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Abstract. The general conclusion of Seevinck and Larsson is that our model exploits the so-called
coincidence-time loophole and produces sinusoidal (quantum-like) correlations but does not model the
singlet state because it does not violate the relevant Bell inequality derived by Larsson and Gill, since in
order to obtain the sinusoidal correlations the probability of coincidences in our model goes to zero. In this
reply, we refute their arguments that lead to this conclusion and demonstrate that our model can reproduce
results of photon and ion-trap experiments with frequencies of coincidences that are not in conflict with
the observations.

PACS. 03.65.-w Quantum mechanics – 02.70.-c Computational techniques; simulations

In order to come to their conclusions, Seevinck and
Larsson made the following statements [1]:

– De Raedt et al. claim that their model violates the
CHSH inequality, a claim that cannot be found in ref-
erence [2];

– the CHSH inequality is inappropriate for models that
exploit the so-called coincidence-time loophole [3] and
the appropriately modified inequality [3] is not violated
by the model of De Raedt et al.;

– the model of De Raedt et al. cannot reproduce all ex-
perimental realizations of the EPRB experiment;

– De Raedt et al. claim that their model can repro-
duce the coincidences of recent experimental results,
another claim that cannot be found in reference [2];

and put our model in the context of hidden variable mod-
els to obtain an expression for the probability of coinci-
dences.

In this reply, we point out once more that in our
work [2] we did not rely on Bell’s or CHSH’s inequality nor
on any generalization thereof to come to our conclusion
that it is possible to construct an event-based simulation
model that satisfies Einstein’s criteria of local causality
and realism and can reproduce the expectation values of
a system of two S = 1/2 particles in the singlet state.
In our work [2] we did not make any claims about these
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inequalities, neither did we make any statement about co-
incidences in real experiments. We furthermore demon-
strate that the calculation by Seevinck and Larsson [1]
of the probability of coincidences for our model is simply
wrong and we present results for the frequency of coinci-
dences which compare rather well to the values observed
in recent experiments.

Before replying in detail to the comments of Seevinck
and Larsson [1] on our model [2], we first want to sincerely
apologize that we did not make a reference to the model
presented in reference [3] which, like our model, uses co-
incidence in time as a criterion to decide which pairs of
detection events are to be considered as stemming from
a single two-particle system. Furthermore, to our knowl-
edge, it is the first work to point out how the original Bell
inequality changes when using this post-selection proce-
dure [3]. Although in our work [2], we did not rely on Bell’s
original inequality or on any of its generalizations [4] to
come to our conclusions, we should have made reference
to reference [3] only because of the fact that the model
presented in reference [3] uses the same pair selection cri-
terion as we use in our model [2].

As stated in paragraph 2 of our paper [2], we consider
the original EPRB problem, that is the construction of a
model that satisfies Einstein’s criterion of local causality
for each pair of events and reproduces the expectation
values of a system of two S = 1/2 particles in the singlet
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state. Whether or not this model leads to a violation of
some inequality is of secondary interest.

We do not share the point of view of Seevinck and
Larsson [1] that a system is in the “singlet state” if and
only if some correlation violates a certain bound and if
the probability of coincidences does not go to zero. This
viewpoint does not make much sense if we apply it to the
ground state of a hydrogen molecule (a spin singlet), for
instance. The singlet state is a concept of quantum theory.
Unlike Seevinck and Larsson suggest in their conclusion,
the singlet is not defined with any reference to coincidence
counts or (generalized) Bell inequalities.

According to quantum theory, the singlet state is
completely characterized by the single-particle and two-
particle expectation values E1(a1) = E2(a2) = 0 and
E(a1,a2) = −a1 · a2, respectively. Because quantum the-
ory has nothing to say about single events [5], it does not
give us a recipe to compute E1(a1), E2(a2) and E(a1, a2)
from the record of single events in laboratory experiments
or theoretical models.

