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Morphological image analysis

K. Michielsena, H. De Raedtb,∗
a Laboratory for Biophysical Chemistry, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands

b Institute for Theoretical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen,
The Netherlands

Received 24 November 1999; received in revised form 31 March 2000

Abstract

We describe a morphological image analysis method to characterize black-and-white images in terms of geometry and
topology by means of the Minkowski functionals. We present an algorithm to calculate these functionals in two and three
dimensions and apply the method to random point patterns on square and cubic lattices. 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Image analysis is important for many applications in science and engineering. For example, the interpretation
of images taken by satellites, medical imaging tools (e.g., X-ray tomography, magnetic resonance imaging), and
microscopes involves some kind of image processing, some being much more sophisticated than others. In the case
of (electron) microscope images of materials such as polymer mixtures and ceramics, the main purpose of image
analysis is to provide a quantitative characterization of the shape, structure and connectivity of the constituents.
The purpose of this paper is to describe an easy-to-use, versatile method to compute the morphological properties
of such images.

In general images are represented by (a set of) intensities at each point of the image, the intensities being
continuous functions of the position. In practice these images often come in digitized form. Digitizing an image [1]
maps the position within the image onto a grid and attaches to each cell of the grid quantized values of the
intensities. The latter are usually determined by first dividing the intensity range into a fixed number of bins and
assigning to each cell the number of the bin that most closely matches the intensity. The most extreme form of
quantization, using only two bins, yields black-and-white images [1].

Morphological image analysis (MIA) characterizes black-and-white images in terms of shape (geometry) and
connectivity (topology) by means of the Minkowski functionals known from integral geometry [2–4]. These
functionals are related to familiar measures: In two (three) dimensions they correspond to the covered area,
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boundary length, and connectivity (volume, surface area, integral mean curvature and connectivity) of the
pattern. For sufficiently smooth and regular objects some of these measures are related to quantities known from
differential geometry. Integral geometry imposes no limitations on the properties of the patterns. Furthermore
in integral geometry the calculation of the Minkowski functionals is relatively straightforward and requires little
computational effort.

Given a set of patterns the first step in MIA is to compute the Minkowski functionals themselves. The second
step is to analyze the behavior of the Minkowski functionals as a function of one or more control parameters. This
approach has proven to be very useful to describe the morphology of porous media and complex fluids, the large-
scale distribution of matter in the Universe, microemulsions, patterns in reaction diffusion systems, and spinodal
decomposition kinetics [5].

In this paper we first describe an algorithm to calculate the Minkowski functionals for two and three-dimensional
black-and-white digitized images. We then illustrate the application of MIA to two and three-dimensional random
patterns and show that there is excellent agreement with analytical results.

2. Morphological properties

We consider a two-dimensional (2D) [three-dimensional (3D)] black-and-white image projected on a gridG.
Each square (cube) is centered at a lattice pointx ∈ G and is called a pixel (voxel). Since the output of image
analysis should be the description of a given picture we have to define the various objects building up the picture [1].
This is done as follows:

P(x)=
{

1 if x belongs to an object,
0 if x belongs to the background,

(1)

whereP(x)= 0 corresponds to a white pixel andP(x)= 1 to a black pixel.
According to integral geometry, the morphological properties of the various objects building up the black-and-

white picture can be completely described in terms of Minkowski functionals [2]. In two dimensions (d = 2)
[three dimensions (d = 3)] the Minkowski functionals are proportional to the areaA(d=2) covered by the black
pixels, the boundary lengthL and the Euler characteristic or connectivity numberχ(d=2) (volumeV , surface area
A(d=3), integral mean curvatureH andχ(d=3)). In differential geometry the integral mean curvatureH is defined
as
∫

