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Nonperturbative infrared dynamics of three-dimensional QED with a four-fermion interaction
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A nonlinear Schwinger-Dyso(SD) equation for the gauge boson propagator of massless QED in one time
and two spatial dimensions is studied. It is shown that the nonperturbative solution leads to a nontrivial
renormalization-group infrared fixed point quantitatively close to the one found in the leading order dfithe 1/
expansion, withN the number of fermion flavors. In the gauged Nambu—Jona-Lag{BMJIL) model an
equation for the Yukawa vertex is solved in an approximation given by the one-photon exchange and an
analytic expression is derived for the propagator of the scalar fermion-antifermion composites. Subsequently,
the mass and width of the scalar composites near the phase transition line are calculated as functions of the
four-fermion couplingg and flavor numbeN. The possible relevance of these results for describing particle-
hole excitations, in particular antiferromagnetic correlations, observed in the underdoped cuprates, is briefly
discussed.
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[. INTRODUCTION ceed a critical value for chiral symmetry breaking to occur.
The appearance of a dimensionless critical coupling can be

Quantum electrodynamics in+21 dimensions (QER)  traced to the scale invariant behavior of both theories. The
has attracted much interest over recent years. Its version witscale invariance of QEDis associated with the IR fixed
N flavors of massless four-component Dirac fermions sharepoint, since, as is evident from E), in the limit p<a the
a number of features, such as confinement and chiral syndimensional paramete¥ drops out of the running coupling
metry breaking, with four-dimensional quantum chromody-(as well as from SD equations for the Green’s functjons
namics(QCD). The loop expansion of a massless theory suf-Related to this is the fact that the chiral symmetry breaking
fers from severe infrared divergencies. However, in thé 1/ phase transition in both theories belongs to a special univer-
expansion, the theory becomes infrared firit¢, with the  sality class called conformal phase transiti@PT) intro-
effective dimensionless coupling duced in Ref[5]. It is characterized by a scaling function

o2 N having an essential singularity at the _transition p_oint, and by
;(p)= M(p)= — p:\/—z (1) abrupt change of the spectrum of light excitations as the
p[1+II(p)]’ 8p’ ’ critical point is crossedfor details about the CPT in QED
see Ref[6]).

The presence of a critic?l, in QED; is intriguing espe-

. dg(p) N_ cially because of possible_ existence _of an gnalogous critical

B;(a)zpd—pz —E( 1- ga) . (2)  fermion numberN;=N in (3+1)-dimensional SU{.)
gauge theories, as is suggested by both analytical studies

In Eq. (1) eis the dimensionful gauge coupling aft{p) is  [7.,8,5 and lattice computer simulatiot9,10]. Also, a non-
the polarization operator. At large momentgps{a trivial IR fixed point in QED; may be related to nonpertur-
=e?N/8) the effective coupling (1) approaches zero bative dynan_wi(_:s i_n condensed matter, in particular, dynamics
(asymptotic freedopnwhile for small momenta ff<e) it ~ Of non-Fermi liquid behaviof11,12. . _
runs to the infraredIR) fixed point 8N. Here, the dimen- The fact that the value of the IR fixed point determines
sionful parameterr plays a role similar to the\ ocp scale. ~ the criticalNg,, below which the system is in the symmetry
Since QER is a super-renormalizable theory, the running ofProken phasg, and thgt thls critical value is found to be of
the coupling should be understood as a Wilsonian rather tha@rder 3 provides motivation for searches beyond the 1/
Gell-Mann—Low type, and it is not associated with ultravio- €xpansion. It is especially important because there is still
let divergencies. controversy concerning the existence of firitg in QEDs;;

By studying the Schwinger-DysofSD) equation for the ~Some authors argue that the generatic_)n of a fermion mass
fermion self-energy in leading order of theNLéxpansion, it ~occurs at all values oN [13,14 what might mean the ab-
was found in Ref[2] that a phase transition occurs when theSence of the IR fixed point for the running couplihBespite
coupling at the IR fixed point exceeds some critical valuethe arguments of Refl15] in addition to the fact that studies
(8/N>72/4). This means there exists a critical number of
fermions N, (N,=32/7%=3.24) below which dynamical
mass generation takes place and above which the fermionSThis would happen, for example, if one finds more soft behavior
remain massless. This is similar to what happens irof the polarization operator in the infrared, liKé(p)~(a/p)?,
quenched QER[3,4], where the gauge coupling must ex- with y<1.

giving rise to the renormalization-groyp function
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of 1/N? corrections to the gap equation showed the increasbound states which become light in the vicinity of the critical

of the critical value N.=128/37°~=4.32)[16—18, the situ-  line. Since the phase transition is second order alongythe

ation is far from being conclusive. What we need is some>1/4 part Eq.(3) of the critical curve, scalar and pseudo-

kind of self-consistent equation for the running couplingscalar resonances are to be produced on the symmetric side

which is to be solved nonperturbatively. of the curve, whose masses approach zero as the critical
In the present paper we study such a nonlinear equatiogurve is approachef23,24. The part of the critical curve

for the running coupling which is the analogue of the laddenryi, g<1/4,1N=1/N,, is rather special and is related to the

approximation for the fermion propagafoSimilar to the  cp jp pure QER (we shall discuss it more in the main
gap equation, the kernel is taken in thé&lldpproximation, _
wh_ere it is nothlng_ else as the one-loop photon-photon scat- | this work we study scalar composites &nd bosons
tering amplltude_wnh zero momentum transfer. The equat'OQ/vhich are resonances in the symmetric phase of the
obtamed 'S ObVIOUSI.y gauge invariant. we ther_1 study OU, | 1-dimensional GNJL model. The boson can be viewed
equation both analytically and numerically. We find that the Goldst b ' de that q .
vacuum polarization operator, obtained as a nonperturbati S a Loldstone boson precursor mode that comes down in

solution of the equation, has the same infrared asymptoticENer9y as the transition is approached. Our study is moti-
as the one-loop expressioft(p)=Ca/p, C=1+1/14N. vated partially by possible relation of these resonances to

Thus a nontrivial IR fixed point persists in the nonperturba—?pi” excitations (_)bserved in neutron scattering experiments
tive solution. Moreover, the correction to the one-loop resultn underdoped higf; superconductor§25]. We calculate
(C=1) is small even aN=1 due to smallness of the nu- their masses and widths as a function of the four-fermion
merical coefficient before I, that explains why the leading couplingg and therefore mass and width’s dependence on
order in the 1N expansion(the one-loop approximatiorfior ~ the doping concentratiofsince in certain low-energy effec-
the vacuum polarization works so well. tive models based on spin-charge separation, the cougling
Further we proceed to studying QEDwith additional ~would depend on the doping, e.g., REZ6)).
four-fermion interactiongthe gauged Nambu-Jona-Lasinio  The plan of the present paper is as follows. In Sec. Il we
(GNJL) model. Such kind of models are considered to bederive a nonlinear equation for the effective running cou-
effective theories at long distances in planar condensed mapling in pure QER which is then solved both analytically
ter physics, in particular, for high temperature superconducand numerically to establish the existence of a nontrivial IR
tivity [20]. It is well known that in the improved ladder ap- fixed point. In Sec. Il after introducing the GNJL model in
proximation (with the photon propagator including fermion 241 dimensions we solve the equation for the Yukawa ver-
one-loop effectsthis model has a nontrivial phase structure tex with nonzero boson momentum. In Sec. IV we obtain an
[21] in trz“? coupling constant plane (/g), where g analytical expression for the boson propagator valid along
=2GA/m* is the dimensionless four-fermion coupling ¢ the entire critical line and analyze its behavior in different
the ultraviolet cutoff. The critical line is asymptotical regimes. The analysis of the scalar composites
) near the critical ling3) is given in Sec. V. We present our
14 /1_ N_cr) N> N 3) summary in Sec. VI. In Appendix A we compute the one-
N/’ er loop photon-photon scattering amplitude with zero trans-
ferred momentum and list some useful angular integrals. In
atg>1/4, and IN=1/N. atg<1/4. Above this line the gap Appendix B, an expression for the nonlocal gauge for the
equation for the fermion self-energy(p) has a nontrivial ladder(bare vertexapproximation is derived. Finally, in Ap-
solution. Thus the chiral symmetry is dynamically broken,pendix C, we present some details of the approximdtieth
which implies the existence of a nonzero vacuum condensaighich is used to solve the equation for the Yukawa vertex.
(). One end point (M=0,g=1) of the critical line cor-
responds to the ordinary NJL mod@h 2+ 1 dimensiong
while the other one (N=1/N.,,g=0) corresponds to pure Il. THE EQUATION FOR THE RUNNING COUPLING
QED;. IN QED4
A nice feature of this model is that it is renormalizable in ) )
the 1N expansion{22] leading to an interacting continuum  1h€ Lagrangian density of massless QFb a general
(A— ) theory near a critical scaling regiduaritical curveg ~ covariant gauge is given by
separating a chiral symmetric phaggS) and a spontaneous
chiral symmetry broken phaseSySB). The spectrum of
such a theory contains pseudoscalar) (and scalar ¢)

