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Abstract

We present a computer simulation model of Wheeler’s delayed choice experiment. The model is solely based on
experimental facts and does not rely on concepts of quantum theory or probability theory. We demonstrate that it is
possible to give a particle-only description of Wheeler’s delayed choice experiment which reproduces the averages
calculated from quantum theory and which does not defy common sense.
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1. Introduction

According to the wave-particle duality, a concept of quantum theory, photons exhibit both wave and particle behav-
ior depending upon the circumstances of the experiment [1]. In 1978, Wheeler proposed a gedanken experiment [2], a
variation on Young’s double slit experiment, in which the decision to observe wave or particle behavior is postponed
until the photon has passed the slits.

An almost ideal experimental realization of Wheeler’s delayed choice experiment has been reported recently [3].
The experimental set-up (Fig. 1(left)) consists of a single-photon source, a Mach-Zehnder interferometer, with at the
output side a beam splitter (BSoutput), the presence of which can be controlled by a voltage applied to an electro-optic
modulator (EOM) and detectors. The key point in this experiment is that the decision to apply a voltage to the EOM
is made after the photon has passed BSinput. Logically, this experiment is equivalent to the one shown in Fig. 1(right).
An essential feature of this experiment is that the experimenter can decide, at any time, whether or not BSoutput is
present. In Fig. 1(right), we symbolize this by saying that the presence/absence of BSoutput is controlled by a binary
(pseudo) random number An.

Although the detection events are the only experimental facts, according to Ref. [3], the pictorial description
of what transpires in the experiment is as follows: If BSoutput is absent, then the arrival of a photon at either detector
clearly gives which-way information about the photon within the interferometer (particle behavior), with 50% arriving
from either path. If BSoutput is present, the paths interfere and it is impossible to know which path the photon took
(wave behavior). Accordingly, the detectors register an interference pattern.

The outcome of the experiment, that is the averages over many detection events, are in agreement with quantum
theory [3]. However, the pictorial description, as given in Ref. [3], defies common sense: If the decision to leave in
place or take away BSoutput is made after the photon left BSinput but before it passes BSoutput, this decision influences
the behavior of the photon in the past and changes the representation of the photon from a wave to a particle [3].

On the other hand, the pictorial description (which is commonly adopted in discussions of Wheeler’s delayed
choice experiment) uses concepts from quantum theory, a theory that cannot describe single events [1]; it provides a
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Figure 1: Left: Schematic diagram of the experimental setup for Wheeler’s delayed-choice gedanken experiment [3]. PBS: Polarizing beam
splitter; HWP: Half-wave plate; EOM: electro-optic modulator; RNG: Random number generator; WP: Wollaston prism; P,S: Polarization state of
the photon; D0, D1: Detectors. Right: Logically equivalent, simplified representation of the ideal Wheeler’s delayed choice gedanken experiment.
The network consists of two beam splitters (BS), two devices R(φ0) and R(φ1) that induce a phase shift φ0 − φ1 between the two routes 0 and 1,
two perfectly reflecting mirrors and two detectors D0 and D1. A (pseudo) random number An determines whether or not the second BS should be
physically taken away when the nth photon has passed the first BS.

recipe to compute averages only. Therefore, it should not be a surprise that the application of concepts of quantum
theory to the domain of individual events may lead to conclusions that are at odds with common sense.

2. Simulation model

The model presented in this paper builds on earlier work [4, 5, 6, 7, 8, 9, 10, 11, 12] in which we have demonstrated
that it may be possible to simulate quantum phenomena on the level of individual events without invoking a single
concept of quantum theory or probability theory.

In our simulation approach, a messenger (representing a photon), carries a message (representing the phase of
the photon) and is routed through the network and the various units that process the messages. We now explicitly
describe our simulation model that is, we specify the message carried by the messengers, the algorithms that simulate
the processing units and the data analysis procedure.

Messenger. Particles carry a message represented by a two-dimensional unit vector yk,n =
(
cosψk,n, sinψk,n

)

where ψk,n refers to the phase of the photon. The subscript n ≥ 0 numbers the consecutive messages and k = 0, 1
labels the channel of the beam splitter at which the message arrives.

Beam splitter. The event-by-event processing of the single-photon beam splitters is modeled by the DLM-based
processor depicted in Fig. (2)(feft), where DLM stands for deterministic learning machine [4, 5]. The DLM-based
processor consists of an input stage (DLM), a transformation stage (T), an output stage (O) and has two input and two
output channels, labeled with k = 0, 1.

