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Stochastic discrete event simulation of germinal center reactions
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We introduce a generic reaction-diffusion model for germinal center reactions and perform numerical simu-
lations within a stochastic discrete event approach. In contrast to the frequently used deterministic continuum
approach, each single reaction event is monitored in space and time in order to simulate the correct time
evolution of this complex biological system. Germinal centers play an important role in the immune system by
performing a reaction that aims at improving the affinity between antibodies and antigens. Our model captures
experimentally observed features of this reaction, such as the development of the remarkable germinal center
morphology and the maturation of antibody-antigen affinity in the course of time. We model affinity maturation
within a simple affinity class picture and study it as a function of the distance between the initial antibody-
antigen affinity and the highest possible affinity. The model reveals that this mutation distance may be respon-
sible for the experimentally observed all-or-none behavior of germinal centers; i.e., they generate either mainly
output cells of high affinity or no high-affinity output cells at all. Furthermore, the exact simulation of the
system dynamics allows us to study the hypothesis of cell recycling in germinal centers as a mechanism for
affinity optimization. A comparison of three possible recycling pathways indicates that affinity maturation is
optimized by a recycling pathway that has previously not been taken into account in deterministic continuum
models.
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[. INTRODUCTION numbers, so that local inhomogeneities related to the discrete
] ] ] nature of cells and stochastic fluctuations in reaction pro-
Germinal centers play an important role in the response ofesses can be neglected. Taking into account fluctuations in
the immune system to invading pathogenic organifi8].  reaction processes may be realized by writing the rate equa-
They appear in lymphoid tissue on antigenic stimulation andions in terms of a set of coupled Langevin equations for the
start a reaction that aims to improve the recognition of anti-average cell concentrations. This is a stochastic continuum
gens by antibodies. The latter are soluble forms of specific Bipproach, where one still deals with average cell concentra-
cell receptors. During the process of affinity maturation, thetions; however, these are now changing in a more realistic,
B cells undergo clonal amplifications, receptor hypermutastochastic way. In the context of germinal centers this type of
tions, and selection for highly specific receptors. This reacapproach has, for example, been applied to account for ran-
tion takes place in the presence of follicular dendritic cellsdomness in the selection of specific B cell recepférad].
that provide antigen, and under the control of T cells that On a microscopic scale cells have to be considered as
help with the differentiation of B cells into output cells. ~ discrete entities that undergo discrete events by diffusing
From a theoretical point of view, germinal centers repre-through the system and reacting stochastically with each
sent a typical example of a highly dynamic biological SyS_other. A stochastic discrete event approach takes this into

tem, in which various coupled reaction processes occur oAcCOUNt by monitoring the course of events for each single

different characteristic time scales in a spatially compartC€ll Of the system in space and time. This approach is most

mentalized microenvironment. Modeling such a complexconveniently formulated in terms of a master equation. The
aster equation determines the time evolution of the prob-

fﬁ/ stler\? ::a? be drone |?nvagoijsrr%?;\iccteiptualr];/ivr?ysr;hat drlffer;] bility distribution to find the system in a particular state at a
€ ?. el oraccuracy. In a e.de d S (?f(;ok' uul approachy,aticular time. Numerical simulations of the system’s time
reaction processes are considered as It taking place In a Wely, o) ytion have to be performed in such a way that the un-

_Srtr']”ed r|1|1|xture of cells and ok()jeylngbthg, It?w of masfs aCt'Oln'aerlying probability distribution is a solution of the master
e cell concentrations are described by a set of couple guation. This does demand large computer resources, but is
ordinary _dlfferenual equations and change determ|n|st|callythe only appropriate way to simulate highly dynamic biologi-
and c;ontlnuously in time. This apprc_)ach has. the great COMey) systems where various cell types may be present in small
putational adva_ntage that only one smg_le va_nable is required , pers only. The stochastic discrete event approach has
per cell type. Itis often used to model biological systems angyeop, anpied to simulate spatial aspects of germinal centers,
has a_Iso been applied to describe aspects of germinal centglch as their morphology and the affinity maturation
reactiong 3—8|. 11-13
The deterministic continuum approach is strictly speaklng[ In this paper we introduce a generic reaction-diffusion

only applicable to systems where all cell types occur in Iarg‘?’nodel for germinal center reactions and perform stochastic

discrete event simulations. In doing this, we apply the phi-
losophy thateverything should be made as simple as pos-
*Electronic address: m.t.figge@phys.rug.nl sible, but not simplef14]. In other words, on the one hand
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our model will be as simple as possible, while on the other
hand we will apply exact simulation methods in an efficient
way. These methods have previously been proven to be pow-
erful in simulating chemical reactions in solutiofts5—17
and on surfacegl8]. We will discuss our simulation results
with respect to the germinal center morphology and affinity
maturation in the light of experimental observations. In par-
ticular, we will show that the all-or-none behavior of germi-
nal centers can be related to the size of the maximal mutation
distance within a simple affinity class picture. We find that, if
the maximal mutation distance between the germline affinity
: e L y
class and the class of highest affinity exceeds a critical value, b
the germinal center reaction is not successful generating only
output cells of low affinity. Furthermore, we investigate the . ] ] ]
impact of hypothetic centrocyte-centroblast recycling mecha- FIG. 1. Schematic representation of a germinal center reaction

nisms on the affinity maturation. We compare the case O§everal days after initiation. The dark zone contains centrolBgts

centrocytes that recycle only after having received both surt—hat proliferate and differentiate into centrocyt&. Centrocytes

. . - . . . . may experience apoptosi$) or bind with their surface antibodies
VI};ﬁltShlgnals froT Intiracufnst\{qv'tp am'gﬁn andd twnh T CF”S’Ito antigens(triangles that are located at follicular dendritic cells
wi d efcasr']e 0. cen rOF:y gsh a}. are a QWF . 0 rlefcyc e. aZFDC) in the light zone. Activated centrocyté€*) can bind to T
ready after having received the first survival signal from Ir"cells(T) to obtain a second survival signal. These centroc{@s3)

teraction with antigen. The results of our numerical S'mUIa'can then differentiate into output cell®). See the text for details.

tions indicate that only the latter recycling mechanism yields

optimized affinity maturation and that recycling mechanismsyhich evolves into a highly dynamic and spatially compart-
in general are paid for by an eventually significant decreasgyentalized microenvironment, which is schematically shown
in the number of output cells. _ in Fig. 1. The germinal center is developed after the recog-
The paper is organized as follows: We describe the role ofjtion of antigens by surface antibodies of B cells. The B
germinal centers in the humoral immune response in Sec. Wg|is play a key role in the germinal center reaction, which is
and introduce in Sec. Ill our microscopic reaction-diffusion siarted by only a few activated B cells that divide and fill the
model. Next, in Sec. IV, we explain how to perform in an yhole germinal center within about three days. These prolif-
efficient way discrete event simulations of reactlon—dlﬁusmneraﬂng B cells are referred to as centroblasts, which are spe-
systems with space- and time-dependent reaction rates. They in the sense that their surface antibodies are downregu-
simulation results of numerical germinal center reactionated. After the first 3 days centroblasts differentiate into
with respect to morphology, affinity maturation, and recy-centrocytes, which are germinal center B cells that do not
cling are presented and discussed in Sec. V. Finally, in Segyoliferate but do express surface antibodies. Starting from

light zone

VI, we summarize and conclude this paper. about this time centroblasts undergo intense hypermutation
while they continue to proliferate and differentiate into cen-
Il. GERMINAL CENTER REACTION trocytes. As a result a repertoire of centrocytes with different

types of surface antibodies is obtained. How exactly centro-

This section provides a brief description of germinal cen-blast proliferation and differentiation is regulated is still un-
ter reactions, where we restrict our considerations to geneclear today.
ally accepted mechanisns,2]. In the course of the germinal center reaction two compart-

