes the vector
of the EM fields as obtained by the one-step algorithm. The error
on the Yee-algorithm result vanishes asfor sufficiently small

[1], [2]. However, as Table I shows, unlessis made suffi-
ciently small ( in this example), the presence of the
source term changes the quadratic behavior to almost linear.

The rigorous bound on the error between the exact and
results tells us that this error should vanish as[9], [27]. This
knowledge can be exploited to test if the one-step algorithm
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TABLE I
ERROR�(t) AFTER SIMULATION TIME t = 100 AS A FUNCTION OF THETIME STEP� FOR TWO FDTD ALGORITHMS. THE NUMBER OF MATRIX-VECTOR

OPERATIONSREQUIRED TOCOMPUTE THESOLUTION ISK = 2080, t=� , AND 6t=� FOR THEONE-STEP, YEE, AND T4S2 ALGORITHM, RESPECTIVELY

yields the exact numerical answer for the problem defined on
the grid. Using the triangle inequality, we can write

(15)

where is a positive constant [27]. The numerical data in
Table I (third column) show that as and, therefore,
we can be confident that the one-step algorithm yields the cor-
rect answer within rounding errors. Furthermore, since the re-
sults of the one-step algorithm are exact within almost machine
precision, in general the solution also satisfies

and within the same precision.
In a strict mathematical sense we can only prove that

, leaving open the possi-
blity that using the one-step algorithm for genuine time-stepping
may yield a numerically unstable procedure. However, in prac-
tice, the errors and of the Chebyshev polynomial approx-
imations are very small, almost zero within machine precision.
It is this high precision that allows the use of the one-step al-
gorithm as a genuine time-stepping algorithm with (very) large
time steps.

From Table I it follows that if one finds an error of more
than 2.5% acceptable, one could use the Yee algorithm, though
we recommend to use the one-step algorithm because then the
time-integration error is neglegible. The Yee algorithm is no
competition for the algorithm if one requires an error of
less than 1%, but the algorithm is not nearly as efficient
as the one-step algorithm with respect to the number of required
matrix-vector operations.

A more general quantitative analysis of the efficiency can be
made using the fact that for anth-order algorithm (
for the Yee algorithm and for the algorithm), the
error vanishes no faster with than . Each time step
takes a number of matrix-vector operations (of the type

, e.g., for a 3-D system we have and
for the Yee algorithm and the algorithm, re-

spectively. In practice, the actual number of floating point oper-
ations carried out by our algorithms agrees with these estimates.
The total number of matrix-vector operations it takes to obtain
the solution at a reference timewith error is then given
by and thus . The

Fig. 2. The number of			  M			 operationsN needed to compute the
solution of the 3-D Maxwell equation at timet for systems like those shown
in Fig. 3. Solid line: One-step algorithm; dashed line: Yee algorithm [1]–[3]
yielding a solution within 0.1% error; dotted line: T4S2 algorithm [9], [10]
yielding a solution within 0.1% error.

number of operations that it will take to compute the EM
fields at time with accuracy is then calculated from

(16)

We note that one numerical reference experiment perth-order
algorithm is sufficient to determine the parameters, ,
and . While these parameters may be different for different
systems, the scaling of with and with , respectively,
for second- and fourth-order algorithms, will not be affected.
Most importantly, since the number of matrix-vector operations
required by the one-step algorithm scales linearly with, it is
clear that for long enough times, the one-step algorithm will
be orders of magnitude more efficient than the current FDTD
methods. In Fig. 2 we show the required number of operations
as a function of time taking, as an example, simulation data of
3-D systems (discussed later) to fix the parameters, ,
and . We conclude that for longer times none of the FDTD
algorithms can compete with the one-step algorithm in terms
of efficiency. For , the one-step algorithm is a factor of
10 faster than the Yee algorithm. Thereby, we have disregarded
the fact that the Yee algorithm yields results within an error of
0.1% while the one-step algorithm gives the numerically exact
solution.
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Fig. 3. Frequency spectrum of a 3-D photonic woodpile (inset) [28] as obtained byT4S2 (dashed line) and the one-step algorithm (solid line). The width, height,
and period(a) of the rods are 0.55, 0.7, and 2, respectively. The dielectric constant of the rods is 12.96 and the simulation box measures6� 6� 5:6, subject to
periodic boundary conditions.

For and for a fixed accuracy, (16) shows that the
one-step algorithm will be more efficient than any FDTD algo-
rithm (for which ). However, this does not mean that the
one-step algorithm is computationally more efficient than FDTD
algorithms for all cases of interest. First of all, the asymptotic
long-time behavior and/or veryhigh accuracy of the time integra-
tion is not always of interest. In terms of computational work, the
one-step algorithm becomes (much) less competitive if the appli-
cation requires knowledge of the EM fields at many intermediate
times (recall that intermediate results generated during the recur-
sion (9) have no physical significance). Moreover, the present
mathematical justification of the one-step algorithm limits the
range of applications. For instance, FDTD methods can easily
handle absorbing boundary conditions [2] but at present, there
is no guarantuee that the Chebyshev polynomial approximation
will still be accurate in these circumstances. As with most nu-
merical algorithms, also in this case the method of choice de-
pends on the application but it is a good practice to use several
completely different methods to solve the same problem.

As the second example we use the one-step algorithm to com-
pute the frequency spectrum of a 3-D photonic woodpile [28].
This structure, shown in the inset of Fig. 3, possesses a large
infrared bandgap and is under current experimental and theo-
retical investigation [28], [29]. To determine all eigenvalues of
the corresponding matrix we follow the procedure described
in [9], [30], [31]. We use random numbers to initialize the ele-
ments of the vector . Then we calculate the inner product

as a function of and average
over several realizations of the initial vector .

The full eigenmode distribution is obtained by Fourier
transformation of . In Fig. 3 we show , as obtained by

and the one-step algorithm, with a time step

(set by the largest eigenvalue of), a mesh size , and
8192 time steps. For this choice of parameters, the Yee algo-
rithm would be unstable [2], [3] and would yield meaningless
results. The calculation shows a peak at . This re-
flects the fact that, in a strict sense, the algorithm does not
conserve and [9], [10]. However,
the peak at vanishes as . Repeating the calcula-
tion with yields a (not shown) that is on top of
the result of the one-step algorithm (see Fig. 3) and is in good
agreement with band-structure calculations [28]. For
the one-step algorithm is 3.5 times more efficient than .
Note that in this example, the one-step algorithm is used for a
purpose for which it is least efficient (time-stepping with rela-
tively small time steps). Nevertheless, the gain in efficiency is
still substantial. In simulations of the scattering of the EM fields
from the same woodpile (results not shown), the one-step algo-
rithm is one to two orders of magnitude more efficient than cur-
rent FDTD algorithms, in full agreement with the error scaling
analysis given earlier.

IV. CONCLUSION

We have described a one-step algorithm, based on the
Chebyshev polynomial expansions, to solve the time-depen-
dent Maxwell equations with spatially varying permittivity and
permeability and current sources. In practice, this algorithm is
as easy to implement as FDTD algorithms. Our error scaling
analysis shows and our numerical experiments confirm that for
long times the one-step algorithm can be orders of magnitude
more efficient than current FDTD algorithms. This opens pos-
sibilities to solve problems in computational electrodynamics
that are currently intractable.
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