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Nonperturbative infrared dynamics of three-dimensional QED with a four-fermion interaction
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A nonlinear Schwinger-Dyson~SD! equation for the gauge boson propagator of massless QED in one time
and two spatial dimensions is studied. It is shown that the nonperturbative solution leads to a nontrivial
renormalization-group infrared fixed point quantitatively close to the one found in the leading order of the 1/N
expansion, withN the number of fermion flavors. In the gauged Nambu–Jona-Lasinio~GNJL! model an
equation for the Yukawa vertex is solved in an approximation given by the one-photon exchange and an
analytic expression is derived for the propagator of the scalar fermion-antifermion composites. Subsequently,
the mass and width of the scalar composites near the phase transition line are calculated as functions of the
four-fermion couplingg and flavor numberN. The possible relevance of these results for describing particle-
hole excitations, in particular antiferromagnetic correlations, observed in the underdoped cuprates, is briefly
discussed.
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I. INTRODUCTION

Quantum electrodynamics in 211 dimensions (QED3)
has attracted much interest over recent years. Its version
N flavors of massless four-component Dirac fermions sha
a number of features, such as confinement and chiral s
metry breaking, with four-dimensional quantum chromod
namics~QCD!. The loop expansion of a massless theory s
fers from severe infrared divergencies. However, in the 1N
expansion, the theory becomes infrared finite@1#, with the
effective dimensionless coupling

ā~p!5
e2

p@11P~p!#
, P~p!5

e2N

8p
, p5Ap2, ~1!

giving rise to the renormalization-groupb function

bā~ā ![p
dā~p!

dp
52āS 12

N

8
ā D . ~2!

In Eq. ~1! e is the dimensionful gauge coupling andP(p) is
the polarization operator. At large momenta (p@a
[e2N/8) the effective coupling ~1! approaches zero
~asymptotic freedom! while for small momenta (p!a) it
runs to the infrared~IR! fixed point 8/N. Here, the dimen-
sionful parametera plays a role similar to theLQCD scale.
Since QED3 is a super-renormalizable theory, the running
the coupling should be understood as a Wilsonian rather
Gell-Mann–Low type, and it is not associated with ultravi
let divergencies.

By studying the Schwinger-Dyson~SD! equation for the
fermion self-energy in leading order of the 1/N expansion, it
was found in Ref.@2# that a phase transition occurs when t
coupling at the IR fixed point exceeds some critical va
(8/N.p2/4). This means there exists a critical number
fermions Ncr (Ncr532/p2.3.24) below which dynamica
mass generation takes place and above which the ferm
remain massless. This is similar to what happens
quenched QED4 @3,4#, where the gauge coupling must e
0556-2821/2001/63~4!/045025~19!/$15.00 63 0450
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ceed a critical value for chiral symmetry breaking to occ
The appearance of a dimensionless critical coupling can
traced to the scale invariant behavior of both theories. T
scale invariance of QED3 is associated with the IR fixed
point, since, as is evident from Eq.~1!, in the limit p!a the
dimensional parametere drops out of the running coupling
~as well as from SD equations for the Green’s function!.
Related to this is the fact that the chiral symmetry break
phase transition in both theories belongs to a special uni
sality class called conformal phase transition~CPT! intro-
duced in Ref.@5#. It is characterized by a scaling functio
having an essential singularity at the transition point, and
abrupt change of the spectrum of light excitations as
critical point is crossed~for details about the CPT in QED3
see Ref.@6#!.

The presence of a criticalNcr in QED3 is intriguing espe-
cially because of possible existence of an analogous crit
fermion numberNf5Ncr in (311)-dimensional SU(Nc)
gauge theories, as is suggested by both analytical stu
@7,8,5# and lattice computer simulations@9,10#. Also, a non-
trivial IR fixed point in QED3 may be related to nonpertur
bative dynamics in condensed matter, in particular, dynam
of non-Fermi liquid behavior@11,12#.

The fact that the value of the IR fixed point determin
the criticalNcr , below which the system is in the symmet
broken phase, and that this critical value is found to be
order 3 provides motivation for searches beyond the 1N
expansion. It is especially important because there is
controversy concerning the existence of finiteNcr in QED3;
some authors argue that the generation of a fermion m
occurs at all values ofN @13,14# what might mean the ab
sence of the IR fixed point for the running coupling.1 Despite
the arguments of Ref.@15# in addition to the fact that studie

1This would happen, for example, if one finds more soft behav
of the polarization operator in the infrared, likeP(p);(a/p)g,
with g,1.
©2001 The American Physical Society25-1
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of 1/N2 corrections to the gap equation showed the incre
of the critical value (Ncr5128/3p2.4.32) @16–18#, the situ-
ation is far from being conclusive. What we need is so
kind of self-consistent equation for the running coupli
which is to be solved nonperturbatively.

In the present paper we study such a nonlinear equa
for the running coupling which is the analogue of the ladd
approximation for the fermion propagator.2 Similar to the
gap equation, the kernel is taken in the 1/N approximation,
where it is nothing else as the one-loop photon-photon s
tering amplitude with zero momentum transfer. The equat
obtained is obviously gauge invariant. We then study
equation both analytically and numerically. We find that t
vacuum polarization operator, obtained as a nonperturba
solution of the equation, has the same infrared asympto
as the one-loop expression:P(p).Ca/p, C.111/14N.
Thus a nontrivial IR fixed point persists in the nonperturb
tive solution. Moreover, the correction to the one-loop res
(C51) is small even atN51 due to smallness of the nu
merical coefficient before 1/N, that explains why the leading
order in the 1/N expansion~the one-loop approximation! for
the vacuum polarization works so well.

Further we proceed to studying QED3 with additional
four-fermion interactions@the gauged Nambu–Jona-Lasin
~GNJL! model#. Such kind of models are considered to
effective theories at long distances in planar condensed
ter physics, in particular, for high temperature supercond
tivity @20#. It is well known that in the improved ladder ap
proximation ~with the photon propagator including fermio
one-loop effects! this model has a nontrivial phase structu
@21# in the coupling constant plane (1/N,g), where g
52GL/p2 is the dimensionless four-fermion coupling (L is
the ultraviolet cutoff!. The critical line is

gc~1/N!5
1

4 S 11A12
Ncr

N D 2

, N.Ncr , ~3!

at g.1/4, and 1/N51/Ncr at g,1/4. Above this line the gap
equation for the fermion self-energyS(p) has a nontrivial
solution. Thus the chiral symmetry is dynamically broke
which implies the existence of a nonzero vacuum conden

^c̄c&. One end point (1/N50,g51) of the critical line cor-
responds to the ordinary NJL model~in 211 dimensions!,
while the other one (1/N51/Ncr ,g50) corresponds to pure
QED3.

A nice feature of this model is that it is renormalizable
the 1/N expansion@22# leading to an interacting continuum
(L→`) theory near a critical scaling region~critical curve!
separating a chiral symmetric phase (xS) and a spontaneou
chiral symmetry broken phase (SxSB). The spectrum of
such a theory contains pseudoscalar (p) and scalar (s)

2Recently, in Ref.@19# another nonlinear equation for the runnin
coupling was proposed in order to study nontrivial infrared str
ture of the theory. However, their definition of the running coupli
deviates considerably from the standard one used in the pre
paper and we will not attempt to compare both approaches.
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bound states which become light in the vicinity of the critic
line. Since the phase transition is second order along thg
.1/4 part Eq.~3! of the critical curve, scalar and pseud
scalar resonances are to be produced on the symmetric
of the curve, whose masses approach zero as the cri
curve is approached@23,24#. The part of the critical curve
with g,1/4,1/N51/Ncr is rather special and is related to th
CPT in pure QED3 ~we shall discuss it more in the mai
text!.

In this work we study scalar composites (s andp bosons!
which are resonances in the symmetric phase of
211-dimensional GNJL model. Thep boson can be viewed
as a Goldstone boson precursor mode that comes dow
energy as the transition is approached. Our study is m
vated partially by possible relation of these resonances
spin excitations observed in neutron scattering experime
in underdoped high-Tc superconductors@25#. We calculate
their masses and widths as a function of the four-ferm
coupling g and therefore mass and width’s dependence
the doping concentration~since in certain low-energy effec
tive models based on spin-charge separation, the coupling
would depend on the doping, e.g., Ref.@26#!.

