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Solving the Maxwell Equations by the Chebyshev
Method: A One-Step Finite-Difference
Time-Domain Algorithm

Hans De Raedt, Kristel Michielsen, J. Sebastiaan Kole, and Marc Thilo Figge

Abstract—We present a one-step algorithm that solves the Here,H(t) = (H,(r,t), Hy(r,t), H.(r,t))T denotes the mag-

Ma:jxwell equ;}lt_ions fOrr] S>(’:Srt]efgls \gith spa::al(ljy\\//\?r):jing PermittiVit%’ netic andE(t) = (E.(r,t), E,(r,t), E.(r,t))T the electric
and permeability by the Chebyshev method. We demonstrate that fia|q vector whiley — nde — n r ivel
this algorithm may be orders of magnitude more efficient than eld vector, e = pi{r) ande = ¢(r) denote, respectively,

current finite-difference time-domain (FDTD) algorithms. the permeapility and the permitftivity. The .velocity of light in
vacuum is given by = 1/,/goug (in MKS units), wheres de-
notes the permittivity angd, the permeability in vacuum. In the
absence of electric charges, Maxwell’s curl equations [2] read

0 (X(t) X(t) 1 0
L1 = = =
NTRODUCTION P <Y(t)> H(Y(t) 7w )
OST finite-difference time-domain (FDTD) methods

solve the time-dependent Maxwell equations using alggthered = (Jo(r,t), J,(r,t), J.(r,#))" represents the source
rithms based on a proposal by Yee [1]-[3]. The Yee algorithm @ the electric field and{ denotes the operator

Index Terms—Electromagnetic propagation, finite-difference
time-domain (FDTD) methods, Maxwell equations.

flexible, fast, and easy to implement. A limitation of Yee-based 0 _1lyy L

FDTD techniques is that their stability is conditional, meaning H = < L L z ﬁ) ()

that their numerical stability depends on the mesh size used %V X i 0

for the spatial discretization and on the time step of the time _ . . T .

integration [2], [3]. In practice, the amount of computational riting Z_(t)__ (X;t)./Y(t)) !t Is easy to show thei?tl Is skew
mmetric, i.e.;H* = —H, with respect to the inner product

work required to solve the time-dependent Maxwell equatio N T .
by present FDTD techniques [2]-[10] prohibits applications to |Z’) = [,, Z" - Z'dr, whereV denotes the system’s volume.

; . : : addition to (2), the EM fields also satisly - (,/uX(t)) =0
class of important fields such as bioelectromagnetics and VL@rImjv - (VEY (1)) = 0. If we measure distances in units of the

design [2], [11], [12]. The basic reason for this is that the tim@ lenathh. i dqf di i
stepinthe FDTD calculation has to be relatively smallin order fyave lengtin, time and Irequency are expressedin uni o .
de/ A, respectively. The Maxwell equations take a dimension-

maintain areasonable degree of accuracy in the time integration. _ . ;
S5 form if we replace(y) by its value relative teq (o) and

In this paper, we describe a one-step algorithm, based ) X .
Chebyshev polynomial expansions [13]-[19], to solve the tim gpre;sH andE in unl'ts O.fA/ m.andV/ m, respectively. In the
eoIIowmg we adopt this dimensionless form and use the dimen-

dependent Maxwell equations for arbitrarily long times. ol ntitieEl. E ¢ and
demonstrate that the computational efficiency of this one-stEBJA ess qua | € o tﬁ : “”th’ ? ri the time-denendent
algorithm can be orders of magnitude larger than of Othﬂax humerical algorithm that solves the time-dependen

