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Quantum Oscillations without Quantum Coherence
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We study numerically the damping of quantum oscillations and the dynamics of the density matrix
in model many-spin systems decohered by a spin bath. We show that oscillations of some density matrix
elements can persist with considerable amplitude long after other elements, along with the entropy, have
come close to saturation, i.e., when the system has been decohered almost completely. The oscillations
exhibit very slow decay, and may be observable in experiments.
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elements of the density matrix survive the initial rapid
decay. These oscillating density matrix elements demon-

Ak � Ak. The total Hamiltonian determining the overall
‘‘system-plus-bath’’ dynamics is
For a quantum system prepared in a linear superpo-
sition of its eigenstates, some observables can oscillate
with time. Interaction of the system with its environment
leads to a decay of the system’s initial pure state into a
mixture of several states; i.e., nondiagonal elements of the
density matrix vanish, and diagonal elements achieve
their equilibrium values. This causes an increase of the
system’s entropy and damping of quantum oscillations
with time [1,2]. Rabi oscillations have been observed
for many microscopic systems, and even for some meso-
scopic (e.g., Josephson-junction based [3]) systems.
Detailed theoretical study of decoherence has become
experimentally relevant and important. The standard
picture of the evolution of an open quantum system
[1,2], based on earlier derivations of the master equation
[4,5], suggests that the increase of entropy and the satu-
ration of the diagonal elements, along with the decrease
of nondiagonal elements and the damping of quantum
oscillations, are very fast, and usually obey an exponen-
tial [ exp��t=��] or Gaussian [ exp��t2=�2�] law. After
the initial fast decay, the system becomes quasiclassical.
Rapid quantum motions are absent, the system’s entropy
changes slowly, and the dynamics of the density matrix is
determined mainly by slow transitions between different
decohered states (thermalization of the system).

In this work, we consider the first stage of evolution,
studying decoherence of an open system made of several
strongly coupled spins, si � 1=2, by a spin bath. We show
that, for an even number of the spins si in the system, the
decoherence process can demonstrate unusual properties
which do not fit in the standard picture. Namely, decoher-
ence starts with conventional fast Gaussian decay, which
sharply increases the entropy of the system and brings
most of the density matrix elements close to saturation. In
standard situations, this would lead to complete damping
of all quantum oscillations. But in many-spin systems
containing an even number of spins, some nondiagonal
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strate very slow damping, which is not related to thermal-
ization of the system. The existence of rapid quantum
oscillations in a decohered system is in striking contrast
with the standard scenario of decoherence, and, to our
knowledge, has not been discussed before.

We consider a system weakly coupled to the environ-
ment, when the characteristic energies of the system are
much larger than environmental ones. In this case, the
final states are the eigenstates j�ni of the system’s
Hamiltonian [6]. The damping of the nondiagonal ele-
ments h�nj�j�mi of the density matrix � is fast Gauss-
ian, and its rate is proportional to the magnitude of the
interaction Hamiltonian [6]. But detailed analytical stud-
ies of this dynamical process are difficult, and often
include quite stringent approximations (e.g., Markov-
ian behavior of the bath). In this work, we numerically
solve the compound ‘‘system-plus-bath’’ time-dependent
Schrödinger equation, using Suzuki-Trotter decomposi-
tion and Chebyshev polynomial expansion. These tech-
niques are described in detail in Ref. [7]. The analytical
approximations we use are compared with the exact nu-
merical solution. We do not consider the case of a single
central spin; although there are analogies [8], a two-step
decoherence is not clearly seen.

Consider the system of two central spins s1 and s2
(s1 � s2 � 1=2) coupled by Heisenberg exchange, so
that the system’s Hamiltonian is H S � 2Js1s2. This
system is coupled to a spin bath made of spins Ik (Ik �
1=2, k � 1; . . . ; N) via Heisenberg interactions, so the
Hamiltonian V �

P
kA

�1�
k s1Ik � A�2�

k s2Ik describes the
interaction between the central system and the bath.
Below, we consider only strongly coupled central spins,
when J 	 A�1�

k ; A�2�
k . Then, the difference between A�1�

k
and A�2�

k is not important, even if all A�2�
k � 0. This is

justified by the cumulant expansion [9] of the evolution
operator, and is confirmed by our numerical results.
Therefore, below we discuss only the case where A�1�

k �
�2�
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H � H 0 �V � H S �H B �V ; (1)

where H S and H B are the Hamiltonians of the central
system and the bath, respectively, and V is the system-
bath interaction. Here, we consider both the case of the
‘‘static’’ bath, with H B � 0, and the case of a slow bath
possessing chaotic dynamics (see below).