The immune system defends living organisms in a hu-ments develop, which are called the light zone and the dark
moral immune response against pathogenic invaders such asne (see Fig. 1L The mechanism that drives their appear-
bacteria and viruses. This is achieved by the binding of anance is also still unresolved today; however, it is observed
tibodies to these antigens. The binding is specific and cathat the dark zone contains predominantly proliferating cen-
pable of discriminating between self and nonself in order taroblasts, while the light zone contains beside centrocytes
avoid autoimmune reactiongl9,20. An antibody-antigen various other cell types. Of great importance are antigen-
complex acts as a signal for particular types of immunespecific T cells and follicular dendritic cells in the light zone.
cells—e.g., macrophages—that engulf and kill the invader. IThe latter bind antigen and present it to the surface antibod-
is obvious that the success of this mechanism depends on thes of centrocytes. If centrocytes bind to antigen on follicular
ability of the antibody to bind the antigen and it has beendendritic cells, they receive a survival signal which rescues
observed that the affinity between antibody and antigen cathem from apoptosis—i.e., from cell death which would oth-
increase in the course of time. This phenomenon is calleérwise naturally occur. This is a selection process for centro-
affinity maturation and involves the generation of mutationscytes based on their antibody-antigen affinity.
in the genes that code for the antibody variable region, fol- On separating again from the follicular dendritic cell the
lowed by an affinity based selection procedure. centrocyte takes up some antigen portion. This centrocyte

Affinity maturation takes place in germinal centers, whicheventually meets an antigen-specific T cell in the light zone
form in secondary lymphoid tissue such as lymph nodesand receives a second survival signal on presenting the anti-
tonsils, and the spleen. A germinal center is a lymph folliclegen portion. It is commonly believed that this signal is re-
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quired to ensure self-nonself discrimination, since under nor- C** — O with rater(C**,0), (6)
mal circumstances T cells effectively recognize portions of
foreign molecules only. In addition, T cells are believed towhereO denotes both plasma and memory B cells.
play a mediating role in the differentiation of centrocytes Furthermore, each cell in the germinal center can move by
into output cells. The output cells are either plasma oiffusion which is represented by a jump process from its site
memory B cells. They are specific to antigen with an affinityto an unoccupied neighbor site,
that is usually significantly higher than that of the B cells by )
which the germinal center reaction was started. In particular, X+ @ — @+ X with rater (X@,2X), (7)
memory B cells are long-living cells that can respond _ . e " .
quickly upon a second exposure to the same antigen, WhiwhereX-B, C C% C% T, or O Th? positions of antigen
plasma cells are able to secrete large amounts of antibodi@gesenting sites on folll_cular dendritic cells, are kept fixed
which bind antigens making them easy prey to be killed bythroyghout the 5|mglat|on.
macrophages Finally, the reaction

The end of the germinal center reaction is reached after .
about three weeks and is characterized by centroblasts ceas- X— @ with rater(X,2) (8)

ing to proliferate and disappearing together with centrocytesyascribes apoptosis for ce¥s=T, B, andC that are removed

lIl. REACTION-DIEEUSION MODEL from the system. FoX=0 at the germinal center border this
reaction mimics emigrating output cells. FX=A it de-
We introduce a microscopic reaction-diffusion model for scribes the loss of active antigen presenting sites due to the
a germinal center on d-dimensional lattice withN sites.  uptake of antigen portions by centrocytes.
Each site can either be occupied by a cell or be empty, while
reaction processes can either occur on site or involve two
nearest-neighbor sites. We will first consider basic reaction
processes and then discuss in separate sections centroblasfAbout 3 days after the initiation of the germinal center,
hypermutation, reaction regulation, and centrocytecentroblasts start to undergo somatic hypermutations while
centroblast recycling, since these aspects deserve some magr@liferating according to Eq1). Mutations in the genes that
attention. We will use the following symbolg for an anti-  code for the antibody variable region of centroblasts may
gen presenting site located on a follicular dendritic dgfipr ~ either increase, decrease or leave their affinity to antigen
a centroblastC (C*, C**) for a centrocytghaving received, unchanged. In principle, centroblast hypermutation could be
respectively, one or two survival signgl§ for a T cell,O  described within the well-known shape space con¢2f,
for an output cell—i.e., we do not explicitly distinguish where each site of a high-dimensional lattice represents a

B. Centroblast hypermutation

plasma and memory B cells—and for an empty site. particular antibody phenotype and a jump from one site to a
. . . . neighboring site represents a mutation. In order to keep the
A. Basic reaction processes in germinal centers model as Simp'e as possib'e, we  will app'y a one-

The model accounts for reactions that capture the maiflimensional realization of this concept in terms of a number
processes during a germinal center reaction as described @ affinity classes.

Sec. II. This includes the proliferation of centroblasts, We assign to each centroblast a random variaglevhich
_ denotes its affinity class. The initiggermling affinity class
B+ @ — B+ B with rater(B¢,BB), (1) corresponds tm,=0 and we consider a total number

and their differentiation into centrocytes, affinity classes:

B — C with rater(B,C). (2 Ng—1

2

- Nd =N, Nd with Nd = (9)
Centrocytes receive their first survival signal from the in-
teraction with antigens presented at sites on follicular den

- Here, we defined the maximal mutation distai¢eand in
dritic cells,

what follows we will assumé\, to be an odd number. The
C+A — C* + A with rater(CA,C*A). (3)  Progeny of a centroblast may change its affinity class with
_ _ ~ respect to its parents affinity class by(+1) with probability
The second survival signal for centrocytes comes from interp_(p_) or preserve it it with probabilityp,=1-p,—p_. This
action with T cells, holds independent of the affinity class number, except for the
C*+T — C* + T with rater(C*T,C**T). (4)  highest and lowest affinity class numbers where we set, re-
. . . spectively,p,=0 andp_=0.
The_ T cells have ml_grated into t_he germinal center frqm In the process of centroblast differentiation according to
particular zones outS|d_e the germinal center, which we simgq. (2) the affinity class is passed on to centrocytes that
ply model by the reaction process express the surface antibodies with corresponding affinity to
. antigen. We assume that centrocyte antibodies in two con-
@ — T with rater(2,T) ®) secutive affinity classes differ in their binding reaction rate to
inside the germinal center. Centrocytes that have receivedntigen on follicular dendritic cells by a constant factor
both survival signals differentiate into output cells, a>1:
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the same time these environmental conditions seem to sup-
port the differentiation of centroblast into centrocyte
[2,23-25. Centroblasts undergo proliferation, apoptosis, and
differentiation processes everywhere in the germinal center,
while the centroblast population is diminished by the latter
two processes and is increased by proliferatieee Fig. 2.

