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We introduce a generic reaction-diffusion model for germinal center reactions and perform numerical simu-
lations within a stochastic discrete event approach. In contrast to the frequently used deterministic continuum
approach, each single reaction event is monitored in space and time in order to simulate the correct time
evolution of this complex biological system. Germinal centers play an important role in the immune system by
performing a reaction that aims at improving the affinity between antibodies and antigens. Our model captures
experimentally observed features of this reaction, such as the development of the remarkable germinal center
morphology and the maturation of antibody-antigen affinity in the course of time. We model affinity maturation
within a simple affinity class picture and study it as a function of the distance between the initial antibody-
antigen affinity and the highest possible affinity. The model reveals that this mutation distance may be respon-
sible for the experimentally observed all-or-none behavior of germinal centers; i.e., they generate either mainly
output cells of high affinity or no high-affinity output cells at all. Furthermore, the exact simulation of the
system dynamics allows us to study the hypothesis of cell recycling in germinal centers as a mechanism for
affinity optimization. A comparison of three possible recycling pathways indicates that affinity maturation is
optimized by a recycling pathway that has previously not been taken into account in deterministic continuum
models.
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I. INTRODUCTION

Germinal centers play an important role in the response of
the immune system to invading pathogenic organismsf1,2g.
They appear in lymphoid tissue on antigenic stimulation and
start a reaction that aims to improve the recognition of anti-
gens by antibodies. The latter are soluble forms of specific B
cell receptors. During the process of affinity maturation, the
B cells undergo clonal amplifications, receptor hypermuta-
tions, and selection for highly specific receptors. This reac-
tion takes place in the presence of follicular dendritic cells
that provide antigen, and under the control of T cells that
help with the differentiation of B cells into output cells.

From a theoretical point of view, germinal centers repre-
sent a typical example of a highly dynamic biological sys-
tem, in which various coupled reaction processes occur on
different characteristic time scales in a spatially compart-
mentalized microenvironment. Modeling such a complex
system can be done in various conceptual ways that differ in
the level of accuracy. In a deterministic continuum approach,
reaction processes are considered as if taking place in a well-
stirred mixture of cells and obeying the law of mass action.
The cell concentrations are described by a set of coupled
ordinary differential equations and change deterministically
and continuously in time. This approach has the great com-
putational advantage that only one single variable is required
per cell type. It is often used to model biological systems and
has also been applied to describe aspects of germinal center
reactionsf3–8g.

The deterministic continuum approach is strictly speaking
only applicable to systems where all cell types occur in large

numbers, so that local inhomogeneities related to the discrete
nature of cells and stochastic fluctuations in reaction pro-
cesses can be neglected. Taking into account fluctuations in
reaction processes may be realized by writing the rate equa-
tions in terms of a set of coupled Langevin equations for the
average cell concentrations. This is a stochastic continuum
approach, where one still deals with average cell concentra-
tions; however, these are now changing in a more realistic,
stochastic way. In the context of germinal centers this type of
approach has, for example, been applied to account for ran-
domness in the selection of specific B cell receptorsf9,10g.

On a microscopic scale cells have to be considered as
discrete entities that undergo discrete events by diffusing
through the system and reacting stochastically with each
other. A stochastic discrete event approach takes this into
account by monitoring the course of events for each single
cell of the system in space and time. This approach is most
conveniently formulated in terms of a master equation. The
master equation determines the time evolution of the prob-
ability distribution to find the system in a particular state at a
particular time. Numerical simulations of the system’s time
evolution have to be performed in such a way that the un-
derlying probability distribution is a solution of the master
equation. This does demand large computer resources, but is
the only appropriate way to simulate highly dynamic biologi-
cal systems where various cell types may be present in small
numbers only. The stochastic discrete event approach has
been applied to simulate spatial aspects of germinal centers,
such as their morphology and the affinity maturation
f11–13g.

In this paper we introduce a generic reaction-diffusion
model for germinal center reactions and perform stochastic
discrete event simulations. In doing this, we apply the phi-
losophy thateverything should be made as simple as pos-
sible, but not simplerf14g. In other words, on the one hand*Electronic address: m.t.figge@phys.rug.nl
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our model will be as simple as possible, while on the other
hand we will apply exact simulation methods in an efficient
way. These methods have previously been proven to be pow-
erful in simulating chemical reactions in solutionsf15–17g
and on surfacesf18g. We will discuss our simulation results
with respect to the germinal center morphology and affinity
maturation in the light of experimental observations. In par-
ticular, we will show that the all-or-none behavior of germi-
nal centers can be related to the size of the maximal mutation
distance within a simple affinity class picture. We find that, if
the maximal mutation distance between the germline affinity
class and the class of highest affinity exceeds a critical value,
the germinal center reaction is not successful generating only
output cells of low affinity. Furthermore, we investigate the
impact of hypothetic centrocyte-centroblast recycling mecha-
nisms on the affinity maturation. We compare the case of
centrocytes that recycle only after having received both sur-
vival signals from interactions with antigen and with T cells,
with the case of centrocytes that are allowed to recycle al-
ready after having received the first survival signal from in-
teraction with antigen. The results of our numerical simula-
tions indicate that only the latter recycling mechanism yields
optimized affinity maturation and that recycling mechanisms
in general are paid for by an eventually significant decrease
in the number of output cells.

The paper is organized as follows: We describe the role of
germinal centers in the humoral immune response in Sec. II
and introduce in Sec. III our microscopic reaction-diffusion
model. Next, in Sec. IV, we explain how to perform in an
efficient way discrete event simulations of reaction-diffusion
systems with space- and time-dependent reaction rates. The
simulation results of numerical germinal center reactions
with respect to morphology, affinity maturation, and recy-
cling are presented and discussed in Sec. V. Finally, in Sec.
VI, we summarize and conclude this paper.

II. GERMINAL CENTER REACTION

This section provides a brief description of germinal cen-
ter reactions, where we restrict our considerations to gener-
ally accepted mechanismsf1,2g.

The immune system defends living organisms in a hu-
moral immune response against pathogenic invaders such as
bacteria and viruses. This is achieved by the binding of an-
tibodies to these antigens. The binding is specific and ca-
pable of discriminating between self and nonself in order to
avoid autoimmune reactionsf19,20g. An antibody-antigen
complex acts as a signal for particular types of immune
cells—e.g., macrophages—that engulf and kill the invader. It
is obvious that the success of this mechanism depends on the
ability of the antibody to bind the antigen and it has been
observed that the affinity between antibody and antigen can
increase in the course of time. This phenomenon is called
affinity maturation and involves the generation of mutations
in the genes that code for the antibody variable region, fol-
lowed by an affinity based selection procedure.

Affinity maturation takes place in germinal centers, which
form in secondary lymphoid tissue such as lymph nodes,
tonsils, and the spleen. A germinal center is a lymph follicle

which evolves into a highly dynamic and spatially compart-
mentalized microenvironment, which is schematically shown
in Fig. 1. The germinal center is developed after the recog-
nition of antigens by surface antibodies of B cells. The B
cells play a key role in the germinal center reaction, which is
started by only a few activated B cells that divide and fill the
whole germinal center within about three days. These prolif-
erating B cells are referred to as centroblasts, which are spe-
cial in the sense that their surface antibodies are downregu-
lated. After the first 3 days centroblasts differentiate into
centrocytes, which are germinal center B cells that do not
proliferate but do express surface antibodies. Starting from
about this time centroblasts undergo intense hypermutation
while they continue to proliferate and differentiate into cen-
trocytes. As a result a repertoire of centrocytes with different
types of surface antibodies is obtained. How exactly centro-
blast proliferation and differentiation is regulated is still un-
clear today.