1
gc(l/N): Z

1, 1 )
Lo TR 4 (AT D @

2Recently, in Ref[19] another nonlinear equation for the running
coupling was proposed in order to study nontrivial infrared struc-whereD ,=d,—ieA,, is the covariant derivative. In a parity
ture of the theory. However, their definition of the running coupling invariant formulation we consideN flavors of fermions
deviates considerably from the standard one used in the presertl, ...N) described by four-component spinors. The three
paper and we will not attempt to compare both approaches. 4X4 y matrices are taken to be
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FIG. 3. SD equation for fermion propagator and vertex up to
+ order 1N2,
tions are required. For such an approximation, we simplify

ofhe fermion and the vertex SD equations by keeping only the

FIG. 1. Exact SD equations for the gauge boson propagat

D, the fermion propagatd® and the vertex'”, !owes't ordgr 'germs in the ﬂl/expansion(see Fig. 3. Then,
inserting this into the SD equation for the photon propagator
o5 0O oy 0 we obtain the equation shown in Fig. 4 which still satisfies
70:< ) 71:( . ) the WT identity. After that equation has been solved, the
0 -o3 0 —ioy fermion propagator and the vertex can be evaluated explic-

) itly through right-hand sides of Fig. 3.
,_ (102 0 5) We could solve the obtained photon propagator equation
o —io,)’ by further iteration, with the one-loop fermion correction in-
cluded at the initial step to obtain a perturbativél Bxpan-
with o the usual Pauli matrices. There are two matrices, sjon. Instead we choose to solve the nonlinear integral equa-
tion given by Fig. 4 as it is. In this way we might get a hint
yszi(o l>, Vo= o= —i( 0 1)’ 6) of any nona_nalytic behavipr in W/which \_/vould be lost oth-
1 0 erwise. At first glance, this way of solving a truncated sys-
tem of SD equations ignores possible nonanalyticity iN 1/
that anticommute withy°, y*, and y*. Therefore for each coming from the fermion wave function and the vertes-
four-component spinor, there is a globalsymmetry with  |ated, for example, to the power-law behavior due to an
generatord, {7°, ¥°, and3[y%+°], and the full symmetry anomalous dimension Note, however, that the fermion
is then U(2N). In what follows we shall restrict ourselves to propagator is a gauge dependent quantity, thus possible
the symmetric phase of the model, i.e., massless fermions.power-law behavior of the fermion wave function must can-
The exact SD equations are given in Fig. 1. For clarity wece| the corresponding behavior coming from the longitudinal
have extracted the explicit factors &f coming from the part of the verterecall that we consider in this paper the
one-fermion loop. Since in pure QEDve have only one  symmetric (massless phase only. Therefore the only
dimensionful parametes; this enables us to choose our scalenonanalyticity we have neglected is the one which might be
such thatNe” remains fixed. This means that every photonpresent in the transverse part of the vertex beyond order 1/
propagatortimese?) contributes one factor of i, Neglecting possible nonanalyticity in the transverse vertex
To make a IN expansion of Fig. 1, we first need to ex- means that we are seeking for nonanaliticity originating from
pand the two-fermion, one-photon irreducible fermion-the nonlinear equation for the photon propagator only. To
fermion scattering kernel, see Fig. 2. We can convince oursome extent, the considered approximation is similar to solv-
selves that Fig. 2 is indeed the right expansion, since the onling the SD equation for the fermion mass function in the
corrections of order one are fermion loops and they are alladder approximation, where the photon propagator is taken
ready included in the full photon propagator. Inserting thisin the leading I order[1].
expansion into the SD equation for the vertex, we obtain a |n 2+1 dimensions, the SD equation for the photon
closed set of integral equations. The nice feature of this trunpropagator reads
cated system of SD equations is that it satisfies the Ward-
TakahashiWT) identities for the vertex as well as for the 4 .
vacuum polarizatio18]. However, finding an analytic so- = ArAnnn _NMQW
lution seems to be a formidable task and further approxima-

-1 0

1 _N@ _N@ _N@
- +0 (%)
1
+0 (r)
FIG. 2. The 1IN expansion of the two-fermion, one-photon ir- FIG. 4. Closed SD equation for the gauge boson propagator in
reducible fermion-fermion scattering kernel. next-to-leading M expansion.
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' 4 k -k -p k
r+p+k o r+p+k o r
r+p Yr+k + r+ph yr+p + r+ph yr+k FIG. 5. The box diagranB#*?.
S S S
P -k p -p P -k
D,.;(P)=Do,,(P) +11,,(p), ) [
B”’”"(p,k)=IJ 5 31T Y*So(r +p) y*So(r + p+k)
with Dy, the bare photon propagator, and whekg, is the M(2m)
vacuum polarization tensor X y"So(r+K) y7Sp(r)]
or s O S+ D)yl + P+
“v(n)=iNe2 i v I ny r+p)y'solr+p
[T#"(p)=iNe fM(Zw)Jr[y S(r+p)I'(r+p,r)s(r)]. M(27r)3
® X y7So(r +P) ¥'So(r)]
Because of the gauge symmetry the vacuum polarization ten- d3r
sor is transverse: lf 5 )3Tf[7”So(r+P) ¥'So(r)y?
T
1#"(p)=(—g*"p*+p*p")II(p), 9 X So(r +K) ¥ So(1)]. (15)

therefore, for the full photon propagator in a general covari-A graphical representation of the “box” diagraifi5) in
ant gauge, we have terms of Feynman diagrams is given in Fig. 5.

For the scattering amplitudB#*”“ there exists a Ward-

Takahashi identity27], which states the transversality of the
B P.p,| 1 1 PPy ; ;
D,(p)=| —g,,+ - —a . amplitude with respect to external photon momenta,
. K p? [ p? [1+11(p)] p*
(10 P“BLipe(P:K,q,1) =0, k"B,,,.(p.K,q,r)=0, etc.
(16)

Moreover, one can write — o
The vacuum polarization tensor has a superficial linearly

divergent part, which can be removed by a proper gauge-
(p)=— i _ . Puby T 11 invariant regularization. However, since the divergent part is
p) 2 y3% 1 2 (p)v ( ) . . ..
2p P proportional tog,, we can project out the finite vacuum
polarization by contractingl ,,(p) with the projector

where the constart; can be chosen arbitrarily.

The vacuum polarizatiohl (p) governs the running of the = (p)=( _ 3pupy> 17
dimensionless gauge coupling. Now we study the integral ald p2 '
equation based on Fig. 4, this gives

i.e., we choose the constanit in Eq. (11) to bec;=3. This

I1#*(p)=4"(p) + I14*(p) + O(1IN), (120  approach was used in Ref28] and[15]. In this way, we
obtain
wherell4{"(p) is the one-loop vacuum polarization, T(p)=T1,(p) +T,(p)+ O(IN), (18)
, L with
M147(p) =iNe? | TSyl +p) 'Sl
(2m) 1B - 4iNe2J d*%k [K2—2k-p—3(k-p)2/p>
uP p2 Jm(2m)3 K2(k+p)?
with Sy(p) the bare fermion propagatctﬁo(p)=1/f), and (19
iNe* [ d%k B(p%k?p-k
Hremy —iN et d Hpvo y(p)= j (p i )v (20
I15"(p)=iNe M(277)3Dp(,(k)8 (p.k), (19 2p? Im(2m)% K[1+11(k)]
where
whereB#?"?(p,k) is the one-loop “photon-photon” scatter-
ing amplitude, with zero momentum transfer, i.e., B(p?,k?,p- K)=0,,9,,B“""’(p,K). (22
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In Euclidean formulation the above expressions can bgyhereq;(p) is the one-loop running couplingee Eq(1)].

written as Equation(27) is the simplest nonlinear equation for the
running couplinglor the photon propagatpwhich is derived
2N92 —2k-p—3(k-p)*/p? at the lowest order in the W/truncation of the SD equations.
p(k+p)2 In fact, it should be considered as an analogue of the ladder

approximation for the fermion propagator. The effects of a
constant fermion mass can be incorporated at one’s wish by
computing the box diagrams with massive fermions. This
would allow one to study the coupled system of the SDE for
the fermion self-energy and photon polarization operator

8p (22)