In the case of EPRB laboratory experiments with pho-
tons [6], coincidence in time seems to be a good criterion
to identify particle pairs based on the time-tag data of
single particle events, since by using this criterion results
comparable to those expected from quantum theory can
be obtained. Therefore we use the same criterion in our
model [2]. However, other criteria to decide which single
particles belong to a single two-particle system are not ex-
cluded. The criterion depends on the experimental setup
but quantum theory does not give any guidance to define
a criterion. Having made a definite choice for this crite-
rion, we can compute the single-particle and two-particle
expectation values from the record of single events in labo-
ratory or computer experiments and compare the outcome
with the results from quantum theory. If and only if we
find E1(a1) = E2(a2) = 0 and E(a1,a2) = −a1 · a2, we
may say that we found expectation values that correspond
to those of a singlet state. No other criteria, like violating
an inequality or computing a probability of coincidences
for example, are required to come to this conclusion. Note
that we cannot say anything more than that the expec-
tation values correspond to those of a singlet state. For
example, we cannot make statements such as the source
produces singlets, since the results for the expectation val-
ues do not only depend on the characteristics of the source
and the detection elements but also on the measurement
(post-processing) process.

It is self-evident that our model is too simple to de-
scribe, in every detail, all conceivable experimental real-
izations of the EPRB thought experiment but it is the first
model that satisfies Einstein’s conditions of local causal-
ity and realism and that exactly reproduces the single-
particle and two-particle expectation values of the singlet
state. In this respect, it may be viewed as the first real-
ization of the EPRB thought experiment (as defined by
EPRB), since none of the laboratory experiments of the
EPRB experiment have shown results for the single- and
two-particle expectation values that compare so well with
those of quantum theory. In those experiments, conclu-

sions are usually drawn based on the value for Smax only.
Moreover, to draw conclusions about local realist mod-
elling of expectation values that agree with those of a sin-
glet state, finding one such model is sufficient. Whether
this model then fails to describe all possible laboratory
realizations of the EPRB thought experiment becomes
irrelevant and it remains to be seen if these laboratory
experiments produce data that completely characterize a
singlet state, a requirement of the EPRB thought experi-
ment.

Seevinck and Larsson state “we will put the model used
by De Raedt et al. in its proper context”[1]. However, they
failed to do so in any respect. In spite of the fact that in
our paper, we repeatedly stress that in formulating our
model we do not rely on concepts of probability theory,
they seem to ignore our statements. This is most evident
by their statement that “the local hidden variable ... is
denoted by Sn,i”. Since, according to Larsson a hidden-
variable model is really a probabilistic model [7] and since
our model is purely ontological, the concept of a hidden
variable cannot be applied to our model as such.

In contrast to the (repeated) statement made in refer-
ence [1], we did not claim that the CHSH inequality (see
Eq. (2) in Ref. [1]) is valid for our model. There is no such
statement in our paper. In our paper, we studied the val-
ues of Smax as a function of the time window W relative
to the time-tag resolution τ and this for several values
of the model parameter d. We compared the results with
Smax = 2

√
2, the quantum theoretical result for the singlet

state and also the maximum value for Smax that can be
obtained for any choice of the quantum state. Although we
find that for some model parameters 2 < Smax < 4 we did
not claim that our model violates the CHSH inequality,
as stated by Seevinck and Larsson [1]. In fact, using ele-
mentary algebra it follows immediately from equations (3)
and (5) of reference [2] that |E(a1, a2)| ≤ 1 and that

|E(a, c) − E(a,d) + E(b, c) + E(b,d)| ≤ 4, (1)

for the data generated by our computer model. Without
any further constraints on the algorithm that generates
the data {Υ1, Υ2} (see Eq. (1) in Ref. [2]), the upperbound
(4) in equation (1) cannot be improved. In our paper [2],
we use expression equation (5) (see Ref. [2]) to discuss the
nature of the quantum state, but attach no meaning to
the violation of some bound by our simulation data.

Not surprisingly, also the statement “they furthermore
claim that the maximal quantum violation is ...”, [1] is
wrong. We did not make any reference to the CHSH in-
equality in our paper. Looking at Figure 3 of our pa-
per [2], Seevinck and Larsson should have noted that for
d > 3, our model can produce correlations that are (much)
stronger than those of quantum theory (which in view of
equation (1) is not a surprise). In fact, the correct state-
ment (see Ref. [2]) is that our model can exhibit correla-
tions that are stronger than those of quantum theory of
two S = 1/2 particles.