In the course of the germinal center reaction two compart-
ments develop, which are called the light zone and the dark
zone ssee Fig. 1d. The mechanism that drives their appear-
ance is also still unresolved today; however, it is observed
that the dark zone contains predominantly proliferating cen-
troblasts, while the light zone contains beside centrocytes
various other cell types. Of great importance are antigen-
specific T cells and follicular dendritic cells in the light zone.
The latter bind antigen and present it to the surface antibod-
ies of centrocytes. If centrocytes bind to antigen on follicular
dendritic cells, they receive a survival signal which rescues
them from apoptosis—i.e., from cell death which would oth-
erwise naturally occur. This is a selection process for centro-
cytes based on their antibody-antigen affinity.

On separating again from the follicular dendritic cell the
centrocyte takes up some antigen portion. This centrocyte
eventually meets an antigen-specific T cell in the light zone
and receives a second survival signal on presenting the anti-
gen portion. It is commonly believed that this signal is re-

FIG. 1. Schematic representation of a germinal center reaction
several days after initiation. The dark zone contains centroblastssBd
that proliferate and differentiate into centrocytessCd. Centrocytes
may experience apoptosiss†d or bind with their surface antibodies
to antigensstrianglesd that are located at follicular dendritic cells
sFDCd in the light zone. Activated centrocytessC!d can bind to T
cells sTd to obtain a second survival signal. These centrocytessC!!d
can then differentiate into output cellssOd. See the text for details.
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quired to ensure self-nonself discrimination, since under nor-
mal circumstances T cells effectively recognize portions of
foreign molecules only. In addition, T cells are believed to
play a mediating role in the differentiation of centrocytes
into output cells. The output cells are either plasma or
memory B cells. They are specific to antigen with an affinity
that is usually significantly higher than that of the B cells by
which the germinal center reaction was started. In particular,
memory B cells are long-living cells that can respond
quickly upon a second exposure to the same antigen, while
plasma cells are able to secrete large amounts of antibodies
which bind antigens making them easy prey to be killed by
macrophages.

The end of the germinal center reaction is reached after
about three weeks and is characterized by centroblasts ceas-
ing to proliferate and disappearing together with centrocytes.

III. REACTION-DIFFUSION MODEL

We introduce a microscopic reaction-diffusion model for
a germinal center on ad-dimensional lattice withN sites.
Each site can either be occupied by a cell or be empty, while
reaction processes can either occur on site or involve two
nearest-neighbor sites. We will first consider basic reaction
processes and then discuss in separate sections centroblast
hypermutation, reaction regulation, and centrocyte-
centroblast recycling, since these aspects deserve some more
attention. We will use the following symbols:A for an anti-
gen presenting site located on a follicular dendritic cell,B for
a centroblast,C sC!, C!!d for a centrocyteshaving received,
respectively, one or two survival signalsd, T for a T cell, O
for an output cell—i.e., we do not explicitly distinguish
plasma and memory B cells—andx for an empty site.

A. Basic reaction processes in germinal centers

The model accounts for reactions that capture the main
processes during a germinal center reaction as described in
Sec. II. This includes the proliferation of centroblasts,

B + x → B + B with ratersBx,BBd, s1d

and their differentiation into centrocytes,

B → C with ratersB,Cd. s2d

Centrocytes receive their first survival signal from the in-
teraction with antigens presented at sites on follicular den-
dritic cells,

C + A → C! + A with ratersCA,C!Ad. s3d

The second survival signal for centrocytes comes from inter-
action with T cells,

C! + T → C!! + T with ratersC!T,C!!Td. s4d

The T cells have migrated into the germinal center from
particular zones outside the germinal center, which we sim-
ply model by the reaction process

x → T with ratersx,Td s5d

inside the germinal center. Centrocytes that have received
both survival signals differentiate into output cells,

C!! → O with ratersC!!,Od, s6d

whereO denotes both plasma and memory B cells.
Furthermore, each cell in the germinal center can move by

diffusion which is represented by a jump process from its site
to an unoccupied neighbor site,

X + x → x + X with ratersXx,xXd, s7d

whereX=B, C, C!, C!!, T, or O. The positions of antigen
presenting sites on follicular dendritic cells,A, are kept fixed
throughout the simulation.

Finally, the reaction

X → x with ratersX,xd s8d

describes apoptosis for cellsX=T, B, andC that are removed
from the system. ForX=O at the germinal center border this
reaction mimics emigrating output cells. ForX=A it de-
scribes the loss of active antigen presenting sites due to the
uptake of antigen portions by centrocytes.

B. Centroblast hypermutation

About 3 days after the initiation of the germinal center,
centroblasts start to undergo somatic hypermutations while
proliferating according to Eq.s1d. Mutations in the genes that
code for the antibody variable region of centroblasts may
either increase, decrease or leave their affinity to antigen
unchanged. In principle, centroblast hypermutation could be
described within the well-known shape space conceptf21g,
where each site of a high-dimensional lattice represents a
particular antibody phenotype and a jump from one site to a
neighboring site represents a mutation. In order to keep the
model as simple as possible, we will apply a one-
dimensional realization of this concept in terms of a number
of affinity classes.

We assign to each centroblast a random variablena, which
denotes its affinity class. The initialsgermlined affinity class
corresponds tona=0 and we consider a total number ofNa
affinity classes:

− Nd ø na ø Nd with Nd ;
Na − 1

2
. s9d

Here, we defined the maximal mutation distanceNd and in
what follows we will assumeNa to be an odd number. The
progeny of a centroblast may change its affinity class with
respect to its parents affinity class by +1s−1d with probability
p+sp−d or preserve it it with probabilityp0=1−p+−p−. This
holds independent of the affinity class number, except for the
highest and lowest affinity class numbers where we set, re-
spectively,p+=0 andp−=0.

In the process of centroblast differentiation according to
Eq. s2d the affinity class is passed on to centrocytes that
express the surface antibodies with corresponding affinity to
antigen. We assume that centrocyte antibodies in two con-
secutive affinity classes differ in their binding reaction rate to
antigen on follicular dendritic cells by a constant factor
a.1:
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rna
sCA,C!Ad = r0sCA,C!Adana. s10d

It follows that centrocytes of different affinity classes sur-
rounding the same antigen presenting site will compete for
receiving the survival signal. The centrocyte with highest
affinity and thus highest reaction rate will be most likely to
reach this goal first. This affinity-based selection of centro-
cytes is expected to yield a strong population of high-affinity
mutants.

Finally, we specify

a ; b1/Nd, s11d

whereb.1 is referred to as the maximal affinity factor, so
that

1

b
ø

rna
sCA,C!Ad

r0sCA,C!Ad
ø b, s12d

independent of the maximal mutation distanceNd. This al-
lows us to study affinity maturation in germinal center reac-
tions as a function of the number of mutations required to
achieve maximal antibody-antigen affinities.

