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High refractive index of melanin in shiny occipital
feathers of a bird of paradise

Doekele G Stavenga1, Hein L Leertouwer1, Daniel C Osorio2 and Bodo D Wilts1,*

Male Lawes’s Parotia, a bird of paradise, use the highly directional reflection of the structurally colored, brilliant-silvery occipital

feathers in their courtship display. As in other birds, the structural coloration is produced by ordered melanin pigmentation. The

barbules of the Parotia’s occipital feathers, with thickness ,3 mm, contain 6–7 layers of densely packed melanin rodlets (diameter

,0.25 mm, length ,2 mm). The effectively ,0.2 mm thick melanin layers separated by ,0.2 mm thick keratin layers create a

multilayer interference reflector. Reflectance measurements yielded peak wavelengths in the near-infrared at ,1.3 mm, i.e., far

outside the visible wavelength range. With the Jamin-Lebedeff interference microscopy method recently developed for pigmented

media, we here determined the refractive index of the intact barbules. We thus derived the wavelength dependence of the refractive

index of the barbules’ melanin to be 1.7–1.8 in the visible wavelength range. Implementing the anatomical and refractive index data in

an optical multilayer model, we calculated the barbules’ reflectance, transmittance and absorptance spectra, thereby confirming

measured spectra.
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INTRODUCTION

In animal integuments melanins commonly produce dull red, brown

and black colors. With nanoscale order, melanin in a matrix of verte-

brate keratin or arthropod chitin can produce striking structural col-

ors.1–4 The magnificent displays of birds of paradise exemplify how the

fine branches of the bird feathers, the barbules, are modified to achieve

a diverse range of visual effects through structural coloration. In

Lawes’s Parotia (Parotia lawesii), the barbules of the males’ breast

feathers have a boomerang-shaped cross-section, which produces

three directional-colored reflectors.5 Here we investigate the male

Parotia’s occipital (or nape) feathers, which produce a shiny, silvery

patch (Figure 1a and 1b). Compared to the breast feathers they are less

colorful, but the barbules of the occipital feathers exhibit a mirror-like,

directional reflection due to nanostructured melanin.6

The uniquely colorful breast feathers allows the breast color to switch

sharply between yellow, blue and black as the bird moves, during the

ballerina dance, which is performed as part of the courtship display.7–9

The shiny occipital feathers have a similar function. Recent behavioral

observations on the closely related Wahnes’s Parotia demonstrate that the

occipital feather reflections are sharply directed to the observing females

during part of the courtship performance, presumably to impress a

potential mate, viewing from an elevated position on a tree branch.6–10

To unravel the optical basis of the shiny occipital reflectors, we

investigated the barbule anatomy. This revealed very regularly ar-

ranged melanosomes, i.e., small melanin rodlets, arranged in layers.

To achieve an in-depth, quantitative understanding of the feathers’

reflection characteristics, we measured reflectance and transmittance

spectra of the barbules. Additionally, we determined the barbule re-

fractive index by interference microscopy.11–13 From the barbule ana-

tomy, we assessed the contribution of melanin to the barbule refractive

index and could thus determine the refractive index of melanin as a

function of wavelength. By implementing the accumulated data in an

optical multilayer model, we could closely reproduce measured angle-

dependent reflectance spectra. The derived melanin data will be sig-

nificant for detailed, quantitative studies on the coloration of avian

plumage and other biological materials that contain melanin.

MATERIALS AND METHODS

Occipital feathers and anatomy

Lawes’s Parotia occipital feathers (Figure 1a and 1b) were from speci-

mens in the Queensland Museum (Brisbane, Australia) and the Natural

History Museum Naturalis (Leiden, The Netherlands). Single feathers

were photographed with a Nikon D70 camera (Figure 1c). Feather

details were photographed with an Olympus SZX16 stereomicroscope

and a Kappa DX40 (Kappa Optronics, Gleichen, Germany) camera

(Figure 1d and 1e). Single barbules immersed in a refractive index

matching fluid (n51.63 at 589 nm) were photographed with a Zeiss

Universal Microscope (Zeiss AG, Oberkochen, Germany) using Nikon

Fluor 40/1.30 (Figure 2a) and Zeiss 100/1.25 (Figure 2b and 2c) oil

objectives and the Kappa camera. The barbule internal structure was

examined with transmission electron microscopy using standard pro-

tocols (Figure 2d–2f).
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Microspectrophotometry

Reflectance spectra (R(l), l is the light wavelength) of single barbules

were measured with a microspectrophotometer: an ultraviolet-visible

charge coupled device detector array spectrometer (AvaSpec-2048-2;

Avantes, Eerbeek, Netherlands) attached to a Leitz Ortholux microscope

with an Olympus 203, NA 0.46 objective and a xenon illuminator.