The models considered here are rather general, and can
be used to describe a number of systems [e.g., supercon-
ducting quantum interference devices (SQUIDs), quan-
tum dots, magnetic molecules, etc.] where a spin bath,
such as nuclear spins, constitutes an important decoher-
ence mechanism [10]. Spin-bath decoherence has been
discussed in Ref. [10], but consideration there is restricted
to a single central spin. Phonons or conduction electrons
(if weakly coupled with the central spins) do not over-
damp quantum oscillations [2], and corresponding deco-
herence rates can be much slower than the rate of the
spin-bath decoherence at low temperatures. Oscillations
in two coupled SQUIDs have been detected experimen-
tally [11], and observation of the effect predicted here
may become feasible. Detailed theoretical assessment of
specific experiments requires separate consideration, be-
yond the scope of this Letter, but essential physical details
are captured in the models considered.

Considering decoherence caused by nuclear spins, we
assume that the couplings Ak are random, uniformly
distributed from zero to Amax

k . Initially, the system and
the bath are in a product state j�i 
 jbi; the state of the
bath jbi is a random superposition of all possible basis
states. This corresponds to the temperature J 	 T 	 Ak,
which is true for low-temperature experiments (down to
fractions of milliKelvin) and for strong coupling inside
the central system. In Fig. 1, we present the results for
N � 13 bath spins, H B � 0, with the system-bath cou-
plings distributed from 0 to Amax

k � 0:5. The exchange
between the central spins J � 8:0. The initial state of the
system j�i � j"ij#i, i.e., a symmetric superposition of the
triplet js � 1; sz � 0i and the singlet js � 0i states
(where s � s1 � s2 is the total spin and sz is its z compo-
nent). We present only the oscillations of the z component
of the first spin sz1�t�: oscillations of sz2�t� are just shifted
in phase by �, and all other components of the central
spins remain practically constant.We also present the time
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FIG. 1. Decoherence of two coupled spins by a spin bath.
(a) Oscillations of sz1�t�; (b) entropy Se�t� (solid line), and
correlations between the central spins, Czz

12 (dotted line) and
Cxx
12 � Cyy

12 (dashed line).
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dependence of quadratic entropy Se�t� � 1� Tr�2�t�; see
Fig. 1(b). This quantity, as well as the von Neumann’s
entropy (SvN � �Tr� ln�), characterizes how strongly
mixed is the state of the system [1,6], but Se�t� is techni-
cally more convenient.

The graphs in Fig. 1 clearly show a two-step process.
Initially, decoherence is very fast: in agreement with the
standard picture, the correlations C��

12 � hs�1 s
�
2 i between

the central spins diminish sharply, and the entropy of the
system rapidly increases. In a standard situation, e.g., for
decoherence by a boson bath [1,2,6], this would lead to
fast disappearance of all quantum features. However, the
results demonstrate that this does not always happen: for
the two-spin system, after the first step, the oscillations of
z components of the central spins sz1�t� and sz2�t� persist
and decay very slowly.

In Fig. 2 we present the dynamics of different elements
of the density matrix � of the central system. The density
matrix is more suitable for detailed analysis than Se�t�,
sz1�t�, or sz2�t�. For example, even in a completely deco-
hered system which has not yet achieved a thermal equi-
librium, entropy still slowly increases with time due to
changes in the diagonal density matrix elements, but this
long-time tail is not related to decoherence. Both Se�t�
and sz1�t� [or sz2�t�] depend on all elements of the matrix �,
and clearly different behavior of different matrix ele-
ments becomes ‘‘smoothed out’’ in Se�t� and sz1�t�.