The plan of the present paper is as follows. In Sec. II
derive a nonlinear equation for the effective running co
pling in pure QED3 which is then solved both analyticall
and numerically to establish the existence of a nontrivial
fixed point. In Sec. III after introducing the GNJL model
211 dimensions we solve the equation for the Yukawa v
tex with nonzero boson momentum. In Sec. IV we obtain
analytical expression for the boson propagator valid alo
the entire critical line and analyze its behavior in differe
asymptotical regimes. The analysis of the scalar compos
near the critical line~3! is given in Sec. V. We present ou
summary in Sec. VI. In Appendix A we compute the on
loop photon-photon scattering amplitude with zero tra
ferred momentum and list some useful angular integrals
Appendix B, an expression for the nonlocal gauge for
ladder~bare vertex! approximation is derived. Finally, in Ap
pendix C, we present some details of the approximation@24#
which is used to solve the equation for the Yukawa verte

II. THE EQUATION FOR THE RUNNING COUPLING
IN QED3

The Lagrangian density of massless QED3 in a general
covariant gauge is given by

L52
1

4
Fmn

2 1
1

2a
~]mAm!21c̄ i ig

mDmc i , ~4!

whereDm5]m2 ieAm is the covariant derivative. In a parit
invariant formulation we considerN flavors of fermions (i
51, . . .N) described by four-component spinors. The thr
434 g matrices are taken to be

-

ent
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g05S s3 0

0 2s3
D , g15S is1 0

0 2 is1
D ,

g25S is2 0

0 2 is2
D , ~5!

with s i the usual Pauli matrices. There are two matrices

g35 i S 0 1

1 0D , g55g552 i S 0 1

21 0D , ~6!

that anticommute withg0, g1, and g2. Therefore for each
four-component spinor, there is a global U~2! symmetry with
generatorsI, 1

i g
3, g5, and 1

2 @g3,g5#, and the full symmetry
is then U(2N). In what follows we shall restrict ourselves t
the symmetric phase of the model, i.e., massless fermio

The exact SD equations are given in Fig. 1. For clarity
have extracted the explicit factors ofN coming from the
one-fermion loop. Since in pure QED3 we have only one
dimensionful parametere, this enables us to choose our sca
such thatNe2 remains fixed. This means that every phot
propagator~timese2) contributes one factor of 1/N.

To make a 1/N expansion of Fig. 1, we first need to e
pand the two-fermion, one-photon irreducible fermio
fermion scattering kernel, see Fig. 2. We can convince o
selves that Fig. 2 is indeed the right expansion, since the
corrections of order one are fermion loops and they are
ready included in the full photon propagator. Inserting t
expansion into the SD equation for the vertex, we obtai
closed set of integral equations. The nice feature of this tr
cated system of SD equations is that it satisfies the W
Takahashi~WT! identities for the vertex as well as for th
vacuum polarization@18#. However, finding an analytic so
lution seems to be a formidable task and further approxim

FIG. 1. Exact SD equations for the gauge boson propag
Dmn , the fermion propagatorS, and the vertexGm.

FIG. 2. The 1/N expansion of the two-fermion, one-photon i
reducible fermion-fermion scattering kernel.
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tions are required. For such an approximation, we simp
the fermion and the vertex SD equations by keeping only
lowest order terms in the 1/N expansion~see Fig. 3!. Then,
inserting this into the SD equation for the photon propaga
we obtain the equation shown in Fig. 4 which still satisfi
the WT identity. After that equation has been solved,
fermion propagator and the vertex can be evaluated exp
itly through right-hand sides of Fig. 3.

We could solve the obtained photon propagator equa
by further iteration, with the one-loop fermion correction i
cluded at the initial step to obtain a perturbative 1/N expan-
sion. Instead we choose to solve the nonlinear integral eq
tion given by Fig. 4 as it is. In this way we might get a hi
of any nonanalytic behavior in 1/N which would be lost oth-
erwise. At first glance, this way of solving a truncated sy
tem of SD equations ignores possible nonanalyticity in 1N
coming from the fermion wave function and the vertex~re-
lated, for example, to the power-law behavior due to
anomalous dimension!. Note, however, that the fermion
propagator is a gauge dependent quantity, thus poss
power-law behavior of the fermion wave function must ca
cel the corresponding behavior coming from the longitudi
part of the vertex@recall that we consider in this paper th
symmetric ~massless! phase only#. Therefore the only
nonanalyticity we have neglected is the one which might
present in the transverse part of the vertex beyond orderN.
Neglecting possible nonanalyticity in the transverse ver
means that we are seeking for nonanaliticity originating fro
the nonlinear equation for the photon propagator only.
some extent, the considered approximation is similar to so
ing the SD equation for the fermion mass function in t
ladder approximation, where the photon propagator is ta
in the leading 1/N order @1#.

In 211 dimensions, the SD equation for the phot
propagator reads

or

FIG. 3. SD equation for fermion propagator and vertex up
order 1/N2.

FIG. 4. Closed SD equation for the gauge boson propagato
next-to-leading 1/N expansion.
5-3
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FIG. 5. The box diagramBmrns.
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Dmn
21~p!5D0mn

21 ~p!1Pmn~p!, ~7!

with D0mn the bare photon propagator, and wherePmn is the
vacuum polarization tensor

Pmn~p!5 iNe2E
M

d3r

~2p!3
Tr@gmS~r 1p!Gn~r 1p,r !S~r !#.

~8!

Because of the gauge symmetry the vacuum polarization
sor is transverse:

Pmn~p!5~2gmnp21pmpn!P~p!, ~9!

therefore, for the full photon propagator in a general cova
ant gauge, we have

Dmn~p!5S 2gmn1
pmpn

p2 D 1

p2

1

@11P~p!#
2a

pmpn

p4
.

~10!

Moreover, one can write

P~p!52
1

2p2 S gmn2c1

pmpn

p2 D Pmn~p!, ~11!

where the constantc1 can be chosen arbitrarily.
The vacuum polarizationP(p) governs the running of the

dimensionless gauge coupling. Now we study the integ
equation based on Fig. 4, this gives

Pmn~p!5P1
mn~p!1P2

mn~p!1O~1/N!, ~12!

whereP1
mn(p) is the one-loop vacuum polarization,

P1
mn~p!5 iNe2E

M

d3r

~2p!3
Tr@gmS0~r 1p!gnS0~r !#,

~13!

with S0(p) the bare fermion propagator,S0(p)51/p̂, and

P2
mn~p!5 iNe4E

M

d3k

~2p!3
Drs~k!Bmrns~p,k!, ~14!

whereBmrns(p,k) is the one-loop ‘‘photon-photon’’ scatter
ing amplitude, with zero momentum transfer, i.e.,
04502
n-

i-

al

Bmrns~p,k!5 i E
M

d3r

~2p!3
Tr@gmS0~r 1p!grS0~r 1p1k!

3gnS0~r 1k!gsS0~r !#

1 i E
M

d3r

~2p!3
Tr@gmS0~r 1p!grS0~r 1p1k!

3gsS0~r 1p!gnS0~r !#

1 i E
M

d3r

~2p!3
Tr@gmS0~r 1p!gnS0~r !gr

3S0~r 1k!gsS0~r !#. ~15!

A graphical representation of the ‘‘box’’ diagram~15! in
terms of Feynman diagrams is given in Fig. 5.

For the scattering amplitudeBmrns there exists a Ward-
Takahashi identity@27#, which states the transversality of th
amplitude with respect to external photon momenta,

pmBmnrs~p,k,q,r !50, knBmnrs~p,k,q,r !50, etc.
~16!

The vacuum polarization tensor has a superficial linea
divergent part, which can be removed by a proper gau
invariant regularization. However, since the divergent par
proportional togmn we can project out the finite vacuum
polarization by contractingPmn(p) with the projector

Pmn~p!5S gmn23
pmpn

p2 D , ~17!

i.e., we choose the constantc1 in Eq. ~11! to bec153. This
approach was used in Refs.@28# and @15#. In this way, we
obtain

P~p!5P1~p!1P2~p!1O~1/N!, ~18!

with

P1~p!52
4iNe2

p2 E
M

d3k

~2p!3 Fk222k•p23~k•p!2/p2

k2~k1p!2 G ,

~19!

P2~p!5
iNe4

2p2 EM

d3k

~2p!3

B~p2,k2,p•k!

k2@11P~k!#
, ~20!

where

B~p2,k2,p•k!5gmngrsBmrns~p,k!. ~21!
5-4
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In Euclidean formulation the above expressions can
written as

P1~p!5
2Ne2

p2p
E

0

`

dkE dV

4p Fk222k•p23~k•p!2/p2

p~k1p!2 G
5

Ne2

8p
, ~22!

P2~p!52
Ne4

4p2p
E

0

`

dk
K~p,k!

p@11P~k!#
, ~23!

where

K~p,k![E dV

4p
B~2p2,2k2,2p•k!. ~24!

From Figs. 4 and 5, one can see that the first term in
~15! corresponds to a vertex correction and the last two te
are fermion self-energy corrections. The sum of these
grams has symmetries which provide a consistency chec
the final result. From the graphical representation it is ob
ous that the quantityB(p2,k2,p•k) should be invariant unde
p↔k and underp→2p or p•k→2p•k.

A detailed computation of the ‘‘box’’ functionB is pre-
sented in Appendix A, and the final expression forB is given
by Eq.~A11!. One can verify that Eq.~A11! has the symme-
tries we mentioned above. Finally, we perform the angu
integration to obtainK(p,k),

K~p,k!5PE dV

4p F1

k
1

1

p
1

k•p

2kpuk2pu
2

2k21kp12p2

kpuk2pu

1
2k415k2p212p4

2~k•p!kpuk2pu G
5

1

k
1

1

p
1

kp

6 max~k3,p3!
2

2k21kp12p2

kp max~k,p!