The reference was a diffuse white reflectance tile (Avantes WS-2).

Transmittance spectra, T(l), were also measured with the microspectro-

photometer. The spectra were converted into absorbance spectra with

D(l)52log10T(l), which were fitted with the function D(l)5D0exp

(2l/lm), because the extinction spectra of the two main melanin types,

eumelanin and pheomelanin, approximate exponential functions.13

Angle-dependent reflectance measurements

The angle-dependence of the occipital feather reflectance was mea-

sured with a setup consisting of two optical fibers mounted on goni-

ometers that had the same axis of rotation.14 The feather’s long axis

was oriented parallel to the goniometers’ plane of rotation (i.e.,
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Figure 2 Anatomy of the distal barbules of the occipital feathers. (a) A single barbule immersed in a fluid with refractive index 1.63 (at 589 nm) observed with epi-

illumination light microscopy. The barbule consists of a row of cells. (b) At higher magnification, individual melanin rodlets can be discerned. (c) Close-up view showing

the single melanin rodlets, parallel arranged in bands. (d) Transmission electron micrograph of a cross-section, revealing ordered layers of rodlets, diameter ,250 nm,

showing a ,60 nm thick cladding with a slightly higher electron density than the core. (e) Longitudinal section of the rodlets. (f) A cross-section perpendicular to the

barbule axis. The layered order of the rodlets is distorted in a central area at the underside (arrowhead). The short vertical bars indicate 36 vertical lanes, 0.5 mm wide,

for which reflectance, transmittance and absorptance spectra were calculated. For the two lanes flanked by bold bars (numbered 1 and 2 and marked by dotted border

lines), calculated refractive index profiles and spectra are given in Figure 4. Scale bars: a 20 mm; b 5 mm; c 1 mm; d, e 0.5 mm; f 2 mm.
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Figure 1 The occipital feathers of Lawes’s Parotia. (a) The occipital area illuminated with a narrow-aperture light beam and photographed from the mirror angle to show

the reflective occipital feathers. (b) Slight rotation sharply reduces the silvery reflection. (c) A single occipital feather, showing brown proximal barbules, which in situ

are covered by other feathers, and silvery-reflective distal barbules, which in situ are exposed. The green and red rectangles correspond to d and e. (d) The transition

area, between the distal and proximal feather parts. The barbule segments here have a variable color, from purple to greenish. (e) With epi-illumination, the distal

barbule segments are bluish silvery. Scale bars: a, b 1 cm; c 2 mm; d, e 200 mm.
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perpendicular to the rotation axis). The first fiber focused light from a

xenon lamp onto the feather and was rotated from the normal in steps

of 106. The second fiber collected the reflected light and guided it to a

spectrometer: the AvaSpec-2048-2 for the ultraviolet-visible wave-

lengths and an AvaSpec-NIR256-1.7 for the near-infrared. The result-

ing signal was always maximal when the second fiber was placed in the

mirror-angle position. The second fiber was fitted with an adjustable

polarization filter. At each angular position, reflectance spectra were

measured for polarized light parallel and perpendicular to the rotation

axis, and then were averaged.