FDTD techniques. well equations necessarily involves some discretization

procedure of the spatial derivatives in (2). As we explain
later, the rigorous mathematical justification of the one-step
algorithm is very simple if the discretization procedure does
We consider electromagnetic (EM) fields in linear, isotropigjot change the basic symmetries of the Maxwell equations,
nondispersive and lossless materials. The time evolution mmkaning that the matrix correspondig to the operat@hould
EM fields in these systems is governed by the time-dependaigo be skew symmetric. Any of the many different discretiza-
Maxwell equations [20]. Some important physical symmetrid®n procedures (for an overview see [2]) can be used as long as
of the Maxwell equations can be made explicit by introducinij preserves this fundamental physical symmetry (for explicit
the fields examples also see [10]). In our numerical examples we adopt
the standard Yee-lattice discretization scheme [2] and fix the
X(t) = uH(t) and Y(t) = VeE(t). (1) mesh size = 0.1. We will use the termexact solutionas an
abbreviation forigorous solution of the discretized Maxwell
Manuscript received October 2, 2002; revised January 28, 2003. equations on a grid with a fixed mesh size) and a fixed
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Centre, University of Groningen, Nijenborgh 4 NL-9747 AG Groningen, Thehg grid with mesh sizé > 0 will differ from the rigorous
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can be improved by reducingyand/or using a more accurate, — 6.30

discretization scheme [2], [10]. In this paper, we do not discu:§
this (important) aspect of spatial discretization as it is not e}, ¢.2¢ 1
sential to the construction of the one-step algorithm (assumi:—
the basic physical symmetry of the Maxwell equations is nc
changed). Thus, we focus entirely on the time integration of tt
problem defined on the Yee grid.

On a spatial grid Maxwell’'s curl equations (2) can be writtel
in the compact form [9], [10]

%\Il(t) — HU(1) — ®(1). ) “ J
The vector¥(t) is a representation d&(t) on the grid. The — 028
skew-symmetric matri¥{ is the discrete analogue of the op-

erator (3), and the vectd@®(¢) contains all the information on a0

the current sourc&. The formal solution of (4) is given by 0 50 100 150 200 250 300 350

(t) = U(H)(0) - / U(t — u)®(u)du )

0

Fig. 1. Dependence of the Bessel functibn(z = 200) on the ordern.

For the case at hand we find the Chebyshev polynomial ex-
whereU (t) = ¢*¥ denotes the time-evolution matrix. The unpansion of®(t) by computing the Fourier coefficients of the
derlying physical symmetries of the time-dependent Maxwdlinctione®= <% [25]. Alternatively, since-1 < b; < 1, we can
equations are reflected by the fact that the matfiis real and use the expansion [25]*% = Jy(2) +2 Y pe; i* Ji(2) Tk (b;),
skew symmetric [9], implying thal/(¢) is orthogonal [21]. In where J,(z) is the Bessel function of integer orderto write
practice it is trivial to check whethefl is skew-symmetric or (6) as

not. o
Numerically, the time integration is carried out by using a U(t) = [Jo(2)] + 22 Jk(z)fk(B) U (0). (7
time-evolution operatdy (¢) that is an approximation @ (¢) = =1

e We denote the approximate solution¥yt). First we use . . . : ~ & . .
the Chebyshev polynomial expansion to approxiniate) and Helre,é IS th;fl_dzngtﬁ/ rgatrr:x an(TT(B) - "i zr:’“(l.?) gsafl_magrgo h
then show how to treat the source term in (5). We begin qg ued moaihe ebyshev polynomial that is defined by the

“normalizing” the matrixH . The eigenvalues of the skew-symJecursion relations

metric mat.ri>'(H are pure imaginary numbers. In practiﬁeis To(B)¥(0) = ¥(0), T1(B)¥(0)=iBY¥(0) (8)
sparse so it is easy to compyt# ||, = max; >, |H; ;|. Since

B = —iH/||H||, is real and symmetric, it is diagonalizable®"

(i.e. it has a complete set of orthonormal eigenvectors), all its Tr+1(B)¥(0) = 2iBT),(B)¥(0) + Ti,_1(B)¥(0) (9)
eigenvalues are real and lie in the intervall,1] [21], [22]. Ex-

panding the initial valud(0) in the (unknown) eigenvectots; for k > 1. From numerical analysis itis known that for fixéd,
of B, we find from (5) with®(t) = 0 the Chebyshev polynomial is very nearly the same polynomial