Figure 2 shows that initially part of the js � 1; sz � 0i
spectral weight is transferred equally to the js � 1; sz �

1i states. The direction of the system’s total spin ran-
domizes (although incompletely) due to rotation around
the randomly oriented effective field generated by the
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FIG. 2. Dependence of the density matrix elements vs time.
(a) Diagonal elements for the js � 1; sz � 0i state (solid line),
js � 1; sz � 
1i states (dashed line), and js � 0i state (dotted
line); (b) nondiagonal element hs � 0j�js � 1; sz � 0i. All
other matrix elements are very small. (c) Comparison of the
numerical results for ��t� (dots) with the analytical short-time
solution (solid line) and long-time approximation (dashed line).
(d) The same comparison for longer times, on log-log scale (the
analytical short-time solution is omitted).
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FIG. 3. Dependence of the density matrix elements vs time.
(a) Diagonal elements for js� 1; sz � 0i state (solid line), js�
1; sz �
1i states (dashed line), and js � 0i state (dotted line);
(b) nondiagonal element hs � 0j�js � 1; sz � 0i; (c) nondi-
agonal elements hs � 1; sz � 0j�js � 1; sz � 1i (solid line)
and hs� 1; sz ��1j�js� 1; sz � 1i (dashed line); (d) compari-
son of the envelope of oscillations of hs� 0j�js� 1; sz � 0i and
the changes in the nondiagonal hs� 1; sz � 0j�js� 1; sz � 1i
and diagonal hs � 1; sz � 1j�js � 1; sz � 1i elements vs time.
The value of the element hs � 1; sz � 0j�js � 1; sz � 1i has
been increased by three to match the scale of other curves on
the graph (d). All other matrix elements are either very small or
similar to those presented here.
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bath. Also, the nondiagonal element of the density matrix
element hs � 0j�js � 1; sz � 0i decays rapidly. These
changes of the density matrix are in agreement with
the standard scenario of decoherence. After the initial
fast decoherence, the diagonal elements do not show any
fast dynamics [Fig. 2(a)], but the nondiagonal element
hs � 0j�js � 1; sz � 0i exhibits slowly damped oscilla-
tions, Fig. 2(b).

Conclusive analytical treatment of the system under
consideration is difficult, and we are not aware of any
means of obtaining an exact solution. The com-
pound ‘‘system-plus-bath’’ evolution operator is U�t� �
exp��iJs2t� isBt�, where B �

P
kAkIk is the operator

of the effective field acting on the central spins. To obtain
an approximate analytical description of the system’s
dynamics, we consider the bath in the mean-field manner
similar to the Mermin model [12]. Since the effective
field B is created by a large number of independent bath
spins, we replace Bx;y;z by Gaussian random fields with the
mean square b2 �

P
kA

2
k=4. The mean-field evaluation

gives

��t� � �1=6��1� 2�b2t2 � 1� exp��b2t2=2��; (2)

where ��t� denotes the envelope of the oscillating quan-
tity hs � 0j�js � 1; sz � 0i. That is, the initial decoher-
ence proceeds as fast Gaussian decay, with the final value
1=6 rather than zero. This prediction, valid for short
times, is in good agreement with the numerical results;
see Fig. 2(c). The subsequent slow damping of oscillations
cannot be described within the mean-field treatment. The
second step of the decoherence process is associated with
the temporal changes of the effective field B. We are not
aware of analytical solution; in analogy with the single-
spin considerations [8], we can assume a power-law decay
1=t. As seen from Figs. 2(c) and 2(d), this approximation
agrees with the numerical results, but at t > 100, the
mean value of ��t� becomes smaller than the fluctuations,
so that conclusions on the form of the long-time decay are
difficult to make, and further detailed study is needed.
However, the central result of the present work, the dras-
tic difference in the rate between the two steps of deco-
herence, is clearly seen independently of the exact form of
decay.