4 0
,(p)=— Ne j dk K(p.K) ' (23  along the lines of Ref[18]. However, this is beyond the
am?plo  p[LI+IL(K)] scope of the present paper and we shall leave aside this
issues
where Now we proceed by solving Eq&6) and(27) both ana-
Iytically and numerically. Approximating, as usual, the ex-
dQ . . .
K(p,k)EJ O B(—p2—K2 —p-K). (24) pression(25) for the kernel by its asymptotics @k and
A p<k
From Figs. 4 and 5, one can see that the first term in Eq. 2 p3k3
(15) corresponds to a vertex correction and the last two terms K(p,k)=— I (28
are fermion self-energy corrections. The sum of these dia- max(p’ k)

grams has symmetries which provide a consistency check on

the final result. From the graphical representation it is obvi-one can reduce the integral E426) and(27) to differential

ous that the quantit®(p?,k?,p-k) should be invariant under ©ones in order to study the asymptotical behaviokl¢p) and

p—k and undep— —p or p-k— —p-k. a(p) in the ultraviolet and infrared regions. However, in the
A detailed computation of the “box” functiomB is pre-  present case we can find corresponding asymptotics directly

sented in Appendix A, and the final expressionBas given  from the integral equations.

by Eq.(Al11). One can verify that EQA11) has the symme- First of all, we can immediately see that the solution of

tries we mentioned above. Finally, we perform the angulaiEq. (27) for the running coupling possesses a nontrivial IR

integration to obtairK(p,k), fixed point. Indeed, by making a change of variablks,

—Kkp, in the integral and assuming tI"E(O)aﬁO we come to

2 2 —_
K(p,k)=7’J d_Q[E+E+ k'p _2k+kp+2p the quadratic equation fax(0):
4wk p  2kplk=p|  kplk—p|

2k4+5k2p2+2p4} — ., N foc _
“H(0)=a; (0)———=| dkkK(1k)a(0), 29
2(k-p)kplk—p| a *(0)=a;7(0) 220 (1K) a(0), (29

2 2
=£+1+ kp _ 2kTtkpt2p where we have made use of the fact thaK(p,kp)
k p 6maxk®p®) kpmaxk,p) =K(1k), see Eq.(25). The last integral can be evaluated

exactly (see Appendix A and we obtain
2k*+5k?p?+ 2p L min(p,k)

inh™ 25
2k2p2\pZ K2 max(p,k) @9 — 8
a(0)={¢&:
where we have made use of the integrals given in Appendix
A.
Thus, we arrive at the following nonlinear equation for Cc= E E\/1+ i &1_ 1+ 1 E—Z
the vacuum polarization: 2 2 972 972
Ne> Ne* (= K(p,k) 1
(p)=——— f dk . 26 =t N (30
(=80 ™ amoplo Mprirmio; @0 14N
Apparently, this equation is gauge invariant. We can rewrite
it also as the equation for the running coupliagp) which 3A coupled system of SD equations for the vacuum polarization
must be self-consistently determined from it: and the fermion renormalization wave function was studied in Ref.

[15] using an ansatz for the full vertex satisfying the Ward-
Takahashi(WT) identity. Though such an approach reproduces
_(k), (27 standard value for the critical,~3.3, it does not permit us to

a Y p)=a;’
identify the ansatz with a class of Feynman diagrams.
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------ = T T for p=+/p?<a, with C given by Eq.(30), and where£(p)
parameterizes a nonlocal gauge fixing functisee Appen-
14 Nonﬁn?ar,oﬁe‘:b&{ _____ % 7 dix B). This form of the photon propagator will be used in
Nonlinear, N =1------ \ the next section.
~ onhnear’ N =3 e \ i i
3 \ The gauge boson propagator of Eg5) gives rise to a
% \ Coulomb potential instead of a logarithmically confining po-
g 12r \ ] tential. The dimensionless couplinggy= «(0) should now
N be interpreted as the coupling parameter of a perfectly mar-
------------------------------------ AN ginal (or conformal invariantinteraction: 8(a) =0.
. : ——— : BTN \‘\__I
10-8 10-4 1 104 Ill. QED ; PLUS FOUR-FERMION INTERACTIONS

The gauged NJL model wittN fermion flavors is de-

FIG. 6. Numerical solutions of Eq26). scribed by the Lagrangian

This result illustrates that the M/expansion is reliable even
for a rather low number of flavors, e.dN=2, because of the
smallness of the numerical coefficient in front of théN1/
term.

The next term in the expansion of(p) at smallp can
also be calculated exactly, as well as its asymptotics at Iarg\(lavh
momenta but we focus on finding the asymptotics of theI
vacuum polarization operator itself. For it we seek a power

1 — .
Len=— ZF,ZLV"‘ P(iy"D,—mo) ¢

G = 2
o L2+ (P ysn)?], (36

ereD,=d,—ieA, is the covariant derivative, and the
ast term is a chirally invariant four-fermion interaction with

solution[ ~(p/«)”] in both asymptotic regionsp& «) and
(p>«a). We find that the power exponent can only e
—1 in both cases. Thus we get

H(p)zC%, for p<a, (31)

H(p):%, for p>a (32

with the constaniC defined in Eq.(30) (we recall thata
=e2N/8). Hence for the running coupling we have

— e? B a3
a(p)—m’vm. p<c, (33
_ e?

a(p)=m, p> . (34)

The numerical solution of Eq26) is presented in Fig. 6.
From this figure it is clear that the IR behaviae.,p<«) of

G the corresponding Fermi coupling constant. In the absence
of a fermion mass terrmg which breaks the chiral symmetry
explicitly, the Lagrangiari36) possesses a(ll) gauge sym-
metry and a global 1) X Ug(1) chiral symmetry. For the
four-fermion coupling we introduce the dimensionless cou-
pling constang=2GA/#?, and we consider the dimension-
ful gauge couplingg? as the UV cutoff(more precisely
=A).

A parity invariant bare mass termyyy as well as a
dynamically generated fermion mass breaks the global sym-
metry down to Y , g(1). Further we study mainly the chiral
symmetric case withmy=0. By introducing the auxiliary
scalar fieldsr andr, the Lagrangiai36) can be rewritten as

1 _ _
[’2: - ZFMVFMV+ P ’y#D/.Llp_ l//(a-+|7577)¢'

- (o) 37

wherea=— (G/N) b, m=—(GIN) ¢ ysib; .
The propagators of the and 7 fields, Ag and Ap, are
defined, respectively, as follows:

pII(p) is indeed constant and in agreement with the analytic
analysis.

For studying effects like symmetry breaking and dynami-
cal mass generation, it is sufficient to consider only momenta
less thana. Therefore for the remainder of this article we
will just use Eq.(31) and treatw as the ultraviolet cutoff for
nonperturbative dynamics. This allows us to write the gauge
boson propagator g Euclidean formulation

As(<il)=—if d*x€(0[T[o(x)o(0)]|0)c, (38

An(@)= =i | dxeHOTT 700 ()10}, (39

where the subscrigf stands for “connected.” The SD equa-

_(0) tion for the scalafpseudoscalampropagator is given by
o

p ’ a(o): m,
(35)

62D ,,(p)= —gm[l—f(p)]pg—f”

N
Ag(lF’)(p):_§+HS(P)(D), (40)
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R

FIG. 7. The SDE for the scalar propagatog(p).
FIG. 8. The SDE for the scalar Yukawa vertEx in the ladder

where the(pseudgscalar vacuum polarization is approximation.
A d3k proximation and in arbitrary dimensiofiShere it is shown
[Mgpy(p) =i f —3Tr[S(k+ p) also that four-fermion contributions into the gauge functon
(27) are suppressed leading té(p)=2/3 (Nash's nonlocal

gauge. In what follows we use the Nash gauge for the pho-
X T gpy(k+p,K)S(K) Fogp) ] (41) fon propagator3s).

) ) . The equation for the Yukawa vertex, within the proposed
(see Fig. 7, S(k) is the full fermion propagatofS~*(k) approximation, reads

=kA®—-B(K)], and Tgp(k+pk) is the fermion- ,

antifermion(Yukawa vertex (the bare Yukawa vertices are L, (A k \

given bylos=1, Top=i7ys, Wherel is the identity matrix I's(p+q,p)=1+ie J (2m)° y'S(k+q)

The absence of kinetic terms for tlee and = fields in the

Lagrangian is reflected in the constant bare propagatGr XT'g(k+q,k)S(K) YDy ,(k—p) (44)
The Yukawa verticed’s andI'p are defined as the “fully _ . _
amputated” vertices, (see Fig. 8 In the symmetric phase, the equation for the

scalar vertex, Eq(44), is a self-consistent equation if one

uses a gauge where the full fermion propagator has the form

of the free or bare fermion propagatdfp) = Sy(p) = 1/;3.