Barbule refractive index and feather reflectance modelling

To determine the refractive index of the melanized barbules, we

applied the Jamin-Lebedeff interference microscopy method that we

recently developed for measuring the refractive index of absorbing

media.12 Briefly, we mounted small sections of isolated barbules,

immersed in various refractive index fluids (Cargille Labs, Cedar

Grove, NJ, USA), on the stage of the Zeiss Universal Microscope

set-up for Jamin-Lebedeff interference microscopy, and we thus

obtained the mean refractive index of the occipital feather barbules

as a function of wavelength, nb(l); for examples and detailed explana-

tion, see Supplementary Information. Subsequently, we used trans-

mission electron micrographs to determine the contribution of

melanin to the refractive index. We therefore divided the transmission

electron micrograph of Figure 2f into 36 lanes, each 0.5 mm wide, and

recorded the average optical density of a 10 nm thick cross-section in

3.5 mm long lanes. In Figure 2f, dashed boundaries mark two of the

lanes, numbered 1 and 2 (#6 and #18 of the 36 lanes). We assumed that

the areas of the barbule lanes with minimum density, Dmin, consist of

pure keratin, so that the refractive index there was nk(l)51.5321

5.893103l22;11 the refractive index outside the barbule was set to

1.0. In addition, we determined the average density of all barbule lanes,

Dav, and assumed the density difference Dav2Dmin to be proportional

to the difference of the refractive indices of melanin and keratin,

nb(l)2nk(l). Scaling the local density accordingly yielded the local

refractive index along each lane. We implemented these values in a

matrix-based optical multilayer program,14 which for each of the 36

lanes produced the wavelength-dependent reflectance, R, and trans-

mittance, T, as a function of incident angle and polarization. The

average of the 36 reflectance spectra was taken to represent the barbule

reflectance spectrum. The absorptance was calculated with A512

R2T. The reflectance calculations were also performed for angles of

incidence 06, 106, 206, 306, 406and 506for both TE- and TM- (transverse-

electric- and transverse-magnetic-) polarized light, which were then

averaged to obtain the reflectance spectra for unpolarized light.

RESULTS AND DISCUSSION

Feather color and structure

The male Lawes’s Parotia has a silvery-bluish occipital patch

(Figure 1a), which is highly reflective in a narrow angle: a slight change

of the observation angle causes a large change in the intensity of the

reflected light (Figure 1b). The shiny feathers have a reflective struc-

ture only on the distal tip. The remainder of the feathers has brown

melanin-pigmentation, which is not normally visible, because the

feathers overlap each other (Figure 1c). The barbules consist of rows

of cells, the color of which can abruptly change from violet to green in

the transition area between the brown and silvery regions (Figure 1d).

In the main distal part of the feather, the barbules vary little in color

(Figure 1e).

The directionality of the reflectivity and the silvery-bluish color

suggest a structural origin. Incident light microscopy of the distal

barbules in air did not reveal structural details, presumably due to

the large refractive index contrast between air and barbule. How-

ever, immersion in a high refractive index medium revealed a fine

cellular structure in the submicrometer range, with bands of slender,

parallel elements, ,2.0 mm long and ,0.25 mm wide (Figure 2a–2c).

Transmission electron microscopy clarified the inner structure of the

barbules. Transverse cross-sections showed that the barbules have a

striking internal organisation, with 6–7 layers of closely apposed rod-

lets (Figure 2d–2f), corresponding to the elements seen with light

microscopy (Figure 2b and 2c). Each rodlet comprises a cladding

(thickness ,60 nm) surrounding a core with a slightly (,10%) lower

electron density (Figure 2d and 2e). The transverse section of Figure 2f

shows that in the central area of the barbule cell the number of layers is

reduced and that the parallel layering of the rodlets is locally distorted

(Figure 2f, arrowhead). Scanning electron microscopy demonstrated

that the barbule cells’ upper surface is smooth, but at the underside, a

valley exists in the center of each cell (not shown). The valley and the

layer distortion are most probably the remains of the nucleus of the

dead cell.1

Barbule pigmentation

The multilayer structure of the barbule’s interior is clearly the basis of

the highly directional reflectivity of the occipital feathers.6 In order to

understand the barbule optics in further detail, we wanted to know the

material properties of the rodlets and its surroundings, and therefore

we performed microspectrophotometry on single barbule cells. The

reflectance spectra of small areas of different barbule cells (Figure 3a,

inset right) were broad-band and peaked in the blue-violet, and the

far-red wavelength range featured striking oscillations with amplitude

increasing with wavelength (Figure 3a).

When observing the barbules with epi-illumination from the un-

derside, a central contrasting area is seen in each cell (Figure 3a, inset

left). When the same barbule is observed in transmitted light

(Figure 3b, inset), the cell centers are marked by a light-brown color

within the generally brown barbule. The brown color strongly suggests

the presence of melanin pigment, and the central light-brown color

indicates a lower melanin concentration in the cell centers. This can be

immediately related to the depressed central area of Figure 2f, with

fewer layers of rodlets.

Transmittance spectra measured of the main barbule cell area and

the cell center had the same shape, but they differed in amplitude

(Figure 3b). The measured transmittance spectra converted to absor-

bance spectra approximated an exponential function, D5D0exp(2l/

lm), with lm515568 nm. The absorbance spectra of pheomelanin

and eumelanin, which often coexist in bird feathers,15 are described by

exponential functions with lm5115 nm and lm5175 nm, respect-

ively,13 suggesting that the pigment of the bird of paradise is predo-

minantly eumelanin. We conclude that the barbules consist of melanin

rodlets embedded in the main component of bird feathers, keratin.