df (R1+R2)/2R1R2, whereR1 andR2 are the principal radii of curvature of the surface and df is the area
element. In 3D the Euler characteristic is related to the integral Gaussian curvature, defined asG= ∫ df (1/R1R2).
The functionalχ(d) as defined in integral geometry is the same as the Euler characteristic defined in algebraic
topology [2]:χ(d=2) equals the number of connected components minus the number of holes andχ(d=3) is given
by the number of connected components minus the number of tunnels (torus-like holes) plus the number of cavities.
For example,χ(d=3) = 1 for a solid cube,χ(d=3) = 2 for a hollow cube andχ(d=3) = 0 for a cube pierced by a
tunnel. The Euler characteristic is negative for multiply connected structures. For complex structures it is often
difficult to identify the number of connected components, tunnels and cavities. However, integral-geometry-based
MIA directly yieldsχ(d).

Table 1
Morphological properties for the open elementsQν (ν = 0, . . . , d = 2), the basic building blocks of a two-dimensional square lattice.Q0:
vertex;Q1: open line segment of lengtha; Q2: open square of edge lengtha. A(d=2) denotes the covered area,L the boundary length and
χ(d=2) the Euler characteristic

A(d=2) L χ(d=2)

Q2 a2 −4a 1

Q1 0 2a −1

Q0 0 0 1
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Table 2
Morphological properties for the open elementsQν (ν = 0, . . . , d = 3), the basic building blocks of a three-dimensional cubic lattice.Q0:
vertex;Q1: open line segment of lengtha; Q2: open square of edge lengtha; Q3: open cube of edge lengtha. V denotes the volume,A(d=3)

the surface area,H the integral mean curvature andχ(d=3) the Euler characteristic

V A(d=3) H χ(d=3)

Q3 a3 −6a2 3πa −1

Q2 0 2a2 −2πa 1

Q1 0 0 πa −1

Q0 0 0 0 1

In order to calculate the morphological properties ofP(x) in an efficient way we consider each pixel (voxel)
as the union of the disjoint collection of its interior, faces (for the 3D case only), open edges and vertices. On a
square and cubic lattice there ared + 1 of these open elementsQν , ν = 0, . . . , d : Q0 corresponds to a vertex,Q1
to an open line segment,Q2 to an open square on both the 2D square and 3D cubic lattice, andQ3 to an open
cube on the 3D cubic lattice. The values ofV , A(d), L, H andχ(d) for the building blocksQν of a 2D square and
a 3D cubic lattice can easily be calculated [6] and are listed in Tables 1 and 2, respectively. For the whole image
P =P(x) these functionals can be calculated using

Y (P)=
d∑
ν=0

Y (Qν)nν(P), (2)

wherenν(P) denotes the number of open elementsQν present inP and in 2D (3D)Y stands forA(d=2), L, and
χ(d=2) (V , A(d=3),H , andχ(d=3)), respectively.

2.1. Two-dimensional images

We now describe a procedure to determine how the number of open bodies of each type changes when one adds
(removes) one black pixel to (from) a given 2D patternP(x)=P(i, j) for i = 1, . . . ,Lx andj = 1, . . . ,Ly . Using
this procedure it is easy to compute the Minkowski functionals for a given pattern, simply by adding the black
pixels one-by-one to an initially complete white background.

Obviously, the numbern2(P) of open squares building up the black objects on theLx × Ly pictureP(x)
increases (decreases) with one if one adds (removes) one black pixel at the positionx= (i, j) to (from) the image.
Therefore if we add a black pixel

1n2(P)= 1, (3)

where we introduce the symbol1 to indicate that we compute the difference resulting from adding one black pixel.
Similarly the change in the number of open line segments,1n1(P) is given by

1n1(P)=
∑
α=±1

[
Q(i + α, j)+Q(i, j + α)], (4)

whereQ(x)≡ 1−P(x). Finally the change in the number of vertices,n0(P) reads

1n0(P)=
∑

α,β=±1

Q(i + α, j)Q(i + α, j + β)Q(i, j + β). (5)

By stepping through the 2D grid, adding black pixels one at a time and computing the changes1n0, 1n1, and
1n2, we easily obtain the three Minkowski functionals.
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2.2. Three-dimensional images

