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a b s t r a c t

Using Einstein–Podolsky–Rosen–Bohmexperiments as an example,wedemonstrate that the combination
of a digital computer and algorithms, as a metaphor for a perfect laboratory experiment, provides
solutions to problems of the foundations of physics. Employing discrete-event simulation, we present a
counterexample to John Bell’s remarkable ‘‘proof’’ that any theory of physics, which is both Einstein-local
and ‘‘realistic’’ (counterfactually definite), results in a strongupper bound to the correlations that are being
measured in Einstein–Podolsky–Rosen–Bohm experiments. Our counterexample, which is free of the so-
called detection-, coincidence-, memory-, and contextuality loophole, violates this upper bound and fully
agrees with the predictions of quantum theory for Einstein–Podolsky–Rosen–Bohm experiments.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Digital computers are physical devices, the state of which
changes according to well-defined rules. Executing an algorithm
on a digital computer is an experiment in which there are no
unknown factors that might affect the outcome. Therefore the
digital computer + algorithm can be viewed as a metaphor for a
perfect laboratory experiment.

Moreover there always exists a one-to-one mapping from the
state of the computer to objects that are directly accessible to our
senses. Therefore computer simulation offers unique possibilities
to confrontman-made concepts and theorieswith actual facts, real
perfect experiments, not just abstract symbols, thereby facilitating
the ordering and deeper understanding of human experience.

In view of this potential it is surprising that a general feeling
exists that computer simulation cannot contribute much to the
foundations of quantum physics. This is somewhat remarkable
because in other important subfields of theoretical physics, such
as statistical physics, computer simulation has proven essential in
advancing the field [1].

In the present paper, we use the ‘‘computer’’-‘‘laboratory
experiment’’ metaphor to perform discrete-event simulations of a
loophole-free idealization of the Einstein–Podolsky–Rosen–Bohm
(EPRB) experiment ofWeihs et al. [2]. The simulationmodel which
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complies with the notions of Einstein locality and counterfactual
definiteness generates data that is in full agreement with quantum
theory, demonstrating that (i) counterfactual definiteness or a Bell-
type inequality does not separate classical from quantum physics
and (ii) a violation of a Bell-type inequality points to a deficiency
of the applicability and connection of the mathematical axiomatic
system (that is used for Bell’s derivation) to the data (see also [3]).

Counterfactual ‘‘measurements’’ yield values that have been de-
rived by means other than direct observation or actual measure-
ment, such as by calculation on the basis of a well-substantiated
theory. If one knows an equation that permits deriving reliably ex-
pected values from a list of inputs to the physical system under
investigation, then one has ‘‘counterfactual definiteness’’ (CFD) in
the knowledge of that system. For an extensive discussion of coun-
terfactuals see Ref. [4].

The derivation of the Theorem of Bell and Bell’s inequality ne-
cessitate the postulate of CFD [5]. In the present paper we adopt
the definition of CFD as given in an earlier paper [5]:

A counterfactually definite theory is described by a
function (or functions) that map(s) tests onto numbers.
The variables of the function(s) argument must be chosen
in a one to one correspondence to physical entities that
describe the test(s) and must be independent variables in
the sense that they can be arbitrarily chosen from their
respective domains.
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Fig. 1. Block diagram of an observation station. The input–output relations x =

x(a, φ) and t∗ = t∗(a, φ, r) are defined by Eqs. (1) and (2).

In brief, CFD means that the output state of a system can, in
principle, be calculated using an explicit formula, e.g. y = f (x)
where f (.) is a known (vector-valued) function of its argument x. If
x denotes a vector of values then, according to the above definition,
the elements of this vector must be independent variables for the
mathematical model to be CFD-compliant.

Although it is clear that CFD cannot be tested in a conventional
laboratory experiment [6], a digital computer is nothing but a
physical device that performs a kind of experiment (e.g. flipping
bits), albeit one that is under perfect control (we assume that the
computer is operating flawless). Therefore a digital computer may
be used as a metaphor for carrying out ideal, perfect experiments.
In particular, it is trivial to perform computer experiments using
functions that satisfy the criterion of a CFD theory. With all this in
mind, in the present paperwe only consider formulas y = f (x) that
can be implemented as an algorithm running on a digital computer.
Using the digital computer as a metaphor guarantees that we
have a well-defined precise (in terms of bits) representation of the
concepts and algorithms (also in terms of bits) involved.