as the minimax polynomial [26], i.e., the polynomial of degree
U(t) = "HW(0) = *BY(0) = Z ¢*ib; (b;|¥(0)) (6) K that has the smallest maximum deviation from the true func-
J tion, and is much more accurate than for instance a Taylor ex-
where theb; denote the (unknown) eigenvalues®fandz = Pansion of the same degrég[23]. _ _
t||H||,. Although there is no need to know the eigenvalues N Practice we (will have to) truncate the sumin (7), i.e., to ob-
and eigenvectors aB explicitly, it is important to note that in tain the approximatio®(¢) we will sum only the contributions
writing down (6), we implicitly assumed that the matiik has with k < K. The procedure to fink is most easily understood
a complete set of eigenvectors. A sufficient condition for thiy looking at the plot of the expansion coefficients as a function
assumption to be true is thak is normal, i.e. HHT = HTH of k. FromFig. 1itis clear thgt/x(z)| vanishes rapidly it be-
[21], [22] (note that this would extend the range of applicabilitpomes larger than. For instance}.J;(z = 200)| < 10~ for
to include nondispersive electric and magnetic losses). On @ik > z+100. Thus we can fix the numbéf by requiring that
other hand, if the eigensystem &f is ill-conditioned and/or |Jx(t||H||,)| > & forall £ < K. Heres is a small number that
H'’s departure from normality is large, the difference betweetetermines the accuracy of the approximation. In our numer-
e*B and some matrix polynomial approximation may be coral experiments we use conventional 14-15 digit floating-point
siderably larger than the maximum of the difference betwe@tithmetic and we have taken= 10~'°. Once we have found
¢** the corresponding scalar polynomial approximation ovélne smalles# such that.J,(¢|| H]|,)| > « forall £ < K, there
all z € [—1,1] [22], [23]. Thus, unlesd] is normal, the math- is no point of taking more tha&™ terms in the expansion. In-
ematical justification of the Chebyshev polynomial approaditeed, sincé|T,(H/||H||,)|| < 1 by construction of the mod-
requires additional conditions and a much more complicatdgedd Chebyshev polynomials, it follows from Fig. 1 that such
analysis [24]. contributions would only add to the noise. However, taking less
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thanz terms has considerable negative impact on the accura®y(t| H||,), it is expedient to choose the time dependence of
of the results. Hence, in practice the choiceidfs rather lim- the source term such that the convolution integral in (5) can be
ited (e.g..K € [z,z + 100] if z = 200). In any case, for fixed found in closed form. For instance, for the modulated Gaussian

k, K increases linearly with|| H ||, . pulsed source defined by [2]
Performing one time step amounts to repeatedly using recur- s
sion (9) to obtairl},(B)¥(0) for k = 2,..., K, multiply the I(r,t) = s(r)e” 1) cos(Q1 + @) (13)

elements of this vector by (z) and add all contributions. This .

procedure requires storage for two vectors of the same len§fR€ré . to, {2, andy are the source parameters. The coeffi-
as¥(0) and some code to multiply such a vector by the sparientsSx(¢| H |, ) are obtained by (Fast) Fourier transformation
matrix H. The result of performing one time step yields the sdVith respect to the angl of the function

lution at timet, hence, the name one-step algorithm. In contrast JTeilz—50) cost

to what (8) and (9) might suggest, the algorithm does not require p(cos ) = +———+—

the use of complex arithmetic. 4|\ Hll,vB
We now turn to the treatment of the current souf¢s). The " {e_% [erf <2/3(Z — 20) +i(cos b — w))
contribution of the source term to the EM field at tirnis given 2/
by the last term in (5). One approach might be to use the Cheby- 2Bz9 —i(cosf — w) __(cos0tw)?
shev expansion (7) fdv (t — u) = ¢("=*)H and to perform the ert ( 2/B )} te ety
integral in (5) numerically. However, that is not efficient as for 26(z — z0) + i(cos § + w)
each value of — « we would have to perform a recursion of X [erf ( NG )
the kind (9). Thus, it is better to adopt another strategy. For sim- .
plicity, we first consider a sinusoidal source +erf <2ﬁ'z° - ;(\;%S 0+w) )} } (14)

J(r,t) = ©(T — t)s(r) sin(Qt) (20)
wheres(r) specifies the spatial distribution aitithe angular ! :
frequency of the source. The step functi®fl’ — ¢) indicates one-step approach the time dependence of the source is taken
that the source is turned onfat 0 and is switched off at — 7 into account exactly, without actually sampling it. Furthermore,