FIG. 2. Schematic representation of centroblast proliferationAfter the first 3 days in which centroblasts have filled the
apoptosis, and differentiation. See the text for details. whole germinal center, the light zone appears where follicu-
lar dendritic cells are located and T cells are present. The
Ay Ay region that remains filled with centroblast becomes the dark

r”a(CA’C A) =1o(CAC AJa™. (10 zo%e and is disappearing with a delay of several days.
It follows that centrocytes of different affinity classes sur- Environmental conditions that give rise to such a behavior
rounding the same antigen presenting site will compete fofe captured in the model in an effective way. We consider
receiving the survival signal. The centrocyte with highestthe centroblast proliferation ratéB®,BB|t) and the differ-
affinity and thus highest reaction rate will be most likely to €ntiation rater(B,C|t) to be time dependent, where differen-
reach this goal first. This affinity-based selection of centrodiation is increasing on the cost of proliferation:
cytes is expected to yield a strong population of high-affinity ((B.Clt) _ . (B2, BBl

HBZBBly  r(B,2)

mutants. - _
Finally, we specify r(B,C) r(BY,BB)

a= Mg (11)  Since environmental conditions are different in the light and

) ) o dark zones, Eq(13) is considered for both zones separately
where3>1 is referred to as the maximal affinity factor, so and is fulfilled by

that

(13

r(BZ,BB|t) =r(BY,BB) X {O(y, ~ Y)F4(t) + O(y - yp) Fi (D)}
(12) (14

and

1 r(CACA)

B ro(CAC*A) =A

independent of the maximal mutation distaridg This al-

lows us to study affinity maturation in germinal center reac- r(B,CJt) =r(B,C) X {O(y, — y)[1 - Fy(t)]
tions as a function of the number of mutations required to _ _
achieve maximal antibody-antigen affinities. +Oy -yl -F O} (19
Here, O(s) is the step function with
C. Centroblast reaction regulation 1 fors=0,
o . . O(s) = (16
Several days after the initiation of the reaction, a germinal 0 fors<o0,

center starts to develop into a compartmentalized microenvi- .
ronment consisting of a dark and a light zone. The remark@ndY, denotes the border between the dark and light zones,
able morphology of germinal centers must be related to th&/hich, in accordance with the coordinate system shown in
regulation of centroblast reaction processes. These are dEi9- 1, extends along thedirection. The function§(t) and
picted in Fig. 2. In the framework of a stochastic and discretd™(t) refer to, respectively, the dark and light zones with 0
model for germinal center morphology, it has been suggested Fi(t) <1 (i=d,l). They are free to be chosen in such a way
that follicular dendritic cells may secrete signal moleculesthat the phenomenological approach represented by Egs.
that diffuse through the system and initiate differentiation(13—(15) reproduces the germinal center morphology. It
processes when consumed by centroblpkts However, it ~ should be noted that this freedom is no unneeded luxury but
is not known today whether such a differentiation signal doed¢s actually required to account for the fact that the experi-
at all exist. A similar model takes chemotaxis into accountmentally observed appearance time and duration time of the
where the motion of diffusing cells follows a preferred direc- compartmentalized structure can be quite different
tion that is specified by chemotactic signfl®,27. How-  [2,23,26,27. A useful representation with a high degree of
ever, the occurrence of a dark and a light zone in humadiexibility is given by
germinal centers could not be explained by chemotaxis
o(t,w;,t)

alone. Fi)=1+(f - 1)l

The mechanism for centroblast reaction regulation that 9(TsW;, )
gives rise to the specific spatial separation of centroblast an\(l:ivh reT. denotes the simulation time and
centrocyte is still unknown today. Therefore, in order to keep erels denotes the simulatio €a
the model generic and simple, we opt for a phenomenologi- gt, W, t;) = tankwit;) + tanHwi(t — t)]. (18)
cal approach. From the experimentally observed germinal
center morphology and related experiments we draw the conFhe functionF;(t) is decreasing with time over a time inter-
clusion that centroblast proliferation seems to be inhibited irval Zwi‘l aroundt=t; from its initial valueF;(0)=1 to its final
the presence of follicular dendritic cells and T cells, while atvalueF;(Ty)=f; with 0<f;<1. In total there is a set of three

17
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they are equally well suited for recycling th&i™* centro-
cytes. Becaus€* centrocytes will be much earlier available
in the course of the germinal center reaction ti@n cen-
trocytes, it can be expected that the effect of the two recy-
cling pathways on the system’s time evolution will be quite
different. The combination of the two recycling pathways,

C*** — B with rater(C***,B), (21)

r(BZ,BB|t) r(B,2)

%

EEEEEEN =

HB.,Clt)

r(CA,C*A)
rC*,B)
is a third possible realization of recycling in germinal centers
that will be considered within our model.
It should be noted that centrocyte-centroblast recycling

r(C*T,C*™T)
r(C**,B)

— >

© may be also of a disadvantage with respect to the total num-
r(C**,0) ber of output cells. Once the centrocyte changes into a cen-
troblast, it is again subjected to apoptosis and will be lost if
n it does not sufficiently soon differentiate into a centrocyte

and receive the first survival signal again.
FIG. 3. Schematic representation of centrocyte-centroblast recy-
cling. Two recycling pathways are depicted by a dotted and a
dashed arrow. See the text for details. IV. STOCHASTIC DISCRETE EVENT ALGORITHMS

arameters,{f,'wi:t}, to be specified per compartment In the previous section, we introduced a reaction-diffusion
P U TR AR P P P model that describes a germinal center reaction on a

(|=d,|).. . ) . d-dimensional lattice withN sites. Each site can either be
We finally address another issue that is related to mak'n%ccupied by one type of cell or be empty. The actual con-

centroblast reaction _regul_ation more reali;tic. The ConOIitiorhguration on the lattice defines the system state and deter-
that centro.blast pr(_)llferfat|on IS qnly possible if one _Of the mines whether a particular reaction process is enabled—i.e.,
nearest-neighbor sites is empty is relaxed by requiring thaly, take place—or not. Each reaction process changes the
one out of theN, closest neighbor sites has to be empty. Th&,yice configuration into another configuration that usually
newly gener_ated centroblast will then be located at the cloSgigters from the previous one only in a small region around
est empty site. the reaction sites.
The change of the system state is related to the time that
elapses between the moment that a particular reaction pro-
It has been suggested that not all positively selected cersess becomes enabled and the moment that it actually takes
trocytes differentiate into output cells but may undergo recyplace. For one and the same reaction type this amount of
cling into centroblasts and reenter the process of proliferatime varies and depends on several factors—e.qg., the energy
tion, mutation and differentiatiop3,28]. The advantage of and the condition of the involved cells—which are not ex-
such a recycling process is obvious. Positively selected cerplicitly part of the model. However, we incorporate these
trocytes encode surface antibodies with high affinity for anfactors on the reaction times by describing the occurrence of
tigen and thus represent an optimal starting point for thegeactions in a stochastic manner. To this end we have to
reproduction of further optimized centroblasts. It should beformulate a fundamental assumption that defines the kinetics
noted, however, that there is no direct experimental proofor non-negative reaction rates which may change continu-
that recycling is actually realized in germinal centers. As aously as a function of time. Following Reffl5,16|, where
consequence, no experimental values for parameters cothe kinetics assumption has been stated for constant reaction
nected with the recycling hypothesis are available today. rates, we assume theite reaction process with ratéa,c’ |t)
In the present model we will assume that recycling is notthat changes the system state c intaod that is enabled at
restricted to one of the compartments but can occur anytime t occurs with probability
where throughout the germinal center. Two possible recy- , ,
cling pathways that differ in their starting point are depicted pe.cftt+ ) =r(ccfte (22)
in Fig. 3. The dashed arrow refers to the recycling procesg, the infinitesimal time intervat. In other words, the prob-
that is commonly considered,4,7, ability that an enabled reaction occurs is equal to its reaction
C** — B with rater(C**,B), (19) rate times an infinitesimal time int_e_zrvﬂ, which is _suffi-
ciently small to neglect the probability for two reactions oc-
involving only centrocytes that have been positively selecteaturring simultaneously.
by antigens and by T cells. The dotted arrow in Fig. 3 indi- It follows directly from Eq.(22) that the system stateat
cates another possibility involvinG* centrocytes, time t is now a stochastic variable which is realized with
. . . some probabilityP(c|t). We show that the time evolution of
C* — B with rater(C",B). (20) this probability distribution is governed by a master equa-
These centrocytes only received the first survival signal frontion. The probabilityP(c|t+&t) to find the system in con-
binding to antigen; however, with respect to their affinity figurationc at timet+ ét is given by