1
2k415k2p212p4

2k2p2Ap21k2
sinh21

min~p,k!

max~p,k!
~25!

where we have made use of the integrals given in Appen
A.

Thus, we arrive at the following nonlinear equation f
the vacuum polarization:

P~p!5
Ne2

8p
2

Ne4

4p2p
E

0

`

dk
K~p,k!

p@11P~k!#
. ~26!

Apparently, this equation is gauge invariant. We can rew
it also as the equation for the running couplingā(p) which
must be self-consistently determined from it:

ā21~p!5ā1
21~p!2

N

4p2p
E

0

`

dk kK~p,k!ā~k!, ~27!
04502
e

q.
s

a-
on
i-

r

ix

e

whereā1(p) is the one-loop running coupling@see Eq.~1!#.
Equation~27! is the simplest nonlinear equation for th

running coupling~or the photon propagator! which is derived
at the lowest order in the 1/N truncation of the SD equations
In fact, it should be considered as an analogue of the lad
approximation for the fermion propagator. The effects o
constant fermion mass can be incorporated at one’s wish
computing the box diagrams with massive fermions. T
would allow one to study the coupled system of the SDE
the fermion self-energy and photon polarization opera
along the lines of Ref.@18#. However, this is beyond the
scope of the present paper and we shall leave aside
issue.3

Now we proceed by solving Eqs.~26! and~27! both ana-
lytically and numerically. Approximating, as usual, the e
pression~25! for the kernel by its asymptotics atp@k and
p!k

K~p,k!.2
2

15

p3k3

max~p7,k7!
, ~28!

one can reduce the integral Eqs.~26! and~27! to differential
ones in order to study the asymptotical behavior ofP(p) and
ā(p) in the ultraviolet and infrared regions. However, in th
present case we can find corresponding asymptotics dire
from the integral equations.

First of all, we can immediately see that the solution
Eq. ~27! for the running coupling possesses a nontrivial
fixed point. Indeed, by making a change of variables,k

→kp, in the integral and assuming thatā(0)Þ0 we come to
the quadratic equation forā(0):

ā21~0!5ā1
21~0!2

N

4p2E0

`

dk kK~1,k!ā~0!, ~29!

where we have made use of the fact thatpK(p,kp)
5K(1,k), see Eq.~25!. The last integral can be evaluate
exactly ~see Appendix A!, and we obtain

ā~0!5
8

NC
,

C5
1

2
1

1

2
A11

4

N S 184

9p2
22D .11

1

N S 184

9p2
22D

.11
1

14.0N
. ~30!

3A coupled system of SD equations for the vacuum polarizat
and the fermion renormalization wave function was studied in R
@15# using an ansatz for the full vertex satisfying the War
Takahashi~WT! identity. Though such an approach reproduc
standard value for the criticalNcr'3.3, it does not permit us to
identify the ansatz with a class of Feynman diagrams.
5-5
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This result illustrates that the 1/N expansion is reliable eve
for a rather low number of flavors, e.g.,N52, because of the
smallness of the numerical coefficient in front of the 1N
term.

The next term in the expansion ofā(p) at smallp can
also be calculated exactly, as well as its asymptotics at la
momenta but we focus on finding the asymptotics of
vacuum polarization operator itself. For it we seek a pow
solution@;(p/a)g# in both asymptotic regions, (p!a) and
(p@a). We find that the power exponent can only beg5
21 in both cases. Thus we get

P~p!5C
a

p
, for p!a, ~31!

P~p!5
a

p
, for p@a ~32!

with the constantC defined in Eq.~30! ~we recall thata
5e2N/8). Hence for the running coupling we have

ā~p!5
e2

p~11Ca/p!
'

8

CN
, p!a, ~33!

ā~p!5
e2

p~11a/p!
, p@a. ~34!

The numerical solution of Eq.~26! is presented in Fig. 6
From this figure it is clear that the IR behavior~i.e.,p!a) of
pP(p) is indeed constant and in agreement with the anal
analysis.

For studying effects like symmetry breaking and dynam
cal mass generation, it is sufficient to consider only mome
less thana. Therefore for the remainder of this article w
will just use Eq.~31! and treata as the ultraviolet cutoff for
nonperturbative dynamics. This allows us to write the gau
boson propagator as~in Euclidean formulation!

e2Dmn~p!5S 2gmn1@12j~p!#
pmpn

p2 D ā~0!

p
, ā~0!5

8

NC
,

~35!

FIG. 6. Numerical solutions of Eq.~26!.
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for p5Ap2<a, with C given by Eq.~30!, and wherej(p)
parameterizes a nonlocal gauge fixing function~see Appen-
dix B!. This form of the photon propagator will be used
the next section.

The gauge boson propagator of Eq.~35! gives rise to a
Coulomb potential instead of a logarithmically confining p
tential. The dimensionless couplingā0[ā(0) should now
be interpreted as the coupling parameter of a perfectly m
ginal ~or conformal invariant! interaction:b(ā0)50.

III. QED 3 PLUS FOUR-FERMION INTERACTIONS

The gauged NJL model withN fermion flavors is de-
scribed by the Lagrangian

LGNJL52
1

4
Fmn

2 1c̄~ igmDm2m0!c

1
G

2N
@~ c̄c!21~ c̄ ig5c!2#, ~36!

where Dm5]m2 ieAm is the covariant derivative, and th
last term is a chirally invariant four-fermion interaction wit
G the corresponding Fermi coupling constant. In the abse
of a fermion mass termm0 which breaks the chiral symmetr
explicitly, the Lagrangian~36! possesses a U~1! gauge sym-
metry and a global UL(1)3UR(1) chiral symmetry. For the
four-fermion coupling we introduce the dimensionless co
pling constantg52GL/p2, and we consider the dimension
ful gauge couplinge2 as the UV cutoff~more precisely,a
.L).

A parity invariant bare mass termm0c̄c as well as a
dynamically generated fermion mass breaks the global s
metry down to UL1R(1). Further we study mainly the chira
symmetric case withm050. By introducing the auxiliary
scalar fieldss andp, the Lagrangian~36! can be rewritten as

L252
1

4
FmnFmn1c̄ igmDmc2c̄~s1 ig5p!c

2
N

2G
~s21p2!, ~37!

wheres52(G/N)c̄ ic i , p52(G/N)c̄ ig5c i .
The propagators of thes and p fields, DS and DP , are

defined, respectively, as follows:

DS~q!52 i E d3xeiqx^0uT@s~x!s~0!#u0&C , ~38!

DP~q!52 i E d3xeiqx^0uT@p~x!p~0!#u0&C , ~39!

where the subscriptC stands for ‘‘connected.’’ The SD equa
tion for the scalar~pseudoscalar! propagator is given by

DS(P)
21 ~p!52

N

G
1PS(P)~p!, ~40!
5-6
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where the~pseudo!scalar vacuum polarization is

PS(P)~p!5 i EL d3k

~2p!3
Tr@S~k1p!

3GS(P)~k1p,k!S~k!G0S(P)# ~41!

~see Fig. 7!, S(k) is the full fermion propagator@S21(k)
5k̂A(k)2B(k)#, and GS(P)(k1p,k) is the fermion-
antifermion~Yukawa! vertex ~the bare Yukawa vertices ar
given byG0S51, G0P5 ig5, where1 is the identity matrix!.
The absence of kinetic terms for thes and p fields in the
Lagrangian is reflected in the constant bare propagator2G.
The Yukawa verticesGS and GP are defined as the ‘‘fully
amputated’’ vertices,

S~k!GS~k,p!S~p!DS~k2p!

52E d3xd3yeikx2 ipy^0uT@c~x!c̄~y!s~0!#u0&C ,

~42!

S~k!GP~k,p!S~p!DP~k2p!

52E d3xd3yeikx2 ipy^0uT@c~x!c̄~y!p~0!#u0&C .

~43!

In the symmetric phase of the GNJL model the pseudosc
and scalar propagators are degenerate, so are the ps
scalar vertex and scalar vertex.

We shall study the SDE for the Yukawa vertexGS and
scalar propagatorDS with both the gauge interaction and th
four-fermion interactions treated in the leading order of
1/N expansion. This approximation is obtained by replac
the Bethe-Salpeter kernelK by planar one photon exchang
graph with the photon propagator given by Eq.~35! and bare
fermion-photon vertices~see Fig. 2!. In principle the Bethe-
Salpeter kernel also contains scalar and pseudoscala
changes. One can question whether such exchanges ca
neglected. In fact, if one includes the ladder like one-sca
and one-pseudoscalar exchanges in the truncation of the
kernel K in the SDE for the Yukawa vertices, then su
contributions cancel each other exactly in the symme
phase. On the other hand, in the equation for the ferm
wave functionA(p) these contributions add and must
taken into account. Since we take the bare vertex approxi
tion, we need to setA(p)51 for consistency with the WT
identity. In Appendix B we prove the existence of such
nonlocal gauge for the GNJL model in the bare vertex

FIG. 7. The SDE for the scalar propagatorDS(p).
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proximation and in arbitrary dimensions.4 There it is shown
also that four-fermion contributions into the gauge functionj
are suppressed leading toj(p)52/3 ~Nash’s nonlocal
gauge!. In what follows we use the Nash gauge for the ph
ton propagator~35!.