The formal solution for the contribution of the sinusoidaﬁrom the derivation of (11) or (14) itis clear that from a math-
source (10) reads ematical point of view there is no restriction éh However, it

. is easy to see from (11) [or (14)] that the functional dependence

where = «a/||H||; andz = to/||H||,. Note that in our

() H ) o=l g oncos # changes character|ib| becomes larger than one. This
/6 ®(u)du =(Q+H") e reflects the fact that the numerical values on nodes of the grid
0 may not yield a physically meaningful representation of the so-
% (QBT’H —QcosOT — H sin QT’) = lutionunlesgQ| is (much) smaller than the maximum frequency
(< ||H]|; o< 1/6) supported by the grid with mesh size
=f(H,t,T7,Q)2 (11)
whereT” = min(¢, T) and®(u) = O(T —t) sin(Q)EwithE a lll. RESULTS

vector of the same length &0) that represents the time-inde- ¢ following two examples illustrate the efficiency of the
pendent, spatial distributicrir). The coefficients of the Cheby- one-step algorithm. First we consider a system in vacuue (
shev polynomial expansion of the formal solution (11) are calcgé andy = 1) which is infinitely large in they and > direc-
Iateq as follows. F_irst we repeat the scaling procedure descriq%q], hence, effectively one dimensional (1-D), and subject to
earlier and substitute in (10 = iz||H|l,, ¢ = z/[|H|l\, perfectly reflecting boundary conditions [2]. The current source

T' = 7'/||H]],, andQ = w[|H]|,. Then, we compute the (Fast) 1 () is placed at the center of a system of length 250.1 and
Fourier Transform with respect to = cos 6 of the function q:ijjates with angular frequendy = 1 during the time in-

f(cosd,z, 7', w) (which is nonsingular on the inten@I< 6 < tarya10 < t < T — 8. In Table |, we present results of nu-
). By construction, the Fourier coefficients (¢(|H||,) are the  erical experiments with two different FDTD algorithms. The
coefficients of the Chebyshev polynomial expansion [25].  ime step used is denoted byand the mesh sizé = 0.1 of

Taking into account all contributions of the source term Wit{he Yee-type grid is kept fixed. We define the error of a solu-
k smaller thank’ (determined by a procedure similar to the ONEon \fl(t) obtained by the FDTD algorithm of Yee [1], [2] or

for K), the one-step algorithm to compute the EM fields at timme unconditionally stable FDTD algorith#4.52 [9], [10] by
t reads ) A(t) = || W () — O (1) /||(t)||, where¥ (¢) denotes the vector
K of the EM fields as obtained by the one-step algorithm. The error

Y(t) = |Jo (el HIl) T+ 22 T (U H|l,) Te(B) | ¥(0) on the Yee-algorithm result vanishesragor sufficiently small
k=1 7 [1], [2]. However, as Table | shows, unlesds made suffi-
KI

~ _ ciently small ¢ < 0.0125 in this example), the presence of the
= | So (t|H[l,) I +2 Z Si (1 H|,) Tw(B) | E. (12)  source term changes the quadratic behavior to almost linear.
k=1 The rigorous bound on the error between the exactiaig
Other types of sources can be treated in the same manner buteBults tells us that this error should vanishr&$9], [27]. This
order to reduce the computational work to obtain the coefficierkaowledge can be exploited to test if the one-step algorithm



3158 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 11, NOVEMBER 2003

TABLE |
ERRORA(t) AFTER SIMULATION TIME ¢ = 100 AS A FUNCTION OF THETIME STEP 7 FOR TWO FDTD ALGORITHMS. THE NUMBER OF MATRIX-VECTOR
OPERATIONSREQUIRED TOCOMPUTE THE SOLUTION IS K/ = 2080, ¢/, AND 6t/ 7 FOR THEONE-STEP, YEE, AND 74,52 ALGORITHM, RESPECTIVELY