D. Centrocyte-centroblast recycling
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P(clt+ &) =PC'[) D p(c’,clt,t+ &) germinal centers it turns out that the second term on the
right-hand side in Eq(29) is always orders of magnitude
smaller than the first terrfsee Sec. V A beloyv It can there-
+P(c[t)p(c,cft,t + at). (23)  fore be neglected which corresponds to applying the adia-

Here, the first term accounts for changes of the system staftiC approximation,

c’(#c) at timet into system sjta_lt_e at timet+ ét. The seco_nd _ r(e,c't) = r(c,c'[t+ 1), (30)
term accounts for the possibility that the system, which is
already in system stateat timet, remains in this state with on the time scale where no reaction takes place. We then
probability obtain a negative exponential distribution function for the
probability that no reaction occurs betweeandt+ 7,

c'#c

p(c,clt,t+ o) =1-8& >, r(c,c'|t). (24)
¢’ #c P(clt + 7) = exd - 7R(c|t)], (31
We may thus write where we defined
P(clt + &) = P(c|t) - 8t >, [P(c|t)r(c,c'[t) R =S ric.c'lo). (32)
c'#c o e
- P(c'|t)r(c’,c|t)], (25

Next, we calculate the probability for the occurrence of

which yields, in the limitét— 0, the particular reactiort— €. The probability that this reac-
q tion occurs in the infinitesimal time interval follows from
P =X [PEor(e et - Pelr(c.e'y], (26)  Eas(22)and(30) to be

cre p(c,Tt+ r,t+ 7+ 87 =r(c,C

t)o7. (33
and corresponds to the master equation for the probabilitYN ) ) -
distribution P(c|t). e combine Eqs(31) and(33) to obtain the probability that

In the present context we are not merely interested ifh® System, which was in stateat timet, is in statec at time
studying a system at equilibrium, where E@6) simplifies ~ [=t+7+06m
becausedP(c|t)/dt=0. We rather wish to simulate the full B
time evolution of a germinal center reaction, which amounts P[0 = PeP..
to solving the master equatid@6) for all times.

In practice we will not compute the probabilitip(c|t)
explicitly, but start from a particular system state, represen- r(c,gt)
tative for the initial state of the germinal center, and then ©= R(clt) '
generate in the course of time a sequence of system states
with the correct probability. This requires the calculation of yhich is independent of the probability distribution for wait-
the time at which the next reaction occurs and is achieved ggg times,
follows: Supposing that the system is in statat timet, we
calculate the probability that the system remains in this state P, = [smR(c|t)]exd - R(c|t)], (36)
until time t+ 7. The master equatiof26) reduces to

(34)

Here, we defined the probability distribution for reactions,

(35

q corresponding to a negative exponential distribution.
u —_ / We conclude from the above that an algorithm for the
dtP(c|t) Pt 2 r(ec i @7 stochastic discrete event simulation of a reaction-diffusion
system is based on the following two choices per time step:
Integration between the limitsandt+ 7 yields (i) the type of enabled reaction according to the distribution
r Pz and (ii) the waiting timer according to the distribution
P(clt+ 7) :exp[— E f d~tr(c,c’|t+T)], (28) P,. This approach has been introduced by Gillespie in the
0 context of chemical reactions in solutions and is referred to
o ) as the direct methofl5]. We implemented a slightly differ-
where we used the fact that the system is in staetimet:  ent method, also invented by Gillespie, which is called the
P(c[t)=1. A simplification of this expression is possible if first reaction method and was proven to be mathematically
the dependence of the reaction rates on time is negligiblyqyivalent to the direct methdd6]. We also implemented a
weak on the time scale where no reaction takes place. Theygification of the first reaction method, which increases the
integral in Eq.(28) may then be approximated by efficiency of that algorithm by making use of the fact that
1 dr(c,c'|t+9) each reaction changes the lattice configuration only in a
= small region around the reaction sites. It was developed by
2 dt =0 Gibson and Bruck and is referred to as the next reaction
X2 +0(P). (29) method[l?]. We will brigfly discuss thesg anq other methqu
in the context of germinal center reactions in the following
In fact, in the context of the reaction-diffusion model for subsections.

c'#c

¢’ #c

f dir(c,c’|[t+T) =r(c,c't)7+
0
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A. First reaction method putation time depends strongly on the implementation of ap-

The type of an enabled reaction and the waiting time dderopriate data structur¢47]. In view of the limited abilities

not necessarily have to be generated in a direct way from th@f random number generators, we also mention the advan-

distributions Eqgs(35) and (36), as is the case in the direct @9€ that only a few random numbers have to be generated
method. Alternatively, one can also determine a putativé®®' iteration. The precise number depends on the previous
waiting time for each enabled reaction at each site of th&eaction process and on the considered lattice configuration,
lattice in a particular system state. For a reaction process that!t Will usually be less than two times the number of nearest

changes the system statat timet into ¢’, the correspond- Neighbor sites. Finally, it should be noticed from stép
ing waiting time ' follows from Eq.(36) to be given by that in the next reaction method the waiting times are abso-

lute times and not relative times between reaction processes.
1 1
7'/ = In -, 37
&) @

r(c,c’|t)

C. Other simulation methods

whereu is a random number that is generated from the uni- - the wo simulation methods described in the previous

form distribution with O0<u<1. Then, of all the enabled ¢,psections belong to a class of algorithms that is derived

reactions, the reaction to be performed is the one which,m the dynamical Monte Carlo techniqui¢8,29,30. In

comes first—i.e., the one with the shortest waiting time.  conrast to the classical Monte Carlo technique, which is
The algorithm of the first reaction method redd$] as  gmpioyed to study systems at equilibrium, the dynamical

follqw.s:. . . . Monte Carlo technique provides methods to solve the time
tim(el)'rmltlahze the system att0 and set the total simulation  g/g1ution of a system. The different methods have their own
S

" . . right of existence since they have been invented to optimize
(i) at each site of the lattice generate for each enabledy s se of computer resources—i.e.