_ 3y 13, ikx—ipy — The invariance under parity and charge conjugation re-

=— | d°xdye (O[TLY(¥) (y)a(0)]|O)c, stricts the form of the Yukawa vertices to the following de-
(42) composition[30,24:

S(k)I's(k,p)S(p)As(k—p)

I's(p+a,p)=1Fy(p+9,p)+(ap—pq)F,(p+a,p)],
S(K)Tp(k,p)S(P)Ap(k—p) (45)

:_f dexcy <PV 0| T[ (X)) m(0)] O)c . Fp(p+q,p)=(i75)[F1(p+q,p)+(<i|5—E)&)Fz(p+q,2;)

(43 in the symmetric phase. The two scalar functienare sym-
metric in the fermion momenta:
In the symmetric phase of the GNJL model the pseudoscalar
and scalar propagators are degenerate, so are the pseudoFi(P+d,p)=Fi[(p+a)%p*a’]1=F[p*(p+a)%0°],
scalar vertex and scalar vertex.
We shall study the SDE for the Yukawa vert€x and i=12. (47)

scalar propagatak 5 with both the gauge interaction and the This i | he four-di ional

four-fermion interactions treated in the leading order of the IS 1S analogous to t_de _our-hlmensmna_ caﬁe. nd

1/N expansion. This approximation is obtained by replacing Since we are consi e_rm? the Sﬁ'mT?ImC phaseot | h

ine Behe Slpeter kit b panar one photonexchange 7 PLODS0STS 1 Keriee 1t ojows e Tt e
raph with the photon propagator given b and bare 2 :

drap P propag g y E86) this approximation was argued in RdR4] for the four-

fermion-photon verticegssee Fig. 2 In principle the Bethe- " ional h i i
Salpeter kernel also contains scalar and pseudoscalar ejimensional case and the analysis can be generalized
ightforwardly to the three-dimensional case. Here we

changes. One can question whether such exchanges can Peaightt ) ) .
neglected. In fact, if one includes the ladder like one-scalaPM!y Point out that calculatind=, ,F, in 1/N perturbation
and one-pseudoscalar exchanges in the truncation of the B80Ty reveals that the functiof, contains logarithmic
kernel K in the SDE for the Yukawa vertices, then such {€rms which build up into the power-law form of the full
contributions cancel each other exactly in the symmetricolution(see below on the other hands, does not contain
phase. On the other hand, in the equation for the fermioﬁ“Ch_ logarithmic terms gnd_thus will not co_ntrlbute to the
wave functionA(p) these contributions add and must be '€2ding and next-to-leading inN/order behavior ofls.
taken into account. Since we take the bare vertex approxima-

tion, we need to se(p)=1 for consistency with the WT

identity. In Appendix B we prove the existence of such a “A version of a nonlocal gauge iB=4 leading to approximate
nonlocal gauge for the GNJL model in the bare vertex apequalityA=1 was proposed in Ref29].
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Hence, neglecting all functions excdpi, we obtain(in d2 d 92
Euclidean formulation after substituting Eqg.(35 with p2—2FUV+ 2pd—FUV+)\( 1- —2) Fuy=0, (55
&(p)=2/3 in Eq.(44) dp p 2p

dQ (k*+q-k) 1 with four boundary conditions. The infrared and ultraviolet
-— > boundary condition$IRBC and UVBQ, respectively, are
4m  (k+q)? |k—p|

XFq.(k+q,k), (49

A
Fl(p+q,p)=1+)\J ko
0

d
p d_pFlR(p:Q)LOZO,
where A =32/(3NC=?) and wherefd{) denotes the usual
angular part of the three-dimensional integration. The equa-

tion for the o boson vacuum polarization is

d
Fow(p.@)+pg;Fuw(p.@)) =1 (56)
p p=A

f f ii (I((2k+q k) Fo(k+q,k). (49) There is a continuity and differentiability equation@at q:
Fir(d,0)=Fuv(a,a),
To resolve the angular dependence of the Yukawa vertex
functionF, it is convenient to use an expansion in Legendre
polynomialsP,, (see also Appendix

d
T Fuv(p.a) (57)

“dp

p=q pP=q

- The equation foiF,, can be written as
Fl(p+q,p)=F1(p.p+q)=r§0 fo(p.9)Pn(p-a/pa), a o

d? A

0 Z2—Fu+(\—2)Fyu=0, z= \ﬁﬂ. (58)
, . . . dz 2p

where in the right-hand side expressipe \/p 2 q= 2,

andp- q/pq=cosa. Then we follow the arguments of Ref. The differential Egs(54) and (58) and the BC's(56) and

[24] and assume that the Yukawa vertex functiBa(p  (57) can be solved straightforwardly. The solutions are
+q,p) depends only weakly on the angbeg/pq between

fermion ando boson momenta, so that the set equations for q q \

f, reduces to the equation for the zeroth-order Legendre co- F.R(p,q)=Z‘1(X,w)< )sm( ) (59
;- . L ; . p 2 q

efficient functionf, only. This is equivalent to approximat-

ing I's by its angular average

E )—;Zl(ﬂ )
WP D= gem? (A

A
p(w) w/2< \[5%)

dQ
Fs(p+q,p)=Fs(p,p+q)~1fEFl(qu,p)

1/2

X f—
=1fo(p,a), (51
where the functiorfy(p,q) depends on the absolute values —p(—w)l \ﬁﬂ (60)
of the vectorsp, g, i.e., in it p=+/p?, q=q?. Accordingly I A T

we write
wherel .., are modified Bessel functions, aadis given by
fo(p,a)=Fr(P,q) 6(q—p) +Fyy(p,a)6(p—q), (52

w=y1—-4Nx=1-Ng/N, N,=128(3C=?). (61)
where the function$ g and F, satisfy integral equations
which are given in Appendix Csee Eqs(C16) and(C17)]. Furthermore,
Within this approximation, we find that the scalar vacuum

polarization(C9) is expressed through the functién,, [see _ ™
Egs.(C9), (C11), and(C13)]: 2AA,0)= 5 Gy P@REA, )
2A N —p(~0)R(A/A,@)], (62)
Is(@)=— T [Fuv(A.Q)—1]. (53
T and

The integral Eqs(C16) and(C17) can be reduced to second )\
order differential equations p(w)Elw/z( ) cos sm

L SN \ﬁ\ﬁ\ﬁ
p IR pdp IR 202 r=0, Horl V3 >SNy 5|, (63

dp?
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1 N
R(q/Ayw)E E\/%[I(MZ( \/;%

-2 \ﬁﬂ| ;/2< \ﬁﬂ) } (64)  This expression is obtained by making use of the approxima-
2 2A tion (C13). Naturally, the expression fdis(q) can be ob-
tained by evaluating Eq41) with I's=1. The result is

2NA 2

49 q
Hs(q)=—-|1
o

The sinwm/2 results from the Wronskian betweén,,;»(x)

andl ,x(x). 2NA
By adopting the approximatiofbl) we have obtained an Hg(q)=—

analytic expression for the Yukawa vertéX. Within this 7

approximation, thes boson propagatoAs defined by Ed. gee e g, Ref32] and references thereiB3]. Since only the

(40) is related t(_:i“s via Eq.(53). Such an expression is valid first two terms on the right-hand side of E465) and (66)

in the symmetric phase of the phase diagram. are important in the IR{<A), these equations differ about

10%.

2 2
™4, 4

8 K+ﬁ , (66)

IV. SCALING AND OTHER PROPERTIES

. . . . B. Asymptotic behavior and scalin
In the previous section we have obtained nonperturbative yme 9

solutions for the Yukawa vertex and scalar propagator within For values &w<1, the asymptotic behavior or IR be-
the ladder approximation. In this section we discuss somavior of I's and ITs with (q/A)“>q/A can be derived by
important properties of the Yukawa vertex and scalar propafirst considering the<A limit of Z, Eq. (62):

gator.