C. Centroblast reaction regulation

Several days after the initiation of the reaction, a germinal
center starts to develop into a compartmentalized microenvi-
ronment consisting of a dark and a light zone. The remark-
able morphology of germinal centers must be related to the
regulation of centroblast reaction processes. These are de-
picted in Fig. 2. In the framework of a stochastic and discrete
model for germinal center morphology, it has been suggested
that follicular dendritic cells may secrete signal molecules
that diffuse through the system and initiate differentiation
processes when consumed by centroblastsf11g. However, it
is not known today whether such a differentiation signal does
at all exist. A similar model takes chemotaxis into account,
where the motion of diffusing cells follows a preferred direc-
tion that is specified by chemotactic signalsf12,22g. How-
ever, the occurrence of a dark and a light zone in human
germinal centers could not be explained by chemotaxis
alone.

The mechanism for centroblast reaction regulation that
gives rise to the specific spatial separation of centroblast and
centrocyte is still unknown today. Therefore, in order to keep
the model generic and simple, we opt for a phenomenologi-
cal approach. From the experimentally observed germinal
center morphology and related experiments we draw the con-
clusion that centroblast proliferation seems to be inhibited in
the presence of follicular dendritic cells and T cells, while at

the same time these environmental conditions seem to sup-
port the differentiation of centroblast into centrocyte
f2,23–25g. Centroblasts undergo proliferation, apoptosis, and
differentiation processes everywhere in the germinal center,
while the centroblast population is diminished by the latter
two processes and is increased by proliferationssee Fig. 2d.
After the first 3 days in which centroblasts have filled the
whole germinal center, the light zone appears where follicu-
lar dendritic cells are located and T cells are present. The
region that remains filled with centroblast becomes the dark
zone and is disappearing with a delay of several days.

Environmental conditions that give rise to such a behavior
are captured in the model in an effective way. We consider
the centroblast proliferation ratersBx ,BBu td and the differ-
entiation ratersB,Cu td to be time dependent, where differen-
tiation is increasing on the cost of proliferation:

rsB,Cutd
rsB,Cd

= 1 −
rsBx,BButd
rsBx,BBd

. s13d

Since environmental conditions are different in the light and
dark zones, Eq.s13d is considered for both zones separately
and is fulfilled by

rsBx,BButd = rsBx,BBd 3 hQsyb − ydFdstd + Qsy − ybdFlstdj
s14d

and

rsB,Cutd = rsB,Cd 3 hQsyb − ydf1 − Fdstdg

+ Qsy − ybdf1 − Flstdgj. s15d

Here,Qssd is the step function with

Qssd = H1 for sù 0,

0 for s, 0,
J s16d

andyb denotes the border between the dark and light zones,
which, in accordance with the coordinate system shown in
Fig. 1, extends along thex direction. The functionsFdstd and
Flstd refer to, respectively, the dark and light zones with 0
,Fistdø1 si =d, ld. They are free to be chosen in such a way
that the phenomenological approach represented by Eqs.
s13d–s15d reproduces the germinal center morphology. It
should be noted that this freedom is no unneeded luxury but
is actually required to account for the fact that the experi-
mentally observed appearance time and duration time of the
compartmentalized structure can be quite different
f2,23,26,27g. A useful representation with a high degree of
flexibility is given by

Fistd = 1 + sf i − 1d
gst,wi,tid

gsTs,wi,tid
, s17d

whereTs denotes the simulation time and

gst,wi,tid = tanhswitid + tanhfwist − tidg. s18d

The functionFistd is decreasing with time over a time inter-
val 2wi

−1 aroundt= ti from its initial valueFis0d=1 to its final
valueFisTsd= f i with 0, f i ø1. In total there is a set of three

FIG. 2. Schematic representation of centroblast proliferation,
apoptosis, and differentiation. See the text for details.

MARC THILO FIGGE PHYSICAL REVIEW E71, 051907s2005d

051907-4



parameters,hf i ;wi ; tij, to be specified per compartment
si =d, ld.

We finally address another issue that is related to making
centroblast reaction regulation more realistic. The condition
that centroblast proliferation is only possible if one of the
nearest-neighbor sites is empty is relaxed by requiring that
one out of theNc closest neighbor sites has to be empty. The
newly generated centroblast will then be located at the clos-
est empty site.

D. Centrocyte-centroblast recycling

It has been suggested that not all positively selected cen-
trocytes differentiate into output cells but may undergo recy-
cling into centroblasts and reenter the process of prolifera-
tion, mutation and differentiationf3,28g. The advantage of
such a recycling process is obvious. Positively selected cen-
trocytes encode surface antibodies with high affinity for an-
tigen and thus represent an optimal starting point for the
reproduction of further optimized centroblasts. It should be
noted, however, that there is no direct experimental proof
that recycling is actually realized in germinal centers. As a
consequence, no experimental values for parameters con-
nected with the recycling hypothesis are available today.

In the present model we will assume that recycling is not
restricted to one of the compartments but can occur any-
where throughout the germinal center. Two possible recy-
cling pathways that differ in their starting point are depicted
in Fig. 3. The dashed arrow refers to the recycling process
that is commonly consideredf3,4,7g,

C!! → B with ratersC!!,Bd, s19d

involving only centrocytes that have been positively selected
by antigens and by T cells. The dotted arrow in Fig. 3 indi-
cates another possibility involvingC! centrocytes,

C! → B with ratersC!,Bd. s20d

These centrocytes only received the first survival signal from
binding to antigen; however, with respect to their affinity

they are equally well suited for recycling thanC!! centro-
cytes. BecauseC! centrocytes will be much earlier available
in the course of the germinal center reaction thanC!! cen-
trocytes, it can be expected that the effect of the two recy-
cling pathways on the system’s time evolution will be quite
different. The combination of the two recycling pathways,

C!,!! → B with ratersC!,!!,Bd, s21d

is a third possible realization of recycling in germinal centers
that will be considered within our model.

It should be noted that centrocyte-centroblast recycling
may be also of a disadvantage with respect to the total num-
ber of output cells. Once the centrocyte changes into a cen-
troblast, it is again subjected to apoptosis and will be lost if
it does not sufficiently soon differentiate into a centrocyte
and receive the first survival signal again.

IV. STOCHASTIC DISCRETE EVENT ALGORITHMS

In the previous section, we introduced a reaction-diffusion
model that describes a germinal center reaction on a
d-dimensional lattice withN sites. Each site can either be
occupied by one type of cell or be empty. The actual con-
figuration on the lattice defines the system state and deter-
mines whether a particular reaction process is enabled—i.e.,
can take place—or not. Each reaction process changes the
lattice configuration into another configuration that usually
differs from the previous one only in a small region around
the reaction sites.

The change of the system state is related to the time that
elapses between the moment that a particular reaction pro-
cess becomes enabled and the moment that it actually takes
place. For one and the same reaction type this amount of
time varies and depends on several factors—e.g., the energy
and the condition of the involved cells—which are not ex-
plicitly part of the model. However, we incorporate these
factors on the reaction times by describing the occurrence of
reactions in a stochastic manner. To this end we have to
formulate a fundamental assumption that defines the kinetics
for non-negative reaction rates which may change continu-
ously as a function of time. Following Refs.f15,16g, where
the kinetics assumption has been stated for constant reaction
rates, we assume thatthe reaction process with rate rsc,c8 u td
that changes the system state c into c8 and that is enabled at
time t occurs with probability

psc,c8ut,t + dtd = rsc,c8utddt s22d

in the infinitesimal time intervaldt. In other words, the prob-
ability that an enabled reaction occurs is equal to its reaction
rate times an infinitesimal time intervaldt, which is suffi-
ciently small to neglect the probability for two reactions oc-
curring simultaneously.

