
1

Event-by-event simulation of EPR-Bohm
experiments

K. De Raedt1, K. Keimpema2, H. De Raedt2, K. Michielsen2, and S.
Miyashita3

1Department of Computer Science, University of Groningen, Blauwborgje 3,
NL-9747 AC Groningen, The Netherlands
2Materials Science Centre, University of Groningen Nijenborgh 4, NL-9747
AG,Groningen, The Netherlands
3Department of Physics, University of Tokyo Bunkyo-ku, Tokyo 113, Japan

Summary. We present a computer simulation model that is strictly causal and
local in Einstein’s sense, does not rely on concepts of quantum theory but can
nevertheless reproduce the results of quantum theory for the single-spin expectation
values and two-spin correlations in an Einstein-Podolsky-Rosen-Bohm experiment.

1.1 Introduction

Computer simulation is a powerful methodology to model physical phenom-
ena that is complementary to theory and experiment [1]. In this approach, we
usually start from the basic equations of physics and employ numerical algo-
rithms to solve these equations. But what if, as in quantum theory, the basic
equation that describes the individual events is not known? Last year, also at
this workshop, we discussed a simulation method that uses locally-connected
networks of processing units with a primitive learning capability to generate
events at a rate that agrees with the quantum mechanical probability dis-
tribution [2]. The fact that this simulation approach only uses causally local
processes raises the question whether can also simulate Einstein-Podolsky-
Rosen (EPR) [3] experiments and reproduce the results of quantum theory.
This contribution demonstrates that the answer to this question is affirmative.

Quantum mechanical descriptions and experimental realizations of an
EPR-Bohm gedanken experiment often adopt the example proposed by Bohm
and Aharonov (EPRB) [4, 5]. This model, sketched in Fig. 1, considers a
source that produces pairs of spin-1/2 particles, prepared in the singlet state
|Ψ〉 = (| ↑↓〉 − | ↓↑〉)/21/2. The two particles with opposite spins move in
free space and in opposite directions. The spins of the individual particles are
measured by means of Stern-Gerlach magnets. After passing a Stern-Gerlach
magnet, the particle is detected at either detector D+,i or D−,i, where i = 1, 2
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Fig. 1.1. Diagram of the Einstein-Podolsky-Rosen-Bohm experiment.

denotes the position of the pair of detectors with respect to the source (see
Fig. 1). The firing of D+,i (D−,i) defines the event at which we assign the
value of spin up (+1) (spin down (−1)) to particle i. Representing the direc-
tion of magnet 1 (2) by the unit vector a (b), quantum mechanics yields [6]
〈Ψ|σ1 · a|Ψ〉 = 〈Ψ|σ2 · b|Ψ〉 = 0 and

〈Ψ|σ1 · aσ2 · b|Ψ〉 = −a · b, (1.1)

where σi = (σx
i , σy

i , σz
i ) are the three Pauli spin operators of particle i = 1, 2.

Experimentally, each Stern-Gerlach magnet measures the individual spins.
Quantum theory itself has nothing to say about these individual assignments
(quantum measurement paradox) [7]. The fundamental problem is to explain
how individual events, recorded in space-time separated regions under condi-
tions such that the measurement on one particle cannot have a causal effect
on the result of the measurement on the other particle (Einstein’s local causal-
ity criterion), exhibit the correlations Eq. (1.1). In this paper, we present a
solution of this puzzle.

1.2 Analysis of a typical EPR-Bohm experiment

As a first step in solving this puzzle, it is necessary to determine the set of
relevant data that is collected in a typical EPRB experiment. Apart from the
signals generated by the detectors D+,i and D−,i (i = 1, 2), any experimental
procedure that registers pairs of particles requires some criterion to decide
whether two particles form a pair or not [8]. In EPRB experiments, this deci-
sion is taken on the basis of coincidence in time. Thus, a practical criterion for
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coincidence always involves a coincidence window (see Ref. [8, 9]). Therefore,
the set of numbers, collected during one run of an EPRB experiment consists
of two subsets (one subset for each observation station i = 1, 2). Each subset
is a collection of triples [9]

Υi = {xn,i = ±1, tn,i, cn,i|n = 1, . . . , N} , (1.2)

where n labels the events, N is the total number of events in the run, xn,i

tells us which of the two detectors at station i fired, tn,i holds the value of the
time tag for event number n, and cn,i denotes the direction of the magnets
(cn,1 = an, cn,2 = bn) when the nth pair of particles passes through the
magnets.