The equation for the Yukawa vertex, within the propos
approximation, reads

GS~p1q,p!511 ie2EL d3k

~2p!3
glS~k1q!

3GS~k1q,k!S~k!gsDls~k2p! ~44!

~see Fig. 8!. In the symmetric phase, the equation for t
scalar vertex, Eq.~44!, is a self-consistent equation if on
uses a gauge where the full fermion propagator has the f
of the free or bare fermion propagatorS(p)5S0(p)51/p̂.

The invariance under parity and charge conjugation
stricts the form of the Yukawa vertices to the following d
composition@30,24#:

GS~p1q,p!51@F1~p1q,p!1~ q̂p̂2 p̂q̂!F2~p1q,p!#,

~45!

GP~p1q,p!5~ ig5!@F1~p1q,p!1~ q̂p̂2 p̂q̂!F2~p1q,p!#

~46!

in the symmetric phase. The two scalar functionsFi are sym-
metric in the fermion momenta:

Fi~p1q,p![Fi@~p1q!2,p2,q2#5Fi@p2,~p1q!2,q2#,

i 51,2. ~47!

This is analogous to the four-dimensional case.
Since we are considering the symmetric phase, thes and

p propagators are identical. In what follows we neglect t
contribution ofF2 to the Yukawa vertices. The validity o
this approximation was argued in Ref.@24# for the four-
dimensional case and the analysis can be general
straightforwardly to the three-dimensional case. Here
only point out that calculatingF1 ,F2 in 1/N perturbation
theory reveals that the functionF1 contains logarithmic
terms which build up into the power-law form of the fu
solution~see below!; on the other hand,F2 does not contain
such logarithmic terms and thus will not contribute to t
leading and next-to-leading in 1/N order behavior ofPS .

4A version of a nonlocal gauge inD54 leading to approximate
equalityA51 was proposed in Ref.@29#.

FIG. 8. The SDE for the scalar Yukawa vertexGS in the ladder
approximation.
5-7
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Hence, neglecting all functions exceptF1, we obtain~in
Euclidean formulation! after substituting Eq.~35! with
j(p)52/3 in Eq.~44!

F1~p1q,p!511lE
0

L

dkE dV

4p

~k21q•k!

~k1q!2

1

uk2pu

3F1~k1q,k!, ~48!

where l532/(3NCp2) and where*dV denotes the usua
angular part of the three-dimensional integration. The eq
tion for thes boson vacuum polarization is

PS~q!5
2N

p2E0

L

dkE dV

4p

~k21q•k!

~k1q!2
F1~k1q,k!. ~49!

To resolve the angular dependence of the Yukawa ve
functionF1 it is convenient to use an expansion in Legend
polynomialsPn ~see also Appendix C!,

F1~p1q,p!5F1~p,p1q!5 (
n50

`

f n~p,q!Pn~p•q/pq!,

~50!

where in the right-hand side expressionp5Ap2, q5Aq2,
and p•q/pq5cosa. Then we follow the arguments of Re
@24# and assume that the Yukawa vertex functionF1(p
1q,p) depends only weakly on the anglep•q/pq between
fermion ands boson momenta, so that the set equations
f n reduces to the equation for the zeroth-order Legendre
efficient functionf 0 only. This is equivalent to approximat
ing GS by its angular average

GS~p1q,p!5GS~p,p1q!'1E dV

4p
F1~p1q,p!

51f 0~p,q!, ~51!

where the functionf 0(p,q) depends on the absolute valu
of the vectorsp, q, i.e., in it p5Ap2, q5Aq2. Accordingly
we write

f 0~p,q!5F IR~p,q!u~q2p!1FUV~p,q!u~p2q!, ~52!

where the functionsF IR and FUV satisfy integral equations
which are given in Appendix C@see Eqs.~C16! and ~C17!#.
Within this approximation, we find that the scalar vacuu
polarization~C9! is expressed through the functionFUV @see
Eqs.~C9!, ~C11!, and~C13!#:

PS~q!5
2L

p2

N

l
@FUV~L,q!21#. ~53!

The integral Eqs.~C16! and~C17! can be reduced to secon
order differential equations

p2
d2

dp2
F IR12p

d

dp
F IR1l

p2

2q2
F IR50, ~54!
04502
a-

x
e

r
o-

p2
d2

dp2
FUV12p

d

dp
FUV1lS 12

q2

2p2D FUV50, ~55!

with four boundary conditions. The infrared and ultraviol
boundary conditions~IRBC and UVBC!, respectively, are

Fp2
d

dp
F IR~p,q!G

p50

50,

FFUV~p,q!1p
d

dp
FUV~p,q!G

p5L

51. ~56!

There is a continuity and differentiability equation atp5q:

F IR~q,q!5FUV~q,q!,

d

dp
F IR~p,q!U

p5q

5
d

dp
FUV~p,q!U

p5q

. ~57!

The equation forFUV can be written as

z2
d2

dz2
FUV1~l2z2!FUV50, z5Al

2

q

p
. ~58!

The differential Eqs.~54! and ~58! and the BC’s~56! and
~57! can be solved straightforwardly. The solutions are

F IR~p,q!5Z21S q

L
,v D S q

pD sinSAl

2

p

qD , ~59!

FUV~p,q!5
p

2 sin~vp/2!
Z21S q

L
,v D

3S q

pD 1/2Fr~v!I 2v/2SAl

2

q

pD
2r~2v!I v/2SAl

2

q

pD G , ~60!

whereI 6n are modified Bessel functions, andv is given by

v5A124l5A12Ncr /N, Ncr5128/~3Cp2!. ~61!

Furthermore,

Z~q/L,v![
p

2 sin~vp/2!
@r~v!R~q/L,2v!

2r~2v!R~q/L,v!#, ~62!

and

r~v![I v/2SAl

2D FAl

2
cosAl

2
2

1

2
sinAl

2G
1I v/28 SAl

2D FAl

2
sinAl

2G , ~63!
5-8
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R~q/L,v![
1

2
Aq

LF I v/2SAl

2

q

L D
22Al

2

q

L
I v/28 SAl

2

q

L D G . ~64!

The sinvp/2 results from the Wronskian betweenI 2v/2(x)
and I v/2(x).

By adopting the approximation~51! we have obtained an
analytic expression for the Yukawa vertexGS . Within this
approximation, thes boson propagatorDS defined by Eq.
~40! is related toGS via Eq.~53!. Such an expression is vali
in the symmetric phase of the phase diagram.

IV. SCALING AND OTHER PROPERTIES

In the previous section we have obtained nonperturba
solutions for the Yukawa vertex and scalar propagator wit
the ladder approximation. In this section we discuss so
important properties of the Yukawa vertex and scalar pro
gator.

Let us briefly state our objectives. First, we apply t
Thouless criterion of the symmetry phase instability in ord
to derive the critical curve given in Eq.~3!. Subsequently, we
show that near this curve the scalar propagator has a sc
form consistent with the general renormalization gro
theory of second order phase transitions. We find that
anomalous dimension of the propagator of the compo
scalar fields ish522v with v given by Eq.~61!. More-
over, we show that the Yukawa vertex has a scaling fo
consistent with power-law renormalizability. Second, we d
rive the peculiar behavior ofPS near N5Ncr . The phase
transition atN5Ncr is known as the CPT and is characte
ized by the absence of light unstable modes in the symme
phase. Another characteristic feature of the CPT is the s
ing law with essential singularity for the scalar boson and
fermion mass in the broken phase. This scaling law can
obtained by analytical continuation ofPS in v across the
critical curve atN5Ncr .

In analogy with Ref.@24# we investigate a few specifi
limits:

~i! the large flavor limit (N→`), which means that the
gauge interaction is negligible with respect to four-fermi
interactions, i.e.,l50, thusv51; ~ii ! asymptotic or IR be-
havior of GS(p1q,p) andDS(q), i.e., p,q!L; ~iii ! the be-
havior of PS at the critical couplingl5lc51/4, thusv
50; ~iv! the behavior of PS for l.lc , v5 in, n
5A4l21, i.e., analytic continuation across the critic
curve atl5lc .

A. Large flavor limit

In the large flavor limit, the four-fermion interaction
completely govern the dynamical breakdown of ‘‘chira
symmetry. In this limitv51 (l50), thus the Yukawa ver-
tex ~44! is GS(p1q,p)51. Consequently, we obtain an e
pression forPS from Eq. ~C9! by using Eq. ~C13! and
FUV(p,q)5F IR(p,q)51 at v51. This leads to
04502
e
n
e
-
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ing

e
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-

ic
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e
e

PS~q!5
2NL

p2 F12
4q

3L
1

q2

2L2G . ~65!