reaction a putative waiting time according to Eq. (37) memory—for specific types of problems.
(iii) choose the reaction process with the shortest waiting  y/e briefly mention another method of the dynamical

time, 7, and execute the reaction process Monte Carlo technique, which is called the random selection
(iv) set t—t+7 N ) method and has become quite popular in recent years. The
(v) repeat all steps from step (ii) untiTs _ algorithm in its most simple form consists essentially of
This algorithm requires computation time proportional tochoosing per time stef)) a location on the lattice with prob-

the number of reactions in the system std¥g, which is  apijiny 1/N and(ii) a type of reaction proce$&8]. The latter
proportional to the number of lattice sites times the numbels -hosen with probability ,/Re whereRo=3" o andr
’ p= p P

of reaction processes. Furthermadxg random numbers have o otes the rate of theth out of P possible reaction pro-

to be newly generated per iteration. cesses. All reaction processes are assumed to be constant in
time and thus independent of the actual system state. Then, if
possible, the randomly chosen reaction process is carried out
The number of newly generated random numbers and that the randomly chosen location on the lattice and the proce-
computation time are significantly decreased in the next redure is repeated. This method is very efficient, provided that
action method with respect to the first reaction method. Thigeaction processes are accepted often, and has also been ap-
is achieved by realizing that reusing generated waiting timeplied to simulate germinal center reactiofisl,12,22. It
is admitted 17]. Because a reaction process changes the syshould be noted, however, that the random selection method
tem state only locally, putative waiting times have to be gencan only be applied if the reaction rates do not depend on
erated per iteration for each enabled reaction at a few siteténe, because this method decouples the notion of time from

computer time and

B. Next reaction method

only. the simulation. It essentially corresponds to a discretization
We implemented the algorithm of the next reactionof the master equatiof26) with a fixed time step ANRp),
method in the following way: independent of the system state and the reaction process to
(i) initialize the system att0 and set the total simulation be performed. Therefore, the random selection method
time T should only be applied to reaction-diffusion systems with
(i) at each site of the lattice generate for each enabledime-independent reaction rates and if the main goal is not
reaction a putative waiting time according to Eq. (37) simulating the system’s exact time evolution.
(iii) choose the reaction process with the shortest waiting A different approach for simulating reaction-diffusion sys-
time, 7, and execute the reaction process tems is known as the cellular automata technifg. The
(iv) sett—rg dynamics of a cellular automaton, where each site of the

(v) at each reaction site of the lattice generate for eachlattice corresponds to a computational cell, is characterized
enabled reaction a putative waiting time according to Eg.by a simultaneous update of all these cells in each iteration
(37) step according to predefined deterministic rules. In contrast

(vi) repeat all steps from step (iii) untiT, to the methods of the dynamical Monte Carlo technique,

It is obvious that this algorithm requires much fewer op-which are inherently serial in time, cellular automata model-
erations and must be faster than the one of the first reactioing allows for efficient implementations on massive parallel
method, because stép) involves only the one or two reac- computers. However, the notion of time is lost completely in
tion sites instead of all lattice sites. The precise gain in comthis case because slow and fast reactions have the same prob-
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ability to occur in a simultaneous cell update. The dynamics TABLE I. Model parameters and initial conditions.
of a stochastic system cannot be correctly simulated in this
way. As a way out, cellular automata modeling with nonde- Parameter Value Remark

terministic rules have been proposed, where a certain reac-

tion process occurs with a probability that depends again on "(B2.BB) 4 O_Pl [2.12,2
the rate constants. If this is done in such a way that the Ne 8 sites
master equatioli26) is satisfied, then the algorithm for the r(B,C) 4d? (11,22
nondeterministic cellular automaton resembles that of the {fy;wy:te {0.2;0.4 d1;10 d
random selection methd@9]. (Wt} {0.2;0.4 d1;6 d}

We conclude that the first reaction method and the next
reaction method are exact and general methods for the sto-fo(CA,C*A) 0.2d* [13,32,33
chastic discrete event simulation of reaction-diffusion sys- {Na;8:ps;p-} {7; 100; 0.33; 0.3 [4]
tems with respect to the system'’s time evolution. In compari- (2. T) 0.02 ¢

son with other simulation methods these algorithms demand

relatively large computer resources; however, this does not"(CT.C*"T) 4d?
pose a serious problem in the present context of germinal r(C*™*,0) 4d*t (11,22
centers because of the moderate system size. (BB, 7B) 195 ¢t Re~7.5 um
(X3, DX) 3.75 d? Ry~2.5 um
V. NUMERICAL SIMULATIONS X=C,C*,C**

In this section, we present the results obtained from sto- r(12,2T) 2d* Rr~5 um
chastic discrete event simulations of germinal center reac- '(02,20) 2dt Ro~5 um
tions using both the first reaction method and the next reac- ((T.2) 0.8 dt [34]
tion method. We first summarize the model parameters and ’ D
initial conditions and then compare the first reaction method "(8,2) 08 dl [35]
and the next reaction method with each other. Next, we r(C,2) 4d [36]
present the simulation results for particular germinal center ~ (A,9) 0.03 d* [37]
properties, such as their morphology, affinity maturation, and At=0) 400 [38-4(
recycling.

B(t=0) 5 [26,41,42
Ts 21d [2]

A. Model parameters and initial conditions

The germinal center is represented by the reactionfree space. The limitation of empty sites gives rise to a com-
diffusion model on a two-dimensional square lattice of equi-petition between increasing cell populations and strongly in-
distant sites with lattice constaat The lattice has a circular fluences the mixing of different cell types that first have to
geometry with a diameter of 130 sites. The total number ofneet in order to undergo a reaction process.

N=13273 lattice sites provides sufficient space for the occur- Jump processes of cells from site to site on the lattice are
rence of realistic cell populations. The antigen presentingnodeled by relating the reaction rates to the corresponding
sites are kept fixed throughout the simulation at random podiffusion constants. The latter are estimated following the
sitions in the upper 70% of the system volume. In this wayapproach in Ref[11], where the diffusion constaridy is

we mimic the accommodation of antigen presenting sites byassumed to obey the well-known Stokes-Einstein relation
follicular dendritic cells without actually representing the lat- Dx=kgTo/ (67 7,Rx). Here kg is the Boltzmann constant,

ter. As a consequence all cells can diffuse freely withoufs the room temperaturey,=0.02 J s i is the blood vis-
being hindered by the presence of the follicular dendriticcosity [43], and Ry is the radius of the corresponding cell
cells. It might be argued that this makes the two-dimensionalype X (see Table )l The model takes different cell sizes
simulation system actually more comparable to the threeeffectively into account by relating the lattice constant to the
dimensional germinal center, where the presence of folliculaarithmetic mean cell radius:a=2(Rz+Rc+R;+Rp)/4
dendritic cells do hinder free cell diffusion. =10 um. The reaction rates for site-to-site jump processes

In Table | we summarize the model parameters and initiabn the square lattice are obtained from the diffusion con-
conditions that we use in the simulations, if not stated otherstants byr(X@,®X)=Dy/a? and the corresponding values
wise. The reaction rates are measured in units of inverse dayse given in Table .