As we mentioned before, we agree with Seevinck and
Larsson that when time-coincidence is used to decide
which pairs of detection events are to be considered as
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stemming from a single two-particle system and if one
would like to consider a generalized Bell inequality, the
relevant inequality to consider would be equation (4) in
reference [1] and not the CHSH inequality. In this modi-
fied inequality γ is the infimum of the probability of co-
incidence [3]. Seevinck and Larsson compute γ for our
model. They conclude that our model does not violate
equation (4) in reference [1]. Moreover, although in the
paper on the photon experiment [6] or in the paper on
the ion-trap experiment [8], there is no information about
the minimum frequency of coincidences (the minimum is
required for the application of equation (4) in Ref. [1]),
Seevinck and Larsson refer to these papers when they cite
the values of γ = 0.05 and γ = 1 and then state that our
model cannot reproduce the frequencies of coincidences
that agree with those found in these two experiments.
First of all, the statement that “De Raedt et al. claim
that their model can reproduce the coincidences of recent
experimental results” [1] is simply wrong: There is no such
claim in our paper [2]. Second, it is logically inconsistent
to draw conclusions based on the comparison with the ion-
trap experiment for which γ = 1 [1] and third, the calcula-
tion of γ [1] for our model is wrong, two statements which
we will prove in what follows.

Let us formalize the statements in reference [1] as
propositions (denoted by A, B, ...):
A. The probabilistic, hidden variable model using the

time window to define coincidences [3] yields the in-
equality given in equation (4) of reference [1] (see also
Ref. [3]). The upperbound of this inequality is given
by 6/γ − 4, where γ denotes the infimum of the prob-
ability of coincidences over all possible settings a1, a2

of the detectors.
B. In the EPRB experiment with ions [8], γ = 1 [1].
C. The probabilistic, hidden variable model of refer-

ence [3] applies to the ion-trap experiment [8] and
hence the experimental data should satisfy the inequal-
ity given in equation (4) of reference [1]. Note that the
second part of this statement implicitly follows from
proposition B.

D. The ion-trap experiment yields Smax ≈ 2.25 [8].
Strictly speaking, this statement is not made in ref-
erence [1], but it is an experimental fact and as such
cannot be denied.

Let us now apply the rules of elementary logic.
If γ = 1 [1], the ion-trap experiment not only violates

the original Bell inequality but as 6/γ− 4 = 2, it also vio-
lates the inequality given in equation (4) of reference [1].
Thus, we have

A ∧ B ∧ C ∧ D ⇒ C, (2)

where ∧, ⇒ and denote the logical “and” opera-
tion, logical implication, and logical negation, respectively.
Clearly, equation (2) expresses a logic contradiction. If we
assume that propositions A and D are true (as we do),
then we must conclude that B or C or both B and C are
false. In any case, the argument used by Seevinck and
Larsson leads to a logical contradiction, independent of
what we wrote in our paper [2].

We should not exclude the possibility (that is, we
might accept proposition C) that the model of reference [3]
or ours [2] is too simple to describe the ion-trap experi-
ment [8]. This experiment uses a detection pulse during
which the bright state of an ion scatters many photons
(64 on average) [8]. This process may not be sampling
“single-events” but is more likely to probe the ensemble
average that is given by quantum theory (although the
number of samples, ≈64, is not large).

By trying to put our work in the context of “hidden
variable theories”, Seevinck and Larsson also made mis-
takes in elementary algebra. Seevinck and Larsson assume
that the probability of coincidences is given by the de-
nominator of equation (6) in reference [2] (see Appendix
A of Ref. [1]), from which they derive an expression for
the probability of coincidences γ (see Eq. (8) in Ref. [1]).
However, Seevinck and Larsson apparently overlooked the
fact that in going from equation (3) to equation (6) (see
Ref. [2]), we take the limit W/T0 = τ/T0 → 0 and let the
number of events N in both the numerator and denom-
inator go to infinity. Although the ratio remains finite,
which is obvious in the case a1 = a2 (x1x2 = −1) where
it is equal to minus one, the limit of the denominator may
not exist and in fact, it diverges if a1 = a2. This is not a
problem of our model: This divergence merely signals that
one has to be careful in taking the limits. The mathemat-
ical derivation in Appendix A of reference [1] is simply
incorrect.

Nevertheless, Seevinck and Larsson raise an interest-
ing question about the role of the frequency (not proba-
bility) of coincidences in our model. For nonzero time-tag
resolution τ and time window W ≥ τ , the frequency of
coincidences in our simulation model is given by

Γ =
1
N

N∑

n=1

Θ(W − |tn,1 − tn,2|), (3)

a well-defined quantity in our simulation model that is
easy to compute numerically. Notice that Γ is a func-
tion of a1 and a2 and that 0 ≤ Γ ≤ 1. Assuming that
the results we obtain by using pseudo-random numbers
can be described by a probabilistic model, we expect that
γ = mina1,a2 Γ with probability one if N is sufficiently
large. With these additional assumptions, not only the in-
equality equation (1) holds but also the inequality given
by equation (4) of reference [1] holds.