This expression is obtained by making use of the approxim
tion ~C13!. Naturally, the expression forPS(q) can be ob-
tained by evaluating Eq.~41! with GS51. The result is

PS~q!5
2NL

p2 F12
p2

8

q

L
1

q2

3L2G , ~66!

see, e.g., Ref.@32# and references therein@33#. Since only the
first two terms on the right-hand side of Eqs.~65! and ~66!
are important in the IR (q!L), these equations differ abou
10%.

B. Asymptotic behavior and scaling

For values 0,v,1, the asymptotic behavior or IR be
havior of GS andPS with (q/L)v@q/L can be derived by
first considering theq!L limit of Z, Eq. ~62!:

Z'
p

2 sin~vp/2! S q

L D 1/2

C~v!sinhFv2 ln
L

q
1d~v!G , ~67!

where

d~v!5
1

2
ln

r~v!~11v!G~11v/2!

r~2v!~12v!G~12v/2!
2

v

4
ln

l

8
, ~68!

C~v!5A r~v!r~2v!~12v2!

G~11v/2!G~12v/2!
. ~69!

In this limit, the functionFUV(p,q) with fermion momentum
p5L can be expressed as

FUV~L,q!'
2

11v
1

2v

~12v2!
~12cothy!,

y5
v

2
ln

L

q
1d~v!. ~70!

Thus, by using Eq.~53!, the asymptotic form forPS reads

PS~q!'
2NL

p2 F 4

~11v!2
1

8v

~12v2!2
~12cothy!G .

~71!

Hence

PS~q!'
2NL

p2 F 1

gc
2B~v!S q

L D v

1O@~q/L!2v#

1O@~q/L!2#G , q!L, ~72!

where
5-9
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gc5
~11v!2

4
,

B~v![
16v

~11v!3~12v!

r~2v!

r~v!

GS 12
v

2 D
GS 11

v

2 D SAl

8D v

.

~73!

One can show thatB(1)54/3, which is in agreement with
Eq. ~65!. The expression~72! for the asymptotic behavior o
PS(q) is valid for 0,v<1, but not forv50 (l5lc).

The inverse propagatorDS
21 that follows from Eqs.~40!

and ~72! is given by

DS
21~q!'2

2B~v!NL

p2 F 1

B~v! S 1

g
2

1

gc
D1S q

L D vG .
~74!

The instability of the symmetric phase is signalized by
vanishing ofDS

21(q50). This is nothing else than the Thou
less criterion for a phase transition of the second kind@34#
which leads to the critical curve

g5gc , 0,v,1 ~N.Ncr!, g.
1

4
. ~75!

Thus the curveg5gc is a line of UV stable fixed points. On
the critical line the scalar propagator scales as

DS~q!'2
p2

2B~v!NL S L

q D 22h

, h522v, ~76!

whereh is the anomalous dimension.
On the other hand, one can see that on the linev50(N

5Ncr),g,1/4, DS
21(q50) does not vanish. Nevertheless,

we shall show in Sec. V, this line is also the phase transi
line but of a special type.

The scaling form forGS is obtained by considering onl
the leading term in Eq.~67!. Thus theZ function scales as

Z~q/L,v!'
p

2 sin~vp/2!

r~v!

2

3
~11v!

G~12v/2! S l

8D 2v/4S q

L D (12v)/2

. ~77!

In this way the Yukawa vertex can be written as

GS~p1q,p!'1S L

q D (h21)/2

@FIR~p/q!u~q2p!

1FUV~q/p!u~p2q!#, ~78!

where, forp,q!L,

F IR~p,q!'S L

q D (h21)/2

FIR~p/q!,
04502
e

n

FUV~p,q!'S L

q D (h21)/2

FUV~q/p!, ~79!

and

FIR~p/q!5
2 sin~vp/2!

p

2

r~v!

G~12v/2!

~11v! S l

8D v/4S q

pD
3sinSAl

2

p

qD , ~80!

FUV~q/p!5
2

r~v!

G~12v/2!

~11v! S l

8D v/4S q

pD 1/2

3Fr~v!I 2v/2SAl

2

q

pD
2r~2v!I v/2SAl

2

q

pD G . ~81!

An important consequence of the scaling behavior of
scalar propagator@Eq. ~76!# and of the Yukawa vertex@Eq.
~78!# is that, in using them, one finds that the four-fermi
scattering amplitudes scale as

GS~p11q,p1!DS~q!GS~p2 ,p21q!}
1

q
, p1 ,p2!q!L.

~82!

This scaling form reveals the long range nature and pow
law renormalizability of the four-fermion interactions at th
phase transition line@35#.

C. At the critical coupling

At the critical value ofl, i.e., v50 (lc51/4), we can
derive in analogy with Ref.@24# that for p@q

FUV~p,q!'2S p

L D 21/2Fe3221 ln~p/q!

e32 ln~q/L!

1O@q2/p2ln~q/p!#G , ~83!

where

e15I 0~A1/8!FA1/8cosA1/82
1

2
sinA1/8G

1I 08~A1/8!@A1/8sinA1/8#, ~84!

e25K0~A1/8!FA1/8cosA1/82
1

2
sinA1/8G

1K08~A1/8!@A1/8sinA1/8#, ~85!

e3522g1
5

2
ln 22

e2

e1
, ~86!
5-10
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with g the Euler gamma andK0 the modified Bessel function
of the third kind.

In the infrared, i.e.,q!L, PS can be written as

PS~q!'
2NL

p2 F41
16

ln~q/L!2e3

1O@q2/L2ln~q/L!#G . ~87!

This straightforwardly follows from the insertion of Eq.~83!
in Eq. ~53!.

D. Analytic continuation across the critical curve

Since the expression for thes boson vacuum polarization
is symmetric under replacement ofv by 2v, it can be ana-
lytically continued to the valuesl.lc . This holds in replac-
ing v by in in Eq. ~53! with FUV given by Eq.~60!, where

n5A4l21. ~88!

In the infrared (q!L), it means thatPS can be written as

PS~q!'
2NL

p2 F4~12n2!

~11n2!2
2

8n

~11n2!2
cotyG ,

y5
n

2
ln

L

q
1nf~n2!, ~89!

where we have used Eq.~71! with v→ in, and where
f(n2)5d( in)/ in.

The four limits ofPS described above are very useful f
illustrating the resonance structure of the bound states
peculiar dynamics of the CPT, see Sec. V.

To conclude this section let us mention that at zeros
boson momentum (q50), we obtain

GS~p,p!5FUV~p,q50!5
2

11v S p

L D 2(12v)/2

. ~90!

V. LIGHT RESONANCES AND THE CONFORMAL
PHASE TRANSITION

In this section we analyze the behavior of thes boson
propagator near the critical line in the symmetric phaseg
<gc), where thes and p boson are degenerate. We w
show that forv.0 (N.Ncr) the scalar composites (s and
p bosons! are resonances~unstable modes! described by a
complex pole in their respective propagators. The comp
pole in DS should lie on a second or higher Riemann sh
@i.e., not on the first~physical! sheet# of the complex plane of
the Minkowskian momentump2, because unitarity~causal-
ity! demands thatDS(p) is analytic in the upper half of the
complexp0-plane, wherep0 is the ‘‘time’’ component of the
Minkowski momentump25p0

22pW 2.
From Eq.~74! the complex pole can be computed. Fir

we rotate back to Minkowski space,p2→pM
2 exp(2ip). Sub-
04502
nd

x
t

t

sequently, the complex poles are given by

pM
2 5umsu2exp~2 iu!, DS

21~pM !52
2NL

p2g
1PS~pM !50.

~91!

The equation for the imaginary part reads

0'sin
v~u1p!

2
, ~92!

with the solution

u'2p1
2np

v
, ~93!

where n is an odd integer. Hence for values 0,v<1 it
follows from Eq.~93! that the complex pole does not lie o
the physical sheet ofp2.5 Since cosv(u1p)/2521, we find
that the solution forumsu is

umsu
L

5F Dg

gcgB~v!G
1/v

, Dg5gc2g, ~94!

consequently the critical exponentn51/v @36#.6 Equation
~94! describes how the mass of the pole vanishes asg is
tuned toward the critical line.

The propagatorDS is of the form given by Eq.~74! and in
Minkowski space, with the definitionp5Ap2, it can be writ-
ten as follows:

DS~p!5
p2

2NL

ggc

Dg F 21

11~21!v/2~p/umsu!vG , ~95!

with umsu given by Eq.~94!. Then, the real and imaginar
part of DS are

Re@DS~p!#

52S p2

2NL

ggc

Dg D @11~p/umsu!vcosw#

~p/umsu!2v12~p/umsu!vcosw11
,

~96!

5We denote the first~physical! Riemann sheet ofp2 by anglesu
with 0<2u,2p ~the origin is a branch point with a branch cu
along the positive real axis!.