The purpose of the paper is to scrutinize the relation and
relevance of CFD to models of EPRB experiments. We demonstrate
that there exist both CFD and non-CFD-compliant computer
models for the EPRB experiments that produce results in complete
agreement with those of quantum theory. Because these computer
models do not contain quantumconcepts, CFD does not distinguish
classical from quantum physics for the case of EPRB experiments.

2. Computational model

In this section we describe a loophole-free implementation
of Bohm’s version [7] of the EPR thought experiments [8]. This
implementation simulates laboratory (EPRB) experiments with
photons [2,9] but does not suffer from the practical limitations of
real experiments: the computer experiments that we report upon
are ideal, perfect, loophole free experiments. The computational
model of the EPRB experiment is constructed such that it can
reproduce, exactly, the single particle averages and two-particle
correlations of the singlet state [10,11].

We begin by specifying the model of the observation stations
which are considered to be identical computational units which
operate according to a specific algorithm, see Fig. 1. Input to a
unit is the setting a (representing the angle of the polarizer), an
angle 0 ≤ φ < 2π (representing the polarization of the photon),
and a number 0 ≤ r < 1. Output of a given unit is a binary
variable x = ±1 (representing the detection event at one of the
two detectors placed behind the polarizer), and a time-related
parameter 0 ≤ t∗ ≤ T (related to the recorded time-tag). The
model parameter T is fixed and does not depend on the setting a.

Upon receiving the input (a, φ, r) the unit executes the
following two steps [10]:

1. compute c = cos[2(a − φ)], s = sin[2(a − φ)], (1)

2. set x = sign(c), t∗ = rTs2. (2)

These two lines form the core of the computer algorithm. The
simplicity of this algorithm is enticing, however, it contains several
key features. One is the creation of a time-related variable t∗
that has the interesting property of being a function of both
Fig. 2. Schematic layout of the computational equivalent of a laboratory EPRB
experiment [2,9]. The input–output relation for i = 1, 2 is given by xi = x(ai, φi)

and t∗i = t∗(ai, φi, ri)where x = x(a, φ) and t∗ = t∗(a, φ, r) are defined by Eqs. (1)
and (2). Alternatively, the input–output relationmay bewritten as (x1, t∗1 , x2, t∗2 ) =

F(φ1, φ2, r1, r2, a1, a2) showing that for fixed (a1, a2) the simulationmodel satisfies
the definition of a CFD theory [5].

the local setting a and the angle φ. In contrast to Bell and
Clauser–Horn–Shimony–Holt (CHSH), we are dealing therefore,
with time related parameters that depend on the local setting of
each station. In addition, the model introduces randomness by a
number 0 ≤ r < 1, distributed uniformly.

It is important to notice that the variable t∗ in Eq. (2) may
be imagined as being related to a ‘‘pointer-position’’ of a clock
that symbolizes dynamic many-body interactions of the photon
with the constituent particles of the source and localmeasurement
equipment (polarizers, etc.). All of these particles perform a
(relativistic) many-body ‘‘dance’’ that certainly may depend on
the local equipment orientation as well as on properties of the
incoming photons. Because this many body ‘‘dance’’ has never
been explored in actual EPRB equipments, we consider t∗ in the
following only as a computer generated time-related tag that is
used in order to deal selectively with the results for x after the
whole computer experiment is done.

For every input event (a, φ, r), we know the values of all
outputs variables x = x(a, φ) and t∗ = t∗(a, φ, r). Therefore,
the input–output relation of this unit, represented by the diagram
of Fig. 1, satisfies the requirement of CFD. We also use below the
somewhat simpler notation x(a) = x(a, φ) and t∗(a) = t∗(a, φ, r),
keeping in mind that the x’s depend on φ and the t∗’s depend on
both φ and r . Here and in the following, it is implicitly understood
that for every instance of new input, the values of the φ’s and r ’s
are generated ‘‘at random’’. The procedure for generating the φ’s is
specified in section ‘‘Computer simulation results’’.