The input stage receives a message on either input channel 0 or 1, never on both channels simultaneously. The
arrival of a message on channel 0 (1) corresponds to an event of type 0 (1). The input events are represented by the
vectors vn = (1, 0) or vn = (0, 1) if the n -th event occurred on channel 0 or 1, respectively. The DLM has two internal
registers yk,n = (Ck,n, S k,n) and one internal vector xn = (x0,n, x1,n), where x0,n + x1,n = 1 and xi,n > 0. These three
two-dimensional vectors are labeled by the message number n because their content is updated every time the DLM
receives a message. Before the simulation starts we set x0 = (x0,0, x1,0) = (r, 1 − r), where r is a uniform pseudo-
random number. In a similar way we use pseudo-random numbers to set y0,0 and y1,0. Upon receiving the (n + 1)th
input event, the DLM performs the following steps: It stores the message yk,n+1 = (cosψk,n+1, sinψk,n+1) in its internal
register yk,n+1 = (Ck,n+1, S k,n+1); It updates its internal vector according to the rule

xi,n+1 = αxi,n + (1 − α)δi,k, (1)
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Figure 2: Left: Diagram of a DLM that performs an event-based simulation of a single-photon beam splitter (BS). The solid lines represent the input
and output channels of the BS. The presence of a message is indicated by an arrow on the corresponding channel line. The dashed lines indicate the
data flow within the BS. Right: Simulation results for the diagram shown in Fig. 1(right). Input channel 0 receives (cosψ0, sinψ0) = (1, 0). Input
channel 1 receives no events. Initially, the rotation angles φ0 = φ1 = 0 and after each set of N = 10000 events, φ0 is increased by 15 degrees while
φ1 = 0. For each input event, a pseudo-random number An is used to open or close the interferometer configuration. Open (closed) markers give
the simulation results for the open (closed) configuration of the interferometer. Squares and circles give the simulation results for the normalized
intensities N0/N and N1/N as a function of the phase shift φ = φ0 − φ1. Lines represent the results of quantum theory. Simulations are carried out
with α = 0.99.

where 0 < α < 1 is a parameter that controls the learning process. By construction x0,n+1 + x1,n+1 = 1 and xi,n+1 ≥ 0.
The transformation stage T takes as input the data stored in the two internal registers yk,n+1 = (cosψk,n+1, sinψk,n+1)

and in the internal vector xn+1 = (x0,n+1, x1,n+1) and constructs the four-dimensional vector

T =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0,n+1
√

x0,n+1 − S 1,n+1
√

x1,n+1

C1,n+1
√

x1,n+1 + S 0,n+1
√

x0,n+1

C1,n+1
√

x1,n+1 − S 0,n+1
√

x0,n+1

C0,n+1
√

x0,n+1 + S 1,n+1
√

x1,n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

Rewriting this vector as a two-dimensional vector with complex-valued entries, it is easy to show that T corresponds
to the matrix-vector multiplication in the quantum theoretical description of a beam splitter [1, 4, 5], namely

(
b0

b1

)
=

1√
2

(
1 i
i 1

) (
a0

a1

)
=

1√
2

(
a0 + ia1

a1 + ia0

)
. (3)

where (a0, a1) and (b0, b1) denote the input and output amplitudes of the photons in the 0 and 1 channels of a beam
splitter.

If w2
0,n+1 + w2

1,n+1 > r where 0 < r < 1 is a uniform pseudo-random number, the output stage O sends the message

wn+1 = (w0,n+1 + w1,n+1)/(w2
0,n+1 + w2

1,n+1)1/2, (4)

with w0,n+1 = C0,n+1x1/2
0,n+1 − S 1,n+1x1/2

1,n+1 and w1,n+1 = C1,n+1x1/2
1,n+1 + S 0,n+1x1/2

0,n+1 through output channel 0. Otherwise,
output stage O sends the message

zn+1 = (z0,n+1, z1,n+1)/(z2
0,n+1 + z2

1,n+1)1/2, (5)

with z0,n+1 = C1,n+1x1/2
1,n+1 − S 0,n+1x1/2

0,n+1 and z1,n+1 = C0,n+1x1/2
0,n+1 + S 1,n+1x1/2

1,n+1 through output channel 1.
Phase shifters R(φ0) and R(φ1). These devices perform a plane rotation on the vectors (messages) carried by the

particles. As a result the phase of the particles is changed by φ0 or φ1 depending on the route followed.
Detection and data analysis procedure. Detector D0 (D1) registers the output events at channel 0 (1). For fixed

φ = φ1 − φ0, a simulation run of N events generates the data set Γ(φ) = {xn, An|n = 1, . . . ,N}. Here xn = 0, 1 indicates
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which detector fired (D0 or D1), and An = 0, 1 tells us whether the second beam splitter, BSoutput was absent or not.
Given the data set Γ(φ), we can easily compute the number of 0 (1) output events N2 (N3) for the open and closed
configuration of the interferometer, from which we directly obtain the required averages.

3. Results

It is a simple, straightforward excercise to program the algorithm described earlier. Representative results of
an event-by-event simulation of Wheeler’s delayed choice experiment are shown in Fig. 2(right). Obviously, the
simulation data are in quantitative agreement with those of quantum theory (and in qualitative agreement with exper-
iment [3]). Elsewhere, we present the results of similar simulations that take into account the polarization [13], that
is we simulate the real experiment [3]. Our simulations prove that it is possible to give a particle-only description
for Wheeler’s delayed choice experiment that reproduces the averages calculated from quantum theory and does not
contradict common sense.
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