6The critical exponentsn andh coincide with those found in Ref
@36#. Note, however, that in Ref.@36# h was obtained assuming th
validity of scaling relations between the critical exponents of
theory. Thus the independent computation ofn, h in the present
paper gives, in fact, a proof of the scaling relations.
5-11
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Im@DS~p!#52S p2

2NL

ggc

Dg D
3

~p/umsu!vsinw

~p/umsu!2v12~p/umsu!vcosw11
,

~97!

wherew5pv/2. The absolute value of the imaginary pa
has a maximum atp5umsu and the maximum is

Im@DS~ umsu!#52
p2

2NL

ggc

Dg

sinw

2@cosw11#
. ~98!

This shows that wheng approachesgc from below (g↑gc),
umsu goes to zero (umsu→0) and that the maximum of th
absolute value of the imaginary part ofDS approaches infin-
ity @2Im DS(umsu)→`#.

We define a width over mass ratioG/umsu as follows:

G

umsu
5

p1

umsu
2

p2

umsu
, Im@DS~p6!#5

1

2
Im@DS~ umsu!#.

~99!

Thus the width is the difference between the momenta
which 2Im(DS) equals 1/2 of the maximum value of
2Im(DS). Solving Eq.~99! by making use of Eqs.~97! and
~98! gives

G

umsu
5@21cosw1A~21cosw!221#1/v

2@21cosw2A~21cosw!221#1/v. ~100!

Thus, as the mass scale of the pole is made small by
proaching the critical line, the resonance is not described
a narrow Breit-Wigner type, because the width over m
ratio is rather large. Consequently, the resonance does
have the Lorentzian shape which is a characteristic featur
the Breit-Wigner resonance@note that even in pure NJL
model (v51) the resonance is not narrow in contrast
four-dimensional NJL model#. The above expression show
also thatG/umsu increases whenv→0, and the resonanc
becomes broader.

A description of the resonance structure is provided b
plot of ImDS(p). This is illustrated in Fig. 9 in which
Im@DS(p)#/DS(0) is drawn as a function of the energy sca
p/umsu for various values ofv.

Absence of light resonances nearNcr

The existence of light resonances whose mass vanish
the transition is approached from the side of symme
phase in~211!-dimensional theories is relevant for descri
ing spin excitations in high-Tc cuprate superconductors~see
the paper by Kim and Lee@25# and references therein!. Such
resonances can be considered as precursors of the anti
magnetic transition. It is known that QED3 by itself cannot
give rise to light excitations in the symmetric phase@37,5,6#.
This is one of the main features of the so-called conform
04502
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phase transition: the absence of light excitations~compos-
ites! in the symmetric phase as the transition is approac
~in the broken phase massless ‘‘normal’’ Goldstone bos
appear!. This unusual behavior can be attributed to the lo
range nature of the gauge interaction in the model un
consideration. Another characteristic feature of the CPT
the scaling law with essential singularity for the dynamic
fermion mass in the broken phase@5#.

From the side of the symmetric phase there is no s
indicating the occurrence of a phase transition. This me
that the correlation length remains finite in the symmet
phase even close to the critical point~the Thouless criterion
is not valid!. In QED3 the CPT occurs atl5lc (N5Ncr)
where the symmetry is dynamically broken by a ‘‘margina
operator~a long range interaction!. Though continuous, the
CPT is not a second order phase transition. This is reflec
by the singular behavior of some of the critical expone
~e.g.,n andb, see Ref.@36#! asv goes to zero. The absenc
of a light complex pole in thes boson propagator illustrate
the CPT in GNJL model in 211 dimensions. Atv50 thes
boson vacuum polarization is given by Eq.~87! in the infra-
red. If there has to be a light excitation in the symmet
phase then there must be a complex polepM

2

5umsu2exp(2iu) in DS with umsu!L as g,1/4. From Eq.
~87!, we then should find zeros ofDS

21 at

0'S 1

g
24D1

16@ ln~L/umsu!1e3#

@ ln~L/umsu!1e3#21~u1p!2/4
, ~101!

0'u1p. ~102!

For g<gc51/4, there are no solutions satisfyingumsu!L,
hence if there is a pole it will be heavy, i.e.,umsu;L. There-
fore atl5lc andg,1/4 there are no light resonances in t
211-dimensional GNJL model.

What happens with thes-boson propagator if we analyti
cally continue it to the valuesl.lc ,N,Ncr? By doing so,
we remain in the massless chiral symmetric phase, but
just end up in the ‘‘wrong vacuum’’~the chiral symmetric

FIG. 9. The response function Im@DS(p)#/DS(0) vs p/umsu for
v51.0, v50.8, v50.6.
5-12
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solution becomes unstable!.7 Thep ands bosons are tachy
ons for such a solution. Thus the border of the stable s
metric solutionl5lc ,g,1/4 is also the phase transitio
line.

Let us show that there are indeed tachyons~with imagi-
nary massm2,0) whenl.lc . For this we need to show
that DS has a real pole in Euclidean momentum space.
suming that the pole lies in the infrared,umsu!L, we can
use Eq.~89!, wherev has been replaced byin, n given by
Eq. ~88!. The tachyonic pole is given by

2
2NL

p2g
1PS~ umsu!50. ~103!

From this we derive the solution

umsu
L

5expS 2
2np

n
2

2b

n
12f~n2! D , ~104!

where

b5tan21
ng

g22l~g1l!
. ~105!

As is well established, the tachyon with the largestumsu in
the physical region corresponds ton51.

It is clear that the tachyons in the symmetric soluti
appear also when we cross the upper part (l,lc ,g.1/4) of
the critical curve. However, the difference between this p
of the critical line and the linel5lc ,g,1/4 is that we have
light composites~resonances! near the first line while they
are absent near the last one.

If we now consider the limitl↓lc , i.e., we approach the
transition from the side of the broken phase, we obtain
scaling law with essential singularity,

umsu
L

'expS 4g

1/42g
12f~0! DexpS 2

2p

A4l21
D . ~106!

This scaling law with essential singularity is obtained
analytical continuation of the solution in the symmet
phase (l,lc) to the broken phase (l.lc). Thus the tachy-
onic ~unphysical! solution in the broken phase leads to
scaling law which is proportional to the scaling law given
the fermion mass ands boson mass in the broken phase@2#.

VI. CONCLUSION

In this paper we studied a nonlinear equation for the r
ning coupling in QED3 which can be considered as the an
logue of the ladder approximation for the fermion propag
tor. We solved our equation both analytically an
numerically. We found that the vacuum polarization ope

7A phase transition is by definition described by a nonanaly
behavior in the theory parameters~coupling constants, temperatur
etc.!. Therefore by analytical continuation one cannot go from o
phase into another.
04502
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tor, obtained through a nonperturbative solution of the eq
tion, has the same infrared asymptotics as the one-loop
pression: P(p).Ca/p, C.111/14N. Thus, we have
showed that a nontrivial IR fixed point persists in the no
perturbative solution. Moreover, quantitatively there is on
slight difference between the one-loop result and the non
turbative solution even at the number of fermionsN52.

We then proceeded with studying the GNJL model in t
symmetric phase with massless fermions. We solved
equation for the Yukawa vertex in the approximation whe
the full Bethe-Salpeter kernel is replaced by the planar
photon exchange graph with bare fermion-photon vertic
The obtained Yukawa vertex was used for calculation of
scalar composites propagator. The phase transition curve
determined from the condition of instability of the symmetr
solution. We established the existence of light excitatio
~resonances! in the symmetric phase for values ofN.Ncr
*4 (l,lc), provided the four-fermion coupling (g.1/4) is
near its critical value along the critical curve~3!. As g
,1/4 andN approachesNcr from above the light excitations
are absent and the situation resembles pure QED3.

The field theoretical models, like QED3 and the GNJL
model, often appear in the long-wavelength limit of micr
scopic lattice models used for description of high-Tc
samples. For instance, in a spin-charge separation ansat
the t-J model, where spin is described by fermionic spino
and charge is described by bosonic holons~or vice versa!, a
‘‘statistical’’ U ~1! gauge interaction appears naturally in t
theory along with four-fermion interactions~see, for ex-
ample, Refs.@11#, @20# and@25#!. It was argued in Ref.@25#
that QED3, with fermions treated as spinons, might serve
a possible candidate for describing the undoped and un
doped cuprates. For physicalN(52) the chiral symmetry
broken phase of QED3 ~with a dynamical mass generation!
should correspond to an antiferromagnetic ordering in
doped cuprates@38#, while the symmetric phase~for larger
N) would describe some kind of a spin liquid.

Recently spin excitations~particle-hole bound states! have
been observed in the normal state~and in the superconduct
ing state! of underdoped and optimally doped cuprates su
as YBa2Cu3O61x and La22xSrxCuO4, wherex is the amount
of doping, see Ref.@39# and references therein. The dynam
susceptibility x9 describing antiferromagnetic correlation
near wave vectorQ5(p,p) has a broad peak whose ener
comes down as the doping is reduced. The height of the p
increases as the doping is reduced and the antiferromag
transition approached.