The computational equivalent of the EPRB experiment [2,9] is
shown in Fig. 2. We start by assuming that the source S and the
observation stations i = 1, 2 are equipped with idealized, perfect
clocks (not shown) that have been synchronized before the source
is being activated. Each time the source S is activated, two photons
are sent in opposite directions. The source is activated at times
τ1, . . . , τN . We denote the minimum time interval between two
emission events by δτ = minn=1,...,N−1(τn+1 − τn).

Each photon traveling to observation station i = 1, 2 carries its
data in the form of an angle φi (representing the polarization) and
a pseudo-random number 0 < ri < 1. The purpose of ri is to ac-
count, be it in a highly over-simplified manner, for the influence of
the many-body interactions of the incoming photon with the con-
stituent particles of the measurement equipment (polarized beam
splitter, retarders, etc.) located at observation station i, resulting in
a change of the time-of-flight from the source to the detector at
observation station i [5,12].

Upon arrival of photon n at station i, the observation station
produces the value xi = ±1 (see Eqs. (1) and (2)) and a time-tag

Ti,n = τn + T (i)
TOF + t∗i,n, i = 1, 2. (3)

In laboratory EPRB experiments, one considers differences of time-
tags only [2,13]. As the distances between the sources and the
observation stations i = 1, 2 are fixed, we may assume that the
time T (i)

TOF it takes the photon to reach the observation station i is
constant. In general T (1)

TOF ≠ T (2)
TOF but the difference between the two

times-of-flight may be compensated for by adding this difference
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to the appropriate measured clock time Ti,n. Hence, for simplicity
we assume that TTOF = T (1)

TOF = T (2)
TOF.

From Eqs. (2) and (3) it follows that τn + TTOF ≤ Ti,n ≤

τn + TTOF + T . In the following, we only consider the case T <
δτ , meaning that the maximum delay time T is smaller than the
minimum time interval δτ between two emissions of a pair of
photons. The restriction T < δτ implies that τn + TTOF ≤ Ti,n <
τn + TTOF + δτ and this inequality has an important consequence
because it guarantees that there is a one to one correspondence
between the value of the time-tag Ti,n and the number n of the
emission event. Thus, in contrast to actual experimental data [2],
for the data generated by the computer model there is a one to
one correspondence between the value of the time-tag Ti,n and
the number n of the emission event if the condition T < δτ is
satisfied. With this condition we have T1,n − T2,n = t∗1,n − t∗2,n and
therefore, in the computer model, the time-of-flight and photon
emission times τ1, . . . , τN are superfluous and may be omitted.
There is no coincidence loophole and as every photon arriving at
an observation station also produces an output event (x(a), t∗(a)),
there is no detection loophole either. Note also that the assumption
T < δτ prevents the incorrect inclusion of impossible events, such
as two different polarizer-settings for the same measurement (for
details on this see [5]).

Upon arrival of the photon, observation station i = 1, 2 exe-
cutes the algorithm defined by Eqs. (1) and (2) and produces out-
put in the form of the pair (xi = ±1, 0 ≤ t∗i ≤ T ). The algorithm
represented by Fig. 2 computes the vector-valued functionx1

t∗1
x2
t∗2

 =

 x1(φ1, a1)
t∗1 (φ1, a1, r1)
x2(φ2, a2)

t∗2 (φ2, a2, r2)

 = F(φ1, φ2, r1, r2, a1, a2), (4)

hence, according to the definition of CFD, Eq. (4) defines a CFD-
compliant theoretical model.

The primary aim of EPRB experiments is to demonstrate
a violation of the Bell–CHSH inequality under Einstein-local
conditions [14]. By construction, the computer models that we
use aremetaphors for Einstein-local experiments: changing a1 (a2)
never has an effect on the values of x2 (x1) or t∗2 (t∗1 ), neither in
the past nor in the future, hence the output of one particular unit
depends on the input to that particular unit only.