It follows directly from Eq.s22d that the system statec at
time t is now a stochastic variable which is realized with
some probabilityPscu td. We show that the time evolution of
this probability distribution is governed by a master equa-
tion. The probabilityPscu t+dtd to find the system in con-
figurationc at time t+dt is given by

FIG. 3. Schematic representation of centrocyte-centroblast recy-
cling. Two recycling pathways are depicted by a dotted and a
dashed arrow. See the text for details.
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Pscut + dtd = Psc8utd o
c8Þc

psc8,cut,t + dtd

+ Pscutdpsc,cut,t + dtd. s23d

Here, the first term accounts for changes of the system state
c8sÞcd at timet into system statec at timet+dt. The second
term accounts for the possibility that the system, which is
already in system statec at time t, remains in this state with
probability

psc,cut,t + dtd = 1 −dt o
c8Þc

rsc,c8utd. s24d

We may thus write

Pscut + dtd = Pscutd − dt o
c8Þc

fPscutdrsc,c8utd

− Psc8utdrsc8,cutdg, s25d

which yields, in the limitdt→0,

d

dt
Pscutd = o

c8Þc

fPsc8utdrsc8,cutd − Pscutdrsc,c8utdg, s26d

and corresponds to the master equation for the probability
distributionPscu td.

In the present context we are not merely interested in
studying a system at equilibrium, where Eq.s26d simplifies
becausedPscu td /dt=0. We rather wish to simulate the full
time evolution of a germinal center reaction, which amounts
to solving the master equations26d for all times.

In practice we will not compute the probabilityPscu td
explicitly, but start from a particular system state, represen-
tative for the initial state of the germinal center, and then
generate in the course of time a sequence of system states
with the correct probability. This requires the calculation of
the time at which the next reaction occurs and is achieved as
follows: Supposing that the system is in statec at timet, we
calculate the probability that the system remains in this state
until time t+t. The master equations26d reduces to

d

dt
Pscutd = − Pscutd o

c8Þc

rsc,c8utd. s27d

Integration between the limitst and t+t yields

Pscut + td = expF− o
c8Þc

E
0

t

d t̃ rsc,c8ut + t̃dG , s28d

where we used the fact that the system is in statec at timet:
Pscu td=1. A simplification of this expression is possible if
the dependence of the reaction rates on time is negligibly
weak on the time scale where no reaction takes place. The
integral in Eq.s28d may then be approximated by

E
0

t

dt̃rsc,c8ut + t̃d = rsc,c8utdt +
1

2
Udrsc,c8ut + t̃d

dt̃
U

t̃=0

3t2 + Ost3d. s29d

In fact, in the context of the reaction-diffusion model for

germinal centers it turns out that the second term on the
right-hand side in Eq.s29d is always orders of magnitude
smaller than the first termssee Sec. V A belowd. It can there-
fore be neglected which corresponds to applying the adia-
batic approximation,

rsc,c8utd < rsc,c8ut + td, s30d

on the time scale where no reaction takes place. We then
obtain a negative exponential distribution function for the
probability that no reaction occurs betweent and t+t,

Pscut + td = expf− tRscutdg, s31d

where we defined

Rscutd ; o
c8Þc

rsc,c8utd. s32d

Next, we calculate the probability for the occurrence of
the particular reactionc→ c̃. The probability that this reac-
tion occurs in the infinitesimal time intervaldt follows from
Eqs.s22d and s30d to be

psc,c̃ut + t,t + t + dtd = rsc,c̃utddt. s33d

We combine Eqs.s31d ands33d to obtain the probability that
the system, which was in statec at timet, is in statec̃ at time
t̃; t+t+dt:

Psc̃ut̃d = Pc̃Pt. s34d

Here, we defined the probability distribution for reactions,

Pc̃ ;
rsc,c̃utd
Rscutd

, s35d

which is independent of the probability distribution for wait-
ing times,

Pt ; fdtRscutdgexpf− tRscutdg, s36d

corresponding to a negative exponential distribution.
We conclude from the above that an algorithm for the

stochastic discrete event simulation of a reaction-diffusion
system is based on the following two choices per time step:
sid the type of enabled reaction according to the distribution
Pc̃ and sii d the waiting timet according to the distribution
Pt. This approach has been introduced by Gillespie in the
context of chemical reactions in solutions and is referred to
as the direct methodf15g. We implemented a slightly differ-
ent method, also invented by Gillespie, which is called the
first reaction method and was proven to be mathematically
equivalent to the direct methodf16g. We also implemented a
modification of the first reaction method, which increases the
efficiency of that algorithm by making use of the fact that
each reaction changes the lattice configuration only in a
small region around the reaction sites. It was developed by
Gibson and Bruck and is referred to as the next reaction
methodf17g. We will briefly discuss these and other methods
in the context of germinal center reactions in the following
subsections.
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A. First reaction method

The type of an enabled reaction and the waiting time do
not necessarily have to be generated in a direct way from the
distributions Eqs.s35d and s36d, as is the case in the direct
method. Alternatively, one can also determine a putative
waiting time for each enabled reaction at each site of the
lattice in a particular system state. For a reaction process that
changes the system statec at time t into c8, the correspond-
ing waiting timet8 follows from Eq.s36d to be given by

t8 =
1

rsc,c8utd
lnS1

u
D , s37d

whereu is a random number that is generated from the uni-
form distribution with 0,uø1. Then, of all the enabled
reactions, the reaction to be performed is the one which
comes first—i.e., the one with the shortest waiting time.

The algorithm of the first reaction method readsf16g as
follows:

sid initialize the system at t=0 and set the total simulation
time Ts

sii d at each site of the lattice generate for each enabled
reaction a putative waiting time according to Eq. (37)

siii d choose the reaction process with the shortest waiting
time, ts, and execute the reaction process

sivd set t← t+ts
svd repeat all steps from step (ii) until t=Ts
This algorithm requires computation time proportional to

the number of reactions in the system state,Nr, which is
proportional to the number of lattice sites times the number
of reaction processes. Furthermore,Nr random numbers have
to be newly generated per iteration.

B. Next reaction method

The number of newly generated random numbers and the
computation time are significantly decreased in the next re-
action method with respect to the first reaction method. This
is achieved by realizing that reusing generated waiting times
is admittedf17g. Because a reaction process changes the sys-
tem state only locally, putative waiting times have to be gen-
erated per iteration for each enabled reaction at a few sites
only.

We implemented the algorithm of the next reaction
method in the following way:

sid initialize the system at t=0 and set the total simulation
time Ts

sii d at each site of the lattice generate for each enabled
reaction a putative waiting time according to Eq. (37)

siii d choose the reaction process with the shortest waiting
time, ts, and execute the reaction process

sivd set t←ts
svd at each reaction site of the lattice generate for each

enabled reaction a putative waiting time according to Eq.
(37)

svid repeat all steps from step (iii) until t=Ts
It is obvious that this algorithm requires much fewer op-

erations and must be faster than the one of the first reaction
method, because stepsvd involves only the one or two reac-
tion sites instead of all lattice sites. The precise gain in com-

putation time depends strongly on the implementation of ap-
propriate data structuresf17g. In view of the limited abilities
of random number generators, we also mention the advan-
tage that only a few random numbers have to be generated
per iteration. The precise number depends on the previous
reaction process and on the considered lattice configuration,
but will usually be less than two times the number of nearest
neighbor sites. Finally, it should be noticed from stepsivd
that in the next reaction method the waiting times are abso-
lute times and not relative times between reaction processes.