T Yee T4S52
0.10000 x 1077 0.75 x 107" 0.51 x 1071
0.50000 x 10! 0.25 x 107! 0.33 x 1072
0.25000 x 107* 0.12 x 107! 0.21 x 1073
0.12500 x 107+ 0.66 x 1072 0.13 x 107*
0.62500 x 1072 0.24 x 1072 0.91 x 107°
0.31250 x 1072 0.63 x 1073 0.30 x 107¢
0.15625 x 1072 0.16 x 1073 0.15 x 1077
0.78125 x 107° 0.39 x 107* 0.60 x 1078
yields the exact numerical answer for the problem defined ¢ 9% )
the grid. Using the triangle inequality, we can write N - T
|ty - %) < [l - v + o) - w0 ,
t ,',
< o [ wo)+ [ 13wl + ae) [Fo)|| as)
3 5000 | /,’
where C' is a positive constant [27]. The numerical data ir
Table | (third column) show thak(¢) — 0 as7* and, therefore, ] e
we can be confident that the one-step algorithm yields the cc : g
rect answer within rounding errors. Furthermore, since the r ,_;:3”'"
sults of the one-step algorithm are exact within almost machir 1000 1 J,«-‘“”""'
precision, in general the solution also satisies(,/uX(t)) = 0 =5 : : :
0 andV - (v/€Y (¢t)) = 0 within the same precision. 0 5 10 185 20

. . t
In a strict mathematical sense we can Only prove |tlI€(t) " . Fig. 2. The number oft’ — A¥ operationsN needed to compute the

3Te t . .
U(t)|| < ex||®(0)||+ex fo || I (u)|du, leaving open the possi- solution of the 3-D Maxwell equation at timtefor systems like those shown
blity that using the one-step algorithm for genuine time-steppirgFig. 3. Solid line: One-step algorithm; dashed line: Yee algorithm [1]-[3]

. . . elding a solution within 0.1% error; dotted line: T4S2 algorithm [9], [10]
may yield a numerically unstable procedure. Howgver, in praﬁelding 2 solution within 0.1% error.
tice, the errorg - ande g of the Chebyshev polynomial approx-

imations are very small, almost zero within machine precisioHumber of operationgV that it will take to compute the EM

It is this high precision that allows the use of the one-step &Hélds at timet with accuracyA(t) is then calculated from
gorithm as a genuine time-stepping algorithm with (very) large (ni1)

time steps. B A\ [t n
From Table | it follows that if one finds an error of more N =N, < A(t) t, ) (16)

than 2.5% acceptable, one could use the Yee algorithm, thougl note that one numerical reference experimentuyiarorder
we recommend to use the one-step algorithm because thendi@rithm is sufficient to determine the paramet®is A(t,),
time-integration error is neglegible. The Yee algorithm is nand¢,. While these parameters may be different for different
competition for thel'4.52 algorithm if one requires an error of systems, the scaling @ with ¢3/2 and witht®/4, respectively,
less than 1%, but th&4.52 algorithm is not nearly as efficient for second- and fourth-order algorithms, will not be affected.
as the one-step algorithm with respect to the number of requindidst importantly, since the number of matrix-vector operations
matrix-vector operations. required by the one-step algorithm scales linearly with is

A more general quantitative analysis of the efficiency can lméear that for long enough timesthe one-step algorithm will
made using the fact that for asth-order algorithm# = 2 be orders of magnitude more efficient than the current FDTD
for the Yee algorithm and = 4 for the7'452 algorithm), the methods. In Fig. 2 we show the required number of operations
error A(t) vanishes no faster with than+"¢. Each time step as a function of time taking, as an example, simulation data of
takes a numbeV/ (n) of matrix-vector operations (of the type3-D systems (discussed later) to fix the paramedérsA,.(¢,.),
¥ — MW), e.g., for a 3-D system we haw&(2) = 1 and andt,.. We conclude that for longer times none of the FDTD
W (4) = 10 for the Yee algorithm and th&4.52 algorithm, re- algorithms can compete with the one-step algorithm in terms
spectively. In practice, the actual number of floating point opeof efficiency. Fort = 20, the one-step algorithm is a factor of
ations carried out by our algorithms agrees with these estimat&8 faster than the Yee algorithm. Thereby, we have disregarded
The total number of matrix-vector operations it takes to obtathe fact that the Yee algorithm yields results within an error of
the solution at a reference timewith errorA,.(¢,.) isthen given 0.1% while the one-step algorithm gives the numerically exact
by N, = W(n)t, /7. and thusA,.(¢,.) o« W (n)"t"+1/N™. The solution.
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0 0.2 0.4 0.6 0.8 1 1.2