The crucial point that leads to a violation of Bell’s theorem
is now the following. We deal with photon pairs for which
an ‘‘entanglement’’ is defined in the Hilbert space of quantum
mechanics. The correlations of the event of measurement of these
pairs are, on the other hand, obtained bymeasurements in ordinary
space and time. In other words, some criterion is employed
to relate the measured pairs and identify them as belonging
together. Such identification can be achieved, among other
possibilities, by use of two synchronized clocks indicating time t
in both measurement stations. As soon as such identification and
corresponding selection of pair-measurements are implemented,
we may derive a joint frequency distribution P(T1, T2) for the time
tags T1,n and T2,n for finding both T1,n and T2n within a time-range
W around a time tn = τn + TTOF of the synchronized station clocks.
This joint frequency distribution is derived in an Einstein local way
and depends on the settings of the polarizers of both stations, a
fact that cannot be accommodated in Bell-type proofs.

Bell–CHSH inequality tests require four different experiments
with different choices of the settings of the observation stations.
Specifically, the setting of observation station i = 1, 2 can take
two values which we denote by (ai, a′

i). The choice of setting ai or
a′

i may be made at random [2,9,13]. In real experiments, it takes a
certain time to switch from one setting to another but this time is
less than the average time between two emission events [2]. In the
Fig. 3. Computational model for the EPRB experiment satisfying the criterion of a
CFD theory.

computer experiment, being an idealized perfect experiment, the
algorithm is such that this cannot be an issue.

The algorithm represented by Fig. 2 is CFD-compliant. However,
the computational model represented by the diagram in Fig. 2
cannot compute, e.g. (x1, x2, x′

1, x
′

2) with xi = xi(ai, φi) and x′

i =

x′

i(a
′

i, φi) in a CFD-compliant manner: it suffers from the so-called
contextuality loophole [15–17] because there is no guarantee that
the random φi’s used to compute the xi’s will be the same as
the random φi’s used for the calculation of the x′

i ’s. Under these
circumstances the correlations calculated from the data generated
by the model shown in Fig. 2 do not need to satisfy a Bell-
type inequality [5,12,15,18] and, as demonstrated explicitly below
through simulation, indeed they do not. Thus, the model of Fig. 2
cannot be used to perform a CFD-compliant simulation of the EPRB
experiment.

The layout of a CFD-compliant computer model of the EPRB
experiment is depicted in Fig. 3. It uses the same units as the
non-CFD-compliant model shown in Fig. 2, the only difference
being that the input (φi, ri) is now fed into an observation station
with setting ai and another one with setting a′

i . As each of
the four units operates according to the rules given by Eq. (1)
and (2), we have (x1, x′

1, x2, x
′

2) = X(φ1, φ2, a1, a′

1, a2, a
′

2) and
(t∗1 , t

∗′

1 , t∗2 , t
∗′

2 ) = T (φ1, φ2, r1, r2, a1, a′

1, a2, a
′

2). As the arguments
of the functions X and T are independent and may take any value
out of their respective domain, the whole system represented by
Fig. 3 satisfies, by construction, the criterion of a CFD theory.

3. Bell–CHSH inequality and time-coincidence criterion

As CFD is used as at least one of the assumptions to prove the
Bell–CHSH inequality [5], it is instructive to see how this feature
appears in the computational model. Therefore, let us start by
explicitly ignoring the t-variables. As is clear from Fig. 3, the two
stations on the left of the source S receive the same data (φ1, r1)
from the source. The settings a1 and a′

1 are fixed for the duration
of the N repetitions of the experiment. The same holds for the two
stations at the right of the source, with subscript 1 replaced by 2.
Clearly, each quadruple of output data (x1, x′

1, x2, x
′

2) is generated
in a CFD-compliant manner.

For each input event (labeled by n = 1, . . . ,N) we compute

sn = x1x2 − x1x′

2 + x′

1x2 + x′

1x
′

2

= x1

x2 − x′

2


+ x′

1


x2 + x′

2


, (5)

and

S =
1
N

N
n=1

sn (6)

where N denotes the number of pairs that was processed by
the units. From Eq. (5) it follows immediately that |sn| ≤ 2
and hence |S| ≤ 2. Of course, this is what we expect: if the
whole system is CFD-compliant and we ignore the t-variables,
we generate quadruples and then it is impossible to violate the
Bell–CHSH inequality |S| ≤ 2 [18,19].