The procedure for 3D images [P(x)= P(i, j, k) for i = 1, . . . ,Lx , j = 1, . . . ,Ly andk = 1, . . . ,Lz] is almost
identical to the one described above. We find

1n3(P)= 1, (6)

for the change in the number of open cubes,

1n2(P)=
∑
α=±1

[
Q(i + α, j, k)+Q(i, j + α, k)+Q(i, j, k+ α)], (7)

for the change in the number of open squares,

1n1(P)=
∑

α,β=±1

[
Q(i + α, j, k)Q(i + α, j + β, k)Q(i, j + β, k)

+Q(i, j + α, k)Q(i, j + α, k + β)Q(i, j, k+ β)
+Q(i + α, j, k)Q(i + α, j, k+ β)Q(i, j, k+ β)], (8)

for the change in the number of open line segments, and

1n0(P)=
∑

α,β,γ=±1

Q(i + α, j, k)Q(i + α, j + β, k)Q(i, j + β, k)

×Q(i + α, j, k+ γ )Q(i + α, j + β, k+ γ )
×Q(i, j + β, k+ γ )Q(i, j, k+ γ ), (9)

for the change in the number of vertices.
In Appendix A we give an example of a computer code that computes1nν(P) for a 3D rectangular lattice with

free boundary conditions. It is obvious that it is very compact and requires little computation per grid point.

2.3. Illustrative example

As a simple example we calculate the Minkowski functionals for the 2D checkerboard pattern with an even
numberLx = Ly of cells, of edge lengtha = 1, in each direction. We consider free and periodic boundary
conditions. An illustration is given in Fig. 1. The left panel in Fig. 1 shows the 4× 4 checkerboard lattice
with free boundary conditions, i.e. the pattern is completely surrounded by white pixels. The right panel shows
the same pattern but with periodic boundary conditions. For theLx × Lx checkerboardPF with free boundary
conditions we findn0(PF ) = (Lx + 1)2 − 2, n1(PF ) = 2L2

x , n2(PF ) = L2
x/2 and henceA(d=2)(PF ) = L2

x/2,
L(PF ) = 2L2

x andχ(d=2)(PF ) = L2
x/2− (Lx − 1)2. Note that this value ofχ(d=2) corresponds to the value we

find if we calculateχ(d=2) as the number of connected components minus the number of holes, since the number
of connected components (black structure) equals one and the number of holes equals(Lx/2−1)(Lx −2). For the
Lx × Lx checkerboardPP with periodic boundary conditions we findn0(PP ) = L2

x , n1(PP ) = 2L2
x , n2(PP ) =

L2
x/2 which yieldsA(d=2)(PP ) = L2

x/2, L(PP ) = 2L2
x andχ(d=2)(PP ) = −L2

x/2. Note thatχ(d=2)(PP )/L2
x =

limLx→∞ χ(d=2)(PF )/L2
x =−1/2.

3. Application: Random point patterns

Many systems observed in nature may be modeled by point patterns. For example, a system of particles may
be viewed as a system of points generated by the centres of the particles. Point systems may be considered as
black-and-white pictures. Single black pixels (voxels) represent the germs of the model [4,7]. In order to study the
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Fig. 1. 4×4 checkerboard pattern. The black line denotes the boundary. Left: free boundaries; right: periodic boundaries. In MIA all dark pixels
are considered to be black.

characteristics (degree of randomness, clustering, periodic ordering,. . .) of the point system on a square (cubic)
lattice we attach squares (cubes) to each point. These squares (cubes) are called the grains [4,7] of the model
and are constructed as follows: We consider the germs to be squares (cubes) of edge lengthr = 1 and the grains
as enlarged squares (cubes) of edge length 2r + 1, r > 0. The graining procedure is demonstrated in Fig. 2 for
two dimensions. The study of the coverage of the image by the grains gives information about the system under
investigation.

We consider a collection ofN pixels (voxels)pi in a square (cubic) domainΩ ⊂ G of volume|Ω | = L2
x (L

3
x).