In our model, there are four free parameters, namely
the time window W/τ , the maximum time delay T0/τ ,
the time-tag exponent d and the number of events N .
For d = 3, N → ∞ and in the limit W/T0 = τ/T0 →
0, our model reproduces exactly, the expression for the
two-particle expectation value of a quantum system in the
singlet state [2].

For d = 3, W = τ , T0/τ = 1000 and N = 106 (the
results reported in this paper do not change if N > 5 ×
105), we find that mina1,a2 Γ ≈ 1.27W/T0, in concert with
the rigorous result (for d = 3 and W = τ)

min
a1,a2

{
lim

W/T0→0
Γ

}
=

4
π

W

T0
≈ 1.27

W

T0
. (4)
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Fig. 1. (Color online) The frequency of coincidences Γ as a
function of θ = arccos(a1 · a2) for parameters τ/T0, W/T0 and
d chosen such (see text) that the simulation model reproduces
the result for a singlet state, Smax = 2.83 (solid line, red), and
the values of Smax = 2.25 (dashed line, black) and Smax = 2.73
(dotted line, blue), as obtained from experiments with ions [8]
and with photons [6], respectively.

Thus, in the regime W/T0 = τ/T0 → 0, we find that the
minimum frequency of coincidences is proportional to the
width of the time bins, as it should be.

Next, we consider the possibility of fitting the results
of our model to the experimental data of an EPRB exper-
iment with photons [6] and ions [8]. According to Seevinck
and Larsson [1], our model cannot reproduce these exper-
imental data. For simplicity, we set T0/τ = 1000, d = 3
and take N = 106. Then, there is one free parameter left,
namely the (dimensionless) time-window W/τ ≥ 1. The
fitting procedure consists of changing W/τ such that the
value of Smax = maxa,b,c,d S(a,b, c,d) agrees with values
cited in references [6,8].

In Figure 1, we present our results for the frequency
of coincides for the values of W/τ = 285, W/τ = 16, and
W/τ = 1, for which our model yields Smax = 2.25 [8],
Smax = 2.73 [6], and Smax = 2.83 (singlet state), respec-
tively.

From Figure 1, we see that in order to reproduce the
ion-trap result [8], the frequency of coincidences Γ ≥ 0.52
is quite large. It is important to recognize that with four
free parameters at our disposal, it is easy to reproduce
almost any number for Smax, as long as it is between
zero and four. For instance, we find the same value of
Smax = 2.25 for W = τ and T0/τ = 1.025 but then
Γ ≥ 0.87. In any case, these results refute the statement in
the Comment that our model cannot reproduce the exper-
imental result Smax = 2.25 of the ion-trap experiment [8]
with a nonzero value of Γ . Fitting our model (for d = 3
and T0/τ = 1000) to Smax = 2.73 and Smax = 2.83 yields
Γ > 0.0377 and Γ > 0.00127, respectively.

An analysis of experimental data for an EPRB ex-
periment with photons [9] yields Γ ≈ 0.01 (the value of
γ ≈ 0.05 cited in reference [1] is the total frequency of
coincidences, that is the sum over four experiments, and
not the infimum over all possible experiments, as required

Fig. 2. (Color online) Simulation results of the two-particle
correlation E(a1,a2) as a function of θ = arccos(a1 · a2) for
the model parameters that yield Smax = 2.25 (squares, black),
Smax = 2.73 (stars, blue), and Smax = 2.83 (bullets, red),
respectively. The solid line (black) is the result (E(a1,a2) =
−a1 · a2) for the singlet state.

for the application of the inequality given in Eq. (4) of
Ref. [1]). Thus, for the same value of Smax, our model
yields a value of Γ that is larger (Γ = 0.0377) than the
value that can be extracted from experimental data for an
EPRB experiment with photons [9].

As our model is flexible enough to yield for Smax any
number between zero and four with reasonable values of
the model parameters, it is of interest to study how the
correlation E(a1, a2) deviates from the result E(a1,a2) =
−a1 ·a2 of a system in the singlet state as we fit the values
of Smax to the experimental results.