Next, we examine what happens if the time-tag variables Ti,n
are included. In real EPRB experiments with photons, it is essential
to use time-coincidence to identify pairs [2,9,13]. The standard
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procedure adopted in these experiments is to introduce a time
windowW and reject pairs that do not satisfy the condition |T1,n −

T2,n| ≤ W (and similar for other relevant combinations of T ’s) [2].
The computational model defined by Eqs. (1) and (2) together with
the time-coincidence criterion yields, in the limit that the time-
window W vanishes, the correlation of the singlet state [10,11] if
we repeat the experiment pair-wise, i.e. with four pairs of settings
(see Fig. 2), in which case the CFD criterion is clearly not satisfied.
We emphasize that unlike in the laboratory experiment, in the
computer experiment all pairs are created ‘‘on demand’’, each pair
is detected, and the time window only serves as a vehicle to post
select pairs, not to identify them. Post-selection only serves to
‘‘probe’’ the complicated, time-dependentmany-body physics that
is involved when the photon passes through the optical system
and triggers the detector. In this sense, the computer experiment
suffers from none of the loopholes that may occur in experiments.

Although not feasible with photons, using the computer as
a metaphor we can perform the ideal, loophole-free experiment
satisfying all the requirements of a CFD theory. In the remainder
of this section we discuss the ramifications to the Bell-type
inequality that ensue when time is included in the description. In
the next section, we demonstrate that the CFD-compliant model
reproduces the quantum theoretical results of the singlet state.

We formalize the effect of the time-coincidence window by
introducing the binary variables

w(a1, a2) = Θ(W − |T1,n − T2,n|)
w(a1, a′

2) = Θ(W − |T1,n − T ′

2,n|)

w(a′

1, a2) = Θ(W − |T ′

1,n − T2,n|)

w(a′

1, a
′

2) = Θ(W − |T ′

1,n − T ′

2,n|), (7)

where Θ(x) is the unit step function. In essence, we extend the
computational device by taking the output of the two units de-
scribed earlier and feeding the time-tag output in a ‘‘correla-
tor’’ that computes, for each event n, the four binary variables
defined by Eq. (7). Adding the correlator does not change the
fact that the computer model is CFD-compliant. Indeed, a given
input (φ1, r1, φ2, r2) together with the settings (a1, a′

1, a2, a
′

2)
completely determines the values of all (two-valued) output vari-
ables x(a1), x(a′

1), x(a2), x(a
′

2), w(a1, a2), w(a1, a′

2), w(a′

1, a2), and
w(a′

1, a
′

2). Note that e.g. w(a1, a2) = 0 means that the partic-
ular pair has been discarded by the time-coincidence criterion
for the pair of settings (a1, a2) but that this does not imply that
e.g. w(a1, a′

2) = 0. In other words, the values of the w’s are used
to post-select pairs.

Next we compute averages and correlations of the coincident
pairs as is done in laboratory EPRB experiments [2]. The single-x
averages and correlation for the settings (a1, a2) are defined by

E1(a1, a2) =


w(a1, a2)x(a1)

w(a1, a2)

E2(a1, a2) =


w(a1, a2)x(a2)

w(a1, a2)

E(a1, a2) =


w(a1, a2)x(a1)x(a2)

w(a1, a2)
, (8)

and we have similar expressions for the other choices of settings.
In Eq. (8) it is understood that


means

N
n=1, i.e. the sum over

all input events, characterized by values of the r ’s and φ’s. It is
not difficult to see that E1(a1, a2), E2(a1, a2), etc. are zero, up to
fluctuations. The reason is that φ → φ + π/2 changes the sign
of the x’s but has no effect on the values of the t∗’s (see Eq. (2)).
Therefore, if the φ′s uniformly cover [0, 2π [, the number of times
x = +1 and x = −1 appear is about the same.
The usual strategy of deriving a Bell-like inequality for S =