Barbule and melanin refractive index

Melanin has a higher refractive index than keratin,1 and the arrange-

ment of the melanin rodlets in layers will cause the barbules to act as an

optical multilayer. For a quantitative understanding of the measured

reflectance and transmittance spectra, the refractive index of the con-

stituent layers has to be known. We first determined the refractive

index as a function of wavelength of both the main barbule area and

the cell center by applying Jamin-Lebedeff interference microscopy12
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(Figure 3c; see also Supplementary Figs. S1 and S2). The refractive

index spectra were well described by the Cauchy equation: n(l)5

A1B/l2, where for the main barbule area Ab51.59060.001 and

Bb5(1.4860.07)3104 nm2, and for the center Ac51.57260.002 and

Bc5(1.1760.01)3104 nm2 (Figure 3c).

The derived refractive index spectra are weighted sums of the re-

fractive indices of the keratin and melanin constituents. For the ker-

atin of white goose feathers, we found Cauchy parameters Ak5

1.53260.001 and Bk5(5.8960.02)3103 nm2 (Figure 3c).11 Assu-

ming that the keratins of bird of paradise and goose feathers are alike,

this means for the main barbule area a difference in Cauchy para-

meters with those of keratin DAb5Ab2Ak50.05860.002 and DBb5

Bb2Bk5(0.8960.09)3104 nm2, while for the center area, DAc5

Ac2Ak50.04060.003 and DBc5Bc2Bk5(0.5860.03)3104 nm2.

Because DAc/DAb<DBc/DBb<2/3, the increase in the effective refract-

ive index in the center with respect to keratin is about 2/3 of the

refractive index increase in the main barbule area. This agrees with

the anatomical data, showing an approximately 2/3 concentration of

electron dense material in the center area compared to that in the

surrounding area (Figure 2f).

The barbule refractive index depends on the relative amounts of

keratin and melanin. If we assume that the barbules contain an equal

amount of keratin and melanin (Figure 2), with refractive indices nk

and nm, respectively, the barbule refractive index is nb5(nk1nm)/2,

or nm52nb2nk. We thus derive that the refractive index of melanin

is described by Cauchy parameters Am51.64860.003 and Bm5

(2.3760.14)3104 nm2. This concerns the real part of the refractive

index, of course. The imaginary part can be derived similarly. Using

the measured transmittance spectra (Figure 3b), the imaginary part of

the refractive index of the melanin in the visible wavelength range

appears to be well fitted by the exponential function km(l)5am

exp(2l/bm), with am50.5660.01 and bm527065 nm.

The refractive index of melanin in feathers has been a matter of

conjecture for several decades. For the pigeon Columba trocaz, whose

barbule cells contain melanin granules and air spaces in a keratin

matrix, application of a series of immersion fluids led Schmidt1 to

conclude that the granule refractive index exceeds 1.739 (nD of methyl-

ene iodide), that it approximates 1.76–1.77 (ruby and sapphire) and is

less than 2.42 (diamond). We found here that the refractive index of

the melanin in the visible wavelength range is 1.7–1.8 (Figure 3c),

which is in close agreement with Schmidt.1 This value is however

distinctly lower than 2.0, the value commonly used in animal colora-

tion studies, although without experimental justification (e.g. Refs. 2

and 16–18).

Multilayer modeling

The refractive index data of keratin and melanin can be used to cal-

culate the reflection and transmission properties of the barbules by

optical multilayer modelling. The melanin rodlets do not create simple

planoparallel layers, however. The electron micrographs of Figure 2d–

2f rather suggest that the barbules have a gradient refractive index. To

quantitatively assess the refractive index gradient, we divided the barb-

ule cross-section of Figure 2f into 36 adjacent lanes, each 0.5 mm wide.

We assumed each lane to be a stack of 10 nm thick layers and deter-

mined the average electron density in each layer. We then took the

lowest electron density, Dmin, and the average density of all barbule

lanes, Dav, and assumed the difference, Dav2Dmin, to be proportional

to the difference of the derived refractive index value of melanin with

the refractive index of keratin, nb(l)2nk(l). By then scaling the local

density in each of the 10 nm layers in all lanes, we obtained the
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Figure 3 Reflectance, transmittance and refractive index of occipital feather

barbules. (a) Reflectance spectra measured from small barbule areas (,5 mm

diameter, upperside) showing oscillations reminiscent of thin film interference.

Insets: a barbule observed with epi-illumination from the underside (left) and

upperside (right; scale bar: 20 mm). (b) Transmittance spectra measured from

the center of a barbule cell and from an area outside the center. Inset: the same

barbule as that in a observed with transmitted light (scale bar: 20 mm).