As was proposed in Ref.@25#, QED3 could describe these
particle-hole excitations. However, from the point of view
the present paper, pure QED3 cannot be applied for describ
ing such spin excitations because of absence of light re
nances in the symmetric phase of the model. In our opin
the GNJL model serves this purpose better since light e
tations appear near the critical curve~3! on both sides. More-
over, the mass of resonances decreases as the phase
tion is approached~along the trajectoryN, or l, is fixed and
g↑gc) while their peaks become sharper asg approachesgc .
All these features are in qualitative agreement with the
perimental picture if we assume that the four-fermion co

c

e
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pling g depends on the doping in such a way thatg increases
when the doping is reduced.

A problem, however, is that, in case of cuprate superc
ductors, the physically relevant number of flavors equals
(N52) which is less thanNcr;4. This means that one
would get the dynamically broken symmetry phase cor
sponding to the Ne´el ordered state at any doping in bo
QED3 and the GNJL model. Kim and Lee@25# proposed a
mechanism to lowerNcr ~and makeNcr,2) in pure QED3 by
taking into account the effect of doping which screens
time-component of the gauge field and halvesNcr , due to
additional coupling of the gauge field to charged sca
fields. However, another way out of such a dilemma appe
if we invoke the arguments of Appelquistet al. @40# that
ladder SD equations usually overestimate the critical va
Ncr . These authors suggest that the true critical value
Ncr53/2. Thus for the physical case ofN52 the spontane-
ous symmetry breaking does not occur and the system
be in the symmetric phase when the doping exceeds s
04502
-
o

-

e

r
rs

e
is

ill
e

critical value. It would be quite interesting to find out a tru
cated set of SD equations giving such a small criticalNcr .
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APPENDIX A: BOX DIAGRAM

In this appendix we compute the box functionB of Eq. ~21!. We start by contracting theg ’s in Eq. ~15! and evaluate the
traces. The result is

B~p2,k2,p•k!5 i E
M

d3r

~2p!3
@b1~p,k,r !1b2~p,k,r !1b3~p,k,r !#, ~A1!

where

b1~p,k,r !5@216~k•r !224k•r ~4k•p2p2!14~k224k•p!p•r 224k•rp•r 216~p•r !2224k•rr 2

14~k223k•p1p2!r 2224p•rr 2212r 4#
1

~r 1p!2~r 1p1k!2~r 1k!2r 2
, ~A2!

and

b2~p,k,r !5@24k•rp214~2k•p1p2!p•r 18~p•r !214k•rr 214~2k•p1p2!r 2112p•rr 214r 4#
1

r 2~r 1p!4~r 1p1k!2
,

~A3!

b3~p,k,r !5
8k•rp•r 24k•pr214k•rr 214p•rr 214r 4

r 4~r 1p!2~r 1k!2
. ~A4!

The traces have been performed with the help ofFEYNCALC @41#. Subsequently, we cancel ther dependence in the numerato
of Eqs. ~A2!–~A4! without shifting the integration variable. In this way the box functionB can expressed as follows~in
Euclidean formulation!:

B~2p2,2k2,2p•k!522E
E

d3r

~2p!3 F 2

r 2~r 1k!2
1

1

r 2~r 1k1p!2
2

4

~r 1p!2~r 1k!2
1

1

~r 1p!4
1

2k2

r 2~r 1p!2~r 1k!2

2
k2

~r 1p!4~r 1k1p!2
1

4k2

~r 1k1p!2~r 1p!2~r 1k!2
2

2k4

r 2~r 1k1p!2~r 1p!2~r 1k!2

2
2k•p

r 2~r 1p!2~r 1k!2
1

2k•p

r 2~r 1p!2~r 1k1p!2
2

2k•p

r 2~r 1k1p!2~r 1k!2
1

4k•p

~r 1k1p!2~r 1p!2~r 1k!2
5-14
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2
4k2k•p

r 2~r 1k1p!2~r 1p!2~r 1k!2
1

2k•r

r 4~r 1k!2
2

4k•r

r 2~r 1p!2~r 1k!2
1

p2

r 4~r 1k!2
2

p2

r 2~r 1p!4

2
p2

r 2~r 1k1p!2~r 1k!2
1

4p2

~r 1k1p!2~r 1p!2~r 1k!2
1

k2p2

r 2~r 1p!4~r 1k1p!2

2
5k2p2

r 2~r 1k1p!2~r 1p!2~r 1k!2
2

4k•pp2

r 2~r 1k1p!2~r 1p!2~r 1k!2
2

2k•rp2

r 4~r 1p!2~r 1k!2

2
p4

r 4~r 1p!2~r 1k!2
2

2p4

r 2~r 1k1p!2~r 1p!2~r 1k!2
2

4p•r

r 2~r 1p!2~r 1k!2
2

2p•r

r 2~r 1k1p!2~r 1k!2

2
2p2p•r

r 4~r 1p!2~r 1k!2
2

2r 2

~r 1k1p!2~r 1p!2~r 1k!2G . ~A5!
of

-
he

ht

m-
-
te-

ar
For the explicit calculation of the integral, only a handful
integrals are involved. These integrals are

E
E

d3r

~2p!3 F 1

r 4
2

k2

r 4~k1r !2G50, ~A6!

E
E

d3r

~2p!3 F k2p2

r 4~k1r !2~p1r !2
2

k2

r 4~k1r !2G5
k•p

8kpuk2pu
,

~A7!

E
E

d3r

~2p!3

1

r 2~k1r !2
5

1

8k
, ~A8!

E
E

d3r

~2p!3

1

r 2~r 1k!2~r 1p!2
5

1

8kpuk2pu
,

~A9!

E
E

d3r

~2p!3

1

r 2~r 1k!2~r 1p!2~r 1k1p!2

5
1

8k•p F 1

kpuk2pu
2

1

kpuk1puG , ~A10!

whereuk2pu5A(k2p)2. In the computation of the last in
tegral~A10!, we first have rewritten the left-hand side as t
sum of four so-called triangle diagrams@diagrams of the
form of Eq.~A9!#, the subsequent integration is then straig
forward.

The final result reads

B~2p2,2k2,2p•k!
04502
-

5
1

k
1

1

p
2

k•p

4kpuk1pu
1

k•p

4kpuk2pu

2
~2k21kp12p2!

2kpuk1pu
2

~2k21kp12p2!

2kpuk2pu

2
~2k415k2p212p4!

4~k•p!kpuk1pu
1

~2k415k2p212p4!

4~k•p!kpuk2pu
.

~A11!

If an additional integration over the angle betweenp and k
follows we can simplify this equation because of the sy
metry p•k→2p•k. However, if we make use of this sym
metry, we should take the principal value for angular in
gration, since the 1/p•k singularity no longer explicitly
cancels.

At various places, we need the following angul
integrals:8

E dV

4p

1

uk2pu
5

1

max~k,p!
,

E dV

4p

k•p

uk2pu
5

k2p2

3 max~k3,p3!
, ~A12!

E dV

4p

1

~k1p!2
5

1

2kp
ln

k1p

uk2pu
, ~A13!

E dV

4p

k•p

~k1p!2
5

1

2
2

~k21p2!

4kp
ln

k1p

uk2pu
, ~A14!

8The angular measure is*dV52p*0
pdu sinu, with cosu

5k•p/kp.
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E dV

4p

~k•p!2

~k1p!2
52

~k21p2!

4

3F12
~k21p2!

2kp
ln

k1p

uk2puG , ~A15!

and the Cauchy principal value integral

PE dV

4p

1

k•puk2pu
5

1

kpAk21p2
lnS k1p1Ak21p2

uk2pu1Ak21p2D .

~A16!

Note that we use the notationk5Ak2, p5Ap2 for the scalar
quantities in the right-hand side expressions of Eqs.~A12!–
~A16!.

Here, we compute also a general form of the integral o
the kernelK(p,k) given by Eq.~25!, i.e.,

I ~d!5E
0

L

dk
kd

pd
K~p,k!

5E
0

1

dt tdF2
11t

6
2

1

t
1

2t415t212

2t2A11t2
sinh21tG

1E
p/L

1

dt t212dF2
11t

6
2

1

t
1

2t415t212

2t2A11t2
sinh21tG

5E
0

1

dt~ td1t212d!F2
11t

6
2

1

t
1

2t415t212

2t2A11t2
sinh21tG

1
2

15

p

L
lim
t→0

t22d1OS p2

L2D , ~A17!

with 23<d<2. Exact solutions exist whend is an integer.
In that case, one can make the transformationt→sinh lns
5(s221)/2s, after which the integral can be written as a su
of Spence functions. The result is

I ~0!5
p2

4
2

5

2
, I ~1!5

p2

8
2

23

18
, I ~2!5

p2

64
2

1

4
.

~A18!

APPENDIX B: DERIVATION OF THE NONLOCAL
GAUGE IN THE GNJL MODEL

In this appendix we derive the nonlocal gaugej in the
GNJL model in order to setA51, so that the WTI is satisfied
if one uses the bare vertex approximation. For generality
consider the case of arbitrary dimensionsD and in presence
of the mass functionB.