E(a1, a2) − E(a1, a′

2) + E(a′

1, a2) + E(a′

1, a
′

2) does not work simply
because not all w’s need to be one for the same event n [12]
but we can, without using probability theory, derive another
inequality by following the strategy of Larsson and Gill [20].
Denoting the number of input events for which the four pairs
of settings simultaneously satisfy the coincidence criterion by N ′

and the maximum number of pairs per setting that satisfies the
coincidence criterion by Nmax, we have 0 ≤ δ ≡ N ′/Nmax ≤ 1
and it is straightforward to show (by repeated application of the
triangle inequality) that the following statement holds: in the case
that the time-coincidence criterion is used to post-select pairs, the
correlations cannot violate the inequalityE(a1, a2) − E(a1, a′

2) + E(a′

1, a2) + E(a′

1, a
′

2)
 ≤ 4 − 2δ. (9)

Therefore, if the algorithm generates all the variables strictly in
accordance with the criterion of a CFD theory, using the time-
coincidence window to post-select pairs does not lead to the
Bell–CHSH inequality unless δ = 1 in which case all w’s are equal
to one and none of the pairs are discarded by the post-selection
procedure. The term 2δ in Eq. (9) is a measure for the number
of pairs that have been post-selected relative to the number of
emitted pairs.

At this point, it is important to mention that in establishing
Eq. (9), the specific computational model that we have used as
a concrete realization is not essential: as long as the algorithm
generates x’s and T ’s in accordance with the criterion of a CFD
theory and δ > 0, Eq. (9) holds.

4. Computer simulation results

As explained earlier, from the logical structure of the algorithm
it is evident that the outcome of a particular unit cannot be
influenced by the input/output of another unit, neither by the
current input event nor by past or future events. Therefore, all
models that we consider generate data by a process that complies
with the notion of Einstein locality.

We present the results of four differentmodes of simulating the
EPRB experiments. This section reports the results of simulations
for 100 repetitions of the EPRB experiment with N = 106 events
per pair of settings in the case of the non-CFD-compliant models
and N = 4 × 106 events for the CFD-compliant models. We set
φ1 = φ and φ2 = φ + π/2 where 0 ≤ φ < 2π is a uniform
pseudo-random number, corresponding to the case in which the
polarizations of the two photons within a pair are orthogonal
and fully correlated (if φ1 and φ2 are uncorrelated and random,
the average of the x’s and the average of e.g. x1x2 are all zero,
independent of the settings). The algorithm of the unit simulating
the observation station is defined by Eqs. (1) and (2). For the
settings we take a1 = 0, a′

1 = π/4, a2 = π/8, a′

2 = 3π/8 as these
are known to be a choice thatmaximizes S, for the timewindowwe
takeW = 1 and themaximum time delay is taken to be T = 1000.

Case 1: non-CFD-compliant model (see Fig. 2), no post selec-
tion by a time window. The averages and correlations
are obtained from four sets of measurements with the
four different pairs of settings (a1, a2), (a1, a′

2), (a
′

1, a2),
and (a′

1, a
′

2). As the output of the stations with say set-
ting (a1, a2) is not available when the experiment runs
with another setting, say (a1, a′

2), this computer experi-
ment does not satisfy the criterion of a CFD theory, nor
does it mimic a real EPRB experiment with photons. For
a set of 100 repetitions, the simulations show that 54 out
of 100 repetitions yield a violation of |S| ≤ 2. The av-
erage of S being 2.0000 with standard deviation 0.0016.
Therefore, in a mathematically strict sense, for finite N ,
the non-CFD-compliant model without post selection by
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a time window yields data that violates the inequality
|S| ≤ 2, as expected [12]. However, this model does not
yield the correlation that is characteristic for a quantum
system in the singlet state.

Case 2: non-CFD-compliant model (see Fig. 2), post selection
by a time window. The averages and correlations are
obtained from four sets of measurements with four
different pairs of settings (a1, a2), (a1, a′

2), (a
′

1, a2), and
(a′

1, a
′

2). This computer experiment does not satisfy the
criterion of a CFD theory. Models that incorporate post
selection are known to produce results that violate |S| ≤

2 [10,21–27]. For a set of 100 repetitions, the simulations
show that 100 out of 100 repetitions yield a violation
of |S| ≤ 2, the average of S being 2.824 with standard
deviation 0.032. This value of S is very close to the
theoretical maximum 2

√
2 = 2.8284 for the quantum

system in the singlet state [28].
Case 3: CFD-compliant model (see Fig. 3), no post selection by

a time window. If the averages and correlations are ob-
tained from sets of quadruples (x1, x′

1, x2, x
′

2), the model
is CFD-compliant and the CHSH inequality |S| ≤ 2 cannot
be violated. For the same set of 100 repetitions as used in
Case 1, the simulations always yield |S| = 2, hence the
CHSH inequality is satisfied, as it should be.