Let us briefly state our objectives. First, we apply the- _ (ﬂ) mC(w)sin)'{glnénLcS(w) (67)
Thouless criterion of the symmetry phase instability in order 2 sifww/2) | A 2 q '
to derive the critical curve given in E(B). Subsequently, we
show that near this curve the scalar propagator has a scaliivghere
form consistent with the general renormalization group
theory of second order phase transitions. We find that the o Ell" plo)(1tw)l(1+w/2) gl 69
anomalous dimension of the propagator of the composite 2" p(—w)(l-0)T(1-wl2) 48’
scalar fields isy=2— with w given by Eq.(61). More-
over, we show that the Yukawa vertex has a scaling form (0)p(— 0)(1— w?)
consistent with I lizability. S d d Clw)= \/p P (69)

power-law renormalizability. Second, we de- T(1+ 02T (1—wl2)

rive the peculiar behavior oflg nearN=N. The phase
Fransmon atN =N, Is '“?OW” as the CPT anpl IS character-_m this limit, the functionF y(p,q) with fermion momentum
ized by the absence of light unstable modes in the symmetnp:A can be expressed as

phase. Another characteristic feature of the CPT is the scal-

ing law with essential singularity for the scalar boson and the

fermion mass in the broken phase. This scaling law can be Fuy(A,q)~—— 20 (1—cothy),
obtained by analytical continuation @fs in w across the Ito  (1-w?)
critical curve atN=N_,.
In analogy with Ref[24] we investigate a few specific o A
limits: y= §|na+5(w)- (70)

(i) the large flavor limit N— ), which means that the

gauge interaction is negligible with respect to four-fermionyhys by using Eq(53), the asymptotic form foils reads
interactions, i.e.A =0, thusw=1; (ii) asymptotic or IR be-

havior of '¢(p+q,p) andAg(q), i.e., p,q<A; (iii) the be- INA 4 w
havior of II5 at the critical couplingh=A.=1/4, thusw Hs(g)~—; >+ 5 (1—cothy)|.
=0; (iv) the behavior ofIlg for A>\., w=iv, v ™ [(1tw)” (1-w9)
=y4\N—1, i.e., analytic continuation across the critical (71)
curve at\=N\..
Hence
A. Large flavor limit 1 2NA [ 1 5 ( q w+0 A2
In the large flavor limit, the four-fermion interactions (@)= 72 |9 (@) A [(arA)™]
completely govern the dynamical breakdown of “chiral”
symmetry. In this limitw=1 (A =0), thus the Yukawa ver- 2 .
tex (44) is I's(p+q,p)=1. Consequently, we obtain an ex- TOLA/A)TT], q=<A, (72)
pression forllg from Eq. (C9) by using Eq.(C13 and
Fuv(p,d)=Fir(p,q)=1 atw=1. This leads to where

045025-9
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(1+ w)? A\ D2
9e=—7 Fuv(D-Q)“(a) Fuv(a/p), (79
1) and
60 p(-o) F(l_ﬁ) B | P
B(w)= S (\/%) . P ):23|r(w77/2) 2 F(l—w/Z)(i)‘” (9)
(1+w)(1-0) Pl@) 1+§ r(P/d r  pe (1rw) |8 |p

(73 _
X sin

\ﬁ p) 0
One can show thaB(1)=4/3, which is in agreement with 2q)’
Eq. (65). The expressiofi72) for the asymptotic behavior of TR
I15(q) is valid for 0<w<1, but not foro=0 (A=X\). Foulalp) = 2 F(l—w/2)<§) (9)
The inverse propagatakg® that follows from Eqs/(40) v p(o) (1+w) \8

p
and(72) is given by NQ
p(w)l —w/2< \[EB)

(-2
Blw)\g gc/ A [ A
(74 —p(—w)lw/z( \[Eg)

The instability of the symmetric phase is signalized by theA . ant £ th lina behavi f th
vanishing ofA5*(q=0). This is nothing else than the Thou- h important consequence of the scaling benhavior ot the

L2 o scalar propagatdiEg. (76)] and of the Yukawa vertejEq.
less criterion for a phase transition of the second Kisd . . . : .
which leads to the critical curve (78)] is that, in using them, one finds that the four-fermion

scattering amplitudes scale as

X

2B(w)NA
Ast(a)~- (:Z

. (81

1
=0., 0<w<l1l (N>N,), g>-. (75 1
9=0 (N>Neo. =7 P(Pi APV Pa.Po+ @7 5, Pr.pr<a<A.

Thus the curvegy=g. is a line of UV stable fixed points. On (82)

the critical line the scalar propagator scales as . .
propag This scaling form reveals the long range nature and power-

2 A\2-7 law renormalizability of the four-fermion interactions at the
Ag(q)~=— m(a , 7=2—w, (76)  phase transition ling€35].
where 7 is the anomalous dimension. C. At the critical coupling
On the other hand, one can see that on the dire0(N At the critical value of\, i.e., =0 (\.=1/4), we can

=N¢),g<1/4, Ag*(q=0) does not vanish. Nevertheless, asderive in analogy with Ref,24] that for p>q

we shall show in Sec. V, this line is also the phase transition

line but of a special type. p| Y4 es—2+In(p/q)
The scaling form ford'g is obtained by considering only Fuv(p,q)~2 A e3—In(g/A)

the leading term in Eq67). Thus theZ function scales as

2(alA ) p(w) +0[g?/ pzln(q/p)]} (83
(A0~ 5 G on2) 2
(1+ (J)) ()\ —w/4( q ) (1-w)/2 where
X | = — . (77
F(1-w/2)\8 A 1
(1= wi2) ei= 1y m[ (TTBcos/ T Esin\/ﬁ}
In this way the Yukawa vertex can be written as
IR +15(\1/8)[ V1/8siny1/8], (84)
I's(p+q,p)~1 5) [Fir(p/9)6(q—p) 1
e =Ky Jm){ (TTBcos/T6- Esin\/ﬁ}
+Fuv(d/p)(p—a)], (78)
where, forp,q<A, +Ko(V1/8)[ V1/8siny1/8], (85)
A\ (=112 5 €
F|R(p,q)~<a) Fir(pla), €g=2-ytghn2=_. (86)
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with y the Euler gamma anid, the modified Bessel function
of the third kind.
In the infrared, i.e.q<<A, Ilg can be written as

" 2N [4_’_ 16
S e CTIS TS

+0O[g?/A%n(g/A)]|. (87)

This straightforwardly follows from the insertion of E3)
in Eq. (53).

D. Analytic continuation across the critical curve

Since the expression for thieboson vacuum polarization
is symmetric under replacement ofby — w, it can be ana-
lytically continued to the values>\.. This holds in replac-
ing w by ivin Eg. (53) with Fyy given by Eq.(60), where

v=+4N—1.

(88)
In the infrared I<<A), it means thallg can be written as

2NA | 4(1—v?) 8v
- CO
w2 (1-1—1/2)2 (1-1-112)2

Ig(q)~ ty|,

_ v A 2
y= Elna+v¢(v ), (89)

where we have used Ed71) with w—iv, and where

(v?)=8(iv)liv.

PHYSICAL REVIEW [B3 045025

sequently, the complex poles are given by

2 2 ; -1 2NA
P =Im,|“exp(=i6), Ag™(pm)=———+Ils(pw)=0.
T
(93)
The equation for the imaginary part reads
Cw(0+m)
0~sin——7yr—, (92
with the solution
2n
0~ —m+ ——) (93
w

wheren is an odd integer. Hence for values<@=<1 it
follows from Eq.(93) that the complex pole does not lie on
the physical sheet q#2.> Since coso(#+ m)/2=—1, we find
that the solution fotm,]| is

(99

Im,| [ Ag 1""A_
A m y A0=0.— 0,

consequently the critical exponent=1/w [36].° Equation
(94) describes how the mass of the pole vanisheg as
tuned toward the critical line.

The propagatoA g is of the form given by Eq(74) and in

The four limits ofI1s described above are very useful for Minkowski space, with the definitiop=\/p?, it can be writ-
illustrating the resonance structure of the bound states anén as follows:

peculiar dynamics of the CPT, see Sec. V.
To conclude this section let us mention that at zero
boson momentumg=0), we obtain

p\|-(1-e)r2
A .

Fs(p,p)=Fuv(p,q=O)=m (90)

V. LIGHT RESONANCES AND THE CONFORMAL
PHASE TRANSITION

In this section we analyze the behavior of theboson

propagator near the critical line in the symmetric phage (
=(g.), Where thes and = boson are degenerate. We will

show that foro>0 (N>N,,) the scalar compositesr(and
7 bosong are resonance@instable modgsdescribed by a

™ 9Qc

As(P) =5\ A Ag

-1
1+(—=1)“2(plim,|) ]|’

(99

with |m,| given by Eq.(94). Then, the real and imaginary
part of Ag are

ReAs(p)]

_ (.7 9%
| 2NA Ag

[1+(p/|m,|)“cose]
(p/|m,])2°+2(p/|m,|)“cose+1"
(96)

complex pole in their respective propagators. The complex———

pole in Ag should lie on a second or higher Riemann sheet

[i.e., not on the firstphysica) sheet of the complex plane of
the Minkowskian momentunp?, because unitaritycausal-
ity) demands thah g(p) is analytic in the upper half of the
complexpg-plane, wherg, is the “time” component of the

Minkowski momentunmp?= p3— p?.