C. Other simulation methods

The two simulation methods described in the previous
subsections belong to a class of algorithms that is derived
from the dynamical Monte Carlo techniquef18,29,30g. In
contrast to the classical Monte Carlo technique, which is
employed to study systems at equilibrium, the dynamical
Monte Carlo technique provides methods to solve the time
evolution of a system. The different methods have their own
right of existence since they have been invented to optimize
the use of computer resources—i.e., computer time and
memory—for specific types of problems.

We briefly mention another method of the dynamical
Monte Carlo technique, which is called the random selection
method and has become quite popular in recent years. The
algorithm in its most simple form consists essentially of
choosing per time stepsid a location on the lattice with prob-
ability 1/N andsii d a type of reaction processf18g. The latter
is chosen with probabilityrp/RP, whereRP=op=1

P rp and rp
denotes the rate of thepth out of P possible reaction pro-
cesses. All reaction processes are assumed to be constant in
time and thus independent of the actual system state. Then, if
possible, the randomly chosen reaction process is carried out
at the randomly chosen location on the lattice and the proce-
dure is repeated. This method is very efficient, provided that
reaction processes are accepted often, and has also been ap-
plied to simulate germinal center reactionsf11,12,22g. It
should be noted, however, that the random selection method
can only be applied if the reaction rates do not depend on
time, because this method decouples the notion of time from
the simulation. It essentially corresponds to a discretization
of the master equations26d with a fixed time step 1/sNRPd,
independent of the system state and the reaction process to
be performed. Therefore, the random selection method
should only be applied to reaction-diffusion systems with
time-independent reaction rates and if the main goal is not
simulating the system’s exact time evolution.

A different approach for simulating reaction-diffusion sys-
tems is known as the cellular automata techniquef31g. The
dynamics of a cellular automaton, where each site of the
lattice corresponds to a computational cell, is characterized
by a simultaneous update of all these cells in each iteration
step according to predefined deterministic rules. In contrast
to the methods of the dynamical Monte Carlo technique,
which are inherently serial in time, cellular automata model-
ing allows for efficient implementations on massive parallel
computers. However, the notion of time is lost completely in
this case because slow and fast reactions have the same prob-
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ability to occur in a simultaneous cell update. The dynamics
of a stochastic system cannot be correctly simulated in this
way. As a way out, cellular automata modeling with nonde-
terministic rules have been proposed, where a certain reac-
tion process occurs with a probability that depends again on
the rate constants. If this is done in such a way that the
master equations26d is satisfied, then the algorithm for the
nondeterministic cellular automaton resembles that of the
random selection methodf29g.

We conclude that the first reaction method and the next
reaction method are exact and general methods for the sto-
chastic discrete event simulation of reaction-diffusion sys-
tems with respect to the system’s time evolution. In compari-
son with other simulation methods these algorithms demand
relatively large computer resources; however, this does not
pose a serious problem in the present context of germinal
centers because of the moderate system size.

V. NUMERICAL SIMULATIONS

In this section, we present the results obtained from sto-
chastic discrete event simulations of germinal center reac-
tions using both the first reaction method and the next reac-
tion method. We first summarize the model parameters and
initial conditions and then compare the first reaction method
and the next reaction method with each other. Next, we
present the simulation results for particular germinal center
properties, such as their morphology, affinity maturation, and
recycling.

A. Model parameters and initial conditions

The germinal center is represented by the reaction-
diffusion model on a two-dimensional square lattice of equi-
distant sites with lattice constanta. The lattice has a circular
geometry with a diameter of 130 sites. The total number of
N=13273 lattice sites provides sufficient space for the occur-
rence of realistic cell populations. The antigen presenting
sites are kept fixed throughout the simulation at random po-
sitions in the upper 70% of the system volume. In this way
we mimic the accommodation of antigen presenting sites by
follicular dendritic cells without actually representing the lat-
ter. As a consequence all cells can diffuse freely without
being hindered by the presence of the follicular dendritic
cells. It might be argued that this makes the two-dimensional
simulation system actually more comparable to the three-
dimensional germinal center, where the presence of follicular
dendritic cells do hinder free cell diffusion.

In Table I we summarize the model parameters and initial
conditions that we use in the simulations, if not stated other-
wise. The reaction rates are measured in units of inverse days
sd−1d. We note that the choice of these parameters as ob-
tained from the literature is to be understood as a starting
point in the high-dimensional parameter space. In general it
is actually not cleara priori how microscopic rate constants
of the stochastic discrete event simulation are related to ex-
perimentally determined average reaction times. For ex-
ample, an important aspect that is completely missing in a
macroscopic view on biological systems is the availability of

free space. The limitation of empty sites gives rise to a com-
petition between increasing cell populations and strongly in-
fluences the mixing of different cell types that first have to
meet in order to undergo a reaction process.

Jump processes of cells from site to site on the lattice are
modeled by relating the reaction rates to the corresponding
diffusion constants. The latter are estimated following the
approach in Ref.f11g, where the diffusion constantDX is
assumed to obey the well-known Stokes-Einstein relation
DX=kBT0/ s6phbRXd. Here,kB is the Boltzmann constant,T0

is the room temperature,hb=0.02 J s m−3 is the blood vis-
cosity f43g, and RX is the radius of the corresponding cell
type X ssee Table Id. The model takes different cell sizes
effectively into account by relating the lattice constant to the
arithmetic mean cell radius:a=2sRB+RC+RT+ROd /4
=10 mm. The reaction rates for site-to-site jump processes
on the square lattice are obtained from the diffusion con-
stants byrsXx ,xXd=DX/a2 and the corresponding values
are given in Table I.

The centroblast reaction regulation in the light and dark
zones is modeled by proliferation and differentiation rates
that depend on time. In Fig. 4 we plot the time-dependent
part of the proliferation rates according to Eq.s17d and for
the parameters given in Table I. The time is measured in
units of dayssdd. The only difference betweenFdstd andFlstd
lies in the choice oftd and tl, respectively, from which we
expect the following scenario. In the light zone centroblast

TABLE I. Model parameters and initial conditions.