Case 4: CFD-compliant model (see Fig. 3), post selection by
a time window. If the averages and correlations are
obtained from sets of quadruples (x1, x′

1, x2, x
′

2) post-
selected by way of the time-coincidence criterion, the
CHSH inequality cannot be derived and the correlations
satisfy instead Eq. (9). For the same set of 100 repeti-
tions as used in Case 1, the simulations show that 100
out of 100 repetitions yield a violation of |S| ≤ 2, the
average of S being 2.827 with standard deviation 0.016.
This value of S is very close to the theoretical maximum
2
√
2 = 2.8284 for the quantum system in the singlet

state [28]. The minimum value of δ found in these 100
repetitions is 0.14 × 10−3, that is the number of pairs
rejected by the time-coincidence criterion is significant.
Note that unlike case 2, it is impossible to perform this
CFD-compliant experiment with photons.
In Fig. 4 we show the correlation E(a1, a2) and single-x
averages as obtained from the simulation with the CFD-
compliant model with post selection. Quantum theory
predicts E(a1, a2) = − cos[2(a1 − a2)]. From Fig. 4 it is
clear that the CFD-compliant model reproduces the re-
sults of quantum theory without making any reference
to the latter.

5. Conclusion

A CFD-compliant model of the EPRB experiment that incorpo-
rates post-selection by a time window can violate the inequality
|S| ≤ 2 but cannot violate Eq. (9). Furthermore, with the proper
choice of model parameters, this model reproduces the results of
the quantum theoretical description of the EPRB experiment in
terms of the singlet state. Therefore, we have demonstrated that in
the case of the EPRB experiment, CFD does not separate or distin-
guish classical from quantum physics. The CFD-compliant model,
whichmay be viewed as having physical time involved in the post-
selection process as a hidden variable, provides a counterexample
to the dogma that CFD implies a Bell-type inequality.

In summary, we have presented a simulation model that
provides a counterexample, to the incorrect (but generally held)
belief that any Einstein-local and counterfactually-definite model
cannot produce results that are commonly considered to be a
signature of genuine quantum behavior.
Fig. 4. The correlation E(a1, a2) (⃝) and single-x averages E1(a1, a2) (△) and
E2(a1, a2) (▽) as a function of a1 − a2 as obtained from computer simulation data
of the CFD-compliant model (see Fig. 3) with time-coincidence windowW = 1 and
T = 1000. Solid line: quantum theoretical result of the correlation E(a1, a2) of a
quantum system in the singlet state. Dashed line: quantum theoretical result of the
single-x averages E1(a1, a2) = E2(a1, a2) = 0 in the singlet state.

Appendix. Derivation of Eq. (9)

First we decompose the sum over all n into a sum over all
n’s for which w(a1, a2)w(a1, a′

2)w(a′

1, a2)w(a′

1, a
′

2) = 1 (i.e. all
input events forwhich the four pairs of settings yield coincidences)
and denote this sum by


′. The sum over all n’s for which

w(a1, a2)w(a1, a′

2)w(a′

1, a2)w(a′

1, a
′

2) = 0 is denoted by


′′. Thus,
we have


=


′
+


′′.

By the definition of


′ we have N ′
=


′
w(a1, a2) =

′
w(a′

1, a2) =


′
w(a1, a′

2) =


′
w(a′

1, a
′

2) =


′ 1 ≤ N .
Clearly, N ′ is nothing but the number of quadruples generated by
the algorithm. The maximum of the number of pairs per setting
that satisfies the time-coincidence criterion is given by Nmax =

max


w(a1, a2),


w(a′

1, a2),


w(a1, a′

2),


w(a′

1, a
′

2)


> 0,
whereby we exclude the case that the time-coincidence criterion
rejects all events for all settings. Considering the four different
settings, the minimum of the ratio of quadruples over pairs that
satisfies the time-coincidence criterion is δ = N ′/Nmax. Obviously,
we have 0 ≤ δ ≤ 1.