SWe denote the firstphysica) Riemann sheet g2 by anglesé
with 0= — #<27 (the origin is a branch point with a branch cut
along the positive real axis

The critical exponents and 5 coincide with those found in Ref.
[36]. Note, however, that in Ref36] 7 was obtained assuming the
validity of scaling relations between the critical exponents of the

From Eq.(74) the complex pole can be computed. Firsttheory. Thus the independent computationiofz in the present

we rotate back to Minkowski spacg— pf,, exp(—im). Sub-

paper gives, in fact, a proof of the scaling relations.
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2 i 1 T T
|m[As(p)]:_(mgA_ggc> 0.5 :

(p/Im,|)“sin¢ ;oo
(p/|m, )2+ 2(p/|m,|) “cose+1° SRS
(97 ‘jg 0.2
where o= mw/2. The absolute value of the imaginary part 014
has a maximum ap=|m,| and the maximum is 0
A= — oo S8 SN (98) el

2NA Ag 2[cosp+1]"
FIG. 9. The response function Jag(p)]/Ag(0) vsp/|m,| for
This shows that wheg approacheg; from below @7g.), 0=1.0, v=0.8, v=0.6.
|m,| goes to zero|fM,|]—0) and that the maximum of the
absolute value of the imaginary part &f approaches infin-
ity [—Im Ag(|m,|)—o<].
We define a width over mass rati/|m,| as follows:

phase transition: the absence of light excitatigosmpos-
ites) in the symmetric phase as the transition is approached
(in the broken phase massless “normal” Goldstone bosons
T D, P 1 appea). This unusual behavior can be attributed to the long
| |=| |—| K Im[AS(pt)]=EIm[AS(|m(,|)]. range nature of the gauge interaction in the model under
Mol 1Myl My consideration. Another characteristic feature of the CPT is

(99 . . T . .

the scaling law with essential singularity for the dynamical

Thus the width is the difference between the momenta afermion mass in the broken phas.

which —Im(Ag) equals 1/2 of the maximum value of From the side of the symmetric phase there is no sign
—Im(Ag). Solving Eq.(99) by making use of Eqg97) and  indicating the occurrence of a phase transition. This means
(98) gives that the correlation length remains finite in the symmetric
phase even close to the critical poittie Thouless criterion
F i i = =
—[2+cosp+ (2 + cosg)2— 174 is not valid. In QED; the CPT occurs ak=\. (N=N)

|m,| where the symmetry is dynamically broken by a “marginal”

Yo operator(a long range interaction Though continuous, the
—[2+cosp—V(2+cose)°~1]"". (100 cpT is not a second order phase transition. This is reflected
. by the singular behavior of some of the critical exponents
Thus, as the mass scale of the pole is made small by a 0..v and B, see Ref[36]) asw goes to zero. The absence

proaching the critical line, the resonance is not described b T | le in the b i
a narrow Breit-Wigner type, because the width over mas&' @ l9ht complex pole in ther boson propagator Illustrates

ratio is rather large. Consequently, the resonance does nité CPT in GNJL model in 21 dimensions. Aw=0 theo
have the Lorentzian shape which is a characteristic feature 0SOn vacuum polarization is given by E§) in the infra-
the Breit-Wigner resonancnote that even in pure NJL red. If there has to be a light excitation in the symmetric
model (@w=1) the resonance is not narrow in contrast toPhase then there must be a complex pofs,
four-dimensional NJL modgl The above expression shows =|m,|’exp(=i6) in Ag with |m,|<A asg<1/4. From Eq.
also thatI'/|m,| increases whem—0, and the resonance (87), we then should find zeros dfs* at

becomes broader.

A description of the resonance structure is provided by a 0~ 1_4 N 16 In(A/|m,]) + €3] 101
plot of ImAg(p). This is illustrated in Fig. 9 in which - g [In(A/|m |)+63]z+(0+77)2/4’ (101)
Im[Ag(p)]/Ag(0) is drawn as a function of the energy scale 7
p/|m,| for various values ofv.

O~ 6+ . (102)

Absence of light resonances nea,

The existence of light resonances whose mass vanishes as
the transition is approached from the side of symmetrid-or g<g.=1/4, there are no solutions satisfyifg,,|<A,
phase in(2+1)-dimensional theories is relevant for describ- hence if there is a pole it will be heavy, i.ém,|~A. There-
ing spin excitations in high-; cuprate superconductofsee  fore at\ =\, andg<1/4 there are no light resonances in the
the paper by Kim and Lef25] and references thergirSuch 2+ 1-dimensional GNJL model.
resonances can be considered as precursors of the antiferro-What happens with the-boson propagator if we analyti-
magnetic transition. It is known that QEDy itself cannot  cally continue it to the values>\.,N<N,? By doing so,
give rise to light excitations in the symmetric ph48&,5,§.  we remain in the massless chiral symmetric phase, but we
This is one of the main features of the so-called conformajust end up in the “wrong vacuum’(the chiral symmetric
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solution becomes unstableThe 7~ and o bosons are tachy- tor, obtained through a nonperturbative solution of the equa-
ons for such a solution. Thus the border of the stable symtion, has the same infrared asymptotics as the one-loop ex-
metric solution\=\.,g<1/4 is also the phase transition pression: II(p)=Ca/p, C=1+1/14N. Thus, we have

line.
Let us show that there are indeed tachyéngh imagi-

showed that a nontrivial IR fixed point persists in the non-
perturbative solution. Moreover, quantitatively there is only

nary massn®<0) when\>\.. For this we need to show slight difference between the one-loop result and the nonper-
that A5 has a real pole in Euclidean momentum space. Asturbative solution even at the number of fermidws 2.

suming that the pole lies in the infrarefn,| <A, we can
use Eq.(89), wherew has been replaced hy, v given by
Eq. (88). The tachyonic pole is given by

2NA
74
From this we derive the solution
Imol _ 2T 2B o1 104
s B d(v9) |, (104
where
= 71—1}9
B=tan ECNCESSE (105

As is well established, the tachyon with the largjst| in
the physical region correspondsrie-1.

We then proceeded with studying the GNJL model in the
symmetric phase with massless fermions. We solved an
equation for the Yukawa vertex in the approximation where
the full Bethe-Salpeter kernel is replaced by the planar one
photon exchange graph with bare fermion-photon vertices.
The obtained Yukawa vertex was used for calculation of the
scalar composites propagator. The phase transition curve was
determined from the condition of instability of the symmetric
solution. We established the existence of light excitations
(resonancesin the symmetric phase for values bf>N,,
=4 (A<\.), provided the four-fermion couplingyt1/4) is
near its critical value along the critical curv@). As g
<1/4 andN approache$\., from above the light excitations
are absent and the situation resembles pure QED

The field theoretical models, like QEDand the GNJL
model, often appear in the long-wavelength limit of micro-
scopic lattice models used for description of high-
samples. For instance, in a spin-charge separation ansatz for
thet-J model, where spin is described by fermionic spinons

It is clear that the tachyons in the symmetric solutiongng charge is described by bosonic hol¢msvice versy, a

appear also when we cross the upper part{.,g>1/4) of

“statistical” U (1) gauge interaction appears naturally in the

the critical curve. However, the difference between this partheory along with four-fermion interactionésee, for ex-

Of the critical -Iine and the |Ina=hc ,g<1/4 |S that We have amp|e1 Refs[ll], [20] and [25]) It was argued in Reﬂ:25]
light compositesresonancgsnear the first line while they pat QED, with fermions treated as spinons, might serve as

are absent near the last one.

a possible candidate for describing the undoped and under-

If we now consider the limik |\, i.e., we approach the doped cuprates. For physichl(=2) the chiral symmetry

scaling law with essential singularity,

21
ex;{—m). (106

M%ex 4—g+2¢(0)
A 1/4—g

should correspond to an antiferromagnetic ordering in un-
doped cupratef38], while the symmetric phaséor larger
N) would describe some kind of a spin liquid.

Recently spin excitationgarticle-hole bound statebave
been observed in the normal sté#nd in the superconduct-

This scaling law with essential singularity is obtained bying state of underdoped and optimally doped cuprates such
analytical continuation of the solution in the symmetric as YBgCu;Og. « and Lg_,Sr,CuQ,, wherex is the amount

phase L <A.) to the broken phase\(=\.). Thus the tachy-

of doping, see Ref.39] and references therein. The dynamic

onic (unphysical solution in the broken phase leads to asusceptibility x” describing antiferromagnetic correlations
scaling law which is proportional to the scaling law given by near wave vecto® = (7, 7) has a broad peak whose energy

the fermion mass ana boson mass in the broken phdgé

VI. CONCLUSION

comes down as the doping is reduced. The height of the peak
increases as the doping is reduced and the antiferromagnetic
transition approached.