Parameter Value Remark

rsBx ,BBd 4 d−1 f2,12,26g
Nc 8 sites

rsB,Cd 4 d−1 f11,22g
hfd;wd; tdj h0.2;0.4 d−1;10 dj
hf l ;wl ; tlj h0.2;0.4 d−1;6 dj

r0sCA,C!Ad 0.2 d−1 f13,32,33g
hNa;b ;p+;p−j h7; 100; 0.33; 0.33j f4g

rsx ,Td 0.02 d−1

rsC!T,C!!Td 4 d−1

rsC!! ,Od 4 d−1 f11,22g

rsBx ,xBd 1.25 d−1 RB<7.5 mm

rsXx ,xXd 3.75 d−1 RX<2.5 mm

X=C,C! ,C!!

rsTx ,xTd 2 d−1 RT<5 mm

rsOx ,xOd 2 d−1 RO<5 mm

rsT,xd 0.8 d−1 f34g
rsB,xd 0.8 d−1 f35g
rsC,xd 4 d−1 f36g
rsA,xd 0.03 d−1 f37g

Ast=0d 400 f38–40g
Bst=0d 5 f26,41,42g

Ts 21 d f2g
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differentiation should start to dominate over proliferation
around tl −wl

−1=3.5 d, while the dark zone should start to
disappear aroundtd−wd

−1=8.5 d and should be vanished
aroundtd+wd

−1=12.5 d.
Finally, we consider the validity of the adiabatic approxi-

mation that we applied in going from Eq.s28d to Eq. s31d.
The slope ofFistd is maximal att= ti and we estimate that

U1

2

dFistd
dt

U ø
wiuf i − 1u

2gsT,wi,tid
, Os10−2dd−1. s38d

Furthermore,Fistid,Os10−1d and in the simulations the typi-
cal waiting time is of the ordert,Os10−5d d. It follows that
the main contribution in the expansion Eq.s29d stems indeed
from the first term, since

1 @
t

Fistid
U1

2
UdFistd

dt
U

t=ti

U , Os10−6d. s39d

We conclude that applying the adiabatic approximation, Eq.
s30d, with the benefit of significant computational simplifica-
tions is fully justified.

B. Comparison of simulation methods

We discuss the results of a systematic comparison of ger-
minal center reactions simulated by the first reaction method
and the next reaction method. To this end we performed 20
simulations per simulation method using the model param-
eters and initial conditions given by Table I for different
random initial configurations. It is obvious that, independent
of the applied simulation method, small changes in the initial
phase of the reaction can give rise to recognizable differ-
ences in the progression of the reaction. For example, if one
or two of the initially present B cells happen to undergo
apoptosis before they could start to proliferate, then the fill-
ing of the germinal center by centroblasts will be retarded
affecting its further development.

A quantitative comparison of the first reaction method and
the next reaction method in terms of the number of antigen
presenting sites and cells as a function of time is presented in
Fig. 5. The width of the curves corresponds to two times the
sample standard deviation taken over the 20 simulations. In
Table II we present the corresponding values of the final
numbers for antigen presenting sites and cells.

This comparison shows that the first reaction and next
reaction methods produce results that are, as expected, in
excellent quantitative agreement. Computing a germinal cen-

ter reaction using the next reaction method is, however, by a
factor 6–8 faster. Therefore, in what follows we use the next
reaction method to study properties of germinal centers.

C. Morphology of germinal centers

The development of the germinal center morphology in
the course of time is depicted in Fig. 6 as obtained from a
typical stochastic discrete event simulation. For reasons of
clarity only antigen presenting sitessblackd, centroblasts
slight grayd, and centrocytessdark grayd are shown and their
numbers are given in Table III together with those of the T
cells and the output cells.

The initial configuration consists of 400 antigen present-
ing sites in the upper part of the system and five randomly
positioned B cellsfsee Fig. 6sadg. The centroblasts proliferate
and start to fill the whole germinal centerfsee Fig. 6sbdg until
it is completely filled at day 3fsee Fig. 6scdg. Thus, nearly all
antigen presenting sites are now surrounded by centroblasts,
which start to undergo hypermutation and differentiation into

FIG. 4. The functionsFdstd andFlstd according to Eq.s17d for
the parameters given in Table I.

FIG. 5. The number of antigen presenting sites and cells as a
function of time for 20 simulations using the first reaction method
fsad and sbdg and the next reaction methodfscd and sddg. The width
of the curves corresponds to two times the sample standard
deviation.

TABLE II. Quantitative comparison of the final number of an-
tigen presenting sites and cells in terms of the mean value and the
sample standard deviation for the simulations of Fig. 5.

Number at
t=21 d

First reaction
method

Next reaction
method

A 210±12 214±11

T 281±15 284±16

B 5±5 9±9

C 267±23 255±25

O 1244±51 1205±59
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centrocytes. Based on the affinity of their surface receptors to
antigen the centrocytes around the antigen presenting cells
will compete for the first survival signal. As a consequence
of the relatively high death rate of nonselected centrocytes,
the populous germinal center starts to thin out where centro-
blast differentiation is strongest, which is the case in the
vicinity of the follicular dendritic cells. The germinal center
develops into a compartmentalized microenvironment with a
light and a dark zone that are clearly distinguishable at day 6

fsee Fig. 6sddg. With a delay of a few days, the dark zone
starts to disappearfsee Fig. 6sedg and is practically vanished
at day 12fsee Fig. 6sfdg where it contains roughly as many
centrocytes as centroblasts.

In the meantime the T cell population in the light zone
increases again due to the availability of spacessee Table
III d. The light zone becomes a dilute system of interacting
cells fsee Figs. 6sfd and 6sgdg, which is actually required to
enhance the probability that positively selected centrocytes
meet T cells and receive the second survival signal. In other
words, as important as the initial dense filling of the germinal
center by centroblasts is in order to obtain centrocytes close
to the fixed antigen presenting sites, it is important that the
germinal center evolves into a dilute cell system in order to
increase the probability for the encounter of diffusing centro-
cytes and T cells. According to Table III this development of
the germinal center morphology is indeed accompanied by
an increase in the number of output cells. At the end of the
germinal center reactionfsee Fig. 6shdg, the number of anti-
gen presenting cells is decreased by about 50% and also the
number of centroblasts and centrocytes is again significantly
decreased.

We thus see that our reaction-diffusion model captures the
experimentally observed development of the germinal center
morphology very well.

D. Antibody-antigen affinity maturation

Hypermutation of centroblasts and selection of centro-
cytes are the main pillars of affinity maturation aiming to
yield a strong population of mutants with high antibody-
antigen affinity. As has been explained in Sec. III B, we
model the hypermutation of centroblasts within the simple
picture of affinity classes and the selection of centrocytes
based on their affinity to antigen. We study affinity matura-
tion as a function of the maximal mutation distanceNd. This
number corresponds to the mutation steps required for a cen-
troblast to go directly from the germline affinity class with
reaction rater0sCA,C*Ad to the highest affinity class with
reaction raterNd

sCA,C*Ad=br0sCA,C*Ad. We note that the
germline affinity, which is directly related tor0sCA,C*Ad, is
the same in all simulations.

FIG. 6. Development of the germinal center morphology in the
course of time. Snapshots are taken atsad day 0,sbd day 1,scd day
3, sdd day 6,sed day 9,sfd day 12,sgd day 15, andshd day 21. For
reasons of clarity only antigen presenting sitessblackd, centroblasts
slight grayd, and centrocytessdark grayd are shown. The corre-
sponding numbers are given in Table III.

TABLE III. The number of antigen presenting sites and cells as
a function of time corresponding to the snapshots of the germinal
center reaction depicted in Fig. 6.