The positions of the pixels (voxels) are generated from a uniformly uncorrelated random distribution. The mean
density of pixels (voxels) equalsρ =N/|Ω |. We attach to every germpi a square (cubic) grainCi of edge length
a. In the bulk limitN , Ω →∞ with ρ fixed, the averages of the morphological quantities of the ensemble of
configurations of the square (cubic) grainsCi with densityρ read in three dimensions [6]

〈V/N〉 = (1− e−n)/ρ, (10a)

〈A(d=3)/N〉 = 6a2e−n, (10b)

〈H/N〉 = 3πa(1− n)e−n, (10c)

〈χ(d=3)/N〉 = (1− 3n+ n2)e−n, (10d)

with n= ρa3 anda = 2r + 1, r > 0, and in two dimensions

〈A(d=2)/N〉 = (1− e−n)/ρ, (11a)

〈L/N〉 = 4ae−n, (11b)

〈χ(d=2)/N〉 = (1− n)e−n, (11c)

with n= ρa2 anda = 2r + 1, r > 0.
We will now study the morphological quantities for sets of points which are randomly positioned in a square

(cube) of edge lengthLx . By making use of the graining procedure described above we transform the point pattern
into a pattern of square (cubic) grains of edge lengtha = 2r+1, r > 0 and study the behavior of the morphological
quantities as a function ofr.

Fig. 3 showsV/N , A(d=3)/N , H/N andχ(d=3)/N as a function ofr for one single configuration of a random
point set withN = 1024 andLx = 128 (ρ = 0.00049). The dotted (dashed) lines show the data for periodic (free)
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Fig. 2. Graining procedure of a point pattern in two dimensions. The grains are squares of edge length 2r+1= 5. The light grey pixels indicate
the positions of the germs. In MIA all dark pixels are considered to be black.

Fig. 3. Morphological quantities as a function ofr for a random point set in a cubic box with cubic grains centered around each point. The
cubic box has edge lengthLx = 128 and containsN = 1024 germs. Dotted lines: periodic boundary conditions, dashed lines: free boundary
conditions, solid lines: results obtained from discrete integral geometry (see (10)).
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boundary conditions. The solid lines are the results obtained from (10). For smallr the grains are isolated leading
to a small covered volume and surface area and to a positive integral mean curvature and Euler characteristic.
For larger the grains largely overlap and cover almost completely the whole cube. Only small cavities remain.
This gives rise to a large covered volume which approachesL3

x in the case of the completely covered cube. The
surface area and integral mean curvature are small and approach zero (6L2

x ) and zero (3πLx), respectively for a
completely covered cube with periodic (free) boundary conditions. For larger the Euler characteristic is positive
and approaches 0 (1) in the case of the completely covered cube with periodic (free) boundaries. For intermediate
r the coverage has a tunnel-like structure with a negative Euler characteristic and a large surface area. The integral
mean curvature changes sign in the regime of intermediater. For periodic boundary conditions (dotted lines) there
is an excellent agreement between the numerical data and the theoretical result (10). For free boundary conditions
(dashed lines) the agreement is less good especially for the case of the surface area and the integral mean curvature.

In Fig. 4 we depictA(d=2)/N , L/N andχ(d=2)/N as a function ofr for one single configuration of a random
point set withN = 10 240 andLx = 1024 (ρ = 0.0098). The dotted (dashed) lines show the data for periodic
(free) boundary conditions. The solid lines are the results obtained from (11). Also in this case there is excellent
agreement between the numerical data for periodic and free boundary conditions and the theoretical result (11).
Note that for bothd = 2 andd = 3 the agreement is remarkable as only one realization of a random point set was
used in the simulation.