As was proposed in Ref25], QED; could describe these

In this paper we studied a nonlinear equation for the runparticle-hole excitations. However, from the point of view of

ning coupling in QER which can be considered as the ana-the present paper, pure QEBannot be applied for describ-
logue of the ladder approximation for the fermion propaga+ng such spin excitations because of absence of light reso-
tor. We solved our equation both analytically andpgnces in the symmetric phase of the model. In our opinion,
numerically. We found that the vacuum polarization operathe GNJL model serves this purpose better since light exci-
tations appear near the critical curi® on both sides. More-
over, the mass of resonances decreases as the phase transi-
A phase transition is by definition described by a nonanalytiction is approachedalong the trajectory, or A, is fixed and
behavior in the theory parametdmupling constants, temperature, 97dc) While their peaks become sharpergapproaches. .
etc). Therefore by analytical continuation one cannot go from oneAll these features are in qualitative agreement with the ex-
phase into another. perimental picture if we assume that the four-fermion cou-
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pling g depends on the doping in such a way thatcreases critical value. It would be quite interesting to find out a trun-
when the doping is reduced. cated set of SD equations giving such a small critigl.

A problem, however, is that, in case of cuprate supercon-
ductors, the physically relevant number of flavors equals two
(N=2) which is less tharN.,~4. This means that one ACKNOWLEDGMENTS
would get the dynamically broken symmetry phase corre-
sponding to the Nal ordered state at any doping in both ~ We would like to acknowledge V. A. Miransky for useful
QED; and the GNJL model. Kim and Ld@5] proposed a and stimulating discussions and for bringing a pafieef.
mechanism to loweN, (and makeN,<2) in pure QERQ by  [40]) to our attention. We thank V. de la Incera, V. A. Miran-
taking into account the effect of doping which screens thesky, and M. Winnink for carefully reading the manuscript. V.
time-component of the gauge field and halws, due to  P. G. is grateful to the members of the Department of Phys-
additional coupling of the gauge field to charged scalaiics of the Nagoya University, especially K. Yamawaki, for
fields. However, another way out of such a dilemma appeartheir hospitality during his stay there. His research has been
if we invoke the arguments of Appelquist al. [40] that  supported in part by Deutscher Academischer Austauschdi-
ladder SD equations usually overestimate the critical valuenst (DAAD) grant, by the National Science Foundation
N.. These authors suggest that the true critical value i§USA) under Grant No. PHY-9722059, and by the Grant-in-
Ng=3/2. Thus for the physical case bf=2 the spontane- Aid of Japan Society for the Promotion of SciendSP$
ous symmetry breaking does not occur and the system wilNo. 11695030. He wishes to acknowledge JSPS for financial
be in the symmetric phase when the doping exceeds sonsupport.

APPENDIX A: BOX DIAGRAM

In this appendix we compute the box functiBrof Eq. (21). We start by contracting the’s in Eq. (15) and evaluate the
traces. The result is

[ i
BP0 =1 | L {by(p ko) +by(p k) +bo(p.kr)] (A1)
M(27)
where
by(p.k,r)=[—16(k-r)?>—4k-r(4k-p—p?) +4(k*—4k-p)p-r—24k-rp-r—16(p-r)2—24k-rr?
1
+4(k?—3k-p+p?)r2—24p-rr2—12r* : A2
(emsieprpirT e lrr i priar o )
and
1
bo(p,k,r)=[—4k-rp2+4(2k-p+p?)p-r+8(p-r)?+4k-rr2+4(2k-p+p?)r2+12p-rr2+4r4 ,
r2(r+p)*(r+p+k)?
(A3)
8k-rp-r—4k-pré+4k-rr2+4p-rr2+4rt
bs(p,k,r)= : (Ad)

r4(r+p)?(r+k)>?

The traces have been performed with the helpmfNcALc [41]. Subsequently, we cancel thelependence in the numerators
of Egs. (A2)—(A4) without shifting the integration variable. In this way the box functi®rcan expressed as follow@
Euclidean formulation

2 1 4 1 2k?
+ - + +
r2(r+k)2  r2(r+k+p)? (r+p(r+k)? (r+p* ri(r+p)3(r+k)?

s s d3r
B(=p%—k ’_p'k):_sz(zwﬁ

k2 N 4k? 2k*
(r+p)4r+k+p)? (r+k+p)2(r+p)2(r+k)?> r2(r+k+p)2(r+p)?(r+k)?

2k-p N 2k-p 2k-p N 4k-p
r2(r+p)%(r+k)?2  r2(r+p)2(r+k+p)? r3(r+k+p)2(r+k)? (r+k+p)2(r+p)?(r+k)?
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4k%k-p N 2k-r 4k-r N p p?
r2(r+k+p)2(r+p)2(r+k)2  r4r+k)?2 r2(r+p)2(r+k)? r*r+k)? r?r+p)?

) p2 N 4p? N K2p>
r2(r+k+p)2(r+k)?  (r+k+p)2(r+p)2(r+k)? r2(r+p)*(r+k+p)?

5k?p? 4k- pp? 2k-rp?
r2(r+k+p)2(r+p)2(r+k)2  r2(r+k+p)2(r+p)2(r+k)2 r(r+p)3(r+k)?

p* 2p* 4p-r 2p-r
rAr+p)%(r+k)?  r2(r+k+p)?(r+p)2(r+k)? r2(r+p)2(r+k)> r2(r+k+p)?(r+k)?

2p%p-r 2r?
rAr+p)2(r+k)2  (r+k+p)2(r+p)ar+k)?|

(A5)

For the explicit calculation of the integral, only a handful of 1 1 k-p k-p

integrals are involved. These integrals are k' p akplk+p| = akplk—p]|
. (2k2+kp+2p?) (2k*+kp+2p?)
dr |1 k? T 2kplk T 2kplk—
f — =0, (AB) plk+p| plk—p|
E(2m)3|r*  ri(k+r)? 4 122 g 4 122 g
; (2k +5kp+2p)+(2k +5k“p“+2p7)
_ 4(k-p)kplk+p| 4(k-p)kplk—p|
k2p2 B k2 _ k- p (All)
r4k+n)2(p+r)2  rik+r)2| 8kpk—p|’
(A7) If an additional integration over the angle betwgeand k

follows we can simplify this equation because of the sym-
metry p-k— —p-k. However, if we make use of this sym-

f d3r
E(2m)3

f dr 1 _ i (A8) metry, we should take the principal value for angular inte-
E(2m)3 r3(k+r)? 8k’ gration, since the pl-k singularity no longer explicitly
cancels.
At various places, we need the following angular
f 43 1 1 integrals®
E(2m)3 r3(r+ KA1 +p)2 8kplk—p[’
(2m)° ro(r+k)=(r+p) a9 fdQl— 1
4 [k—p| maxk,p)’
dr 1
fE(ZW)S r2(r+k)2(r+p)3(r +k+p)? j 20 e Kb (A12)
4m |k=pl 3 maxk3pd)’
1 [ 1 1 (AL0)
8k'p kplk_p| kp|k+p| J do 1 B 1 | k+p AL
ar (crp 2kp T pl” A
(k+p)

where|k—p|= \(k—p)?. In the computation of the last in-
tegral(A10), we first have rewritten the left-hand side as the
sum of four so-called triangle diagranjdiagrams of the dQ kp 1 (k*+p?)  k+p
form of Eq.(A9)], the subsequent integration is then straight- A4 (k+ )2_ 2 4kp r"||(_ p|’ (A14)
forward. P

The final result reads -

8The angular measure idQ=2x[gdesing, with cose
B(—p?,—k%—p-k) =k-plkp.
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dQ (k-p)? (K2+p?) where d(k?) =e?/[1+11(k?)], ¢(k?)=1—¢&(k?®). The SD
j a7 (K 2= 4 equation for the fermion wave function renormalizati®ris
(k+p) given by
(K*+p?)  k+p
e M) AP AP =1+ f d°q A(9?)
o . (2m)° q°A%(9*) +B*(q%)
and the Cauchy principal value integral
d(k?)
Pf o 1 1 k+p+ VkZ+ p? X7 |(Pm2)p-d
— = n .
47 K-plk=p|  kpJkZ+p? | [k—p|+ K2+ p? A6 (p-0)2)
(A16) +| p-a- % )é(kz)l

Note that we use the notatidr= Vk?, p=/p? for the scalar
guantities in the right-hand side expressions of E442)— 5 5
(A16). —p-q[Ag(k?)+Ap(k9)];, k=p—q. (B2)
Here, we compute also a general form of the integral over
the kernelK(p,k) given by Eq.(25), i.e.,
(pk) g Y= Introducing the variable&?=x+y—2Xy cosé, x=p?, y