In Figure 2, we show the simulation results for the
same three cases Smax = 2.25, 2.73, 2.83. From Figure 2,
it is clear that the simulation data that yields Smax =
2.25, 2.73 cannot be described by a single sinusoidal func-
tion, but for Smax ≥ 2.73 the deviations from a single
sinusoidal are small and it remains to be seen if experi-
ments can resolve such small differences.

As is evident from Figure 3 in reference [2], for d > 3
our model yields the value for the singlet state Smax =
2
√

2 without having to consider the limit W/T0 = τ/T0 →
0. Thus, in order for an experiment and a model of the
type considered in our paper to reproduce all the features
of a quantum system of two S = 1/2 particles in the sin-
glet state, it is not sufficient to show that it can yield
Smax = 2

√
2 for some choice of the parameters. As men-

tioned before, the singlet state is completely characterized
by the single and two-particle expectation values. Hence,
in order to make a comparison with the singlet state, it is
necessary to measure or compute these two quantities.

Finally, the statement in our paper [2] that “our
work suggests that it is possible to construct event-based
simulation models that satisfies Einstein’s criteria of local
causality and realism and can reproduce the expectation
values calculated by quantum theory [10–14]” should not
be taken out of the context as Seevinck and Larsson did
by omitting the references. In fact, what we have shown in



H. De Raedt et al.: Reply to comment on “A local realist model for correlations of the singlet state” 59

the work that we refer to is that it is possible to perform an
event-based simulation, satisfying Einstein’s criteria of lo-
cal causality, of a universal quantum computer [13], which
according to the theory of quantum computation should
suffice to simulate any quantum system [15].

In conclusion, the purpose of our work is to con-
struct an event-based simulation model, satisfying Ein-
stein’s criteria of local causality and realism, that pro-
duces the quantum correlations of the singlet state [2].
As we have shown in reference [2] we succeeded, to our
knowledge for the first time, in constructing such a model.
Our conclusion that we find results that are indistin-
guishable from those of a singlet state is based on the
fact that the calculated single-particle averages and two-
particle correlation function agree with the well-known re-
sults E1(a1) = E2(a2) = 0 and E(a1,a2) = −a1 · a2 for a
system of two S = 1/2 particles in the singlet state.

We have also demonstrated in reference [2] and in this
reply that knowing Smax, a quantity derived from the two-
particle correlation function, does not suffice to draw any
conclusion about the observation of a singlet(-like) state.
We also demonstrate in this reply, that our model can not
only produce the results from quantum theory for a sys-
tem of two S = 1/2 particles in the singlet state but that it
can also be applied to EPRB laboratory experiments with
photons and ions and give results for Smax and the fre-
quency of coincidences that are comparable to the values
extracted from these experiments.
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1. M.P. Seevinck, J.Å. Larsson, Eur. Phys. J. B 58, 51 (2007)
2. K. De Raedt, K. Keimpema, H. De Raedt, K. Michielsen,

S. Miyashita, Eur. Phys. J. B 53, 139 (2006)
3. J.A. Larsson, R.D. Gill, Europhys. Lett. 67, 707 (2004)
4. J.S. Bell, Speakable and unspeakable in quantum mechanics

(Cambridge University Press, Cambridge, 1993)
5. D. Home, Conceptual Foundations of Quantum Physics

(Plenum Press, New York, 1997)
6. G. Weihs, T. Jennewein, C. Simon, H. Weinfurther,

A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998)
7. J.A. Larsson, Phys. Rev. A 57, 3304 (1998)
8. M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M.

Itano, C. Monroe, D.J. Wineland, Nature 401, 791 (2001)
9. http://www.quantum.at/research/photonentangle/-

bellexp/data.html

10. K. De Raedt, H. De Raedt, K. Michielsen, Comp. Phys.
Comm. 171, 19 (2005)

11. H. De Raedt, K. De Raedt, K. Michielsen, J. Phys. Soc.
Jpn Suppl. 76, 16 (2005)

12. H. De Raedt, K. De Raedt, K. Michielsen, Europhys. Lett.
69, 861 (2005)

13. K. Michielsen, K. De Raedt, H. De Raedt, J. Comput.
Theor. Nanosci. 2, 227 (2005)

14. H. De Raedt, K. De Raedt, K. Michielsen, S. Miyashita,
Comp. Phys. Comm. 174, 803 (2006)

15. M. Nielsen, I. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press,
Cambridge, 2000)