We introduce the nonlocal gauge functionj(k2) by writ-
ing the full photon propagator in the form

e2Dmn~k!52S gmn2z~k2!
kmkn

k2 D d~k2!

k2
, ~B1!
04502
r

e

where d(k2)5e2/@11P(k2)#, z(k2)512j(k2). The SD
equation for the fermion wave function renormalizationA is
given by

A~p2!511
1

p2E dDq

~2p!D

A~q2!

q2A2~q2!1B2~q2!

3H d~k2!

k2 F ~D22!p•q

1S p•q2
2~p2q22~p•q!2!

k2 D z~k2!G
2p•q@DS~k2!1DP~k2!#J , k5p2q. ~B2!

Introducing the variablesk25x1y22Axy cosu, x5p2, y
5q2, and performing the integration over all angles exce
the angleu, we get

p2@A~p2!21#5CDE
0

L2

dy
y(D22)/2A~y!

yA2~y!1B2~y!
E

0

p

du sinD22u

3H d~k2!FAxy cosu@D221z~k2!#

k2

22xy
sin2u

k4
z~k2!G2Axycosu@DS~k2!

1DP~k2!#J , ~B3!

whereCD
2152Dp (D11)/2G@(D21)/2#. Following the works

by Kugoet al. and Kondoet al. @42# ~see also Ref.@43#! we
perform now theu integration by parts in terms containin
the first power of cosu:

p2
„A~p2!21…52

CD

D21E0

L2

dy
y(D22)/2A~y!~2xy!

yA2~y!1B2~y!

3E
0

p

du sinD22uH 1

zD21
@@zD22d~z!z~z!#8

2~D22!zD23@d~z!2zd8~z!##

2@DS~z!1DP~z!#8J , ~B4!

where the prime denotes the differentiation with respec
z5k2.

The requirementA(p2)51 is fulfilled by choosingz(z)
such that the expression in curly brackets in Eq.~B4! van-
ishes. This gives the first order differential equation forz(z)
which is easy to integrate,
5-16
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z~z!5
D22

zD22d~z!
E

0

z

dt tD23@d~ t !2td8~ t !#

1
1

zD22d~z!
E

0

z

dt tD21@DS~z!1DP~z!#8 ~B5!

„the integration constant was fixed by requirin
@zD22d(z)z(z)#uz5050 in order to eliminate the singularit
at z50 in z(z)…. The last equation finally leads to the fo
lowing expression forj(z):

j~z!5D212
~D21!~D22!

zD22d~z!
E

0

z

dt tD23d~ t !

2
1

zD22d~z!
E

0

z

dt tD21@DS~z!1DP~z!#8. ~B6!

For D53 we take

d~k!5
e2

11P~k!
.

8

NC
k, k!a, ~B7!

with k5Ak2, and assume the following form for scala
propagators in the symmetric phase and near the critical
@see Eq.~76!#:

DS~k!5DP~k!52
a

L S L2

k2 D g

, ~B8!

wherea is some constant and the power 0,g,1 @Eq. ~B8!
is verifieda posterioriwhen solving the SD Eq.~40! for the
scalar propagator#. We obtain, from Eq.~B6!,

j~k!5
2

3
2

NCga

4~22g! S L

k D 2g21

. ~B9!

In absence of the four-fermion interaction we get the fam
nonlocal gaugej52/3 @16#. Carenaet al. @21# have included
exchanges by the bare scalar propagators what corresp
to takingg51/2, a54/N (C51 in their leading order of the
1/N approximation for the photon vacuum polarization!.
Equation ~B9! then givesj51/3 in accordance with thei
findings.

Our Eq.~74! for the scalar propagator gives the expone
g5v/2 and contribution due to the exchange of scalars i
j(k) becomes suppressed~sincev,1) and we are left with
Nash’s nonlocal gaugej52/3.

APPENDIX C: APPROXIMATION FOR THE YUKAWA
VERTEX

As was mentioned in Sec. III, in order to resolve the a
gular dependence of the Yukawa vertex functionF1, we ex-
pand it, together with the kernels of Eqs.~48! and ~49!, in
Legendre polynomialsPn . We write

F1~p1q,p!5 (
n50

`

f n~p,q!Pn~cosa!,
04502
e

s

nds

t
o

-

1

uk2pu
5 (

n50

`

Nn~k,p!Pn~cosb!, ~C1!

k21q•k

~k1q!2
5 (

n50

`

an~k,q!Pn~cosg!, ~C2!

where cosa5p•q/pq, cosb5p•k/pk, and cosg5q•k/qk. The
Legendre polynomialsPn satisfy

E dV

4p
Pm~cosa!Pn~cosa!5

1

2E21

1

dx Pm~x!Pn~x!

5
dmn

2n11
. ~C3!

With the above defined expansions, and by making use of
identity

1

4pE0

p

da sinaE
0

2p

du Pn~cosa!Pl~cosb!

5
dnl

2l 11
Pl~cosg!, ~C4!

where cosb5cosa cosg1sina sing cosu, Eq. ~48! for the
Yukawa vertex can be represented as the set of equation
harmonicsf l :

f l~p,q!5d0l1lE
0

L

dk Nl~k,p!

3 (
m50

`

(
n50

`

Clmnam~k,q! f n~k,q!, ~C5!

where

Clmn[
1

2E21

1

dx Pl~x!Pm~x!Pn~x!

5

S 1

2D
s2 l

S 1

2D
s2m

S 1

2D
s2n

s!

~s2 l !! ~s2m!! ~s2n!! S 1

2D
s

~2s11!

, ~C6!

where 2s5 l 1m1n and (a)k[G(a1k)/G(a). The coeffi-
cientsClmn are zero unlessl 1m1n52s is even and a tri-
angle with sidesl, m, n exists, i.e.,u l 2mu<n< l 1m.9 Fur-
thermore, Eq.~49! can be written as

PS~q!5
2N

p2E0

L

dk (
n50

`
an~k,q! f n~k,q!

2n11
. ~C7!

9We thank L. P. Kok for pointing out the paper by Askeyet al.
@31#.
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Within the approximation~51!, i.e., keeping the zero
order termf 0 only in right-hand sides of Eqs.~C5! and~C7!,
we get

f 0~p,q!511lE
0

L

dk N0~k,p!a0~k,q! f 0~k,q!, ~C8!

PS~q!5
2N

p2E0

L

dk a0~k,q! f 0~k,q!. ~C9!

The functionsN0 anda0 are straightforwardly obtained from
inverting Eqs.~C1! and ~C2!. This gives

N0~k,p!5
u~k2p!

k
1

u~p2k!

p
, ~C10!

and

a0~k,q!5E dV

4p

~k21q•k!

~k1q!2

5aIR~k,q!u~q2k!1aUV~k,q!u~k2q!,

~C11!

aIR~k,q![
1

2
1

~k22q2!

4qk
ln

k1q

q2k
,

aUV~k,q![
1

2
1

~k22q2!

4qk
ln

k1q

k2q
. ~C12!

In order to be able to solve the equations forF IR and FUV
given by Eq.~52!, we approximate the functionsaIR andaUV
as follows:

aIR~k,q!'
k2

2q2
, aUV~k,q!'12

q2

2k2
,

aIR~q,q!5aUV~q,q!5
1

2
. ~C13!

The validity of this approximation is addressed in Sec. IV
The lowest order harmonicf 0 of the particular Legendre

expansion given in Eq.~50! is expressed in terms of th
-

ys

tt.
,

04502
.

so-called infrared~IR! function F IR and the ultraviolet~UV!
function FUV , see Eq.~52!. These functions describe th
following asymptotic behavior of the Yukawa vertex:

lim
p@q

GS~p1q,p!51lim
p@q

FUV~p,q!, ~C14!

lim
q@p

GS~p1q,p!51lim
q@p

F IR~p,q!.

~C15!

The fact that both these asymptotic limits ofGS are described
by f 0 through F IR and FUV guarantees the validity of the
approximation~51!. This crucial point is explained in more
detail in Ref.@24#, where this approximation is referred to a
‘‘the two-channel approximation.’’

Then, by making use of Eqs.~52!, ~C10!, and ~C13! we
get

~p,q! F IR~p,q!511lE
0

p

dk
k2

2pq2
F IR~k,q!

1lE
p

q

dk
k

2q2
F IR~k,q!1lE

q

L

dk
1

k

3S 12
q2

2k2D FUV~k,q!, ~C16!

~p.q! FUV~p,q!511lE
0

q

dk
k2

2pq2
F IR~k,q!

1lE
q

p

dk
1

p S 12
q2

2k2D FUV~k,q!1lE
p

L

dk
1

k

3S 12
q2

2k2D FUV~k,q!, ~C17!

and for the scalar vacuum polarization~C9! we can derive
Eq. ~53!. The integral Eqs.~C16! and~C17! are equivalent to
the second order differential equations given in Eqs.~54! and
~55!, with the four boundary conditions~56! and ~57!.
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