Fig. 6 t sdd A T B C O

sad 0 400 0 5 0 0

sbd 1 388 132 5402 14 0

scd 3 368 49 12257 388 0

sdd 6 335 20 9705 2621 1

sed 9 307 50 5792 3955 24

sfd 12 287 162 2234 2700 287

sgd 15 269 235 556 1316 693

shd 21 223 281 3 233 1223

MARC THILO FIGGE PHYSICAL REVIEW E71, 051907s2005d

051907-10



We performed 65 simulations using the parameter values
and initial conditions as given in Table I for different random
initial conditions. In Fig. 7 we plot the number of output
cells as a function ofNd. We denote the total number of
output cells byOsNdd, while the numbers of output cells
belonging to the germline affinity class and the highest affin-
ity class are denoted by, respectively,O1sNdd and ObsNdd.
We observe thatOsNdd is an exponentially decreasing func-
tion of Nd that levels off for large valuesNd@10. At Nd
=50 we find thatOsNdd is still of the order of 300 output
cells sresult not shownd. Furthermore, we notice thatO1sNdd
is practically independent ofNd, whereasObsNdd is strongly
affected and exponentially diminished to zero aroundNd
=13. This means that the decrease in the total number of
output cells is mainly paid for by the high-affinity output
cells.

In Fig. 8 we plot the relative numbers of output cells
VbsNdd=ObsNdd /OsNdd and V1sNdd=O1sNdd /OsNdd. It is

clearly seen that the result of a germinal center reaction de-
pends strongly on the maximal mutation distance with a
crossover atNd=6–7. At small maximal mutation distances
Nd,5, most output cells belong to high-affinity classes and
in the limit Nd=1 nearly all of them are of the highest-
affinity class. The opposite is true for large maximal muta-
tion distancesNd.9, where the affinity of most of the output
cells does not really improve during the germinal center re-
action but remains low and distributed over affinity classes
close to that of the germline. Therefore, we conclude that the
maximal mutation distance between the germline affinity and
the optimal affinity is of great importance for the success of
a germinal center reaction with respect to the affinity matu-
ration.

Our numerical results are in agreement with experimental
evidence that the upper limit for relevant maximal mutation
distances is aroundNd=12 f44,45g. Furthermore, our results
provide an explanation for another experimental finding in
germinal centers: namely, that they either contain no high-
affinity output cells at all or are dominated by output cells of
high affinity f46,47g. This global all-or-none behavior is the
reflection of a local winner-takes-all mechanism. In the
present model, the winner-takes-all mechanism is due to re-
action rates that depend on the affinity and that induce a
competition for the survival signal between centrocytes sur-
rounding the same antigen presenting site. Within a hybrid
cellular automata model for cell sorting, global all-or-none
behavior has been observed due to a similar local winner-
takes-all mechanism, where centrocyte selection takes place
based on cellular adhesion which in turn is related to the
affinity f13g. Affinity maturation has also been studied within
a much more involved implementation of the shape space
conceptf48g. As far as a comparison is possible, our results
agree surprisingly well with those obtained in the latter
study.

E. Centrocyte-centroblast recycling

We study the impact of recycling on affinity maturation
during germinal center reactions. For this purpose we per-
formed 215 simulations using the parameter values and ini-
tial conditions as given in Table I for different random initial
conditions. As has been discussed in Sec. III D, recycling
may be realized by one of the three reaction processes, Eqs.
s19d–s21d, that are depicted in Fig. 3. In what follows, we
will refer to the reaction processC!!→B as type-I recycling,
to C!→B as type-II recycling, and toC!,!!→B as type-III
recycling.

In Fig. 9 we plot the number of output cells and the recy-
cling probability as a function of the corresponding recycling
rate, which we abbreviate byrR. The recycling probability,
pR, is computed as the number of recycling events that have
been performed during the germinal center reaction over the
number of recycling events that could at most have been
performed. It is obvious from Figs. 9sad and 9sbd that, inde-
pendent of the recycling type, the number of output cells is
exponentially decreasing with increasing recycling rate.
However, this decrease occurs significantly faster for type-II
recycling as compared with type-I recycling. This is ex-

FIG. 7. The number of output cellssdotsd as a function of the
maximal mutation distanceNd. This plot is the result of 65 simula-
tions using the parameter values and initial conditions as given in
Table I for different random initial conditions. The size of the error
bars corresponds to two times the sample standard deviation and the
solid lines are a guide to the eye.

FIG. 8. The relative number of output cells,VbsNdd
=ObsNdd /OsNdd andV1sNdd=O1sNdd /OsNdd, as obtained from the
data in Fig. 7. The solid lines are a guide to the eye.
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plained by the fact that type-I recycling consumesC!! cen-
trocytes, while type-II recycling consumesC! centrocytes
which are several days earlier available during the germinal
center reaction. Thus, the time difference in the availability
of C! andC!! centrocytes plays an important role, which is
reaffirmed by the fact that type-III recycling, consuming both
C!! and C! centrocytes, behaves very similar to type-II re-
cycling. The recycling probability, which is plotted in Figs.
9scd and 9sdd, reflects this situation once again. AtrR
=1 d−1 we find pR.90% for type-II and type-III recycling
while still pR,20% for type-III recycling. Only for much
higher recycling rates aroundrR=35 d−1 do we obtain a
type-I recycling probability of 90%.

Affinity maturation will only be improved by a recycling
mechanism that operates in a parameter region where the
recycling probability is large and the loss of output cells is
small. In principle, this is the case for type-I recycling at
recycling rates 7 d−1, rR,30 d−1 and for type-II and type-
III recycling at recycling rates 0.2 d−1, rR,1 d−1. Since the
number of output cells in type-III recycling is even smaller
than that in type-II recycling, we will focus in what follows
on the comparison of type-I and type-II recycling.

In Fig. 10 we plot the relative number of output cells with
highest affinity,Vb=Ob /O, and with germline affinity,V1
=O1/O, as a function of the recycling raterR for type-I and
type-II recycling. We note that the size of the error bars
increases withrR due to the decrease in the number of output
cells. It can be clearly seen that affinity maturation is im-
proved by type-II recycling. The percentage of highest affin-
ity mutants is increasing from about 45% atrR=0 d−1 to
about 68% atrR=1 d−1, while in the same interval forrR the
relative number of output cells with germline affinity is de-

creasing from about 6% to 1%. Similar numbers are obtained
for type-III recyclingsresults not shownd. We do not observe
any improvement of affinity maturation by type-I recycling,
as was expected for this parameter region. However, we find
that this is also not the case in the region of large recycling
rates. In Fig. 11 we plot the relative number of output cells
Vb andV1 as a function of the recycling raterR.5 d−1 for
type-I recycling. The percentage of highest-affinity mutants
is approximately constant and lies around 50% and the rela-
tive number of output cells remains around 6%.

Our model predicts that recycling of type I, which is
based onC!! centrocytes, does not provide a significant im-
provement of affinity maturation but does give rise to an
unwanted strong decrease in the number of output cells. This
can be deduced from the absolute and relative numbers of
output cells which are summarized in Table IV. For type-II
recycling, which is based onC! centrocytes, the decrease in
the number of output cells is less severe and at the same time
affinity maturation is optimized, resulting in a number of

FIG. 9. The number of output cellsfsad and sbdg and the corre-
sponding recycling probabilityfscd and sddg as a function ofrR for
the three recycling types. This plot is the result of 215 simulations
using the parameter values and initial conditions as given in Table I
for different random initial conditions. The size of the error bars
corresponds to two times the sample standard deviation and the
solid lines are a guide to the eye.

FIG. 10. The relative number of output cellsVb=Ob /O ssolid
linesd and V1=O1/O sdashed linesd as a function of the recycling
rate rR for type-I and type-II recycling. The solid and dashed lines
are a guide to the eye.