(dY). We note that the choice of these parameters as ob- The centroblast reaction regulation in the light and dark
tained from the literature is to be understood as a startingones is modeled by proliferation and differentiation rates
point in the high-dimensional parameter space. In general ithat depend on time. In Fig. 4 we plot the time-dependent
is actually not cleam priori how microscopic rate constants part of the proliferation rates according to EG7) and for

of the stochastic discrete event simulation are related to exhe parameters given in Table I. The time is measured in
perimentally determined average reaction times. For exunits of daygd). The only difference betwedr,(t) andF(t)
ample, an important aspect that is completely missing in dies in the choice oty andt;, respectively, from which we
macroscopic view on biological systems is the availability ofexpect the following scenario. In the light zone centroblast
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aroundt,—w;*=3.5 d, while the dark zone should start to

disappear aroundd—w51:8.5d and should be vanished

aroundty+w;'=12.5 d. }0
Finally, we consider the validity of the adiabatic approxi- %" 35 10 15 2

// cw \

W

1 A\
12) [ (@) o 12 (b) /4
z | \Bo :
=06 0 Fa(t) = 1\ Ol o)
0.4 Sell \ °
' = SO =
0.2 = :( v = 4 ()
0 9 \ < A )
0 5 10 15 20 ol VA S
t (units of d) 0 5 10 15 20 0 5 10 15 20
t (units of d) t (units of d)
FIG. 4. The functiong=4(t) and F(t) according to Eq(17) for -
the parameters given in Table I. 12 /’,/\‘\\ 5 © <@ ?
mO [ \ ~
. - . N 2o\ S g (o)
differentiation should start to dominate over proliferation & || \ °]
U 6 =)
=) &=
= S
<

10 15 20
mation that we applied in going from E8) to Eq. (31). t (units of d) t (units of d)

The slope ofF;(t) is maximal att=t; and we estimate that

FIG. 5. The number of antigen presenting sites and cells as a
}dFi(t) - Wi|fi - 1| _ O(lO_z)d"l (39) function of time for 20 simulations using the first reaction method
- 29(T,wi,t;) ’ [(a) and(b)] and the next reaction methdtt) and(d)]. The width

2 dt
. . . . of the curves corresponds to two times the sample standard
FurthermoreF;(t) ~ O(10°1) and in the simulations the typi- geviation.

cal waiting time is of the order~ O(107°) d. It follows that
the main contribution in the expansion Eg9) stems indeed
from the first term, since

1 R
2 dt

ter reaction using the next reaction method is, however, by a
factor 6—8 faster. Therefore, in what follows we use the next

r reaction method to study properties of germinal centers.

_T - 6
F ) 0(10°). (39

1>

t=t;
) ) ) ) ) C. Morphology of germinal centers
We conclude that applying the adiabatic approximation, Eq.

(30), with the benefit of significant computational simplifica-  1he development of the germinal center morphology in
tions is fully justified. the course of time is depicted in Fig. 6 as obtained from a

typical stochastic discrete event simulation. For reasons of
clarity only antigen presenting sitelack), centroblasts
(light gray), and centrocyte&dark gray are shown and their
We discuss the results of a systematic comparison of gerumbers are given in Table Ill together with those of the T
minal center reactions simulated by the first reaction methodells and the output cells.
and the next reaction method. To this end we performed 20 The initial configuration consists of 400 antigen present-
simulations per simulation method using the model paraming sites in the upper part of the system and five randomly
eters and initial conditions given by Table | for different positioned B cell§see Fig. 6a)]. The centroblasts proliferate
random initial configurations. It is obvious that, independentand start to fill the whole germinal cenfeee Fig. 60)] until
of the applied simulation method, small changes in the initiait is completely filled at day 8see Fig. 6c)]. Thus, nearly all
phase of the reaction can give rise to recognizable differantigen presenting sites are now surrounded by centroblasts,
ences in the progression of the reaction. For example, if on@hich start to undergo hypermutation and differentiation into
or two of the initially present B cells happen to undergo
apoptosis before they could start to proliferate, then the fill- - tag_g 11, Quantitative comparison of the final number of an-
ing of the germinal center by centroblasts will be retardedjgen presenting sites and cells in terms of the mean value and the

B. Comparison of simulation methods

affecting its further development. sample standard deviation for the simulations of Fig. 5.
A quantitative comparison of the first reaction method and
the next reaction method in terms of the number of antigen  Number at First reaction Next reaction
presenting sites and cells as a function of time is presented in ~ t=21 d method method
Fig. 5. The width of the curves corresponds to two times the
sample standard deviation taken over the 20 simulations. In A 210£12 214+11
Table Il we present the corresponding values of the final T 28115 284+16
numbers for antigen presenting sites and cells. B 5+5 9+9
This comparison shows that the first reaction and next C 267+23 255+ 25
reaction methods produce results that are, as expected, in 0 1244+51 1205+59

excellent quantitative agreement. Computing a germinal cen-
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TABLE Ill. The number of antigen presenting sites and cells as
a function of time corresponding to the snapshots of the germinal
center reaction depicted in Fig. 6.

Fig.6 t(d A T B C o)
(@ 0 400 0 5 0 0
(b) 1 388 132 5402 14 0
© 3 368 49 12257 388 0
(d) 6 335 20 9705 2621 1
(© 9 307 50 5792 3955 24
(f) 12 287 162 2234 2700 287
) 15 269 235 556 1316 693
(h) 21 223 281 3 233 1223

[see Fig. 6d)]. With a delay of a few days, the dark zone
starts to disappedsee Fig. €e)] and is practically vanished

at day 12[see Fig. &)] where it contains roughly as many
centrocytes as centroblasts.

In the meantime the T cell population in the light zone
increases again due to the availability of spdsee Table
lII). The light zone becomes a dilute system of interacting
cells[see Figs. &) and Gg)], which is actually required to
enhance the probability that positively selected centrocytes
meet T cells and receive the second survival signal. In other
words, as important as the initial dense filling of the germinal
center by centroblasts is in order to obtain centrocytes close
to the fixed antigen presenting sites, it is important that the
germinal center evolves into a dilute cell system in order to
increase the probability for the encounter of diffusing centro-
cytes and T cells. According to Table Il this development of
the germinal center morphology is indeed accompanied by
an increase in the number of output cells. At the end of the
germinal center reactiofsee Fig. 6h)], the number of anti-
gen presenting cells is decreased by about 50% and also the
number of centroblasts and centrocytes is again significantly
decreased.

We thus see that our reaction-diffusion model captures the
experimentally observed development of the germinal center
morphology very well.

. . D. Antibody-anti ffinit turati
FIG. 6. Development of the germinal center morphology in the niibody-antigen attinity maturation

course of time. Snapshots are takeratday 0, (b) day 1,(c) day Hypermutation of centroblasts and selection of centro-
3, (d) day 6,(e) day 9,(f) day 12,(g) day 15, andh) day 21. For  cytes are the main pillars of affinity maturation aiming to
reasons of clarity only antigen presenting sielsick), centroblasts yield a strong population of mutants with high antibody-
(light gray, and centrocytesdark gray are shown. The corre-  gntinen affinity. As has been explained in Sec. Il B, we
sponding numbers are given in Table III model the hypermutation of centroblasts within the simple

centrocytes. Based on the affinity of their surface receptors tgicture of affinity classes and the selection of centrocytes
antigen the centrocytes around the antigen presenting cel@sed on their affinity to antigen. We study affinity matura-
will compete for the first survival signal. As a consequencelion as a function of the maximal mutation distarig This

of the relatively high death rate of nonselected centrocyted)Umber corresponds to the mutation steps required for a cen-
the populous germinal center starts to thin out where centrdfoblast to go directly from the germline affinity class with
blast differentiation is strongest, which is the case in the@action ratero(CA,C'A) to the highest affinity class with
vicinity of the follicular dendritic cells. The germinal center reaction ratery (CA,C A)=pro(CA,C A). We note that the
develops into a compartmentalized microenvironment with agermline affinity, which is directly related tg(CA,C"A), is

light and a dark zone that are clearly distinguishable at day &he same in all simulations.