The simulation results shown in Figs. 3 and 4 have been obtained by using one realization of random points.
Repeating these simulations with different realizations yields figures that cannot be distinguished from those shown
in Figs. 3 and 4. In the limitr→∞, where the whole box is filled with black voxels, the surface area of the box

Fig. 4. Morphological quantities as a function ofr for a random point set in a square region with square grains centered around each point.
The square region has edge lengthLx = 1024 and containsN = 10240 germs. Dotted lines: periodic boundary conditions; dashed lines: free
boundary conditions; solid lines: results obtained from discrete integral geometry (see (11)).
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with free (periodic) boundary conditions approaches 6L2
x (0). This shows that in MIA the differences between data

for free and periodic boundary conditions cannot be taken as a measure for finite-size effects.

4. Summary

We have described a morphological image analysis (MIA) method to characterize black-and-white images in
terms of shape (geometry) and connectivity (topology). Integral-geometry-based MIA allows a straightforward
calculation of the morphological quantities and requires little computational effort. The approach has been
illustrated by computation of the morphological measures of random point sets on a cubic lattice. MIA is easy
to use. Results of applications to perfect and imperfect SC, FCC and BCC lattice structures, to triply periodic
minimal surfaces and to three-dimensional structures formed in polymer solutions will be published elsewhere
[6,8].
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Appendix A. Example

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! !
! Mink_3D_free computes the change of the Minkowski functionals !
! (volume,surface,curvature,euler3D) if a pixel is added to the 3D !
! image contained in the 1D array LATTICE. A pixel at position !
! x=jx+Lx*(jy+Ly*jz) is active (black) if LATTICE(x)=1, otherwise !
! LATTICE(x)=0. Active pixels should only appear at positions !
! (0 < jx < Lx, 0 < jy < Ly, and 0 < jz < Lz). !
! Pixels at the boundary of LATTICE should be zero in order to !
! correctly implement free boundary conditions. !
! !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

implicit integer (a-z)
integer lattice(0:LX*LY*Lz-1)
parameter(

1 volume_body=1 , !(a*a*a, where a is lattice displacement)
1 surface_body=-6 , !(-6*a*a, open body)
1 surface_face=2 , !(2*a*a, open face)
1 curv_body=3 , !(3*a, open body)
1 curv_face=-2 , !(-2*a, open face)
1 curv_edge=1 , !(a, open line)
1 euler3D_body=-1 , !(open body)
1 euler3D_face=1 , !(open face)
1 euler3D_edge=-1 , !(open line)
1 euler3D_vertex=1) !(vertices)
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nfaces=0
nedges=0
nvert=0

do i=-1,1,2
jxi=jx+i
jyi=jy+i
jzi=jz+i
kc1=1-lattice(jxi+Lx*(jy+Ly*jz))
kc2=1-lattice(jx+Lx*(jyi+Ly*jz))
kc3=1-lattice(jx+Lx*(jy+Ly*jzi))
nfaces=nfaces+kc1+kc2+kc3
do j=-1,1,2
jyj=jy+j
jzj=jz+j
k4=Lx*(jyj+Ly*jz)
k7=Lx*(jy+Ly*jzj)
kc7=1-lattice(jx+k7)
kc1kc4kc5=kc1*(1-lattice(jxi+k4))*(1-lattice(jx+k4))
nedges=nedges+kc1kc4kc5+kc2*(1-lattice(jx+Lx*(jyi+Ly*jzj)))*kc7

1 +kc1*(1-lattice(jxi+k7))*kc7
if(kc1kc4kc5.ne.0) then
do k=-1,1,2
jzk=jz+k
k9=Lx*(jy+Ly*jzk)
k10=Lx*(jyj+Ly*jzk)
nvert=nvert+(1-lattice(jxi+k9))*(1-lattice(jxi+k10))

1 *(1-lattice(jx+k10))*(1-lattice(jx+k9))
enddo ! k
endif ! kc1kc4kc5
enddo ! j
enddo ! i

volume=volume\_body
surface=surface\_body+surface\_face*nfaces
curvature=curv\_body+curv\_face*nfaces+curv\_edge*nedges
euler3D=euler3D\_body+euler3D\_face*nfaces

1 +euler3D\_edge*nedges+euler3D\_vertex*nvert

end
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