Fig. 3. Frequency spectrum of a 3-D photonic woodpile (inset) [28] as obtain&d 52 (dashed line) and the one-step algorithm (solid line). The width, height,
and period @) of the rods are 0.55, 0.7, and 2, respectively. The dielectric constant of the rods is 12.96 and the simulation box éneaswes6, subject to
periodic boundary conditions.

Fort — oo and for a fixed accuracy, (16) shows that théset by the largest eigenvalue Bf), a mesh sizé = 0.1, and
one-step algorithm will be more efficient than any FDTD algo8192 time steps. For this choice of parameters, the Yee algo-
rithm (for whichn < oo0). However, this does not mean that theithm would be unstable [2], [3] and would yield meaningless
one-step algorithm is computationally more efficient than FDTEesults. Ther'4S2 calculation shows a peak at= 0. This re-
algorithms for all cases of interest. First of all, the asymptotftects the fact that, in a strict sense, thi&S2 algorithm does not
long-time behavior and/or very high accuracy ofthe time integraenserveV - (,/uX(t)) andV - (/Y (£)) [9], [10]. However,
tion is not always of interest. In terms of computational work, thge peak atv = 0 vanishes as*. Repeating th@'452 calcula-
one-step algorithm becomes (much) less competitive if the applen with ~ = 0.01 yields aD(w) (not shown) that is on top of
cation requires knowledge of the EM fields at many intermediagge result of the one-step algorithm (see Fig. 3) and is in good
times (recall thatintermediate results generated during the recaireement with band-structure calculations [28]. Fet 0.01
sion (9) have no physical significance). Moreover, the presafe one-step algorithm is 3.5 times more efficient tHar52.
mathematical justification of the one-step algorithm limits thRote that in this example, the one-step algorithm is used for a
range of applications. For instance, FDTD methods can easiyrpose for which it is least efficient (time-stepping with rela-
handle absorbing boundary conditions [2] but at present, theggsly small time steps). Nevertheless, the gain in efficiency is
is no guarantuee that the Chebyshev polynomial approximatigi)| substantial. In simulations of the scattering of the EM fields
will still be accurate in these circumstances. As with most Ngom the same woodpile (results not shown), the one-step algo-
merical algorithms, also in this case the method of choice dgnm is one to two orders of magnitude more efficient than cur-

pends on the application but it is a good practice to use seveiglt FDTD algorithms, in full agreement with the error scaling
completely different methods to solve the same problem. analysis given earlier.

As the second example we use the one-step algorithm to com-
pute the frequency spectrum of a 3-D photonic woodpile [28].
This structure, shown in the inset of Fig. 3, possesses a large
infrared bandgap and is under current experimental and theowe have described a one-step algorithm, based on the
retical investigation [28], [29]. To determine all eigenvalues athebyshev polynomial expansions, to solve the time-depen-
the corresponding matrik we follow the procedure describeddent Maxwell equations with spatially varying permittivity and
in [9], [30], [31]. We use random numbers to initialize the elepermeability and current sources. In practice, this algorithm is
ments of the vecto®(0). Then we calculate the inner productas easy to implement as FDTD algorithms. Our error scaling
F(t) = (¥(0)|¥(t)) as a function oft and averagef(t) = analysis shows and our numerical experiments confirm that for
F(t)/F(0) over several realizations of the initial vect#(0). long times the one-step algorithm can be orders of magnitude
The full eigenmode distributio®(w) is obtained by Fourier more efficient than current FDTD algorithms. This opens pos-
transformation off (¢). In Fig. 3 we showD(w), as obtained by sibilities to solve problems in computational electrodynamics
T45S2 and the one-step algorithm, with a time step= 0.075 that are currently intractable.

IV. CONCLUSION
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