051907-10



STOCHASTIC DISCRETE EVENT SIMULATION OE. PHYSICAL REVIEW E 71, 051907(2009

clearly seen that the result of a germinal center reaction de-
pends strongly on the maximal mutation distance with a
crossover alNy=6—7. Atsmall maximal mutation distances
Ng<5, most output cells belong to high-affinity classes and
in the limit Ny=1 nearly all of them are of the highest-
affinity class. The opposite is true for large maximal muta-
tion distancedNy> 9, where the affinity of most of the output
cells does not really improve during the germinal center re-
action but remains low and distributed over affinity classes
close to that of the germline. Therefore, we conclude that the
maximal mutation distance between the germline affinity and
the optimal affinity is of great importance for the success of
a germinal center reaction with respect to the affinity matu-
ration.

Our numerical results are in agreement with experimental
FIG. 7. The number of output cellsiots as a function of the evidence that the upper limit for relevant maximal mutation

maximal mutation distanclly. This plot is the result of 65 simula-  distances is arounbly=12[44,45. Furthermore, our results
tions using the parameter values and initial conditions as given ifProvide an explanation for another experimental finding in
Table | for different random initial conditions. The size of the error germinal centers: namely, that they either contain no high-
bars corresponds to two times the sample standard deviation and t@éfinity output cells at all or are dominated by output cells of
solid lines are a guide to the eye. high affinity [46,47. This global all-or-none behavior is the
reflection of a local winner-takes-all mechanism. In the

We performed 65 simulations using the parameter valuepresent model, the winner-takes-all mechanism is due to re-
and initial conditions as given in Table | for different random action rates that depend on the affinity and that induce a
initial conditions. In Fig. 7 we plot the number of output competition for the survival signal between centrocytes sur-
cells as a function oNy. We denote the total number of rounding the same antigen presenting site. Within a hybrid
output cells byO(Ny), while the numbers of output cells cellular automata model for cell sorting, global all-or-none
belonging to the germline affinity class and the highest affinbehavior has been observed due to a similar local winner-
ity class are denoted by, respective@;(Ng) and Og(Ng).  takes-all mechanism, where centrocyte selection takes place
We observe tha®(N,) is an exponentially decreasing func- based on cellular adhesion which in turn is related to the
tion of Ny that levels off for large valuedly>10. At Ny  affinity [13]. Affinity maturation has also been studied within
=50 we find thatO(Ny) is still of the order of 300 output a much more involved implementation of the shape space
cells (result not shown Furthermore, we notice th&;(Ny) concept[48]. As far as a comparison is possible, our results
is practically independent dfy, whereasO4(Ny) is strongly — agree surprisingly well with those obtained in the latter
affected and exponentially diminished to zero arouxg  Study.
=13. This means that the decrease in the total number of
output cells is mainly paid for by the high-affinity output
cells.

In Fig. 8 we plot the relative numbers of output cells We study the impact of recycling on affinity maturation
Q5(Ng)=04(Ng)/O(Ng) and Q;(Ng)=0;1(Ng)/O(Ng). It is  during germinal center reactions. For this purpose we per-
formed 215 simulations using the parameter values and ini-
tial conditions as given in Table | for different random initial
Qs(No) conditions. As has been discussed in Sgc. Il D, recycling

may be realized by one of the three reaction processes, Egs.
(1921, that are depicted in Fig. 3. In what follows, we
will refer to the reaction process™ — B as type-I recycling,
to C*— B as type-ll recycling, and t€*** — B as type-ll|
recycling.

In Fig. 9 we plot the number of output cells and the recy-
cling probability as a function of the corresponding recycling
rate, which we abbreviate bys. The recycling probability,

Pr, is computed as the number of recycling events that have

been performed during the germinal center reaction over the

0 ; 5 P 5 o I number of recycling events that could at most have been
Ny performed. It is obvious from Figs.(& and 9b) that, inde-

pendent of the recycling type, the number of output cells is

FIG. 8. The relative number of output cellsQz(Ng) exponentially decreasing with increasing recycling rate.
=0p(Ng)/O(Ng) andQ1(Ng)=04(Ng)/O(Ny), as obtained from the However, this decrease occurs significantly faster for type-Ii
data in Fig. 7. The solid lines are a guide to the eye. recycling as compared with type-l recycling. This is ex-

O(Ng), Op(Ny), O1(Ny) / 107

E. Centrocyte-centroblast recycling

1

Qp(Ng), 1(Ng)
o
wn

0(Ng)
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are a guide to the eye.

FIG. 9. The number of output cell$¢a) and (b)] and the corre-
sponding recycling probabilitj(c) and(d)] as a function ofg for ~ creasing from about 6% to 1%. Similar numbers are obtained
the three recycling types. This plot is the result of 215 simulationsfor type-IIl recycling(results not shown We do not observe
using the parameter values and initial conditions as given in Table &ny improvement of affinity maturation by type-I recycling,
for different random initial conditions. The size of the error barsas was expected for this parameter region. However, we find
corresponds to two times the sample standard deviation and thinat this is also not the case in the region of large recycling
solid lines are a guide to the eye. rates. In Fig. 11 we plot the relative number of output cells

Qg and(), as a function of the recycling ratg,>5 d for
plained by the fact that type-I recycling consun@s cen-  type-l recycling. The percentage of highest-affinity mutants
trocytes, while type-Il recycling consume3* centrocytes is approximately constant and lies around 50% and the rela-
which are several days earlier available during the germindiive number of output cells remains around 6%.
center reaction. Thus, the time difference in the availability Our model predicts that recycling of type I, which is
of C* andC** centrocytes plays an important role, which is based orC** centrocytes, does not provide a significant im-
reaffirmed by the fact that type-Ill recycling, consuming bothprovement of affinity maturation but does give rise to an
C** and C* centrocytes, behaves very similar to type-Il re- unwanted strong decrease in the number of output cells. This
cycling. The recycling probability, which is plotted in Figs. can be deduced from the absolute and relative numbers of
9(c) and 9d), reflects this situation once again. Ak  output cells which are summarized in Table IV. For type-II
=1 d* we find pr>90% for type-Il and type-IIl recycling recycling, which is based o8* centrocytes, the decrease in
while still pg<20% for type-lll recycling. Only for much the number of output cells is less severe and at the same time
higher recycling rates arountk=35 d! do we obtain a affinity maturation is optimized, resulting in a number of
type-I recycling probability of 90%.

Affinity maturation will only be improved by a recycling
mechanism that operates in a parameter region where the
recycling probability is large and the loss of output cells is
small. In principle, this is the case for type-l recycling at
recycling rates 7 d<rg<30 d* and for type-Il and type- 0.4
Il recycling at recycling rates 0.2°d<rr<1 d*. Since the
number of output cells in type-lll recycling is even smaller
than that in type-Il recycling, we will focus in what follows
on the comparison of type-l and type-Il recycling. 0.2

In Fig. 10 we plot the relative number of output cells with
highest affinity,(2;=0,4/0O, and with germline affinity),
=0,/0, as a func?ion ﬁof the recycling ratg for type-1 and “*+—‘+‘Iﬁ+——+‘——+——4
type-ll recycling. We note that the size of the error bars 0
increases withig due to the decrease in the number of output
cells. It can be clearly seen that affinity maturation is im-
proved by type-II recycling. The percentage of highest affin-  FIG. 11. The relative number of output celBz=0,/0 (solid
ity mutants is increasing from about 45% @gt=0 d® to  line) and Q;=0,/0 (dashed ling as a function of the recycling
about 68% atg=1 d%, while in the same interval fars the  raterg for type-I recycling. The solid and dashed lines are a guide
relative number of output cells with germline affinity is de- to the eye.