After all data has been collected, the two subsets are analyzed for coin-
cidences [9]. Coincidences are identified by calculating the time differences
between the time tags of the different subsets and comparing these with a
time window W (typically a few ns [9]). Denoting the number of coincidences
between detectors Dx,1 (x = ±1) at station 1 and detectors Dy,2 (y = ±1) at
station 2 by Cxy(a,b), we have

Cxy(a,b) =
N∑

n=1

δx,xn,1δy,xn,2δa,cn,1δb,cn,2Θ(W − |tn,1 − tn,2|), (1.3)

where Θ(t) is the Heaviside step function and we made a minor abuse of nota-
tion by representing the direction of the magnets by discrete labels (which is
allowed because in experiment, the number of different directions is necessar-
ily finite, hence representable by integer numbers). Note that the numerator
of Eq. (1.3) is the number of all detected pairs. The correlation E(a,b) is
given by [5,6]

E(a,b) =
C++(a,b) + C−−(a,b) − C+−(a,b) − C−+(a,b)
C++(a,b) + C−−(a,b) + C+−(a,b) + C−+(a,b)

. (1.4)

The puzzle to be solved is how to generate the data set {Υ1, Υ2} under the
rather stringent condition that for all events n = 1, . . . , N and i = 1, 2:

xn,i = f(cn,i,Sn,i), tn,i = g(cn,i,Sn,i), (1.5)

such that E(a,b) = −a·b. In Eq. (1.5), Sn,i represents the spin of the particle.
The functions f and g in Eq. (1.5) obey Einstein’s criterion of local causal-
ity: The values of the measured quantities at station 1 (2) are arithmetically
independent of the choice of the settings at station 2 (1), for each individual
particle generated by the source.

1.3 Computer simulation algorithm

Space limitations prevent us from discussing the motivation that has led us
to the following algorithm:
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Fig. 1.2. Simulation results for the two-spin correlation for W/T = τ/T = 0.00025,
N = 106, and M = 200 randomly chosen values of a · b = cos θab covering the
interval [−1, +1]. Crosses (blue): d = 0 ; Bullets (green): d = 3; Stars (pink): d = 6;
Solid line (red): Quantum theory; Dashed line (green): θab/90−1 (Bell-type model).

1. Specify the number of events N , the time-tag resolution τ/T (the actual
value of the time scale T is irrelevant), the time window W = kτ (k =
1, 2, . . .), and the number M of directions a and b. Use random numbers to
fill the arrays (a1, . . . ,aM ) and (b1, . . . ,bM ) with unit vectors. Set n = 0
and Cxy(am,bm′) = 0 for all x, y = ±1 and m,m′ = 1, . . . ,M .

2. While n < N , increment n by one and repeat steps 2 to 6.
3. Use uniform random numbers −1 ≤ zn ≤ 1 and 0 ≤ φn < 2π to assign

the spin Sn,1 = −Sn,2 = ((1 − z2
n)1/2 cos φn, (1 − z2

n)1/2 sin φn, zn).
4. Use uniform random numbers 1 ≤ m,m′ ≤ M to select the directions

a = am and b = bm′ .
5. The time tag tn,1 (tn,2) is obtained by generating a uniform random num-

ber in the interval [0, T (1− (Sn,1 ·a)2)d/2] ([0, T (1− (Sn,2 ·b)2)d/2]) where
d is a parameter of the simulation model. Compute x = sign(Sn,1 · a) and
y = sign(Sn,2 · b).

6. Apply the coincidence criterion: If |�tn,1/τ� − �tn,2/τ�| ≤ k the particles
form a pair. Then, increment the count Cxy(am,bm′). Go back to step 2.

7. After generating N events, we compute the correlations according to
Eq. (1.4) and plot the results as a function of a · b.

It is evident that this algorithm satisfies Einstein’s criterion of local causal-
ity. The use of random numbers to select Sn,i and tn,i is not essential but
convenient [10], and merely mimics the apparent unpredictability of the data.

Figure 1.2 shows simulation results for different values of the parameter
d. For d = 3, our algorithm generates data that agrees with the quantum
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theory (solid line in Fig. 1.2). In fact, for d = 3 we can prove analytically that
limW→0 limN→∞ limτ→0 E(a,b) = −a · b [10]. For d = 0, the time-tag data
is not used to determine the coincidences. Then, our model is a realization of
the models studied by Bell, hence it cannot reproduce the correct quantum
correlation Eq. (1.1) [5]. For d > 3, as illustrated by the data for d = 6
in Fig. 1.2, our simulation model produces correlations that are “stronger”
than quantum correlation in the sense that |E(a,b) − E(a,b′)| + |E(a′,b) +
E(a′,b′)| can exceed the quantum limit 2

√
2. To simulate experiments that

use the photon polarization [9,11], we replace the three-component spin Sn,1

by a two-component spin [10]. For d = 2, we find (results not shown) that the
simulation reproduces the results of quantum theory, a fact that we can also
prove analytically [10].

Summarizing: Starting from nothing more than the observation that an
EPRB experiment produces the set of data {Υ1, Υ2}, we have constructed
event-based computer simulation models that do not rely on concepts of quan-
tum theory but reproduce the correlation Eq. (1.1) that is characteristic for
a quantum system in the most entangled state.
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