A K =g?, and performing the integration over all angles except
|(5):f dk—K(p,k) the angled, we get
o p
(D-2)l2p
11t 1 2t4+5t2+2 2 a2y 11— [Vau D2
D el R P SO | pTA(p )—1]—CDf dy— dasm 0
f dtt 6 t + ZIZM sinh t‘| 0 AZ(y)+B (y
10t 1 2t4+5t2+2 g | VXY CostID 2+ £(k)]
- dtt 7 - — — — 4+ ———sinh !t X d(k9) K2
plA 6 t  2t2/1+¢2
4 2
:jldt t9+t7179) —E_E+2t ot +2smh 4 ~xycosf[Ag(K?)
0 6 t  2t21
+ 3 B“th 5+O p2 (Al?) +AP(k2)]] ’ (83)
15A, A2]’

with —3=< 6=<2. Exact solutions exist whe#i is an integer. whereCp *=2°7(>* D2I[(D—1)/2]. Following the works
In that case, one can make the transformatiensinhins ~ PY Kugoetal.and Kondoet al. [42] (see also Ref43]) we
=(2—1)/2s, after which the integral can be written as a sumperform now thed integration by parts in terms containing

of Spence functions. The result is the first power of cog:
|(0):W_2_§ |(1):7T_2 53 |(2)_7T_2_£ pZ(A(pZ)—1)=— Co JAZ ,y(D_z)le(Y)(ZXY)
42 64 4(A18) D-1Jo ™7 yA’(y)+BX(y)
X i inD—2 D-2 ’
APPENDIX B: DERIVATION OF THE NONLOCAL fo dosin® 0[ zD-1 d(2)§(2)]

GAUGE IN THE GNJL MODEL

. : : : —(D-2)z°"¥[d(2)—zd'(2)]]
In this appendix we derive the nonlocal gaug§jen the

GNJL model in order to sét=1, so that the WTI is satisfied
if one uses the bare vertex approximation. For generality we _[As(Z)JFAP(Z)]'] ; (B4)
consider the case of arbitrary dimensiddsnd in presence
of the mass functio. ) ) o .
We introduce the nonlocal gauge functi@(kz) by writ- where the prime denotes the differentiation with respect to

ing the full photon propagator in the form z=K?, ) . : .
The requiremen(p?) =1 is fulfilled by choosingZ(z)
Kok, | d( 2) such that the expression in curly brackets in B8¢) van-
e?D (k)= — ( g,,— ((k3)-L2 ) (B1)  ishes. This gives the first order differential equation §(z)
g a K2 ) K2 which is easy to integrate,
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(0= 55— [(at=a (o]
Z:— —
2’ 2d(z)Jo
+—— | dttP " Ag2)+Ap(2)] (B5
Dzd()f [As(2)+Ap(2)] (B5)
(the integration constant was fixed by requiring

[z°72d(2)£(2)]|,-0=0 in order to eliminate the singularity
at z=0 in {(2)). The last equation finally leads to the fol-

lowing expression fo&(z):

(D—1)(D—2)

&z)=D—1— 5 202)

f dtt®3d(t)

1
Td()f dtt® '[Ag(2)+Ap(2)]". (B6)

For D=3 we take

e2

A= mi0 ~

—k, k<a,

NC (B7)

with k=\k? and assume the following form for scalar
propagators in the symmetric phase and near the critical line

[see Eq(76)]:

Ag(k)=Ap(k)= (B8)

a AZ Y
K/
wherea is some constant and the powex@<1 [Eq. (B8)

is verifieda posterioriwhen solving the SD Eq40) for the
scalar propagatdrWe obtain, from Eq(B6),

A

2 NCya (A}271
¢k=3 ETE R e (B9)

PHYSICAL REVIEW [B3 045025

=

=p]~ 2, Nn(kP)Po(cosp), (C1)
Crak. i K, C2
krq)? & an(k,q)Py(cosy), (C2

where cosx=p-g/pg, cosB=p-k/pk, and cosy=q-kigk The
Legendre polynomial®, satisfy

dQ B 11
j Epm(COSa)Pn(COSa)— Ef_ldx Prn(X)Pr(x)

_ 5mn
2n+1°

(C3

With the above defined expansions, and by making use of the
identity

1 T 27
—f dasina deo P,(cosa)P,(cosp)
47T 0 0

P (cosvy), (C9

_ O
21+1

where cog3=cosa cosy+sinasinycosé, Eq. (48) for the
Yukawa vertex can be represented as the set of equations for
harmonicsf, :

A
(P.)=d0+) [ dkN(Kp)

[ 0

X 2 > Cimnam(k,@)fn(k,q),

=0 n=0

(CH

where

In absence of the four-fermion interaction we get the famous

nonlocal gaugeé=2/3[16]. Careneet al.[21] have included

exchanges by the bare scalar propagators what corresponds
to takingy=1/2, a=4/N (C=1 in their leading order of the
1/N approximation for the photon vacuum polarizajion
Equation (B9) then givesé=1/3 in accordance with their

findings.

Our Eq.(74) for the scalar propagator gives the exponent
vy=w/2 and contribution due to the exchange of scalars into

£(k) becomes suppress¢sincew<1) and we are left with
Nash’s nonlocal gaugé=2/3.

APPENDIX C: APPROXIMATION FOR THE YUKAWA
VERTEX

As was mentioned in Sec. lll, in order to resolve the an-

gular dependence of the Yukawa vertex functiop we ex-
pand it, together with the kernels of Eq48) and (49), in
Legendre polynomial®,. We write

Fi(p+a,p)= 2 fo(p,a)Pp(cOS@),

11
Com=3 ~ AXPIOOPR(0P(X)

4,2, ),

1
) (2s+1)

()
(s=Dl(s—m)!(s—n)!

where Z=|+m+n and @), =I'(a+k)/I'(a). The coeffi-
cientsC,,,, are zero unlesk+m+n=2s is even and a tri-
angle with sides, m, n exists, i.e.|| —m|<n=<I|+m.° Fur-

thermore, Eq(49) can be written as

RO L

We thank L. P. Kok for pointing out the paper by Askeyal.
[31].

an(k,q)f(k,q)
n+1

(C7)
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Within the approximation(51), i.e., keeping the zero- so-called infraredIR) function Fz and the ultravioletUV)
order termf only in right-hand sides of Eq$C5) and(C7),  function F,,, see Eq.(52). These functions describe the

we get following asymptotic behavior of the Yukawa vertex:
A . .
fo(p,q)=1+>\JO dk No(k,p)ag(k,a) fo(k,a), (C8) L'g; Fs<p+q,p)=1:)lg; Fuv(p.9), (C14
2N (A lim I's(p+q,p)=1lim Fr(p,q).
Hs(Q)=—2f dk ag(k,q)fo(k,q). (C9) a>p a>p
m=Jo (C15)
The functionsN, anda, are straightforwardly obtained from Tpg fact that both these asymptotic limitsIof are described
inverting Egs.(C1) and(C2). This gives by fo through F\r and F,, guarantees the validity of the
ok—p) 6(p—k) approximation(51). This crucial point is explained in more
No(k,p)= + , (C10 detail in Ref.[24], where this approximation is referred to as
k p “the two-channel approximation.”
and Then, by making use of Eg$52), (C10, and(C13) we
get
dQ (k*+q-k)
Elo(k,q):J'Af——2 p k2
7 (k+q) (p<q) FIR(qu):l_l')\fo dkHFIR(Kq)
=ar(k,q) 0(q—k)+ayy(k,q)8(k—q),
a k Al
(C1Y) +xf dkFF,R(k,q)nL)\f dic:
(k,q) 1+(k2_q2)| k+a o q
aRr(K,q)=5+ ———In—~- 2
2 Ak Atk x(l— %) Fov(ka), 16
(k)= =+ (K=ah) kg (€12
a qQ)=z+——"In—>.
wlkq)=7 49k  k—q . K2
In order to be able to solve the equations Fyg and F (p>0q) FUV(p’Q):1+}‘fo dkzpqu'R(k’Q)
given by Eq.(52), we approximate the functiorsgg andayy
as follows: +Afpdk1(1 qz)F « )+)\JAdk1
K2 o qg P 2k2) Y 4 p K
ar(k,gq)~—, ayyk,q)=~1——,
ir(K, ) 202 uv(k, Q) K2 -
X 1-——=|Fuv(k,q), C1
1 ( 2k2) uv(k, ) (C17)
ar(g,9)=ayyv(q,9) = > (C13

and for the scalar vacuum polarizati¢89) we can derive

The validity of this approximation is addressed in Sec. IV A.Eq. (53). The integral Eqs(C16) and(C17) are equivalent to

The lowest order harmonity, of the particular Legendre the second order differential equations given in Eg4) and
expansion given in Eq(50) is expressed in terms of the (55), with the four boundary condition&6) and (57).
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