0.6

[0}

Qp,

5 15 25 35
rr (units of d°')
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TABLE IV. Absolute and relative numbers of output cells for all three recycling types. These numbers are
based on 50 simulations using the parameter values and initial conditions as given in Table | for different
random initial conditions.

Recyc. Pr rg (d? 0 Op and Qg 0, andQ,
None 0 0 1213+43 545+33 752
0.45+0.04 0.06+0.00
| 0.65 7 511+24 24027 32+5
0.47+0.08 0.06+£0.01
Il 0.65 0.2 671+50 367129 22+4
0.55+0.08 0.03+£0.01
1] 0.65 0.2 622+35 345+25 23+8
0.56+0.07 0.04+£0.01
| 0.80 15 298+16 147+4 17+6
0.50+£0.04 0.06+£0.02
1 0.80 0.4 463+55 274+25 12+3
0.61+£0.13 0.03£0.01
I 0.80 0.4 392112 226+12 10+2
0.58+0.05 0.03£0.01
| 0.88 30 17517 85+16 10+£3
0.50+£0.14 0.06£0.02
Il 0.88 0.6 335+£33 208127 73
0.63+£0.14 0.02+£0.01
[ 0.88 0.6 314127 188+13 5+3
0.60+£0.09 0.02+0.01

high-affinity output cells that is larger than that for type-I centers, it is indispensable necessary to perform stochastic
recycling. Recycling of type lIl, which includes bo@ and  discrete event simulations in an accurate way, because vari-
C** centrocytes, shows a behavior that is very similar toous coupled reaction processes occur on different character-
type-ll recycling. It should be noted, however, that type-Ill istic time scales in a spatially compartmentalized microenvi-
recycling does not seem to improve type-Il recycling. Weronment. In principle, the type of enabled reaction and the
may therefore conclude that the preferred recycling mechaaiting time have to be chosen from the corresponding dis-
nism is of type 1. However, for any type of recycling our tributions at each time step. We have shown for the case of

simulations predict a significant decrease in the number o§€rminal center reactions that this is realized in an efficient

output cells, even in the subclass of high-affinity output cells & Py the next reaction methdti7] which we compared to
he first reaction methofl6].

It therefore remains somewhat questionable whether rec;l- Beside basic reaction processes—such as diffusion, birth

cling in germinal centers is an efficient mechanism at all. . . .
death, and survival processes—our model describes in a phe-

t erl—o \}theerbeest:]gf i?]gérzzggvrl]egge?\l’v;zycgg]r%r'gcgg?2:(; C? n'nomenological way centroblast reaction regulation that gives
' y rise to the development of the germinal center into a com-

cells is epr|C|tIy included in & microscopic m_odel, has no'F artmentalized microenvironment. We considered centroblast
been studied before. In previous microscopic models thi

i _ roliferation and differentiation as time-dependent processes
part of the germinal center reaction has been neglected anghqre the differentiation was increased on the cost of prolif-
an effective recycling mechanism was implemented that hapsyation in the course of time. In this way we mimicked regu-

pens to resemble the type-ll recycling mechanismiiion mechanisms that are still unknown today, such as hy-

[11,12,22,4% pothetic signal moleculgdl1]. Our simulations have shown
that the development of the germinal center morphology is in
V1. SUMMARY AND CONCLUSIONS agreement with experimental observations. At the same time

our approach offers the freedom to incorporate mechanisms

In this paper, we studied germinal center reactions by stolike chemotaxi§12] by adjusting the time dependence of the
chastic discrete event simulations within a microscopicreaction rates; however, this is left for future research.
reaction-diffusion model. We applied the philosophy that We modeled centroblast hypermutation in terms of jumps
erything should be made as simple as possible, but not sinbetween a one-dimensional configuration of affinity classes,
pler [14] by introducing a generic model but applying exactwhich may be considered as the most simple realization of
simulation methods. To simulate the time evolution of com-the shape-space concé@t]. The reaction rate for the inter-
plex and highly dynamic biological systems like germinal action between centrocytes and antigen depends on their af-
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finity. This induces a local winner-takes-all mechanism,the number of output cells that can eventually be so strong
where centrocytes surrounding the same antigen presentiriigat the efficiency of recycling may be questioned. This
site compete for the survival signal and the mutant withwould be different if one could extend the recycling hypoth-
highest affinity will be most likely to reach this goal first. esis by the assumption that recycled centrocytes are for some
This local winner-takes-all mechanism gives rise to a globalinknown reason not again subjected to apoptosis. It would
all-or-none behavior. Our numerical results reveal the strondpe interesting to investigate the effects on affinity maturation
selection for highest-affinity mutants and the experimentallyand on the termination of the germinal center reaction in this
observed all-or-none behavior as a function of the maximatase. In the present paper we also restricted the study of
mutation distance. Even though our realization of shapeecycling to systems with a fixed number Nf=7 affinity
space is by far more simple than that in other mofikls12, classes. An obvious next step is the comparison of systems
our simulations confirm quantitatively the crossover in thewith different numbers of affinity classes, which is left to
all-or-none behavior as a function of the maximal mutationfuture research.
distances arountly=6 to 7. For smaller values ™, germi- We finally note that the simulation methods applied in this
nal centers are dominated by output cells of high affinity,paper are applicable to a wide range of biological systems
while for larger values ofNy they contain no high-affinity that can be formulated in terms of reaction-diffusion models.
output cells at all. In the present study we started the germiEven though important processes in biological systems are
nal center reactions with a germline affinity that was thequite often not yet fully understood, the present work illus-
same for all initial B cells. This condition may be relaxed by trates that stochastic discrete event simulations are worth the
considering some affinity distribution for the initial B cells. effort. To be more specific, the recycling hypothesis has pre-
Furthermore, affinity maturation may be studied as a funcviously been implemented for a specific recycling pathway
tion of the probability for affinity-loweringp_) and affinity-  in various deterministic continuum models. However, our
improving (p,) mutations or including the possibility of ran- stochastic discrete event simulations indicate that affinity
domly generated mutants that completely lose their ability tonaturation is optimized by a different recycling pathway,
bind to antigen. which has previously not been considered. This new insight
In our model the interaction between centrocytes and Tnay be used to reconstruct deterministic continuum models
cells is explicitly taken into account. This enabled us to studyin order to obtain qualitatively correct results and to benefit
the hypothesis of centrocyte-centroblast recyclia@g by  from their computational advantages over the stochastic dis-
comparing recycling that involves centrocytes, which havecrete approach. We believe that using the results obtained
received(i) both survival signals from interactions with an- from stochastic discrete event simulations to build determin-
tigen and T cells(ii) the first survival signal from interaction istic continuum models will be a fruitful combination for
with antigen only, andiii) at least the first survival signal. future research.
Our numerical results indicate that affinity maturation is op-
timized by recycling involving centrocytes that have re-
ceived only the first survival signal from interaction with  The author gratefully acknowledges lively and stimulating
antigen. In other words, recycling seems to improve the afédiscussions with N. J. Figge. This work is partially supported
finity maturation of output cells by taking the pathway that isby the Dutch “Stichting Nationale Computer Faciliteiten”
the shortest and available at earliest times in the simulatiofNCF) and the “Nederlandse Organisatie voor Wetenschap-
However, a general side effect of recycling is the decrease ipelijk Onderzoek(NWO).
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