FIG. 11. The relative number of output cells,Vb=Ob /O ssolid
lined and V1=O1/O sdashed lined, as a function of the recycling
rate rR for type-I recycling. The solid and dashed lines are a guide
to the eye.
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high-affinity output cells that is larger than that for type-I
recycling. Recycling of type III, which includes bothC! and
C!! centrocytes, shows a behavior that is very similar to
type-II recycling. It should be noted, however, that type-III
recycling does not seem to improve type-II recycling. We
may therefore conclude that the preferred recycling mecha-
nism is of type II. However, for any type of recycling our
simulations predict a significant decrease in the number of
output cells, even in the subclass of high-affinity output cells.
It therefore remains somewhat questionable whether recy-
cling in germinal centers is an efficient mechanism at all.

To the best of our knowledge, recycling in germinal cen-
ters, where the interaction betweenC! centrocytes and T
cells is explicitly included in a microscopic model, has not
been studied before. In previous microscopic models this
part of the germinal center reaction has been neglected and
an effective recycling mechanism was implemented that hap-
pens to resemble the type-II recycling mechanism
f11,12,22,48g.

VI. SUMMARY AND CONCLUSIONS

In this paper, we studied germinal center reactions by sto-
chastic discrete event simulations within a microscopic
reaction-diffusion model. We applied the philosophy thatev-
erything should be made as simple as possible, but not sim-
pler f14g by introducing a generic model but applying exact
simulation methods. To simulate the time evolution of com-
plex and highly dynamic biological systems like germinal

centers, it is indispensable necessary to perform stochastic
discrete event simulations in an accurate way, because vari-
ous coupled reaction processes occur on different character-
istic time scales in a spatially compartmentalized microenvi-
ronment. In principle, the type of enabled reaction and the
waiting time have to be chosen from the corresponding dis-
tributions at each time step. We have shown for the case of
germinal center reactions that this is realized in an efficient
way by the next reaction methodf17g which we compared to
the first reaction methodf16g.

Beside basic reaction processes—such as diffusion, birth,
death, and survival processes—our model describes in a phe-
nomenological way centroblast reaction regulation that gives
rise to the development of the germinal center into a com-
partmentalized microenvironment. We considered centroblast
proliferation and differentiation as time-dependent processes
where the differentiation was increased on the cost of prolif-
eration in the course of time. In this way we mimicked regu-
lation mechanisms that are still unknown today, such as hy-
pothetic signal moleculesf11g. Our simulations have shown
that the development of the germinal center morphology is in
agreement with experimental observations. At the same time
our approach offers the freedom to incorporate mechanisms
like chemotaxisf12g by adjusting the time dependence of the
reaction rates; however, this is left for future research.

We modeled centroblast hypermutation in terms of jumps
between a one-dimensional configuration of affinity classes,
which may be considered as the most simple realization of
the shape-space conceptf21g. The reaction rate for the inter-
action between centrocytes and antigen depends on their af-

TABLE IV. Absolute and relative numbers of output cells for all three recycling types. These numbers are
based on 50 simulations using the parameter values and initial conditions as given in Table I for different
random initial conditions.

Recyc. pR rR sd−1d O Ob andVb O1 andV1

None 0 0 1213±43 545±33 75±2

0.45±0.04 0.06±0.00

I 0.65 7 511±24 240±27 32±5

0.47±0.08 0.06±0.01

II 0.65 0.2 671±50 367±29 22±4

0.55±0.08 0.03±0.01

III 0.65 0.2 622±35 345±25 23±8

0.56±0.07 0.04±0.01

I 0.80 15 298±16 147±4 17±6

0.50±0.04 0.06±0.02

II 0.80 0.4 463±55 274±25 12±3

0.61±0.13 0.03±0.01

III 0.80 0.4 392±12 226±12 10±2

0.58±0.05 0.03±0.01

I 0.88 30 175±17 85±16 10±3

0.50±0.14 0.06±0.02

II 0.88 0.6 335±33 208±27 7±3

0.63±0.14 0.02±0.01

III 0.88 0.6 314±27 188±13 5±3

0.60±0.09 0.02±0.01
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finity. This induces a local winner-takes-all mechanism,
where centrocytes surrounding the same antigen presenting
site compete for the survival signal and the mutant with
highest affinity will be most likely to reach this goal first.
This local winner-takes-all mechanism gives rise to a global
all-or-none behavior. Our numerical results reveal the strong
selection for highest-affinity mutants and the experimentally
observed all-or-none behavior as a function of the maximal
mutation distance. Even though our realization of shape
space is by far more simple than that in other modelsf11,12g,
our simulations confirm quantitatively the crossover in the
all-or-none behavior as a function of the maximal mutation
distances aroundNd=6 to 7. For smaller values ofNd germi-
nal centers are dominated by output cells of high affinity,
while for larger values ofNd they contain no high-affinity
output cells at all. In the present study we started the germi-
nal center reactions with a germline affinity that was the
same for all initial B cells. This condition may be relaxed by
considering some affinity distribution for the initial B cells.
Furthermore, affinity maturation may be studied as a func-
tion of the probability for affinity-loweringsp−d and affinity-
improving sp+d mutations or including the possibility of ran-
domly generated mutants that completely lose their ability to
bind to antigen.

In our model the interaction between centrocytes and T
cells is explicitly taken into account. This enabled us to study
the hypothesis of centrocyte-centroblast recyclingf3,28g by
comparing recycling that involves centrocytes, which have
receivedsid both survival signals from interactions with an-
tigen and T cells,sii d the first survival signal from interaction
with antigen only, andsiii d at least the first survival signal.
Our numerical results indicate that affinity maturation is op-
timized by recycling involving centrocytes that have re-
ceived only the first survival signal from interaction with
antigen. In other words, recycling seems to improve the af-
finity maturation of output cells by taking the pathway that is
the shortest and available at earliest times in the simulation.
However, a general side effect of recycling is the decrease in

the number of output cells that can eventually be so strong
that the efficiency of recycling may be questioned. This
would be different if one could extend the recycling hypoth-
esis by the assumption that recycled centrocytes are for some
unknown reason not again subjected to apoptosis. It would
be interesting to investigate the effects on affinity maturation
and on the termination of the germinal center reaction in this
case. In the present paper we also restricted the study of
recycling to systems with a fixed number ofNa=7 affinity
classes. An obvious next step is the comparison of systems
with different numbers of affinity classes, which is left to
future research.

We finally note that the simulation methods applied in this
paper are applicable to a wide range of biological systems
that can be formulated in terms of reaction-diffusion models.
Even though important processes in biological systems are
quite often not yet fully understood, the present work illus-
trates that stochastic discrete event simulations are worth the
effort. To be more specific, the recycling hypothesis has pre-
viously been implemented for a specific recycling pathway
in various deterministic continuum models. However, our
stochastic discrete event simulations indicate that affinity
maturation is optimized by a different recycling pathway,
which has previously not been considered. This new insight
may be used to reconstruct deterministic continuum models
in order to obtain qualitatively correct results and to benefit
from their computational advantages over the stochastic dis-
crete approach. We believe that using the results obtained
from stochastic discrete event simulations to build determin-
istic continuum models will be a fruitful combination for
future research.
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