Using the definition of


′ and


′′ we can write, for instance,

E(a1, a2) =


w(a1, a2)x(a1)x(a2)

w(a1, a2)

=


′
w(a1, a2)x(a1)x(a2) +


′′
w(a1, a2)x(a1)x(a2)

w(a1, a2)

=


′
w(a1, a2)x(a1)x(a2)

′
w(a1, a2)


′
w(a1, a2)
w(a1, a2)

+


′′
w(a1, a2)x(a1)x(a2)

′′
w(a1, a2)


′′
w(a1, a2)
w(a1, a2)

= E ′(a1, a2)


′
w(a1, a2)
w(a1, a2)

+ E ′′(a1, a2)


′′
w(a1, a2)
w(a1, a2)

, (10)

where

E ′(a1, a2) =


′
w(a1, a2)x(a1)x(a2)

′
w(a1, a2)

,

E ′′(a1, a2) =


′′
w(a1, a2)x(a1)x(a2)

′′
w(a1, a2)

.

(11)

Next, we rewrite Eq. (10) as

E(a1, a2) − δE ′(a1, a2) = E ′(a1, a2)


′
w(a1, a2)
w(a1, a2)

− δ


+ E ′′(a1, a2)


′′
w(a1, a2)
w(a1, a2)

, (12)
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and as (by definition)
′
w(a1, a2)
w(a1, a2)

≥


′
w(a1, a2)
Nmax

=
N ′

Nmax
= δ, (13)

using the triangle inequality and the trivial bounds
E ′(a1, a2)

 ≤ 1
and

E ′′(a1, a2)
 ≤ 1 yieldsE(a1, a2) − δE ′(a1, a2)

 ≤
E ′(a1, a2)

 
′
w(a1, a2)
w(a1, a2)

− δ


+

E ′′(a1, a2)
 

′′
w(a1, a2)
w(a1, a2)

≤


′
w(a1, a2)
w(a1, a2)

− δ +


′′
w(a1, a2)
w(a1, a2)

≤


′
w(a1, a2) +


′′
w(a1, a2)

w(a1, a2)
− δ

≤ 1 − δ. (14)

It is easy to see that for the other settings we have the same
upperbound as in Eq. (14). Using the triangle inequality once more
we haveE(a1, a2) − E(a1, a′

2) + E(a′

1, a2) + E(a′

1, a
′

2)


=
E(a1, a2) − δE ′(a1, a2) − E(a1, a′

2) + δE ′(a1, a′

2)

+ E(a′

1, a2) − δE ′(a′

1, a2) + E(a′

1, a
′

2) − δE ′(a′

1, a
′

2)

+ δ[E ′(a1, a2) − E ′(a1, a′

2) + E ′(a′

1, a2) + E ′(a′

1, a
′

2)]


≤
E(a1, a2) − δE ′(a1, a2)

 +
E(a1, a′

2) − δE ′(a1, a′

2)


+
E(a′

1, a2) − δE ′(a′

1, a2)
 +

E(a′

1, a
′

2) − δE ′(a′

1, a
′

2)


+ δ
E ′(a1, a2) − E ′(a1, a′

2) + E ′(a′

1, a2) + E ′(a′

1, a
′

2)


≤ 4(1 − δ) + 2δ = 4 − 2δ, (15)

where we used the fact that
E ′(a1, a2) − E ′(a1, a′

2) + E ′(a′

1, a2)
+ E ′(a′

1, a
′

2)
 ≤ 2 because these correlations only involve pairs

that satisfy the time-coincidence criterion. Note that we recover
the CHSH inequality only if δ = 1, that is only ifw(a1, a2)w(a1, a′

2)
w(a′

1, a2)w(a′

1, a
′

2) = 1 for all n or, in other words, only if the
time-coincidence criterion does not reject pairs. For δ = 0 we
recover the trivial inequality

E(a1, a2) − E(a1, a′

2) + E(a′

1, a2)+
E(a′

1, a
′

2)
 ≤ 4.
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