The long-time oscillations do not take place inside
decoherence-free subspaces [13]: they take place between
the singlet js � 0i and triplet js � 1; sz � 0i states. To
consider a more general situation, we include the dy-
namics inside the triplet manifold using the initial con-
dition j�i � �2j"#i � �2j#"i � ��j""i � ��j##i, which
involves the states js � 1; sz � 
1i. The dynamics of
different elements of the density matrix for �2 � 0:5�1��������
0:8

p
� and �2 � 0:5�1�

�������
0:8

p
� is shown in Fig. 3. One can

see that the behavior of the nondiagonal elements con-
necting the states within the triplet subspace [Fig. 3(b)]
is similar to the behavior of the diagonal elements: after
210401-3
the fast initial decoherence, they remain almost con-
stant, and their changes are much smaller than the
changes of the amplitude of oscillations of the element
hs � 0j�js � 1; sz � 0i [Fig. 3(d)].

Also, we have checked the role of the slow dynamics of
the bath. In reality, the dynamics of the nuclear spins is
indeed very slow, due to very small interactions between
them, and chaotic. To model a chaotic bath, we use the
Hamiltonian suggested in [14]:

H B � h
X

k

Izk �
X

k0k00
�k0k00I

x
k0I

x
k00 ; (3)

with random nearest-neighbor exchanges �k0;k00 . We have
checked the level statistics, and confirmed that it follows
the Wigner-Dyson distribution. In our simulations, we
used h � 0:1 and �k0;k00 randomly distributed in the inter-
val ��0:013; 0:013�. Again, the two-step scenario is seen,
and the behavior of the elements of the density matrix is
qualitatively the same as in the case H B � 0. The long-
lasting oscillations, along with the motion of the bath
spins, are shown in Fig. 4. Other models for a slow chaotic
bath give essentially identical results.

The conclusions presented here have been confirmed by
calculations for different sets of system parameters, for
environments of different sizes (up to 20 bath spins), etc.
Our qualitative conclusions also hold for larger central
210401-3
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FIG. 4. Oscillation dynamics for a slow chaotic bath. (a) The
oscillations of the nondiagonal element hs� 0j�js� 1; sz � 0i.
(b) Time dependence of the Izk for some of the bath spins. No
qualitative changes in the oscillations are seen, in spite of the
chaotic motion of the bath spins occurring during oscillations.
Also shown, (c) and (d), is the evolution of the density matrix
for the system of four coupled spins. (c) Evolution of the
diagonal density matrix elements; (d) dynamics of the non-
diagonal element hxj�jyi, where jxi has s � sa � sb � 0, and
jyi has s � 1, sz � 0, sa � 0, sb � 1.
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systems. For example, in Figs. 4(c) and 4(d), we show the
density matrix dynamics of four central spins coupled to
each other by Heisenberg exchange with J � 2:5. The
states of such a system are characterized by the values
of s and sz(total spin and its z projection), and by the
quantities sa and sb defined as �s2 � s3�2 � sa�sa � 1�,
�s1 � s4�2 � sb�sb � 1�. In all the cases we have consid-
ered, oscillations of the nondiagonal elements of the
density matrix show up in the long-living oscillations of
sz1�t�. Thus, in experiments, the oscillations can be regis-
tered by monitoring the dynamics of individual spins in
the central system.

In summary, we have studied the decoherence process
which takes place in some generic systems containing an
even number of interacting spins 1=2 coupled to a spin
bath. We analyzed the dynamics of different elements of
the density matrix, and found that the decoherence pro-
ceeds in two steps. Initially, a conventional fast Gaussian
decoherence takes place when the diagonal elements of
the density matrix and some of the nondiagonal elements
decrease very rapidly. Simultaneously, the system’s en-
tropy rises quickly. But this stage is not final, and some of
the nondiagonal elements still exhibit oscillations which
decay very slowly, showing presumably power-law damp-
ing. These long-living oscillations are robust with respect
to the chaotic dynamics of the bath, and are present for
different initial conditions, different sizes of the central
system and couplings to the bath, etc. Therefore, in some
cases, significant quantum oscillations can be seen even
210401-4
in a decohered system. This is in striking contrast with the
standard scenario of decoherence, which implies rapid
single-step decoherence and quick suppression of fast
quantum dynamics. Corresponding experiments are pos-
sible, although they require significant effort and further
development.
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