(c) Refractive index of barbule and center areas as a function of wavelength,

derived from Jamin-Lebedeff interference microscopy, with Cauchy function fits,

together with the refractive index of bird keratin11 and the derived melanin

refractive index.
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refractive index profile of all lanes. Figure 4a shows the results, at

l5500 nm, for the two lanes marked in Figure 2f. We have to note

here that we derived above that the refractive index of melanin at

500 nm is 1.7460.01, while the profiles of Figure 2f show that the

scaling procedure can produce locally higher values. This is clearly

due to the inhomogeneity of the melanin layers. In fact, because the

values represent the average refractive index of a 10 nm thick and

0.5 mm wide layer, refractive index values .1.8 will be reached locally.

Yet, the average values will hold when considering the reflection and

transmission of the propagating light flux.

The first step in obtaining the feather’s reflectance spectrum was to

calculate for each lane the reflectance, transmittance, and absorptance

spectra by feeding the lane’s refractive index profile into a multilayer

model.14 The two barbule lanes of Figure 4a yielded for normal illu-

mination the spectra shown in Figure 4b. The calculated reflectance

spectra always peaked in the infrared and furthermore showed clear

oscillations in the far-red wavelength range (Figure 3a). The peak in

the infrared is due to the multilayered interference reflector inside the

barbule, but the oscillations arise because the barbules simultaneously

act as a thin film with thickness ,3 mm (Supplementary Fig. S3).19

The transmittance spectra (Figure 4b) showed a steep increase with

increasing wavelength, clearly due to the melanin, which absorbs pro-

gressively less with increasing wavelength (Figure 3b).

We averaged the reflectance spectra for all 36 lanes, yielding a much

smoother spectrum than those of Figure 4b (Figure 5a, 06). The

dependence of the reflectance on the angle of light incidence can be

easily obtained by multilayer modeling, and thus, we repeated the

calculations for a series of angles of light incidence, changed in steps

of 106(Figure 5a). Because multilayer reflections depend on the polar-

ization, we calculated the spectra for both TE- and TM-polarized light

(Supplementary Fig. S4a and S4c). By averaging the TE- and TM-

spectra for each angle of light incidence we obtained the reflectance

spectra for unpolarized light (Figure 5a). As expected for a multilayer,

with increasing angle of incidence, the infrared peak shifted to shorter

wavelengths (Supplementary Fig. S5).

To verify the validity of the calculations, we measured the angle-

dependent reflectance of the occipital feather tip in both the visible

and infrared wavelength range with a setup consisting of two rota-

table optical fibers. The illumination spot, with a spot diameter of

,4 mm, approximately covered the entire shiny part of the feather.

The illumination fiber angle was varied in 106steps and at each step, the

detection fiber was moved until a maximal signal was obtained. This
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position was always identical to the mirror angle (Figure 5b, inset).

The measurements were done for both TE- and TM-polarized light

and these spectra were then again averaged (Figure 5b). The experi-

mental and calculated spectra were not identical, but the overall beha-

vior was clearly very similar (Figure 5a and 5b).

A perfect correspondence cannot be expected, because the calcula-

tions were for a cross-section of only part of a single barbule cell, while

the experimental reflectance spectra were from an intact feather, which

contains numerous barbules, and their cells were certainly not all

identical. The spectral calculations were performed for 0.5 mm wide

lanes, because even within one and the same barbule cell the multi-

layering is far from ideal (Figure 2f). The averaged reflectance spectra

resulting from the set of 36 parallel lanes nevertheless showed a close

correspondence with the experimental spectra concerning the peak

wavelength in the infrared and a similar hypsochromic spectral shift

with increasing angle of light incidence, indicating the validity of the

heuristic approach. In fact, finite-difference time-domain modeling6

yielded reflectance spectra matching those of the multilayer modeling

(compare Figure 2 of Ref. 6 and Supplementary Fig. S3). Moreover, the

present reflectance spectra measured on the multi-colored breast feath-

ers of Lawes’s Parotia5 were straightforwardly produced by a finite-

difference time-domain model based on the quite different feather

anatomy while using the melanin refractive index derived here.6

CONCLUSIONS

Many birds have iridescent feathers due to melanin rodlets arranged in

layers. The refractive index value of melanin derived here by applying

Jamin-Lebedeff interference microscopy decreases in the visible wave-

length range (400-600 nm) gradually from ,1.8 to ,1.7, and thus

shows normal dispersion. A constant refractive index value 2.0, which

is commonly used in bird coloration studies, is clearly much too high.

Moreover, the absorption of melanin is usually neglected in modeling

studies, that is, the imaginary part of the melanin refractive index is

assumed to be constant. Here we have found that the strongly wave-

length-dependent melanin absorption distinctly influences the optical

properties of bird feathers. The combined modeling and reflectance

measurements of the present study confirm the measured melanin

refractive index spectrum. The obtained melanin data will be useful

for modeling the feather reflectance properties of birds with structural

coloration due to melanin multilayers.
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